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Futhark is a purely functional array programming language designed to be compiled
to efficient GPU code. It comes with an optimising compiler.

We describe and implement two memory optimisations aimed at reducing the mem-
ory footprint and copying overhead of Futhark programs.

We argue that the optimisations function as expected; describe their behaviour on
many test programs; and discuss their current limitations.

Finally we show that, compared to the base compiler, these optimisations result in
average memory footprint reductions ranging from 0% to 70% on a pre-existing suite
of more than 30 Futhark benchmark programs ported from other array programming
projects. However, we see regressions in the runtimes of the benchmarks, where we
get average runtime reductions (speedups) ranging from -28% to +16%.
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Preface

This thesis is submitted in fulfilment of a 30 ECTS master’s thesis in Computer Science (Datalogi)
at the University of Copenhagen, for Niels G. W. Serup.

(Front page picture: Like programs being optimised, hedgehogs will occasionally engage in a spiny
merging (reproduction) that can produce better offspring (transformed programs). Unlike hedgehogs
performing a merging, we would like programs to have a gestation period (compilation time) of
less than one month.)
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Chapter 1

Introduction

In the realm of array programming, there is a choice between imperative and functional pro-
gramming:

• Imperative programming maps nicely to hardware: The compiler can translate a “write to
this array” instruction into a “write to this memory location” machine instruction, allowing
the programmer much control over how memory is used (depending on how low-level the
imperative language is).

• On the other hand, functional programming tends to take much of the memory manage-
ment burden off the programmer, instead leaving more for the compiler to optimise, which
is possible because of the typically richer properties of functional languages.

For example, a compiler for a functional language can be made to check whether several
expressions can share the same memory; we may be able to write a compiler optimisation that
automatically determines if two arrays x and y residing in separate memory locations can be
changed to reside in the same memory location without changing the meaning of the program –
what we call memory block merging. Such an optimisation is not restricted to functional languages,
but the flexibility in rearranging code parts inherent in functional code is helpful.

Functional languages typically use either garbage collection or region-based memory manage-
ment for smart memory allocation and freeing. These approaches are too limiting in our usecase,
for several reasons:

• The Futhark compiler targets GPUs, wherein memory allocation and deallocation support
is more limited than in ordinary sequential code; for example, you cannot allocate memory
from inside GPU kernels. In such a context, both garbage collection and region-based mem-
ory mangement would fail to reuse memory buffers within the same kernel. Furthermore,
neither of these techniques provides a mechanism for optimising copying overheads.

• A core goal of the Futhark project is to enable interoperability between common program-
ming languages and the Futhark language, which is achieved through foreign function
interfaces. Garbage collection would complicate such interoperability solutions, for exam-
ple when structures span two system heaps.
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• Practicalities: The existing Futhark compiler infrastructure requires very limited runtime
support, consisting mostly of wrappers for memory allocation and freeing, and built-in
functions. We do not wish to complicate this design by extending it.

This thesis contributes two memory optimisations for reducing memory usage and data copying,
and shows their applicability on pre-existing benchmark programs. Our main idea is to decouple
the allocation of memory from the creation of an array, allowing allocations to be aggressively
hoisted (outside GPU kernels), and allowing memory reuse across multiple arrays. We approach
this by lifting the semantics of register allocation and coalescing[23] to work on arrays rather
than scalars.

Compared to the base compiler, these optimisations result in average memory footprint re-
ductions ranging from 0% to 70% on a pre-existing suite of more than 30 Futhark benchmark
programs ported from other array programming projects. However, we see regressions in the
runtimes of the benchmarks, where we get average runtime reductions (speedups) ranging from
-28% to +16%.

Roadmap

• In chapter 2 we describe the background of the Futhark programming language, and the
basic techniques on which our optimisations are based on.

• In chapter 3 we introduce the Futhark representation in which our optimisations operate.

• In chapter 4 we give an overview of the program analyses and program transformations
that are part of our optimisations.

• In chapter 5 we describe our core program transformations for merging memory blocks.

• In chapter 6 we describe in detail what we call enabling program analyses: program analyses
whose results are necessary for performing our program transformations.

• In chapter 7 we describe in detail what we call enabling program transformations: program
transformations that are not absolutely necessary for the core transformations to work, but
which will make the core transformations function better.

• In chapter 8 we attempt to take a more formal approach to describing the memory block
coalescing optimisation covered in chapter 5, though we do not complete the attempt.

• In chapter 9 we list the currently known limitations of our optimisations.

• In chapter 10 we evaluate our algorithms and implementation; qualitatively by analysing
the effects of the optimisations on purposely-written pathological test programs and four
benchmark programs, and quantitatively by running a large automatic test suite. We also
show the improvements and slowdowns we get by enabling our optimisations on more
than 30 pre-existing Futhark benchmark programs.

• In chapter 11 we touch upon related work in the areas of register allocation and memory
coalescing.

6/116



Chapter 2

Background

In this chapter we describe the basics of Futhark, as well as the basic techniques on which our
later optimisations are based on.

Futhark

Futhark[14] is a small array programming language designed to be compiled to efficient GPU
code, and comes with an optimising compiler. It is a purely functional, data-parallel array
programming language with constructs for mapping, reducing, scanning, and other parallel
array operations. It also supports non-parallel constructs such as if-then-else, for-loops, and
while-loops. The Futhark project was started as part of the HIPERFIT1 initiative in 2013.

As an example, the program in figure 2.1 computes the factorial number of the input number n
of type i32 (32-bit integer) using Futhark’s parallel constructs. It computes the product of the
integers 1..n.

1 let main (n: i32): i32 =
2 reduce (*) 1 [1...n]

Figure 2.1: A Futhark program for calculating the factorial, using the parallel construct reduce.

On the other hand, the program in figure 2.2 computes the factorial number using a inherently
sequential loop. It sets the initial value of the accumulator f to 1, and then computes f * i for
every 1 ≤ i < n+ 1.

1http://hiperfit.dk/
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1 let main (n: i32): i32 =
2 loop f = 1 for 1 <= i < n + 1 do
3 f * i

Figure 2.2: A Futhark program for calculating the factorial, using the sequential construct loop
with for.

The general look of the Futhark language matches that of other functional languages like SML
and Haskell, except with fewer features. Notable differences include:

• All arrays must be regular, i.e. all rows of an array must have the same shape. For example,
[[0], [1, 2]] is illegal, because the first row has length 1, and the second row has length
2 (if this cannot be checked at compile-time, it is checked at runtime).

• In-place updates are supported through Futhark’s uniqueness types. For example, you
can write let xs’ = xs with [i] <- y, where xs is a (n+ 1)-dimensional array, y is a
n-dimensional array, and i is an integer index, and get in-place updates in the generated
code. This works under the uniqueness requirement (simplified) that xs is not used after
this statement. A shorthand for this expression is let xs[i] = y, where xs is similar to
xs’ in the longform expression.

• If nothing else is specified, “running a Futhark program” means running the main function
in the program.

• Comments start with -- (two dashes).

The abstract syntax is covered in chapter 3; however, note that this is a grammar for a memory
block-related intermediate representation, since our optimisations depend on such a representa-
tion, and not the source language.

Register Allocation and Coalescing

To determine if an array with some associated memory can be set to use the memory of another
array without changing the result of executing the program, we want to (among other things)
check if the current memory block and the potential memory block do not interfere. This is
analogous to how liveness analysis is used in register allocation to map variables to registers; we
lift it to cover arrays instead.

While register allocation may use graph coloring on an interference graph to determine a
mapping from variable to register (or spill), we instead want to ultimately find a mapping from
array variables to memory blocks.

We use an approach related to linear scan register allocation[23] to achieve this. The linear scan
algorithm works by iterating over the liveness intervals of variables in a program, and main-
taining an active list of register-associated active intervals, i.e. registers holding in-use variables
at the current program point. At any given statement, the defined variable is associated with
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a register that is not in the active list, and the registers associated with variables that are lastly
used in that statement are removed from the active list.

Lifting this register allocation algorithm to work on arrays in Futhark is complicated by several
factors:

• Futhark’s support of nested bodies: The linear scan algorithm works on assembly-like flat
programs and can thus use line numbers to denote locations in a program, but we need to
decide on a more powerful representation for Futhark code; more about this in chapter 6.

