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Abstract
This case study examines the data-parallel functional imple-
mentation of three algorithms: generation of quasi-random
Sobol numbers, breadth-first search, and calibration of He-
ston market parameters via a least-squares procedure. We
show that while all these problems permit elegant functional
implementations, good performance depends on subtle is-
sues that must be confronted in both the implementations
of the algorithms themselves, as well as the compiler that
is responsible for ultimately generating high-performance
code. In particular, we demonstrate a modular technique for
generating quasi-random Sobol numbers in an efficient man-
ner, study the efficient implementation of an irregular graph
algorithm without sacrificing parallelism, and argue for the
utility of nested regular data parallelism in the context of
nonlinear parameter calibration.

CCS Concepts • Software and its engineering → Soft-
ware performance; Parallel programming languages;
Functional languages; Massively parallel systems; • Hard-
ware → Emerging languages and compilers;
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1 Introduction
Massively parallel computers, such as GPUs, are now com-
monplace, but the absence of convenient programming mod-
els still limit their accessibility by non-expert users. Fortu-
nately, functional programming provides a useful vocabu-
lary and fundamental philosophy for how to structure data-
parallel applications [3]. In particular, the functional style
provides a high-level description of the available parallelism,
without requiring low-level details about synchronisation
or evaluation order. This feature is useful in a world where
machines not only get more parallel, but also more diverse.
Conversely, the functional style also poses a bigger chal-
lenge to the compiler, as a looser specification requires more
compiler smarts to optimize.

A rich body of related work has been aimed at investigat-
ing what is needed to support high-level expression and effi-
cient execution of various applications on modern hardware,
such as GPUs. For example, various embedded data-parallel
languages have been successfully used to accelerate computa-
tional kernels of (host) conventional languages, functional or
otherwise (e.g., Accelerate [8] and Lime [10]). On the down-
side, the embedding often places restrictions on the language
and compiler design, notably they tend to not support nested
parallelism. Stand-alone languages, such as nesl [2, 6] have
been implemented using strategies that are general, prin-
cipled, theoretically sound, and effective in many difficult
cases, but they do not always support the “common case”
efficiently, for example due to high communication costs.
Although the results of previous work are encouraging,

the literature somewhat lacks in demonstrating the full po-
tential of using a data-parallel language (i) for building mod-
ular applications and designing powerful high-level libraries,
or (ii) for allowing a step-by-step reasoning about the major
performance trade-offs, which (iii) can be modeled, empir-
ically observed, and then optimized by reformulating the
high-level implementation in a way that drives the compiler
to generate the desired low-level code.
In this case study, we explore three problems to demon-

strate the afore-mentioned advantages of data-parallel func-
tional programming, as well as the requirements that a lan-
guage and compiler must fulfill:

https://doi.org/10.1145/3264738.3264740
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Implementation of Breadth-First Search, based on a
port of a hand-written OpenCL implementation from
the Rodinia [9] benchmark suite, is shown in section 2.
We show how the high-level approach permits data-
parallel reasoning about the implementation perfor-
mance and allows algorithmic tuning of the data-parallel
implementation.

Simulation of quasi-random Sobol numbers is shown
in section 3, and presents the design of a convenient
and modular library for efficiently generating large
quantities of random numbers in a parallel and purely
functional setting. Sobol numbers are particularly use-
ful for Monte Carlo simulations, which are a core ap-
plication of massive parallelism.

Heston parameter calibration, section 4, is amore com-
plex application derived from a real financial software
product, and shows the importance of handling nested
parallelism. It is known that irregular nested paral-
lelism is very difficult to handle efficiently, but this
program shows that there is a simpler case of regular
nested parallelism that is easier to handle, but still cru-
cial for some applications. In particular, we argue that
it is necessary to exploit two levels of parallelism that
cross an abstraction boundary, and that any manual
flattening by a human programmer would result in
significantly less reusable code.

The source code for all three problems is publicly available
at https://github.com/diku-dk/futhark-fhpc18.

2 Case Study: Rodinia Breadth-First Search
This section presents an experiment in which we start with
the Rodinia (imperative) implementation of breadth-first
search (BFS) as a baseline, we translate it to Futhark [15, 16,
18, 19] and successively improve it based on data-parallel
(high-level) reasoning so that it efficiently covers various
classes of datasets on GPUs. We believe that this experiment
demonstrates that:

1 efficient high-level functional implementations can be
derived even for highly-irregular parallel code, and

2 prototyping in such a data-parallel, hardware-independent
language significantly enhances productivity: once a
base parallel version was (correctly) translated, it took
about three days to perform the work reported in this
section (including deriving the four code versions, gen-
erating the datasets and analysing their performance).

Obviously, efficient low-level BFS implementations for
GPU exist [26]; we emphasize that this section does not claim
that our implementation is competitive with those. Instead,
our thesis is that the Rodinia’s implementation is illustrative
for a lot of the GPU code developed in industry: they are
reluctant in moving away from low-level GPU "assembly"

(OpenCL, CUDA), but they also set hard limits on develop-
ment time, which often results in code heuristics that are
seriously limping from a data-parallel perspective.

2.1 Rodinia BFS Implementation
Figure 1 shows the Rodinia’s BFS implementation. The pro-
gram input consists of the num_edges, starts_at and edges
arrays, which encode the graph: num_edges records the
number of edges for each of the n nodes of the graph, and
starts_at[i] records the starting index in the edges ar-
ray where the num_edges[i] nodes connected to node i are
stored. The mask, visited and cost arrays are initialized
with false, false and -1 values, respectively, except for the
root node (at index 0), which is initialized with true, true
and 0 (not shown). The program’s result is the cost array,
which records the breadth level of each node in the graph.

