

Reactors: A Case for Predictable, Virtualized
Actor Database Systems

Vivek Shah, Marcos Antonio Vaz Salles
University of Copenhagen(DMS GROUP@DIKU)

Motivation

Increasing application logic complexity
Latency is critical

Scalability matters

 New OLTP Application Trends

Is the programming interface of
stored procedures good enough

for modern OLTP databases?
● Performance Challenges

● Locality and intra-transaction
parallelism

● Low-level deployment control
● Software Engineering

Challenges
● Modularity and isolation
● Abstractions to reason about

performance

Modular, Concurrent and Asynchronous

How can we integrate actor
programming models in modern
relational databases to improve

programmability of stored
procedures?

Relational Actor (Reactor) Programming Model

Reactor Programming Model Concepts
● A reactor is an application-defined actor

encapsulating the state as relations
● Declarative queries are used to access

the encapsulated reactor state
● Communication across reactors only

through asynchronous function calls
● Computations across reactors provide

ACID guarantees

reactor Exchange {
 Relation settlement_risk { p_exposure float,
 g_risk float},
 Relation provider_names { value varchar(32) };

 void auth_pay(pprovider, pwallet, pvalue) {
 SELECT g_risk, p_exposure INTO risk, exposure
 FROM settlement_risk;
 results := [];
 foreach pprovider in
 (SELECT value FROM provider_names) {
 res := calc_risk(exposure) on reactor pprovider;
 results.add(res);
 }

 total_risk := 0;
 foreach res in results
 total_risk := total_risk + res.get();

 if total_risk + pvalue < risk then
 add_entry(pwallet,pvalue) on reactor pprovider;
 else abort;
 end if;
 }
}

reactor Provider {
 Relation orders { wallet int, value float,
 settled char(1) };
 Relation provider_info { risk float,
 time timestamp,
 window interval };

 float calc_risk(p_exposure) {
 SELECT SUM(value) INTO exposure
 FROM orders WHERE settled = ‘N’;
 if exposure > p_exposure then abort;
 SELECT risk, time, window
 INTO p_risk, p_time, p_window
 FROM provider_info;
 if p_time < now() - p_window then
 p_risk := sim_risk(my_name(),exposure);
 UPDATE provider_info SET risk = p_risk,
 time = now();
 end if;
 return p_risk;
 }
 void add_entry(wallet, value){
 INSERT INTO orders VALUES (wallet, value, ‘N’);
 }
}

Design and Implementation of ReactDB Experimental Evaluation

A Simplified Digital Currency Exchange Application using Reactors

async
function

invocation

future
result

● Reactor Type
● Schema
● Methods

● Reactor Instance
● Based on type
● Unique name

for addressing

Transaction
Executor

Request
Queue

Transaction
Executor

Request
Queue

Transaction Coordinator
Transport Driver

Transaction Router

Container

Container

Container

Container

Multi-core machine

ReactDB Architecture

Implementation Overview

Thread Management in
Transaction Executors:
● Thread pool uses

cooperative multitasking
● Configurable multi-

programming level

Concurrency Control:
● Single Container

● OCC protocol (Silo, Tu et al. [SOSP 2013])
● Single transaction context, sequential

execution to leverage shared memory
● Multi-Container

● OCC + 2PC protocol
● Multiple transaction contexts,

asynchronous execution across containers

Storage Layer:
● Primary Masstree indices

(Mao et al. [EuroSys 2012])

Transaction
Executor

(A,B)

Transaction
Executor

(C,D)

Simple Router Simple Router

ContainerContainer

Transaction
Executor
(A,B,C,D)

Transaction
Executor
(A,B,C,D)

Load Balancing Router

Container

Transaction
Executor

(A,B)

Transaction
Executor

(C,D)

Affnity based Router

Container

Run-time Deployments

shared-nothing

shared-everything-without-affinity

shared-everything-with-affinity

0

20

40

60

80

100

10 1 10 2 10 3 10 4 10 5 10 6

A
vg

 la
te

nc
y

[m
se

c]

Random numbers per provider, log scale

query-parallelism

procedure-parallelism

sequential

Machine
2x AMD Opteron 6274 with 8 cores @ 2.1 GHz

4x 32 GB DDR3 RAM
64 KB L1, 2 MB L2, 6 MB L3 cache

● Simplified Digital Currency Exchange Application
● 1x Exchange reactor, 15x Provider reactors

(30,000 orders per provider)
● 1x shared-everything-with-affinity container

(sequential) vs 16x shared-nothing containers
with partially asynchronous (query-parallelism)
or fully asynchronous (procedure-parallelism)
auth_pay programs

● Varying complexity of sim_risk simulated by
random number generation, single worker only

Asynchronicity gains manifest with
increasing complexity of

application logic

● 100% TPC-C new-order + artificial delay of 300-
400 μsec (random number generation to simulate
complex stock replenishment logic) per
warehouse

● Each warehouse is a reactor
● Fixed scale factor of 8 with varying workers

Asynchronicity gains diminish
with increasing load

● Standard TPC-C benchmark mix
● Each warehouse is a reactor
● Fixed scale factor of 4 with varying load on

databases as a whole (workers > 4 simulate
overload on the database)

Memory access affinity matters
for sequential execution of

classic OLTP workloads

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t [

K
tx

n/
se

c]

Workers

shared-nothing

shared-everything-with-affinity

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t [

K
tx

n/
se

c]

Workers

shared-everything-without-affinity

shared-nothing

shared-everything-with-affinity

	Slide 1