• Register allocation works on a preset number of registers; while in a Futhark program, the
number of seen arrays grows as the pass traverses the program, and our aim is merely to
reduce the number of total memory blocks, without any hard limit. This does have the
benefit of us not having to handle spilling.

• Scalars, which can be written to registers, cannot alias each other. On the other hand, arrays
can (through e.g. slices), complicating the analysis.

• There are only small variations in the byte sizes of scalars – typically between 1 and 8 bytes
– but arrays can have very different sizes, further complicating the analysis.

Register allocation can also cause the side-effect of eliminating the data copying inherent in
dst := copy(src)-like instructions by assigning dst and src to the same register, and simpli-
fying the instruction away. We do the same, but for arrays.
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Chapter 3

Explicit Memory Annotations

The Futhark language has different representations in the compiler, suitable for different optimi-
sations. In the so-called EXPLICITMEMORY representation, every array expression is associated
with a memory block which was previously explicitly allocated in the program. Since mem-
ory block merging is about modifying the memory blocks of variables, we will perform our
optimisations in this representation. This chapter first introduces our notation, then presents
the grammar of the EXPLICITMEMORY representation, then discusses how delayed arrays are
supported by means of index functions, and, finally, demonstrates on several examples how a
memory-agnostic program is transformed into its EXPLICITMEMORY form.

Notation

We write x(n) = x1, · · · , xn to range over sequences of n objects (and x when the size does not
matter).

When we write “source language”, we refer to the programming language in which a program-
mer writes Futhark code. This is in contrast to the intermediate representations.

Also, when we write “the statement x”, we mean the statement where x is created. We know this
to be precise, since all variable names are unique in the representation.

EXPLICITMEMORY Syntax

We show the grammar of a simplified form of Futhark’s EXPLICITMEMORY intermediate repre-
sentation in figure 3.1, and the memory block index functions in figure 3.2. A program in this
representation consists of a list of function definitions. Each function definition consists of a list
of parameters and a body of let bindings (statements) and results.

We use c, f , m, d and x and y to range over constants, function, memory-block, scalar and array
names, respectively, and v to range over any variable name.
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f ::= id (Function name)
m ::= id (Memory name)
d ::= id (Scalar name)
x, y ::= id (Array name)
v ::= x | d | . . . (Variable name)
c ::= const (Constant value)
t0 ::= i32 | f32 | bool | ... (Built-in types)
i ::= IxFun (Index function)
τ ::= t0 | [d]τ (Scalar/array type)
ρ ::= t0 | τ@m{i} (Types with memory info)
t ::= ρ | *ρ (Nonunique/unique type)
ealg ::= c | d | ealg � ealg (Scalar expression)
p∃ ::= v : ρ (Existential context)
p ::= (v : ρ) | p∃(v : ρ) (Binding pattern)
P ::= ε | FP (Program: sequence of functions)
F ::= let f p : t = bout (Function definition)
bout ::= v (Tuple result)

| let p = f v (Function call)
| letm = alloc ealg in bout (Memory allocation)
| let p = k in bout (Parallel let binding)
| let p = e<bout> in bout (Sequential let binding)

bin ::= v (In-kernel tuple result)
| let p = e<bin> in bin (In-kernel sequential let binding)

k ::= ker
(
di < dN

q
)(

x = y[di
s≤q

]

)
= bin (Kernel map nest)

z ::= v | copyx (Alias/deep copy)
e<b> ::= z (Variable/deep copy)

| ealg (Scalar expression)
| reshape d x (Reshape dimensions)
| rearrange c x (Permute dimensions)
| x[d] (Array index)
| x with [d] ← z (In-place update)
| scratch d (New array)
| [i..<j] (New array with range contents)
| replicate dv (Replicate a value v for d times)
| concat z (Array concatenation)
| if d then b else b (Branch)
| loop pN = vN for d < d do b (Loop)

Figure 3.1: The grammar for the EXPLICITMEMORY intermediate representation.

A let binding consists of a left-hand-side pattern p and a right-hand-side expression. A pattern
p consists of

• a fresh variable name v;
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• an optional existential context p∃, used e.g. by some if and loop expressions; and

• a type ρ, possibly a memory-annotated one of kind τ@m{i}, consisting of a primitive scalar
type, a memory block name, and an index function.

For simplicity, the grammar in figure 3.1 assumes that a pattern can only hold a single variable,
but note that real Futhark programs can have expressions that return multiple values.

The grammar describes two kinds of bodies: bout and bin. This is because Futhark programs
in this representation (among other representations) supports kernel map nests, in which only
some expressions are supported. As such, we use bout to refer to a body whose bindings can
contain any expression, and bin to refer a limited body inside a kernel. For example, a memory
allocation (alloc . . .) can only appear in bout, because dynamic allocations are not supported in
GPU kernels.

There are two kinds of arrays in Futhark:

• Ordinary arrays: arrays that are created in full with scratch, copy, concat, [i..<j], array
literals, and a few other constructs.

• Delayed arrays: arrays that use the memory of another array, but with a different index
function. These arrays can be created by aliasing operations like reshape and rearrange.

A note about scratch: This is not a construct available in the source language. Its purpose in the
intermediate representation is to create an array of a certain size, but with no contents, so that
non-scalar loops have somewhere to write their results.

Index Functions

In Futhark, an index function specifies how array elements are to be mapped to memory locations,
providing the means for supporting delayed arrays without manifesting them in separate
memory blocks.

Figure 3.2 presents the representation. The Direct constructor specifies the default, row-major
mapping, which is used e.g. whenever a new array is produced by scratch.

The other constructors correspond to operators such as applying a statically-known permutation
to an array’s dimensions, reshaping an array’s dimensions, and slicing an array.
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IxFun ::= Direct ealg (Row major)
| Permute c IxFun (Permuting with constants)
| Reshape ealg IxFun (Reshaping with scalar expressions)

| Slice
(
ealgstart, e

alg
length

)
IxFun (Slicing with scalar expressions)

DimIndex ::= ealgindex (Fix index in this dimension)
| (ealgstart offset, e

alg
element length, e

alg
stride) (Take length elements)

Slice ::= DimIndex

shape : IxFun→ i32
slice : IxFun→ Slice→ IxFun

rebase : IxFun→ IxFun→ IxFun

Figure 3.2: Index function constructors, slice constructors, and helper functions.

For constructor applications, we will typically write i->constructor1 arg1 instead of
constructor1 arg1 i.

For example, let a be an array of type [p][q]t0@m{i}. Then:

• Let b be a delayed array produced by the expression rearrange (1, 0) a. Then b has the
type [p][q]t0@m{i}->Permute(1, 0).

• Let c be a delayed array produced by the expression a[k]. Then c has the type
[p][q]t0@m{i}->Slice(k, 1)->Slice(0, q), i.e. the slice in the outer dimension starts at offset
k and has length 1, and in the inner dimension it starts at offset 0 and has the full length q.

We now discuss their semantics:

• shape i gives the shape of an array with the index function i.

• slice i Slice creates a new index function where the DimIndex parts are converted to
the matching parts in the tuples of the index function Slice construct.

• rebase i1 i2 creates a new index function by substituting the Direct part of i1 with i2.

Transformation Into EXPLICITMEMORY Form

At some point in the compilation phase of a program, the Futhark compiler needs to transform
the program from an IR without memory annotations into the EXPLICITMEMORY representation.
The former representation, which supports existential shapes and dependently-typed array
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shapes [10, 12] is similar to EXPLICITMEMORY, except without alloc and scratch statements
(and without memory blocks).

Intuitively, the transformation works by traversing the program statements and checking every
statement:

• If the statement creates an ordinary array, assign a new memory block to it.

• If the statement creates a delayed array x of some other array y, assign the memory block
of y to x as well, and construct a matching index function based on the aliasing operation
in the statement.

• If the statement expression is scalar, nothing need to be changed.

For a very simple example, see figure 3.3. This program contains a single statement that computes
the array [0, 1, . . . , i− 1]. When it gets transformed, this array gets an associated memory block
and index function. This is an ordinary array, so it has a Direct access. We informally write ma

to mean “the allocated memory block containing the contents of the array a”. For readability
purposes, many of the code snippets presented in this thesis will diverge from the grammar by
omitting the type of the variable in the let binding, and documenting its memory block, index
function, and other attributes in a comment preceding the binding.