1 do{ // sequential

2 for(t = 0; t < n; t++) { // parallel

3 if (mask[t]) {

4 mask[t] = false;

5 s = nodes[t]. starts_at;

6 e = nodes[t]. num_edges;

7 for(i=0; i<e; i++) { // sequential

8 int id = edges[s+i];

9 if(! visited[id]) {

10 cost[id] = cost[t] + 1;

11 updt_mask[id] = true;

12 } } } }

13
14 continue = false;

15 for(t = 0; t < n ; t++) { // parallel

16 if (updt_mask[t]) {

17 mask [t] = true;

18 visited [t] = true;

19 updt_mask[t] = false;

20 continue = true;

21 } }

22 } while(continue );

Figure 1. Imperative code for breadth-first search.

The implementation consists of a sequentially-executed
do-while loop, inwhich iteration numbers correspond to the
breadth levels of the graph. The implementation maintains
the invariants that, at the entry to iteration j: (i) all elements
of updt_mask are false, and (ii) the mask’s entries are set
(to true) only for the nodes corresponding to the previous
breadth level (j − 1). Each iteration of the do-while loop
consists of a composition of two for loops, which are both
executed in parallel. The first loop selects the nodes t on the
previous breadth level (mask[t]=true), and then it sequen-
tially traverses all the nodes id connected with t. If id was
not visited yet, then its breadth level is set to cost[t]+1—
note that output dependencies are possible, but the algo-
rithm ensures that all conflicting writes are idempotent—i.e.,

https://github.com/diku-dk/futhark-fhpc18
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they write the (same) value of the current breadth level. It
is perhaps important to note that such an implementation—
in which the inner loop is sequential—is not expressible or
derivable by the Futhark language or compiler.
The second parallel loop updates the mask, visited and

updt_mask arrays; if no nodes on the current breadth level
are found (i.e., updt_mask[t] is uniformly false) then continue
remains false and the algorithm terminates.
While the Rodinia implementation is work efficient, and

holds the upper hand on some datasets, it also presents sev-
eral performance inefficiencies:

1 The innermost loop (lines 7-12) is executed sequen-
tially, which violates the depth asymptotic and results
in the hardware being underutilized on the graphs in
which the number of nodes (on a breadth level) is less
than the hardware-supported degree of parallelism.

2 Furthermore, sequentializing the inner loop results
in the access to edges[i+s] being non-coalesced in
global memory. (In contrast, if the inner loop is paral-
lelized than the e consecutive threads processing the
node’s neighbors (i = 1 . . . e) would access consecutive
memory locations (i.e., improved coalescing).

3 Finally, when the number of edges is highly variant,
the computation is unbalanced and one can expect a
significant-divergence overhead (across GPU threads).

2.2 Futhark’s Scatter Data-Parallel Operator
Futhark’s implementations of BFS, discussed in the next sec-
tions, rely heavily on the scatter (parallel write) operator
and its fusion rules. Since these are not described elsewhere,
for completeness, this section is dedicated to them.

In the source language, (scatter x inds vals) simply
updates (in place) the elements of array x at the indices
provided in inds with the values provided in vals; if an
index falls outside the bounds of x then the corresponding
update is ignored1. Its size-dependent type is given below:

∀ nm. ∗ [n]α → [m]i32 → [m]α → ∗[n]α

A uniqueness-type mechanism [19] mediates between the in-
place and purely-functional semantics assumed by scatter:
the star (∗) in front of the first-parameter type indicates an
unique array that will be consumed—i.e., any reference to it
on any possible execution path following this program point
will result in a compilation error—and the star in front of
the result means that it does not alias any of the non-unique
parameters (i.e., the index and value arrays).
Since scatter puts a lot of pressure on the memory sys-

tem, its performance depends heavily on how aggressively
the compiler can fuse the computation that produces its in-
put indices and/or values arrays. It follows that the source

1 This semantics allows “padding” the array of indices and values with
“noops”. It also makes scatter implicitly safe to execute, which is motivated
by the fact that OpenCL lacks support for assertions.

F0 (scatter to scattermap)
scatter x is vs ⇒

scattermap (x) (\i v -> (i, v)) is vs

F1 (vertical fusion: map into scattermap)
scattermap (x) f e(n) (map g xs) e(m)

⇒

scattermap (x) (\y(n)x z(m)
→ f y(n)(g x) z(m))

e(n) xs e(m)

(Applies only if x does not alias xs or g’s freevars.)

F2 (horizontal fusion of scattermaps)
(scattermap (x) f e(n),scattermap (y) g e(m))
⇒ scattermap (x,y)

(\v(n) v(m) -> (f v(n), g v(m))) e(n) e(m)

(Applies only if e(n) have the same outer size as e(m).)

Figure 2. Fusion rules for scattermap

language provides the user with an easy-to-understand oper-
ator, but the compiler IR supports a more complex operator
that corresponds to a scatter-map composition of type:

∀ nm. ∗[n]α
q

→ (β
r
→ (i32,α

q
) → [m]β

r
→ ∗[n]α

q

where the third array parameter (of element type β) is mapped
by the (second) function parameter to produce the index-
value pairs for the update. The type uses the notation t

n

to denote the sequence t1 . . . tn ; this is because the source
language expresses the bulk-parallel operators on array of
tuples, but the compiler always transforms it to a tuple-of-
arrays representation—i.e., zip/unzip are compiled away.
Figure 2 presents scatter’s rewrite rules: Rule F0 trans-

forms the source language scatter to its compiler IR, named
scattermap. Rule F1 shows the fusion of a map that produces
an array that is consumed by the scattermap’s function ar-
gument (dubbed vertical fusion). This rule is valid only if the
input to and the free variables of the map function do not
alias the to-be-updated arrays—because the GPU does not
actually executes in SIMD fashion. If one still desire fusion
in this (aliasing) case, one should pass to scatter an explicit
copy of the to-be-updated array.

Finally, rule F3 shows the fusion rule of two independent
scattermaps, which is applied only when (i) the two are
not in any produce-consumer relation—dubbed horizontal
fusion—and (ii) the lengths of their mapped arrays are equal.

