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Motivation

 

Increasing application logic complexity
Latency is critical

Scalability matters

 New OLTP Application Trends

Is the programming interface of 
stored procedures good enough 

for modern OLTP databases?
● Performance Challenges

● Locality  and intra-transaction 
parallelism

● Low-level deployment control
● Software Engineering 

Challenges
● Modularity and isolation
● Abstractions to reason about 

performance

Modular, Concurrent and Asynchronous

How can we integrate actor 
programming models in modern 
relational databases to improve 

programmability of stored 
procedures?

Relational Actor (Reactor) Programming Model

 

Reactor Programming Model Concepts
● A reactor is an application-defined actor 

encapsulating the state as relations
● Declarative queries are used to access 

the encapsulated reactor state
● Communication across reactors only 

through asynchronous function calls 
● Computations across reactors provide 

ACID guarantees

reactor Exchange {
 Relation settlement_risk { p_exposure float,         
                            g_risk float},            
 Relation provider_names  { value varchar(32) };      

 void auth_pay(pprovider, pwallet, pvalue) {
   SELECT g_risk, p_exposure INTO risk, exposure 
   FROM settlement_risk;
   results := [];   
   foreach pprovider in 
                (SELECT value FROM provider_names) {
     res := calc_risk(exposure) on reactor pprovider;
     results.add(res);   
   }

   total_risk := 0;
   foreach res in results 
     total_risk := total_risk + res.get();

   if total_risk + pvalue < risk then
     add_entry(pwallet,pvalue) on reactor pprovider;
   else abort;
   end if;
 }
}    

reactor Provider {
 Relation orders { wallet int, value float,       
                   settled char(1) };            
 Relation provider_info { risk float,             
                          time timestamp,         
                          window interval };     

 float calc_risk(p_exposure) {
   SELECT SUM(value) INTO exposure 
   FROM orders WHERE settled = ‘N’;
   if exposure > p_exposure then abort;
   SELECT risk, time, window 
          INTO p_risk, p_time, p_window 
   FROM provider_info;
   if p_time < now() - p_window then
    p_risk := sim_risk(my_name(),exposure);
    UPDATE provider_info SET risk = p_risk,      
                             time = now();
   end if;
   return p_risk;
 }
 void add_entry(wallet, value){
  INSERT INTO orders VALUES (wallet, value, ‘N’);
 }
}

Design and Implementation of ReactDB Experimental Evaluation

A Simplified Digital Currency Exchange Application using Reactors

async 
function 

invocation 

future
result

● Reactor Type
● Schema
● Methods

● Reactor Instance
● Based on type
● Unique name 

for addressing
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ReactDB Architecture

Implementation Overview

Thread Management in 
Transaction Executors:
● Thread pool uses 

cooperative multitasking
● Configurable multi-

programming level

Concurrency Control:
● Single Container

● OCC protocol (Silo, Tu et al. [SOSP 2013] )
● Single transaction context, sequential 

execution to leverage shared memory
● Multi-Container

● OCC + 2PC protocol
● Multiple transaction contexts, 

asynchronous execution across containers

Storage Layer:
● Primary Masstree indices 

(Mao et al. [EuroSys 2012])

Transaction
Executor

(A,B)

Transaction
Executor

(C,D)

Simple Router Simple Router

ContainerContainer

Transaction
Executor
(A,B,C,D)

Transaction
Executor
(A,B,C,D)

Load Balancing Router

Container

Transaction
Executor

(A,B)

Transaction
Executor

(C,D)

Affnity based Router

Container

Run-time Deployments

shared-nothing

shared-everything-without-affinity

shared-everything-with-affinity
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Random numbers per provider, log scale

query-parallelism

procedure-parallelism

sequential

Machine
2x AMD Opteron 6274 with 8 cores @ 2.1 GHz 

4x 32 GB DDR3 RAM
64 KB L1, 2 MB L2, 6 MB L3 cache

● Simplified Digital Currency Exchange Application
● 1x Exchange reactor, 15x Provider reactors 

(30,000 orders per provider)
● 1x shared-everything-with-affinity container 

(sequential) vs 16x shared-nothing containers 
with  partially asynchronous (query-parallelism) 
or fully asynchronous (procedure-parallelism) 
auth_pay programs

● Varying complexity of sim_risk simulated by 
random number generation, single worker only

Asynchronicity gains manifest with 
increasing complexity of 

application logic

● 100% TPC-C new-order + artificial delay of 300-
400 μsec (random number generation to simulate 
complex stock replenishment logic) per 
warehouse

● Each warehouse is a reactor
● Fixed scale factor of 8 with varying workers

Asynchronicity gains diminish 
with increasing load

● Standard TPC-C benchmark mix 
● Each warehouse is a reactor
● Fixed scale factor of 4 with varying load on 

databases as a whole (workers > 4 simulate 
overload on the database)

Memory access affinity matters 
for sequential execution of 

classic OLTP workloads
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