1 let main (i: i32): []i32 =
2 let result = [0..<i]
3 in result

↓
1 let main (i: i32): []i32 =
2 let mresult = alloc i · bytesize(i32)

3 -- Memory: mresult; index function: Direct(i)

4 let result = [0..<i]
5 in result

Figure 3.3: A very small program that is transformed into its matching EXPLICITMEMORY form.

For a slightly larger example, see figure 3.4. This program has a delayed array through a reshape
call, so two arrays end up having the same memory block, and the second array has a different
index function.
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1 let main [n] (ns: [n]i32): [1][n]i32 =
2 let t0 = map (+ 1) ns
3 let t0a = reshape (1, n) t0
4 in t0a

↓
1 -- Memory of ns: mns; index function: Direct(n)

2 let main [n] (ns: [n]i32): [1][n]i32 =
3 let mt0 = alloc n · bytesize(i32)

4 -- Memory: mt0; index function: Direct(n)

5 let t0 = map (+ 1) ns
6 -- Memory: mt0; index function: Direct(1, n)

7 let t0a = reshape (1, n) t0
8 in t0a

Figure 3.4: A small program with a delayed array that is transformed into its matching EXPLICIT-
MEMORY form.

The existing transformation also handles more complex cases where a delayed array creation
re-indexes another delayed array.

Finally, EXPLICITMEMORY also supports existential memory blocks: memory blocks that are not
directly associated with an allocation. These pop up in two places:

• If-then-else. If the then branch and the else branch return arrays in different memory
blocks, then the entire expression gets assigned an existential memory block. The only
purpose of this is to have some notion of a memory block that can encompass both results.
This is represented as p∃ in the grammar.

• Loops. If a loop uses an array as part of its accumulator, then that array may be in different
memory blocks across different iterations. For example, in figure 3.5, the accumulator array
is ys, and can both refer to the initial value of xs, or the value of a previous iteration ys1,
each of which are separate arrays and thus have separate memory blocks. To solve this, the
memory block of the loop result xs1 is existential.

1 let main (xs: [n]i32): [n]i32 =
2 let xs1 = loop ys = xs for i < n do
3 let ys1 = map (+ i) ys
4 in ys1
5 in xs1

Figure 3.5: A loop that will get an existential memory block when transformed to EXPLICITMEM-
ORY form.
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When the compiler transforms a loop to its EXPLICITMEMORY form, it inserts a double-buffer
memory block if the loop ends up using existential memory. A loop in the source language of the
form

1 let main [n] (xs0: [n]i32): [n]i32 =
2 loop xs = xs0 for _i < n do
3 map (+ 1) xs

will be transformed into

1 let main [n] (xs0: [n]i32): [n]i32 =
2 loop {mem(xs0_mem_size) xs_mem;
3 [size]i32 xs} = {xs0_mem, xs0}
4 for _i:i32 < n do {
5 let res = kernel map ...
6 -- Memory of double_buffer_array: mdouble_buffer_mem

7 let double_buffer_array = copy res
8 in {double_buffer_mem, double_buffer_array}
9 }

where xs_mem is an existential merge parameter with size xs_mem_size that can vary across
iterations.

• On line 3 the merge paramaters are initialised to the xs0 variants.

• On line 8 the body returns. These return values are used as the new merge paramater
values in the next iteration of the loop.

The let double_buffer_array = copy res statement is inserted as a safety measure, and
cannot always be optimised away. Throughout this thesis we will ignore the details of this
transformation and informally refer to memory blocks like xs_mem as “accumulator memory
blocks”.

To clarify, this explicit allocation transformation in loops does not affect scalar loops or on-array-
working loops that only perform in-place updates.

We have now presented the intuition behind transforming a program into its EXPLICITMEMORY

form. The next chapter describes how to perform analyses and transformations within this
representation.
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Chapter 4

Analyses and Transformations

In this chapter we give an overview the various program analyses and program transformations
that are part of our optimisations. We think of them as three distinct parts:

Enabling analyses Program analyses that simplify the description and implementation of the
transformations.

Enabling transformations Program transformations that enable the core transformations to
extract more memory block mergings.

Core transformations Program transformations that actually end up merging memory blocks.

We describe them in detail in separate chapters, starting with the core transformations. We write
Vk to denote a set of elements of kind k, and V[k] to denote a set of sets.

All described analyses and transformations are fully implemented and working. See appendix A
for the details, and chapter 10 for an evaluation.

Enabling Analyses

These include:

Memory block aliases
For all existential memory blocks, find what actual memory blocks they can refer to. This
is not so much an analysis as it is a walkthrough of if and loop expressions, gathering all
existential memory-related changes made by the explicit memory transformation.

The result of the analysis is a finite mapping Vm
fin→ V[m], i.e. from memory block name to a

set of memory blocks names.

Last use analysis
Find all last uses of arrays and their memory blocks. This is analogous to last use analysis
on registers, and is implemented as a top-down single passthrough of a program.
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The result of the analysis is a mapping Vv
fin→ V[m], i.e. from variable name to a set of

the names of the memory blocks lastly used at the binding of v (actually it is a bit more
complicated than that; see the chapter for the details).

Interference analysis
Find all interferences between memory blocks. This is analogous to interference analysis
on registers. We use the last use analysis for the interference analysis.

The result of the analysis is a mapping Vm
fin→ V[m], with the meaning that a memory block

maps to its interfering memory blocks (by names).

We describe these in detail in chapter 6.

Enabling Transformations

We use two kinds of hoisting transformations:

• allocation hoisting; and

• allocation size hoisting.

These sound alike, but are actually used for different optimisations, although they partly use the
same underlying approach. We use allocation hoisting to enable more memory block mergings
in the coalescing optimisation, and use allocation size hoisting to enable more memory block
mergings in the reuse optimisation.

We describe these in detail in chapter 7.

Core Transformations

We have two core transformations, inconspicuously named memory block coalescing and memory
block reuse. We describe these in detail in the next chapter, chapter 5.
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Chapter 5

Core Transformations

This chapter describes the transformations applied to a program as part of the memory block
merging optimisations. The goal is two-fold:

• Reduce data copying in the generated programs, hopefully making the programs slightly
faster in the process.

• Reduce memory usage in the generated programs, allowing for the loading of larger
datasets.

As described in chapter 3, a memory block is a place in memory (unless it is existential) with
a certain size. We take memory block merging to mean the case where an array variable x that
uses memory block mx in the original programs gets to, after an analysis that deems it okay, use
a different memory block my in the transformed program; the memory blocks mx and my are
merged.

See chapter 8 for an attempt at a formal description of some of the transformations described in
this chapter.

Memory Coalescing: Motivation and Intuition

We start by presenting the intuition behind the optimisations that we intend to formalise and
implement, and the existing building blocks that they depend on.

Consider the Futhark program in figure 5.1.

1 let main (src: []i32): []i32 =
2 let dst = copy src
3 in dst

Figure 5.1: A small Futhark program with copy, ready for memory block merging.
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This (extremely trivial) program takes an array src (“source”) with type “single-dimensional
array of 32-bit integers” as input, copies it into dst (“destination”), and returns dst. The copy
construct is used in Futhark to create a unique array (meaning it is certain not to alias existing
memory), which it accomplishes through a deep copy.

By quick inspection we see that the return value dst has the same contents as src, and that src
is not used for anything else than its copying to dst; by this we reason that dst and src can
share the same memory without changing the result of running the program. This is part of what
the optimisations do.

In the program above, src and dst initially have separate memory blocks; but after the optimi-
sation, dst is set to use the memory block of src.

Now consider the program in figure 5.2.

1 let main (ns: []i32): []i32 =
2 let t0 = map (+ 1) ns
3 let t1 = map (* 2) ns
4 let t2 = concat t0 t1
5 in t2

Figure 5.2: A small Futhark program with concat, ready for memory block merging.

This program first creates two new arrays t0 and t1, both with the same length k, mapping
λn → n + 1 and λn → n × 2 on ns, respectively. It then concatenates them using the concat
construct into a third new array t2, which is returned; see figure 5.3 for an illustration of its
contents; t2 has length 2k, where the first k elements are the k elements from t0, and the last k
elements are the k elements from t1.

t0 t1

t2 {
Figure 5.3: The contents of t2.

We look at this relationship and reason that, since t2 consists of non-overlapping arrays t0 and
t1, these constituents should be able to store their results directly in the memory block of t2
instead of first using their own memory blocks and then copying them into t2.