2.3 BFS Skeleton in Futhark
Figure 3 shows the common part of all Futhark implementa-
tions of BFS. The mask, visited and cost arrays are initial-
ized at lines 4-9. The remaining implementation consists of
the while loop, which iterates as long as continue is true,
and which has the semantics that the result of the loop-body
expression is bound to the loop-variant variables (cost, mask,
visited, updt_mask, cont) for the next iteration of the loop.
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1 let bfs[n][e]( starts_at: [n]i32

2 , num_edges: [n]i32

3 , edges: [e]i32 ) : [n]i32 =

4 let (mask , visited , cost) = unzip (

5 map (\i-> if i == 0

6 then (true ,true ,0)

7 else (false ,false ,-1)

8 ) (0...n-1) )

9 let updt_mask = replicate n false

10 let continue = true

11 let (cost ,_,_,_,_) =

12 loop(cost ,mask ,visited ,updt_mask ,continue)

13 while continue do

14 let (cost ', mask0 , updt_mask0) =

15 core(edges , starts_at , visited ,

16 num_edges , mask , updt_mask , cost)

17
18 let (inds , inds0) = unzip (

19 map (\i -> if (updt_mask0[i])

20 then (i,0) else (-1,-1)

21 ) (0...n-1) )

22 let visited ' = scatter visited inds

23 (replicate n true)

24 let mask ' = scatter mask0 inds

25 (replicate n true)

26 let updt_mask '= scatter (copy updt_mask0)

27 inds (replicate n false)

28 let cs = scatter (copy [false ])

29 inds0 (replicate n true)

30 in(cost ',mask ',visited ',updt_mask ',cs[0])

31 in cost

Figure 3. Data-Parallel BFS in Futhark: various strategies
can be used to implement the core function.

The call to the core function at lines 4-9 implements the
first parallel for loop of the Rodinia implementation, and
following sections will explore its optimization space.

The remaining loop-body (lines 18-29) correspond to the
functionality of the second Rodinia parallel for loop, which
updates in place the mask, visited and updt_mask arrays
and computes the continuation condition, only that the Futhark
implementation seemingly computes them with four inde-
pendent scatter and a map parallel operations.

This would be very expensive if executed as such because
it will require (i) manifesting in memory the inds and inds0
arrays produced by map, and then (ii) repeated traversals of
them for each scatter, in addition to (iii) manifestation of
the arrays produced by replicate.
However, the rules presented in Figure 2 allow the com-

piler to (automatically) fuse all five parallel operators into
one scattermap, which closely resembles the second for
loop of the Rodinia implementation (which is quasi optimal).
The difference is the copy updt_mask0 expression at line 26,
which is pure overhead and which is required in order to

1 let core [n][e]

2 ( edges : [e]i32 , starts_at: [n]i32

3 , visited: [n]bool , num_edges: [n]i32

4 , mask :*[n]bool , updt_mask :*[n]bool

5 , cost: *[n]i32 ) :

6 ( *[n]i32 , *[n]bool , *[n]bool ) =

7 let inds = filter (\i-> mask[i]) (0...n-1)

8 let act_costs = map (\t -> cost[t]) inds

9 let n_inds = length inds

10 let mask ' = scatter mask inds

11 (replicate n_inds false)

12 let e_max = i32.maximum num_edges

13 let flat_len = e_max * n_inds

14 let (chg_ids , chg_costs) = unzip ( map

15 (\ii ->

16 let (row ,col) = (ii/e_max , ii%e_max)

17 let t = inds[row]

18 let n_edges = num_edges[t]

19 in if col < n_edges

20 then let ii = col + starts_at[t]

21 let id = edges[ii] in

22 if visited[id] then (-1, -1)

23 else (id, act_costs[row] + 1)

24 else (-1, -1)

25 ) (0... flat_len -1) )

26 let cost ' = scatter cost chg_ids chg_costs

27 let updt_mask ' = scatter updt_mask chg_ids

28 (replicate flat_len true)

29 in (cost ', mask ', updt_mask ')

Figure 4. Implementation of core using aggressive padding.

enable the F1 fusion rule—because updt\_mask0 is used in-
side the to-be-fused map at line 19. Finally, the scatter at
line 28, which computes the stopping condition, is seman-
tically a reduce with the logical-or operator. Writing it as a
reduction is inefficient because it requires a second pass over
updt_mask0 (since scatter-reduce fusion is not supported).

2.4 Version 1: Aggressive Padding
Figure 4 shows the first version of the Futhark code—corres-
ponding to Rodinia’s first loop between lines 2-12 in Fig-
ure 1—but which exploits both levels of parallelism.

First, the node indices of the previous breadth level (active
nodes) together with their costs (levels) are selected by the
filter and map operations at lines 7 and 8, then their mask
is reset at line 10. Then the map at lines 14-25 computes the
indices id and cost values that need to be updated, while
the update to the cost and updt_mask arrays are performed
by the scatter operations at lines 26 and 27.
The map and the two scatter operations are fused into

one scattermap construct, which would correspond to the
parallel processing of all the edges of all the active nodes
(with filtered indices in inds)—this is different from Rodinia
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which traverses all graph nodes. This map operation uses ag-
gressive padding: its length (flat_len) is the product of the
number of active nodes with the maximal number of edges
per node (across all graph nodes). The latter is computed
at line 12, but the computation is invariant to the enclosing
while loop, and, as such, it is hoisted out by the compiler
(and is performed exactly once).

This implementation is competitive with the Rodinia’s on
most datasets that we have tried (curious cats can peak ahead
at table 1), but the aggressive padding does not respect the
work asymptotic. For example, if the count of active nodes is
q and one active node has q − 1 neighbors and the remaining
active nodes have exactly one neighbor, then the size of
the map flat_len is q × (q − 1) (i.e., O(q2)) rather than the
work-efficient size 2 × (q − 1) (i.e., O(q)). In such skewed
cases—in which the graph exhibits a very small number of
highly-connected nodes—the performance suffers because,
even though no array of length flat_len is manifested in
memory, each “padded” thread will still perform two global-
memory access (to inds[row] and num_edges[t]).

2.5 Version 2: Full Flattening
A flat-parallel implementation that respects both the work
and depth asymptotic of the nested-parallel program can
be obtained by applying Blleloch’s flattening transforma-
tion [2, 4, 5, 27]. For BFS, applying this transformation would
result in an implementation that corresponds to replacing the
lines 12-25 in Figure 4 with the code shown in Figure 5. Our
initial expectation, which was confirmed by experiments,
has been that this version could be faster than the padded
one on skewed datasets. However, we also expected that the
additional (expensive) scan and scatter operations would
hurt performance on the datasets in which the number of
edges per node is constant or randomly distributed.

2.6 Versions 3 and 4: Iterative/One-Time Splitting
The pros and cons of the previous two BFS versions moti-
vate searching for a common ground that results in decent
performance for all datasets. Since flattening is likely too ex-
pensive in the “common” case, we attempt another method,
which iteratively partitions the active nodes (at the previous
breadth level) into a set of nodes that have the number of
edges less than a constant multiple of the average edge count
and the remaining nodes, which are recursively processed.

Figure 6 shows the code of the iterative-splitting method,
where the lines 1-to-11 from Figure 4 should be inserted in
the beginning. The partitioning of the node indices (line 14),
is an expensive parallel operation, but is conditionally per-
formed only when needed (i.e., when the dataset is skewed).
However, this version requires on the critical path the com-
putation of the average number of edges of the current active-
node partition. This is implemented as a composition of a
map and two reduce operations at lines 6-to-8. While these
operators are efficiently fused [17, 21], thus minimizing the

1 let a_n_es = map (\t -> num_edges[t]) inds

2 let scan_n_es = scan (+) 0i32 a_n_es

3 let flat_len = scan_n_es[n_inds -1]

4 let (tmp1 , tmp2 , tmp3) = unzip (

5 replicate flat_len (false , 0i32 , 1i32) )

6 let wis = map (\i -> if i==0 then 0

7 else scan_n_es[i-1]

8 ) (0... n_inds -1)

9 let active_flags = scatter tmp1 wis

10 (replicate n_inds true)

11 let trk_n0 = scatter tmp2 wis (0... n_inds -1)

12 let act_st = map (\t -> starts_at[t]) inds

13 let trk_i0 = scatter tmp3 wis act_st

14 let (track_nodes , track_index) = unzip (

15 segmented_scan (\(a,b) (c,d)-> (a+c,b+d))

16 (0,0) active_flags

17 (zip trk_n0 trk_i0) )

18 let (chg_ids , chg_costs) = unzip ( map2

19 (\row ii ->

20 let id = edges[ii]

21 in if visited[id] then (-1, -1)

22 else (id, act_costs[row] + 1)

23 ) track_nodes track_index

Figure 5. A fully-flattened implementation is obtained by
replacing lines 12-29 in Figure 4 with this figure’s code.

1 ...

2 let continue = true

3 let (cost_res , updt_mask_res , _, _) =

4 loop (cost , updt_mask , inds , continue)

5 while continue do

6 let a_n_es= map (\t->num_edges[t]) inds

7 let max_n_edges = i32.maximum a_n_es

8 let tot_n_edges = i32.sum a_n_es

9
10 let e_max = 3* tot_n_edges /( length inds)

11 let continue ' = max_n_edges > e_max

12 let (inds_now ,inds_next) =

13 if not continue ' then (inds ,[]) else

14 partition (\t->num_edges[t]<=e_max) inds

15
16 let flat_len = e_max* (length inds_now)

17 let (chg_ids , chg_costs) = unzip ( map

18 (\ii ->

19 let (row ,col) = (ii/e_max , ii%e_max)

20 let t = inds_now[row] ...

21 ) (0... flat_len -1) )

22 let cost '= scatter cost chg_ids chg_costs

23 let updt_mask '= scatter updt_mask chg_ids

24 (replicate flat_len true)

25 in (cost ',updt_mask ',inds_next ,continue ')

26 in (cost_res , mask ', updt_mask_res)

Figure 6. Iterative node-splitting implementation is obtained
by substituting lines 12-29 in Figure 4 with this figure’s code.
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number of global memory accesses and inter-thread commu-
nication, they still exhibit non-negligible overhead.

The fourth and last version (not shown) reduces the latter
overhead by always splitting at most once, and by taking
the split/non-split decision globally, by considering all graph
nodes (rather than only the nodes at the current breadth
level). The rationale for this is that (i) it is “unlikely” that the
dataset is skewed on multiple levels, and that (ii) a skewed
node is “likely” to exist on most breadth levels. It follows that
this version executes the reduce-map composition (globally)
exactly once.

2.7 Experimental Setup
The experiments are conducted on two GPU platforms: an
AMD FirePro W8100 and an NVIDIA K40 with CUDA 8.0.
Rodinia implementation measures only the kernel time of
the two kernels presented in Figure 1 (e.g., the allocation
and initialization of arrays mask, visited, updt_mask and
cost is notmeasured). The Futhark runtime accounts for all
overheads, except for the context creation, program compi-
lation and host-device transfer time of the program’s input
and result arrays (starts_at, num_edges, edges, cost).
BFS is evaluated on six datasets:

D1: 6K nodes, each of them having 2K edges (1K = 1000);
D2: 6K nodes, each node has a number of edges uniformly

distributed between 10 and 3990 (2K on average);
D3: 400K nodes, each of them having 30 edges;
D4: 20K nodes, each node has a number of edges uniformly

distributed between 10 and 1190 (600 on average);
D5: Rodinia’s graph1MW_6 dataset, which consists of one

million nodes, where the per-node number of edges is
uniformly distributed between 3 and 9 (6 on average);

D6: A skewed dataset, consisting of 65536 nodes, in which
99% of the nodes have a number of edges uniformly
distributed between 4 and 60 (32 on average) and the
remaining 1% of the nodes have exactly 8192 edges.