We first show the memory-annotated version of the original program in figure 5.4. As covered in
chapter 3, this transformation into a program with explicit memory blocks already happens in
the Futhark compiler; our goal is to take the program in this representation and transform it into a
program in the same representation with less copying and with more efficient memory usage.
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1 let main (ns: []i32): []i32 =
2 let mt0 = alloc k · bytesize(i32)

3 let mt1 = alloc k · bytesize(i32)

4 let mt2 = alloc 2k · bytesize(i32)

5 -- Memory: mt0

6 let t0 = map (+ 1) ns
7 -- Memory: mt1

8 let t1 = map (* 2) ns
9 -- Memory: mt2

10 let t2 = concat t0 t1
11 in t2

Figure 5.4: The original program with memory block annotations. Every array has its own
memory block.

We then show our suggested transformed program in figure 5.5.

1 let main (ns: []i32): []i32 =
2 let mt2 = alloc 2k · bytesize(i32)

3 -- Memory: mt2; offset: 0

4 let t0 = map (+ 1) ns
5 -- Memory: mt2; offset: k

6 let t1 = map (* 2) ns
7 -- Memory: mt2; offset: 0

8 let t2 = concat t0 t1
9 in t2

Figure 5.5: The transformed program with memory annotations. Every array uses the same
memory block, but with varying element offsets.

We set both t0 and t1 to use the memory block of t2, and remove the old allocations for mt0 and
mt1, since they are not used anymore (in the compiler this is done through an existing simplifier
pass).

Directly using the memory block mt2 for both t0 and t1 is wrong; this would mean that t1
writes to the same memory area as t0, thus overwriting it. As shown in the illustration, it is the
second part of t2 that contains t1, so we need a way to describe that in the transformed program.
We use offsets to describe where in a memory block to store an array. Recall that mt2 has space
for 2k elements; by using the offset 0 for t0, and the offset k for t1, we ensure that t0 will be
stored in the first part of mt2, and t1 in the second part, thus keeping the semantics of concat.

This concept of offsets is part of the more general idea of index functions introduced in chapter 3,
which supports more memory block merging cases. An offset can be represented in an index
function by using slice on the outer dimension (where the offsetting occurs). We use offsets
here to keep it simple.
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We have now looked at how to merge memory blocks in simple cases of copy and concat. We
look at one more small coalescing case before we move on to something larger. Consider the
program in figure 5.6. This program contains an in-place update in the t2 statement. We have
annotated it with memory blocks.

1 let main [n] (i: i32, ns: [n]i32): [n][n]i32 =
2 let mt0 = alloc n · bytesize(i32)

3 let mt1 = alloc n · n · bytesize(i32)

4 -- Memory: mt0; offset: 0

5 let t0 = map (+ 1) ns
6 -- Memory: mt1; offset: 0

7 let t1 = replicate n (replicate n 0)
8 -- Memory: mt1; offset: 0

9 let t2 = t1 with [i] <- t0
10 in t2

Figure 5.6: A small Futhark program with an in-place update, ready for memory block merging.

In line 1, the first occurence of [n] declares the shape variable n, which is then used in the
one-dimensional type of ns, and the two-dimensional return type (after the colon).

In line 9, the value t2 becomes the value of t1, except with t0 written into index i. This is
possible because t1 (and thus t2) has the shape [n][n]i32, and t0 has the shape [n]i32. Note
that t1 and t2 use the same memory block mt1; this is because the operation occurs in-place in
Futhark programs.

We would like to get rid of mt0 and let t0 instead use mt1. We reason that t0 can use the memory
block of its destination if its offset is where it ends up anyway; this approach is illustrated in
figure 5.7.

t1

t2 {t0

nn ⋅ i

Figure 5.7: The contents of t2: t1 except for the insertion of t0 after n · i elements (and then t1
again afterwards).

We show the transformed program in figure 5.8.
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1 let main [n] (i: i32, ns: [n]i32): [n][n]i32 =
2 let mt1 = alloc n · n · bytesize(i32)

3 -- Memory: mt1; offset: n · i
4 let t0 = map (+ 1) ns
5 -- Memory: mt1; offset: 0

6 let t1 = replicate n (replicate n 0)
7 -- Memory: mt1; offset: 0

8 let t2 = t1 with [i] <- t0
9 in t2

Figure 5.8: A small Futhark program with an in-place update, with t0 coalesced into mt1.

We have removed the allocation of mt0, and set t0 to use mt1.

The program transformations so far all share the same pattern: A source array is set to use the
memory block of the destination it is put into. We refer to this kind of memory block merging as
memory block coalescing, and our goal is to handle many more of these coalescings cases. We have
shown examples for the three basic cases:

• letx = copy y

• letx = concat y0 . . . yn

• letx[d] = copy y

All of the previous examples have had a single memory coalescing. It gets more interesting for
programs that have chains of all these patterns. We present one such program in figure 5.9.

1 let main [n] (ns: [n]i32): [][]i32 =
2 -- Will initially be set to use the memory of t1. Will end up using the
3 -- memory of t3 through t2 through t1.
4 let t0 = map (+ 1) ns
5

6 -- Will use the second part of index 1 of the memory of t3 through the
7 -- memory of t2.
8 let t1 = copy t0
9

10 -- Will use index 1 of the memory of t3.
11 let t2 = concat ns t1
12

13 -- Will be the only remaining memory block.
14 let t3 = replicate 2 (replicate (n * 2) 0)
15 let t3[1] = t2
16

17 in t3

Figure 5.9: A Futhark program with all three coalescing-enabled constructs.
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This program will have three coalescings:

• On line 15, t2 is coalesced into mt3.

• On line 11, t1 is coalesced, via t2, into mt3.

• On line 8, t0 is coalesced, via t1 and t2, into mt3.

The simplifier will subsequently be able to remove mt0, mt1, and mt2 from the program, greatly
reducing memory usage and copying of data.

This gives an overview of what the optimisation is capable of, but note that real-world programs
are much less clear-cut.

Memory Reuse: Motivation and Intuition

Next up we take a quick look at the intuition behind reusing non-interfering, lastly-used memory
blocks, which we call memory block reuse. Consider the memory-annotated program in figure 5.10.

1 let main [n] (xs0: [n]i32, i: i32): [n]i32 =
2 let mxs = alloc n · bytesize(i32)

3 let mys = alloc n · bytesize(i32)

4 -- Memory: mxs

5 let xs = map (+ 1) xs0
6 let k = xs[i]
7 -- Memory: mys

8 let ys = replicate n k
9 in ys

Figure 5.10: A small Futhark program with a potential for memory reuse.

The program has two arrays, each with its own memory block:

xs is created at line 5 and lastly used at line 6.

ys is created at line 8 and lastly used at line 9.

We see that the two arrays have different liveness intervals; xs is lastly used before ys is created.
Also, both arrays have the same size. By this we reason that it is okay to set ys to use the memory
of xs; see the transformed program in figure 5.11.
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1 let main [n] (xs0: [n]i32, i: i32): [n]i32 =
2 let mxs = alloc n · bytesize(i32)

3 -- Memory: mxs

4 let xs = map (+ 1) xs0
5 let k = xs[i]
6 -- Memory: mxs

7 let ys = replicate n k
8 in ys

Figure 5.11: The small Futhark program after memory reuse.

Similarly to memory coalescing, the memory reuse optimisation supports chains of memory
mergings. We will look at more complex programs later in this chapter.

These are the program patterns we wish to handle in our optimisations, with the goal that the
transformed programs use less memory, and maybe get small speedups.

Informal Algorithm: Memory Block Coalescing

We now define memory block coalescing.

A memory block msrc can be set to use the memory block mdst if one of the statements below
exist in the program:

1. let dst = copy src
We know that the size of dst is always equal to the size of src.

2. let dst = concat . . . src . . .
We know that the size of dst is equal to the sum of the sizes of src and of the other
concatenated arrays.

3. let dst[d] = copy src
We know that the size of dst[c] is always equal to the size of src, since the existing compiler
infrastructure guarantees this.

We would like an optimisation that uses the memory block of the left-hand side for the right-hand
side variable, i.e. we would like to store src directly in mdst + offset, where offset depends
on the case – and not in msrc, which would require an extra copying operation and is thus
suboptimal.