The results on the AMD and NVIDIA GPU platforms are
presented in Table 1, where row REF of each table shows
the runtime of the Rodinia OpenCL baseline, and the re-
maining rows (FV1-FV4) show the speedups of the four
Futhark code versions in comparison to the baseline. Each
test was run 10 times and the average is reported (the stan-
dard deviation was under 3%). At large, the results confirm
the design intuition. In comparison to FV1, REF gains the
upper hand on dataset D5 on NVIDIA, likely because the
filter operation performed by FV1 at every breadth level
is too expensive in this context. In contrast, on datasets D1
and D2, REF under-utilizes hardware parallelism, D4 and
D6 suffer due to high inter-thread divergence, and the slow-
down on D3 is likely caused by non-coalesced accesses—e.g.,
FV1 exhibits coalesced accesses to the edges array because
it exploits the inner parallelism. At its turn, FV1 offers the
best (Futhark) performance on datasets D1-D5, but it suffers

Table 1. Speedups on theAMDandNVIDIAGPUs of the four
Futhark versions (FV1-FV4) in comparison to the Rodinia
baseline OpenCL implementation (REF) on the six datasets
(D1-D6) described in text. Row REF displays runtime in
milliseconds; the other rows display speedup.

AMD D1 D2 D3 D4 D5 D6
REF (ms) 27ms 40ms 34ms 23ms 15ms 55ms
FV1 (×) 5.3× 7.1× 3.4× 4.3× 1.1× 2.2×
FV2 (×) 1.1× 1.6× .95× 1.0× .44× 3.1×
FV3 (×) 3.6× 5.5× 2.7× 3.1× .87× 6.4×
FV4 (×) 4.1× 5.9× 3.1× 3.4× 1.1× 7.3×

NVIDIA D1 D2 D3 D4 D5 D6
REF (ms) 22ms 23ms 27ms 18ms 8.2ms 40ms
FV1 (×) 4.6× 4.3× 1.9× 2.8× .61× .94×
FV2 (×) .95× 1.0× .73× .74× .31× 2.2×
FV3 (×) 2.8× 2.9× 1.6× 2.1× .54× 4.7×
FV4 (×) 2.9× 3.0× 1.7× 2.1× .61× 5.2×

greatly on the skewed dataset (D6), because its aggressive-
padding strategy spawns many unhelpful threads, which
still access global memory twice (each). In contrast, the flat-
parallel version FV2 is often the slowest, but it outperforms
FV1 on the skewed dataset, mainly because it respects the
work-depth asymptotic.

FV3 seeks a common-ground that offers decent perfor-
mance for all datasets: its node splitting has significant im-
pacts on D6, but at the expense of loosing performance on
the other datasets (because of the overhead of performing
the required map-reduce operation at each breadth level).
Finally, FV4 reduces this overhead by computing the split-
ting once, based on global-graph information, but it does not
offer any asymptotic guarantees.

3 Case Study: Sobol Sequences
In this section, we introduce the stream_map construct. The
goal is to formulate our program in a way that gives the
compiler freedom to exploit exactly as much parallelism as
is profitable on the target hardware.

The problem we will discuss is generating n entries from
a Sobol sequence [7]. Sobol sequences are quasi-random
low-discrepancy sequences frequently used in Monte-Carlo
algorithms and they generalize nicely to multiple dimen-
sions. Sobol sequences are superior to traditional pseudo-
random numbers for numeric integration (by Monte-Carlo
algorithm). Figure 7 shows sets of points spanning the unit
square chosen using traditional parallel pseudo-random tech-
niques (top row) and Sobol sequences (bottom row). Sobol
sequences simply span the space much better than their
pseudo-random counterparts. In fact, it has been shown that
while the value of a multi-dimensional integral for a contin-
uous and differentiable function can be approximated with
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Figure 7. Points spanning the unit-square for a progressive
number of points, using pseudo-random numbers (top row)
and Sobol sequences (bottom row).

a convergence rate of 1/n using pseudo-random numbers,
using Sobol sequences, the convergence rate is 1/

√
n [12].

For Sobol sequences, it is a requirement that the dimen-
sionality of the sequence is given at initialisation time, as
this decision affects the computation of the so-called Sobol
direction vectors, which are specific to the choice of dimen-
sionality. This computation is based on so-called direction
numbers, which have been precomputed and made avail-
able in library form (as a module) [11, 20]. We will return
to how parallelisation of Sobol sequences is achieved, but
first, we will introduce the Sobolmodule, which is a Futhark
higher-order module that takes as argument a module of
type sobol_dir containing information about Sobol num-
bers and another argument specifying the dimensionality (D)
of the generated Sobol numbers:

module Sobol : sobol_dir -> { val D : i32 }

-> sobol

The module type sobol is defined as follows:

module type sobol = {

val D : i32

val sobol : (n:i32) -> [n][D]f64

val independent : i32 -> [D]u32

}

Notice that the module inherits the dimensionality D and
that this value is referred to in the types of the embedded
operations. Given a module matching the above module type,
a user may easily obtain a sequence of n Sobol numbers
(normalised to be floating point values in the unit-interval)
by simply calling the sobol function. As we shall see, the
underlying implementation of this function will play a series
of tricks to obtain the sequence in parallel. And, moreover,
the Futhark compiler will do its utmost, by fusion, to ensure
that the sequence is not stored in memory at all! In general,
the user can be assured that if the sequence is consumed
(e.g., by a reduction operation), the sequence will not be
materialized.

let gray_code (x: i32): i32 = (x >> 1) ^ x

let test_bit (x: i32) (ind: i32) : bool =

(x & (1 << ind)) == (1 << ind)

let sobol_ind (dv:[L]u32) (n:i32) : u32 =

let reldv_vals =

map2 (\d i ->

if test_bit (gray_code n) i then d

else 0u32)

dv (iota L)

in reduce (^) 0u32 reldv_vals

let independent (n:i32) : [D]u32 =

map (\dv -> sobol_ind dv n) dirvecs

Figure 8. Independent calculation of Sobol numbers.

As mentioned, the need to generate Sobol sequences effi-
ciently comes from the need for computingmulti-dimensional
integrals efficiently. Such needs often arise in financial sto-
chastic modeling such as the OptionPricing benchmark in
the FinPar suite [1, 24]. The n’th Sobol number (or vector)
can be computed by an independent formula, or by a cheaper
(recurrent) one, which requires information about the previ-
ous Sobol number in the sequence.

An implementation of the independent formula is shown
in Figure 8. The code assumes access to computed direction
vectors, to appear in a variable dirvecs of type [D][L]u32,
where the integer variable L contains the number of signifi-
cant bits needed (e.g., 32).

A combined superior solution [1] that makes use of both
the independent formula and the recurrent formula can be
expressed elegantly with stream_map [19], whose type is:

Πn. (Πm. [m]β → [m]γ ) → [n]β → [n]γ

The semantics of stream_map is that its input array is parti-
tioned into an arbitrary number of chunks, which are pro-
cessed in parallel by the function argument (i.e., inter-chunk
parallelism), and the result is similarly obtained by concate-
nating the per-chunk results. The type guarantees that the
input and result chunks have the same (outer) length, but the
user is responsible for ensuring the assumed property that
any partitioning of the input array yields the same result.
The sobol function makes use of the chunk function,

which applies the map-parallel formula once and then applies
the scan formula. The code combining the recurrent formula
with the independent formula is given in Figure 9. Notice
that for each chunk, we first apply the function sobol_ind
to compute the first Sobol number, then apply a combination
of map and scan to compute the rest of the chunk. While
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let index_of_least_significant_0 (x: i32): i32 =

loop i = 0 while i < 32 && ((x>>i)&1) != 0

do i + 1

let rec_m (i:i32) : [D]u32 =

let bit = index_of_least_significant_0 i

in map (\dv -> dv[bit]) dirvecs

let sobol_chunk (offs:i32) (n:i32) : [n][D]f64 =

let sob_beg = map (\dv -> sobol_ind dv offs)

dirvecs

let contrbs = map (\(k:i32): [D]u32 ->

if k==0 then sob_beg

else rec_m (k+offs -1))

(iota n)

let vct_ints = scan (\x y -> map2 (^) x y)

(replicate D 0u32) contrbs

in map (\xs -> map (\x -> f64.u32 x/norm) xs)

vct_ints

let sobol (n:i32) : [n][D]f64 =

stream_map (\[c] (xs: [c]i32): [c][D]f64 ->

sobol_chunk xs[0] c)

(iota n)

Figure 9. Chunked calculation of Sobol numbers.

map and scan are parallel operators, the compiler will se-
quentialise them during code generation, and instead use
the chunk size to control how much parallelism to exploit.
To demonstrate the performance benefit of stream_map

compared to explicitly parallel and sequential code, Table 2
shows runtimes for generating and summing the first thirty
million 1-dimensional Sobol numbers. The results demon-
strate an order-of-magnitude superiority of the combined
technique. An important aspect to notice here is that while
computing the sum of the 30, 000, 000 numbers, a reduce op-
eration is used, which Futhark’s fusion engine will fuse with
the stream_map operation to achieve a streaming reduction
operation, called stream_red, which avoids the intermediate
allocation of the result of the call to stream_map [19].

As a final example of using the Sobolmodule, consider the
code in Figure 10, which uses Sobol sequences to estimate
the value of π by modeling a person throwing darts at a
dartboard. The convergence effect of using Sobol sequences
instead of pseudo-random numbers, for estimating the value
of π , can be seen in Figure 11; with Sobol sequences the
convergence towards the true value of π happens blazingly
fast compared to using pseudo-random numbers.

4 Case Study: Heston Calibration
This section discusses the implementation of a calibration
routine for the Hybrid Stochastic Local Volatility / Hull-
White model (SLV HW model). The original formulation of

module sobol = Sobol sobol_dir { let D = 2 }

let main (n:i32) : f64 =

let hits =

map (\v -> if v[0]*v[0]+v[1]*v[1] <1.0 then 1.0

else 0.0)

(sobol.sobol n)

in 4.0 * reduce (+) 0.0 hits / f64.i32 n

Figure 10. Complete Futhark program for estimating the
value of π .

Figure 11. Convergence towards π using Sobol sequences
and pseudo-random numbers.

this routine was in OCaml, provided by the financial soft-
ware company LexiFi2, and extracted from their commercial
offerings. We will refer to the OCaml version as the reference
implementation. Only a subset, comprising pure Heston [23]
calibration, has been ported to Futhark.

The calibration routine takes as its main input a series of
observed quotes. A quote is a triple consisting of a maturity
date, a strike price, and a quote price. The model attempts to
determine five Heston parameters that match the observed
quotes, with the intent that these parameters can then be
used to price other quotes in the Heston model.

The fitting of the five Heston parameters is carried out in a
conventional manner. Least-squares optimisation is used via
the Differential Evolution algorithm [25], where the objective
function performs closed-form pricing of European options
in the Heston model, and compares the projected quotes to
the set of observed quotes taken from market data.

Intuitively, the algorithm is an evolutionary (or “genetic”)
algorithm that proceeds by maintaining a population of can-
didate parameters, which are repeatedly randomly perturbed.

2https://www.lexifi.com/

https://www.lexifi.com/
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Table 2. Speedup of stream_map versus fully sequential and fully parallel implementations for computing Sobol numbers. For
comparing sequential performance, a compiler generating single-threaded CPU code has been used and the code runs on an
Intel Xeon E6-2570. For comparing parallel performance, OpenCL code is executed on an NVIDIA Tesla K40 GPU. We generate
30, 000, 000 Sobol numbers.

Version Runtime Speedup
Chunked (executed on GPU) 3.9ms

×11.13Fully parallel 43.4ms
Chunked (executed on CPU) 129.7ms

×1.0Fully sequential 129.1ms

The random modifications that result in the most improve-
ment (judged via the objective function) are then chosen for
further evolution. It is thus hard for a re-implementation to
match the reference implementation exactly, as it is sensi-
tive to how the randomness is generated. As a result, there
is no single correct result, as the only measure of algorith-
mic success is how well the final parameters minimise the
error in the objective function. However, as long as a re-
implementation is able to generate results of approximately
the same quality as the reference solution, it can be consid-
ered correct.