We define five safety conditions that we informally argue are sufficient for guaranteeing safety
for a coalescing relation rooted in one of the three cases presented above:

1. The memory of the right-hand side variable is in its last use, i.e. neither src nor any of the
variables aliased with it is used on any execution path following the coalescing statement.
If the program has not been optimized for memory reuse, this is equivalent to saying
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that msrc is not used beyond the statement in question. This condition is not absolutely
necessary, but it captures the common case and significantly simplifies our analysis.

2. The allocation of mdst occurs before the creation of src, i.e. the first use of msrc. This
ensures that the contents of src can be stored in a previously allocated memory block, i.e.
one that exists at the creation of src.

3. There is no use of the left-hand side memory block mdst (and of any other memory
blocks in which mdst is transitively coalesced into) after the creation of src and before the
current statement. This ensures that src does not implicitly depend on dst, which might
change the semantics of the transformed program, e.g. because the data of dst might be
prematurily overwritten with the data of src.

4. src is or can be traced back (through a chain of aliasing operations) to a newly created
(i.e. by expressions such as scratch, copy, and ker) array src0. This condition limits the
search, since it ensures that, at the creation of src0, there are no other variables that aliases
src0.

5. The new index function of src only uses variables declared prior to the first use of msrc.
This ensures that the new index function is valid.

We show four example programs that describe the importance of the safety conditions – excluding
safety condition 1 since its purpose is to limit our search rather than secure our transformation –
in figure 5.12, figure 5.13, figure 5.14, and figure 5.15, respectively.

1 let main [n] (i: i32, ys: [n]i32): [n][n]i32 =
2 let xs = reshape (n, n) [0..<(n * n)]
3 let xs[i] = ys
4 in xs

Figure 5.12: A program where safety condition 2 makes sure that an invalid memory coalescing
does not occur.

We cannot fulfill safety condition 2 in figure 5.12 in the potential coalescing on line 3, since ys
is allocated before the function body is run, so xs, which is created in the body, can never be
allocated before ys.

1 let main [n] (xs: *[n][n]i32, ys0: [n]i32, i: i32): ([n][n]i32, i32) =
2 let ys = map (+ 1) ys0
3 let zs = map (+ ys[0]) xs[i]
4 let xs[i] = ys
5 in (xs, zs[i])

Figure 5.13: A program where safety condition 3 makes sure that an invalid memory coalescing
does not occur.
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We cannot fulfill safety condition 3 in figure 5.13 in the potential coalescing on line 4, since xs is
used while ys is live. If we do the coalescing anyway, we will get an incorrect program where zs
maps over the contents of ys instead of the original contents of xs[i].

1 let main [n] (xs: *[n][n]i32, zs0: [n][n]i32, i: i32, j: i32): [n][n]i32 =
2 let zs = map (\z -> map (* 3) z) zs0
3 let ys = zs[i]
4 let xs[j] = ys
5 in xs

Figure 5.14: A program where safety condition 4 makes sure that an invalid memory coalescing
does not occur.

We cannot fulfill safety condition 4 in figure 5.14 in the potential coalescing on line 4, since ys
is a slice of zs and is thus part of the memory of zs. If we try to do the coalescing anyway, we
will end up with the nonsensical result that ys is both contained in the memory of zs and the
memory of xs.

1 let main [n] (ns: [n]i32, t1: *[n][n]i32, i0: i32): [][]i32 =
2 let t0 = map (+ 1) ns
3 let i1 = t0[i0]
4 let t1[i1] = t0
5 in t1

Figure 5.15: A program where safety condition 5 makes sure that an invalid memory coalescing
does not occur.

We cannot fulfill safety condition 5 in figure 5.15 in the potential coalescing on line 4, since the
index function of t1 includes i1, which depends on the result of t0; in a coalescing of t0 into
mt1, t0 would need to update its index function to include i1, which is not possible.

For each potential coalescing, we need to check these safety conditions, and we need to support
chains of coalescings like that in figure 5.9. We present our basic algorithm for finding coalescings
in figure 5.16.
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1. Let coalesced_intos be a mapping Va
fin→ V[a], i.e. from variable name to variable names.

Initialize it to be empty. This is used if there are chains of coalescings, and a previous
coalescing needs to be updated to use a new memory block.

2. Let result be a mapping Va
fin→ Vm × Vi, i.e. from statement variable name to memory

block and index function. Initialize it to be empty.

3. Traverse every statement in the program in a top-down fashion. For each copy, concat, or
in-place update statement let dst = e with memory block mdst:

(a) For each source array src with memory block msrc in e:

i. Check that all safety conditions are satisfied w.r.t. dst and src.
ii. Find all variable aliases of src and get back a list src_aliases.

iii. Lookup src in coalesced_intos and get back a (possibly empty) set of arrays
src0s previously coalesced into msrc.

iv. Check that all safety conditions are satisfied w.r.t. dst and all src-like variables
in src and src0s.

v. If all checks succeed:

(b) Add src to coalesced_intos(dst).

(c) We want to record a new coalescing. Let inew be the new index function for src,
which in the transformed program will now use mdst. We define inew like this:

• If e is a copy expression, inew = idst.
• If e is a concat expression, inew = idst + offset, where offset is the total size

of the arrays in the concat arguments before src.
• If e is an in-place update with DimFix indices d, then inew = slice idst d.

Set result(src) to (mdst, inew). For each array variable v in src0s and src_aliases,
get its current index function iv either through result(v) or by looking at the v
binding directly, and set result(v) to (mdst, rebase idst iv).

4. Return result.

Figure 5.16: The algorithm for finding memory block coalescings.

We follow up this algorithm with a transformation that traverses the program and updates every
array a with its new memory block and index function taken from result(a), whenever the
latter is defined.

This algorithm does not cover all edge cases handled in the implementation. We present several
of these throughout the remainder of this chapter and informally extend the algorithm.

Informal Algorithm: Memory Block Reuse

We now define memory block reuse.

28/116



An array x with memory block mx can be set to reuse a different memory block my if

1. mx and my do not interfere;

2. mx does not interfere with any memory blocks already merged into my; and

3. bytesize(mx) = bytesize(my).

The first two safety conditions should be almost self-explanatory: If two arrays have interfering
memory blocks, no memory block merging can occur. The third safety condition ensures that
there is enough space for x in my. We define this condition very conservatively here, but will
later loosen it up.

We first show a small example in figure 5.17 of a program where interference limits memory
block reuse. At first a is created, then b is created, and only after that do we have the last use of
a. Since they interfere, we cannot set b to use ma – otherwise the a_end statement would read
from the b array in the a[0] expression!

1 let main [n] (xs: [n]i32): i32 =
2 let a = map (+ 1) xs
3 let b = map (+ 10) xs
4 let a_end = a[0]
5 let b_end = b[0]
6 in a_end + b_end

Figure 5.17: A program where the two memory blocks interfere.

We then present our basic algorithm for finding reuses in figure 5.18. This algorithm is inspired
by the linear scan register allocation algorithm.
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1. Let uses be a mapping Vm
fin→ V[m], i.e. from memory block name to memory block names.

Initialize it to be empty. The map denotes which memory blocks have been merged into
which memory blocks.

2. Let result be a mapping Vv
fin→ Vm × Vi, i.e. from statement variable name to memory

block and index function. Initialize it to be empty. This is the same as in memory block
coalescing.

3. Traverse every statement in the program. For each creation of array a:

(a) Look through every mapping mem_used 7→ already_merged in uses. For each map-
ping, check ifma can be set to use the memory of mem_used w.r.t. the safety conditions.

• If one or more of such mappings are found, pick one of them. Update uses(ma)

to uses(ma) ∪ mem_used, and set result(a) to mem_uses.
• Else, set uses(a) to ma

4. Return result.

Figure 5.18: The algorithm for finding memory block reuses.

Code Generator Optimisations

After optimisations in the EXPLICITMEMORY representation, a Futhark program is converted
into another intermediate representation, IMPCODE. This representation is more low-level and
will itself be converted into runnable C or OpenCL code.

The memory coalescing transformation can find out and record that in expressions such as
let y = copyx, then x and y can use the same memory block. This is useful for two reasons:

1. We get rid of one allocation. This saves memory usage, but should not cause a great
speedup, since memory allocation is mostly about record keeping.

2. We get rid of memory copying. Since x and y inhabit the same memory, there is no need to
copy it.

In the EXPLICITMEMORY representation, copy and concat are still represented by special con-
structs. It is only in the IMPCODE representation that they are converted into low-level memory
copyings. To satisfy the latter reason, we have added a check to make sure that these low-level
memory copyings are not inserted if the memory blocks and index functions of the source and
destination are identical.