The Futhark implementation comprises three main parts:
(i) a general-purpose least-squares implementation using the
Differential Evolution algorithm, (ii) a European call-option
pricer, and (iii) the integration between the first two (plus
a slight amount of preprocessing). The vast amount of the
run-time work takes place inside the least-squares solver,
which uses the European call-option pricer as the objective
function. Thus, this is the part on which we will focus.

The least-squares implementation is in principle a reusable
component with no specific relation to option pricing. As
a result, we have written it to be generic in its choice of
objective function, even though we only ever apply to the
European call-option pricer for this application. We shall see
that it is necessary, for some workloads, to exploit both the
parallelism provided by the least-squares-process, as well
as the objective function, despite these existing at different
levels of abstractions.

The most important part of the program contains an outer-
most while-loop that encloses several nested parallel loops
enclosed within each other, as shown on Figure 12. This fig-
ure shows for each level whether the parallel operation is a
map or a reduce, as well as the symbolic number of iterations
performed by that parallel level (see below). The figure is a
simplification that focuses only on the most essential struc-
ture. For example, it hides various preprocessing operations
that have negligible runtime cost. The program is shown
in a fused form—the source implementation contains many
more map and reduce operations that are fused to form the
structure shown. Further, the loops are not perfectly nested;
some sequential work is for example done for each of the

outer np iterations of the mutation function before the inner
loop is executed.
The parameters controlling the number of iterations of

the parallel loops are as follows:
num_free_vars: The number of parameters that we are

fitting. For the Heston model, this is always 5.
np: The population size used for the Differential Evo-

lution algorithm. This is set to 40 in the reference
implementation, which we maintain in the Futhark
implementation.

num_points: The number of Gauss-Laguerre coefficients
used for pricing options in the objective function. This
is either 20 or 10, but always set to 20 in the reference
implementation, which we follow here.

num_prices: The number of observed prices. In practice,
this is the quantity that can vary between data sets, and
thus the only scalable source of parallelism. However,
while it is easy to synthesise a large set of prices, is is
unclear how large this size is in realistic workloads.

The parallel loops are repeatedly executed by the sequen-
tial outer while-loop until a convergence criterion is reached.
The convergence criterion is configurable, and can be either
reaching a specified error tolerance, a given number of it-
erations, or a number of calls to the objective function. For
the Heston model, the error tolerance is set to zero and the
maximum number of iterations to 231 − 1. The maximum
number of calls to the objective function is set to 2000. In
practice, this is the limit that we will reach. The conver-
gence loop invokes the objective function exactly np times
for each iteration, so it will run for 2000/np = 2000/40 = 50
iterations.
Many parallel libraries and languages simply do not sup-

port nested parallelism at all, typically executing only the
outer- or innermost loop in parallel. One reason for this is
that supporting arbitrary nested parallelism efficiently is a
difficult and generally unsolved problem. However, this par-
ticular algorithm exhibits regular nested parallelism, which
requires that the size of an inner-parallel dimension is in-
variant to all the outer parallel dimensions.. Regular nested
parallelism is much easier to compile efficiently, and is han-
dled by the Futhark compiler through an algorithm called
moderate flattening [19].
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The restriction to regular nested parallelism allows flat-
tening to stop after exploiting only some of the outer-levels
of parallelism, which in turn may allow further optimization
of locality or efficient sequentialization of operations such
as reduce and scans. What is to be sequentialized and what
is to be parallelized is currently decided by a crude compile-
time heuristic, e.g., inner reduces are parallelized, but inner
map-reduce compositions are sequentialized, because they
often enable tiling.
In languages that do not support nested parallelism na-

tively, we generally have two options open to us. First, we
can manually apply some form of the flattening algorithm
to produce a flat parallel program. In this case, this would
involve violating the abstraction boundary between the least-
squares component and the objective function, as we would
have to inline the objective function into the least-squares
implementation, and then flatten the resulting code. This
makes the resulting code non-reusable, which is clearly not
desirable.
Another common approach is to simply disregard some

of the parallelism. For example, the population size np is
usually not very large, and so we can sequentialize the outer
loop in the recombination function, and exploit only on the
parallelism inside the objective function. This keeps the least-
squares implementation reusable and generic, but depends
on the objective function to supply enough parallelism (in
our case, with num_prices) to saturate the hardware. As we
shall see in section 4.1, this does not perform well for all
workloads, and may not perform well with any workloads
for other applications where the objective function contains
little parallelism, and we instead depend on np being large.
However, this program does contain a parallel loop that

should probably not be executed in parallel. Specifically, the
reduce operation in the objective function. If we turn this
into a sequential loop, the compiler can generate a simple
GPU kernel with no communication between individual
threads (corresponding to a nesting of maps), rather than
a more overhead-intensive segmented reduction. As we shall
see in section 4.1, this is an improvement because the in-
nermost num_points = 20 amount of parallelism is not nec-
essary. While it is unfortunate that the Futhark compiler
cannot (yet) do this automatically, manually sequentialising
this loop does at least not cross an abstraction layer.

4.1 Performance
We compare the runtime of the Futhark implementation to
the reference implementation on three data sets: one with
1062 quotes, one with 10, 000 quotes, and one with 100, 000
quotes. The latter two are synthetic, but the first data set is
representative of the scale of the typical inputs used in prac-
tice. Further, we also test a variant of the Futhark implemen-
tation where the outer loop of the recombination function
has been sequentialised. This is representative of an imple-
mentation that does not exploit nested parallelism across

Convergence loop

map(np)

map(np)

map(num_free_vars)

map(num_quotes)
reduce(num_points)

Mutation function

Recombination function

while(m)

Objective function

Figure 12. Loop Structure of the Heston Calibration bench-
mark. The coloured boxes and their labels indicate the logical
nesting of the code, and in parentheses the number of itera-
tions. All loops are parallel, except for the outer convergence
loop. One loop is a reduce, while the others are maps.

abstraction boundaries, as discussed in the previous section.
We execute the Futhark implementation on an NVIDIA K40
GPU. The resulting runtimes are shown on Table 3.
Runtime measurements for parallel execution do not in-

clude OpenCL/GPU driver initialisation or kernel compila-
tion, nor does it include copying initial input to the device.
The time taken for this copying is negligible (less than 1%)
compared to the overall runtime.
Speedup for a given dataset and platform is computed by

comparing the achieved runtime to the best runtime of the
reference implementation on the same dataset. This is the
number that indicates how much faster the Futhark imple-
mentation is than reference implementation.
It is unsurprising that GPU speedup is generally low on

the smallest dataset (1062 quotes), as this dataset contains
insufficient parallelism to amortise the overhead of parallel
execution on a GPU. If we exploit only inner parallelism,
which cuts exploited parallelism in the recombination func-
tion by a factor of 40, the speedup falls to an anemic 8.84 ×
on this dataset. However, on the largest dataset, this version
is slightly faster (233.65 × compared to 198.92 × speedup),
because the objective function itself has enough parallelism
to saturate the GPU. Executing the reduce in parallel does
not affect the smallest dataset, but negatively impacts perfor-
mance on especially the largest dataset. Despite the relatively
efficient implementation of regular segmented reduction
used by Futhark [21], we still end up paying an overhead for
parallelism that we do not need. The analysis in the remain-
ing section uses the version with a sequentialised reduce.

5 Related Work
Parallel functional languages, and how to compile them, has
been an active field of research for many years. This paper
takes a slightly different perspective than most, aimed at
demonstrating the benefits of using a high-level data-parallel
language for (i) exploring the performance tradeoffs of an
application, for (ii) quickly prototyping high-level solutions



Modular Acceleration FHPC ’18, September 29, 2018, St. Louis, MO, USA

Table 3. Runtimes of reference and Futhark implementation on various platforms. Speedups are relative to the fastest reference
runtime for a given dataset.

Dataset Platform Runtime Speedup
num_quotes = 1062 Core i5–5300 (OCaml; sequential) 4.60s 1.00×
num_quotes = 10, 000 Core i5–5300 (OCaml; sequential) 38.54s 1.00×
num_quotes = 100, 000 Core i5–5300 (OCaml; sequential) 441.60s 1.00×

num_quotes = 1062
NVIDIA Tesla K40 (Futhark; only inner parallelism) 0.52s 8.84×
NVIDIA Tesla K40 (Futhark; sequential reduction) 0.047s 97.87×
NVIDIA Tesla K40 (Futhark; all parallelism) 0.059s 77.97×

num_quotes = 10, 000
NVIDIA Tesla K40 (Futhark; only inner parallelism) 0.64s 60.22×
NVIDIA Tesla K40 (Futhark; sequential reduction) 0.21s 183.52×
NVIDIA Tesla K40 (Futhark; all parallelism) 0.32s 120.44×

num_quotes = 100, 000
NVIDIA Tesla K40 (Futhark; only inner parallelism) 1.87s 236.15×
NVIDIA Tesla K40 (Futhark; sequential reduction) 2.22s 198.92×
NVIDIA Tesla K40 (Futhark; all parallelism) 3.24 136.3×

to these, and for (iii) building powerful parallel libraries. For
example, we have started from the Rodinia implementation
of BFS—which n.b., is not expressible in Futhark—and have
prototyped other four implementations, which incrementally
address observed inefficiencies on specific datasets.
Similarly, we have designed a high-level library for par-

allel computation of Sobol sequences in Futhark. Previous
work has shown how to efficiently combine the independent
and recurrent formulas, but they rely on low-level GPU im-
plementations and/or require that Sobol’s direction vectors
are part of the dataset [1, 22, 24]. In comparison, our library
requires the user to only specify the dimensionality of the
desired Sobol sequence, and relies on compile-time instanti-
ation of higher-order modules [11] to automate the whole
parallel-code generation (direction vectors included).
A significant obstacle limiting the expressivity of many

data-parallel languages is the lack of support for nested paral-
lelism. Much effort has been carried out in this area, starting
with the seminal work on flattening of nested parallelism
in nesl [4, 5] and in more recent work aimed at adapting
the transformation for GPU hardware [27] or for multi-core
hardware [2], for example by flattening only the data and
exploiting dynamic parallelism. Such approaches typically
regard all parallelism as highly irregular and are aimed at
maximizing the amount of parallelism (e.g., they interchange
sequential recurrences outside of the parallel code). However,
in doing so they also prevent opportunities for optimising
locality or communication (e.g., by tiling). As we saw with
Heston (section 4), maximizing parallelism is not the optimal
strategy for all data sets.
Other approaches (such as SaC [13, 14], Lime [10], and

Accelerate [8]) performwell for flat parallelism, but generally
do not support nested parallelism. A problem such as Heston
would have to be written in a manually flattened form, which
results in non-modular code.

6 Conclusions
We have shown by three examples the advantages of us-
ing a high-level hardware independent language for GPU
computation. In particular, such a language is (i) well suited
to organizing generic libraries and answering modularity
concerns, and (ii) allows data-parallel reasoning about the im-
plementation performance and allowing algorithmic tuning
of the data-parallel implementation.

We have shown that modular code requires the compiler
to exploit multiple levels of parallelism, across abstraction
boundaries, to provide the large number of parallel threads
required by modern GPUs. For Heston calibration on the
real-world dataset (the smallest one), there is an order-of-
magnitude difference between exploiting all levels of paral-
lelism, or only the innermost level.
We have demonstrated that beyond a certain (hardware

and problem-specific) threshold, further parallelism may in-
duce only overhead, without improving hardware utilization.
Thus, it is important that the programming model permits
the programmer to specify both fully parallel and more work-
efficient sequential algorithm implementations. Here, com-
putation of Sobol numbers shows an order-of-magnitude
difference between a maximally parallel and an efficiently
sequentialised implementation.
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