This was already present for copy, but not for concat.
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Coalescing Extension: If-then-else

The basic coalescing algorithm described in figure 5.16 does not do anything extraordinary
to handle if-then-else expressions. However, this can result in invalid transformations. See
figure 5.19 for an example of where the current algorithm goes wrong.

1 let main [n] (cond: bool, x: *[n][n]i32, a: [n]i32): (*[n][n]i32, i32) =
2 let b = map (+ 1) a
3 let (y, r) =
4 if cond
5 then let y0 = map (+ 1) a
6 in (y0, b[0])
7 else (b, 0)
8 let x[0] = y
9 in (x, r)

Figure 5.19: A program where an if-then-else restrics a coalescing.

In this program the compiler will try to coalesce y into mx on line 8. Since y is the first part of the
return value of an if expression, the compiler will then try to coalesce the first parts of the return
values of the if branches into mx as well – y0 and b – since they are aliased by y. The problem
with this is that b is used after the creation of y0 in the then branch, so if they are set to use the
same memory block, the b[0] expression on line 6 will actually read y0[0], which is wrong. In
conclusion, this program needs to fail at any coalescing.

We look at a few more programs before we decide on an extra safety condition for if expressions.
First consider the program in figure 5.20, where both branches return arrays that are defined
outside the if expression. Here, mys will be existential, and ys will alias the branch result arrays
ys0 and ys1, so the algorithm will try to coalesce both arrays into mx. Since both arrays are
created outside the if, they will at some point exist at the same time: after a coalescing, ys0 and
ys1 will both use mxs, but this means that the ys1 definition on line 3 will override the contents
of ys0, so we can never allow this case.

1 let main [n] (xs: *[n][n]i32, cond: bool, i: i32): [n][n]i32 =
2 let ys0 = [0..<n]
3 let ys1 = map (+ 1) [0..<n]
4 let ys = if cond
5 then ys0
6 else ys1
7 let xs[i] = ys
8 in xs

Figure 5.20: A program where both branches in the if expression return arrays that are defined
outside itself.
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We then look the program in figure 5.21. Here, both branches return arrays that are defined inside
the if expression. Contrary to the program in figure 5.20, these arrays do not exist at the same
time: ys0 only ever exists in the then branch, and ys1 only ever exists in the else branch. By
this we reason that it is okay for them to use the same memory block, so we go ahead with the
coalescing.

Also, since xs is a unique paramater (signified with the * character), i.e. allocated by the caller,
we actually end up with zero allocations after the coalescing transformation.

1 let main [n] (xs: *[n][n]i32, cond: bool, i: i32): [n][n]i32 =
2 let ys = if cond
3 then let ys0 = [0..<n]
4 in ys0
5 else let ys1 = map (+ 1) [0..<n]
6 in ys1
7 let xs[i] = ys
8 in xs

Figure 5.21: A program where both branches in the if expression return arrays that are defined
inside itself.

Next up we take a look at a hybrid if expression where one array is defined outside the
expression, and one array is defined inside; see figure 5.22. Here, ys0 exists when ys1 is created,
while ys1 does not exist when ys0 is created. To have a safe coalescing in this case, we reason
that we must ensure that ys0 is not actually used in the ys1 branch; we want to make sure that
they do not depend on each other at all. We can see that this is the case, so in this case we would
go ahead with the coalescing.

Note that the initial program in figure 5.19 also exhibits the one-array-created-outside, one-array-
created-inside structure, but in that case the return value of the else branch is used in the then
branch, in which case coalescing will not work.

1 let main [n] (xs: *[n][n]i32, cond: bool, i: i32): [n][n]i32 =
2 let ys0 = [0..<n]
3 let ys = if cond
4 then ys0
5 else let ys1 = map (+ 1) [0..<n]
6 in ys1
7 let xs[i] = ys
8 in xs

Figure 5.22: A program where the if expression has one branch return an array defined outside
the expression, and one return an array defined inside.

We have looked at three overall cases now:
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• if expressions where both branches return arrays that are defined inside themselves.

• if expressions where both branches return arrays that are defined outside the expression.

• if expressions where one branch returns an array defined outside the expression, and one
branch returns an array defined inside the expression.

To handle these cases correctly, we extend the coalescing algorithm in figure 5.16 with an extra
safety condition to check when trying to coalesce src into mdst:

Extra safety condition for if:
If src is an if expression, or aliases an if expression, we check that not just is mdst not
used after the creation of src and before the creation of dst (safety condition 3), but neither
is any memory block that is aliased by mdst. Also check that at least one branch returns an
array that was created inside that branch.

Reuse Extension: Max Trick

As we pointed out in section 4, the third safety condition is very conservative; requiring that two
arrays have the exact same size can be too limiting, so we would like loosen up the size safety
condition. We show a small program in figure 5.23 that would benefit from this.

1 let main [n] (xs0: [n]i32, i: i32): []i32 =
2 let mxs = alloc n · bytesize(i32)

3 -- Memory: mxs

4 let xs = map (+ 1) xs0
5 let k = xs[i]
6 let n1 = n - 1
7 let mys = alloc n1 · bytesize(i32)

8 -- Memory: mys

9 let ys = replicate n1 k
10 in ys

Figure 5.23: A program where ys could feasibly be set to reuse the memory of xs, but where an
overly conservative approach would refuse to do so.

We want to set ys to use mxs, and thus merge mys into mxs. We can see that mys is 4 bytes
smaller than mxs ((n− 1) 32-bit elements compared to n 32-bit elements), so we should be able
to perform this merge, assuming we can make the compiler run a size analysis that detects this.

Or maybe there is another way? Consider the program in 5.24. The only difference is that ys is
now size n+ 1 instead of n− 1. Now there is no space for it in mxs! What then? Should we try to
merge mxs into mys instead? But then we lose the nice-to-reason-about top-down linear-pass
approach of the algorithm.
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1 let main [n] (xs0: [n]i32, i: i32): []i32 =
2 let mxs = alloc n · bytesize(i32)

3 -- Memory: mxs

4 let xs = map (+ 1) xs0
5 let k = xs[i]
6 let n1 = n + 1
7 let mys = alloc n1 · bytesize(i32)

8 -- Memory: mys

9 let ys = replicate n1 k
10 in ys

Figure 5.24: The same program parts, but with the larger array at the end instead.

Instead we introduce the max trick whereby we maximise the allocation size of the to-be-merged-
into memory block to accomodate both the original array and the new array. We show the desired
result of applying this to the program of figure 5.24 in figure 5.25. After the transformation, mxs

has space for maxed (from a new statement) 32-bit integers instead of n, allowing ys to reuse
it. This approach also works for the first program in figure 5.23, in which case it just adds a
superfluous max n (n - 1) expression.

1 let main [n] (xs0: [n]i32, i: i32): []i32 =
2 let n1 = n + 1
3 let maxed = max n n1
4 let mxs = alloc maxed · bytesize(i32)

5 -- Memory: mxs

6 let xs = map (+ 1) xs0
7 let k = xs[i]
8 -- Memory: mxs

9 let ys = replicate n1 k
10 in ys

Figure 5.25: The program with maxed allocation size in mxs.

It might seem a bit roundabout to insert these max statements even in cases where a size analysis
could deem memory block merging safe without them. The benefit is that it is a simple trans-
formation and easy to reason about. This is particularly important in the actual code handled
by the compiler, since this is often much more confusing than the examples we present in this
report – at the point of the memory block optimisations, a program has already been through
many transformations. Also, an added max calculation should not impact speed noticably (and
might even be simplified away in a separate compiler pass).

Furthermore, the max trick allows us to merge memory blocks of sizes that cannot be statically
determined. The approach can be generally applied whenever the size computation can be
hoisted up to before the allocation of both memory blocks.
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We extend the reuse algorithm in figure 5.18 for reusing a memory block my in an array x with
memory block mx:

• Apart from returning a mapping result, also maintain and return a mapping maxes of

Vm
fin→ V[v], i.e. from memory block name to the variable names that needs to be maxed and

used at the new allocation size for the memory block. Initialize it to be empty.

• We change the third condition from

– bytesize(mx) = bytesize(my).

to

– bytesize(mx) = bytesize(my); or

– bytesize(mx) 6= bytesize(my), and the allocation size of mx is in scope at the
allocation of my, and the computation of the size of my can be hoisted up to before
the allocation of mx. In this case we add the allocation size variables of mx and my to
maxes(my).

Reuse Extension: Unique Parameter Reuse

Recall that a parameter in Futhark function definitions can be unique, signified with the *
character, meaning that the caller is guaranteed to never access the array again. For our purposes
this just means that we can reuse its memory.

A program as simple as

1 -- Memory of xs: mxs

2 let main (xs: *[]f32): []f32 =
3 let mys = alloc . . .

4 -- Memory: mys

5 let ys = map (+ 1) xs
6 in ys

benefits from this and results in ys being set to use mxs, and a program without any allocations.

We informally extend the reuse algorithm to, at the beginning of its top-down pass, also record
the memory blocks of unique array parameters as memory blocks with reuse potential.

Assertion Tracking

For this extension we may have to track generated assert statements in a Futhark program. If a
function definition in the source language has multiple arguments of the same size, internally
they will have different size variables (for reasons that are out of scope of this thesis), followed
by asserts in the code that check that they are equal.

For example, we can have the program in the source language
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1 let main [n] (x: *[n]i32, y: [n]i32): [n]i32 =
2 let k = x[0]
3 let z = map (+ k) y
4 in z

which will be transformed into the program (ignoring many low-level details)

1 let main ([size_1]i32 x) ([size_2]i32 y) =
2 let assert_arg = size_1 == size_2
3 let cert = assert(assert_arg, ...)
4 ...

where assert is an internal construct for runtime guarantees. We need to record these equality
assertions to handle e.g. this case: We reason that it should be possible for z to reuse the unique
input memory of x, but we can only do this when the compiler knows that the size of x (n in the
source language) is the same as the size of y (also n in the source language).

We extend the reuse algorithm to also keep track of a set of equality assertions as it discovers
them through its top-down pass. For every size comparison, consider two size variables to be
equal if they are in the same assertion.

Reuse Extension: Data Race Interferences

This extension only applies to the very specific program pattern where there is a kernel in which

• each thread returns an array (instead of a scalar, which is what typically happens), and

• the kernel body creates multiple arrays, so that one of them can maybe have its memory
reused.

One program that requires this extension is the the Option Pricing benchmark program, which
we look at in chapter 10.

When an array is created inside a kernel body, it is always an indexed creation: As shown in
the grammar in figure 3.1 in chapter 3, only bodies of kind bout can have allocation statements –
kernels, which have the bin body kind, cannot contain allocation statements. (This design choice
is driven by the limitations of the GPU model into which code can be generated.)

To handle this, a previous compiler pass hoists all allocations out of kernels. Instead of having
each thread allocate memory for its own arrays, the compiler places statements outside the kernel
that allocates memory for all threads for all local arrays. This results in kernel body arrays with
new index functions. Instead of each array having an index function Direct(size), it gets an
index function Direct(size′) . . . ->Slice(0, group_id)->Slice(0, local_tid) instead, where

• group_id and local_tid are thread-local specifiers;

• size′ includes the kernel size variables num_groups and group_size (the number of
threads is num_groups · group_size; and
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• The ’. . .’ part may refer to other index function constructs, e.g. a Permute.

We want to detect the cases where two indexed creations in a kernel body can potentially overlap
on a thread-level if merged.

As an example, think of a program that ends up with these two array creations inside the same
kernel:

result_first: [chunk][m]f32@mem_first->
Direct(num_groups, chunk, m, group_size)->Permute([0, 3, 1, 2])
->Slice(0, group_id)->Slice(0, local_tid)->Slice(0, chunk)->Slice(0, m)

result_second: [o][m]f32@mem_second->
Direct(num_groups, o, m, group_size)->Permute([0, 3, 1, 2])
->Slice(0, group_id)->Slice(0, local_tid)->Slice(0, o)->Slice(0, m)

Both create an array, but neither create the entire array: They each have an index in their index
functions, and the index functions are not structurally equal: result_first indexes into chunk,
and result_second indexes into o.

Assume that the last use of result_first is before result_second, so naively they do not
interfere. However, since these creations occur inside kernels, and since they write to different
parts of their thread-local arrays, they do actually interfere. If result_second were writing to
the same index range as result_first, it would be okay to merge their two memory blocks,
but in this case we might end up with a program execution like this if we merge them:

1. Value a is written to result_first in thread t.

2. Value b is written to result_second in thread u.

3. Value b (and not a, which is the expected behaviour) is read from result_first in thread
t.

We say that this is a data race interference. This happens because writing to result_second in
thread u can, as an unwanted side-effect, also write to result_first in thread t. On the GPU
this happens because not all threads are guaranteed to run in lockstep.

We solve this by by finding every combination of two different index arrays x and y in a kernel
body, and record that their memory blocks mx and my interfere if

• their index functions are not structurally equal, or

• the byte sizes of the base types of x and y are different – for example, even if x and y have
the same index functions, they will not refer to the same memory indices if x is a 32-bit
array and y is a 64-bit array.

Reuse Extension: Max Trick Inside Kernels

This extension applies to the same pattern as in the previous section, and has the potential to
ignore some of the interferences, thereby permitting memory block reuse.
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Let a kernel body have two indexed array creations result_0 with size s0 and result_1 with
size s1, and with the index functions

result_0 : ixfun_start_0->indices_start_0->Slice(0, s0)

result_1 : ixfun_start_1->indices_start_1->Slice(0, s1)

where

• ixfun_start_0 and ixfun_start_1 are index functions in their own right; and

• indices_start_0 and indices_start_1 are nonempty slices.

We put forward the additional requirements that

• ixfun_start_0 is structurally equal to ixfun_start_1 except for mentions of the sizes s0
and s1.

• indices_start_0 is structurally equal to indices_start_1.

Here is an example taken from the Option Pricing benchmark:

result_0 : Direct(num_groups, s0, group_size)->Permute([0, 2, 1])

->Slice(0, group_id)->Slice(0, local_tid)->Slice(0, s0)

result_1 : Direct(num_groups, s1, group_size)->Permute([0, 2, 1])

->Slice(0, group_id)->Slice(0, local_tid)->Slice(0, s1)

By default result_0 and result_1 will be set to interfere because of the data race analysis. We
can fix this my making both index functions describe the same access pattern except for the final
dimension, which will be retained, so that the arrays inside the kernel body do not change shape.

For the example above, these are the index functions that we want to get:

result_0 : Direct(num_groups, s_max, group_size)->Permute([0, 2, 1])

->Slice(0, group_id)->Slice(0, local_tid)->Slice(0, s0)

result_1 : Direct(num_groups, s_max, group_size)->Permute([0, 2, 1])

->Slice(0, group_id)->Slice(0, local_tid)->Slice(0, s1)

where we add the statement let s_max = max s0 s1. This makes them cover the same area
in space, so that there are no data race interferences. The final index slices s0 and s1 are kept
as they were to keep the array shapes as they were. This change means that the smallest array
will not be writing to all of its available space: There will be some bytes in each thread that go
unused, but this is outweighed by the fact that it reuses already used memory.

We need to check:

• Is s1 in scope at the allocation?
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• Does result_0 and result_1 have the same base type size?

If true, modify the program as such:

• Insert a s_max statement before the allocation.

• Change the allocation size to use s_max instead of s0.

• Modify both index functions to use s_max instead of s0 and s1, respectively, except for at
the final index slice.

Extension: If an array reuses a previously reused array, remember to update all index functions.
Currently we avoid these cases for simplicity of implementation.

Handling Choice

In this section we describe how the two core transformations handle choices, and what the
alternatives may be. In this context we define “choice” to mean that the compiler can choose to
perform one memory block merging or another, but not both.

Coalescing

Consider the program in figure 5.26.

• On line 3 we create an array t0.

• On line 6 we create an array annoying whose memory block allocation depends on the
value of t0 (through the t0[0] expression), not the shape of t0. This makes it impossible to
hoist the allocation up to before the t0 creation.

• On line 8 we have a potential coalescing of t0 into mt1.

• On line 10 we have a potential coalescing of t1 into mt2. (We also have a potential
coalescing of coalescing into the same memory block, but we ignore that, as it is always
possible independently of which choices the algorithm makes.)

There are two potential coalescings, but we cannot do both!

• Say we first coalesce t0 into mt1. Then, if we want to coalesce t1 into mt2, that also means
coalescing t0 into the same memory block. However, the allocation of mt2 needs to be
hoisted up to before the creation of t0 for that to work, which is not possible due to its
allocation size depending on k (the size of annoying), which itself cannot be hoisted up to
before t0.

• Say we instead first coalesce t1 into mt2. Then, if we want to coalesce t0 into mt1, we
notice that mt1 has been merged with mt2, and so we run into the same problem of not
being able to hoist the allocation of mt2 up to before the creation of t0.
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1 let main [n] (ns: [n]i32): []i32 =
2 -- Memory of t0: mt0; element size: n

3 let t0 = map (+ 1) ns
4 let k = t0[0]
5 -- Memory of annoying: mannoying; element size: k

6 let annoying = [0..<k]
7 -- Memory of t1: mt1; element size: n

8 let t1 = copy t0
9 -- Memory of t2: mt2; element size: n+ k

10 let t2 = concat t1 annoying
11 in t2

Figure 5.26: A choice between two memory block coalescings.

For program patterns like this, where an array size depends on a value from another array, our
implementation unintelligently chooses the first coalescing as a side-effect of being a top-down
pass over the program; a bottom-up pass might do the opposite. A clever approach would have a
heuristic for determining which coalescing reduces the most memory usage and copying, maybe
based on a kind of size analysis, and pick that one.

Reuse

Consider the program in figure 5.27.

• On line 3 and line 5 we create two arrays xs and ys

• On line 6 we lastly use both xs and ys.

• On line 8 we create an array zs. This array can reuse either mxs or mys.

1 let main [n] (xs0: [n]i32, ys0: [n]i32, i: i32): [n]i32 =
2 -- Memory of xs: mxs

3 let xs = map (* 2) xs0
4 -- Memory of ys: mys

5 let ys = map (* 3) ys0
6 let k = xs[i] + ys[i]
7 -- Memory of zs: mzs

8 let zs = replicate n k
9 in zs

Figure 5.27: A choice between two memory block reuses.

For program patterns like this, where an array can choose between reusing the memory of
different arrays, our implementation just picks the first one; we have no grand strategy.
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Chapter 6

Enabling Analyses

In this chapter we describe in detail what we call enabling program analyses: program analyses
whose results are necessary for performing our program transformations.

Memory Block Aliases

The Futhark compiler already supports finding variable aliases: A variable aliases another
variable if they use the same memory block.

Since our transformations are very memory-centric, we define a new kind of aliasing on memory
blocks: We write that a memory block aliases another memory block if they refer to the same
memory.

This is only necessary because an expression can use an existential memory block in the case of
loops and ifs.

To get the full picture of the memory usage in a function body, we also take the transitive closure
of the memory aliases: If memory block x aliases block y, and y aliases block z, then x should
also alias z.

Note that memory block aliasing is not commutative. For example, a loop memory block can
in different iterations alias two different other memory blocks. In effect it aliases both, since it
cannot statically know which iteration it is in, but the aliased blocks do not alias each other.

Liveness Analysis

Before we can merge two memory blocks, we need to know several liveness-related attributes:

• The first uses of memory;

• The last uses of memory; and

41



• The interferences of memory.

We simplify our first and last use analyses slightly by describing them in terms of array variables
instead of memory block names. This avoids an extra layer, and is okay to do, since at the end,
the analyses can be rethought of in terms of memory blocks:

• either no memory block merging optimisation has been run prior to these analyses, in which
case we have a one-to-one mapping between memory block names and array variables
(ignoring delayed arrays); or

• there has been a previous memory block merging optimisation, in which case a memory
block can be associated with different arrays – but here we can still reason in terms of
multiple liveness intervals based on the arrays that the memory blocks maps to.

Once converted to memory block space, these analyses then use the results from the memory
block aliasing analysis to find the full extents. For example, a last use of an existential memory
block m is extended to also include the last uses of the memory block aliases of m.

With this out of the way, the first use analysis is then simply stated: An array a is firstly used in a
statement let a = e if e creates an ordinary array (e.g. with copy).

Last use analysis and interference analysis is a bit more complicated.

Informal Algorithm: Last Use Analysis

An array a is lastly used in a statement let v = e if a is part of e, and if neither a nor any of its
aliases are used on any execution path following the statement.

In chapter 4 we wrote that the result of the analysis is a mapping Vv
fin→ V[m], i.e. from variable

name denoting a let binding (statement) to a set of the names of the memory blocks that are
lastly used at the binding of v.

However, this is too limiting, as exemplified in figure 6.1. Two arrays dst0 and dst1 are created.
In this limited analysis, two last uses are found:

• dst0 is lastly used in the creation of k; and

• src is lastly used in the creation of dst1.

The memory block reuse optimisation will notice this and let dst1 reuse the memory of dst0,
completely oblivious to the fact that the actual last use of dst0 (and dst1) is in the result of the
body, in the process creating an invalid program.
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1 let main (src: []i32): ([]i32, []i32) =
2 let dst0 = map (+ 1) src
3 let k = dst0[0]
4 let dst1 = map (* k) src
5 in (dst0, dst1)

Figure 6.1: A Futhark program with an important last use in the body result.

To handle these cases, we extend the analysis to instead return a mapping VStmOrRes
fin→ V[m],

where

StmOrRes ::= FromStm v

| FromRes v.

We show the basic algorithm for finding last uses in figure 6.2. Note that step 3.(a) overwrites
any previous mappings of a in optimistics.

1. Let optimistics be a mapping Va
fin→ Vv, i.e. from array variable to statement variable.

Initialize it to be empty.

2. Let result be a mapping Vv
fin→ V[a], i.e. from statement variable to a set of array variables.

Initialize it to be empty.

3. Traverse top-down every statement in the program. For each statement let v = e:

(a) For each array variable a in e:

i. Add the mapping a 7→ v to optimistics.

4. For each mapping a 7→ v in optimistics:

(a) Add a to result(v).

5. Return result.

Figure 6.2: The algorithm for discovering last uses.

Loop Complications

The algorithm above is complicated by the nested bodies in loops and kernels. See figure 6.3 for
an example. Here, the array t is seemingly lastly used on line 4 at the binding of u. Having its
last use there allows the memory block reuse optimisation to let the v array created on the next
line reuse the memory of u.

However, since this is a loop, and loops can have multiple iterations, doing that would make the
next iteration read wrong data from t, since t would refer to the same memory as v. We solve
this by stating that the last use of t occurs in res, i.e. in the entire loop body.
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1 let main (k: i32): []i32 =
2 let t = [0..<k]
3 let res = loop acc = t for _i < k do
4 let u = map (+) t acc
5 let v = map (* 2) u
6 in v
7 in res

Figure 6.3: A Futhark program with a last use seemingly inside a loop body. (This is a simplified
program. In actuality, a previous pass will have inlined some of the code, thus avoiding the case
under discussion.)

We need a general way of handling last uses when there is a risk of cycles. We extend the
algorithm in figure 6.2 to keep track of whether a variable has its first use inside or outside the
body currently being traversed. Only if the variable was created inside the body do we add it to
optimistics; otherwise its last use becomes part of the entire body statement.

Loop Extension: Multiple Liveness Intervals

Consider the loop-heavy program in figure 6.4.

1 let main [n] (ns: [n]i32): [n]i32 =
2 let xs0 = copy ns
3 let loop_result = loop xs = xs0 for i < n do
4 let ys = map (+ 1) xs
5 let k = ys[i]
6 let ts0 = map (+ k) ns
7 let k0 = ys[n - i - 1] + ts0[i]
8 let ts1 = map (+ k0) ns
9 in ts1

10 in loop_result

Figure 6.4: A Futhark program

• On line 2, create an array xs0 whose memory we can reuse.

• On line 4, we have the last use of xs.

• On line 6, create another array ts0. The compiler will try to reuse memory for this array. It
has access to the non-existential memory blocks mxs0 and mys. mys is lastly used later, so
that cannot be reused; mxs0 is aliased by the existential mxs, so conservatively it cannot be
used either, since mxs and its aliases can be said to interfere with the entire loop.

However, since ts1 on line 8 creates a new array that does not read from mxs, and since
ts1 is returned in some iteration, we know that the existential mxs will refer to mts1 in the

44/116



next iteration, and we can instead argue that mxs has a “temporary” last use in the creation
of ys on line 4, and a new first use in the creation of ts1. This allows us to reuse the aliased
non-existential mxs0 inbetween ys and ts1 – assuming mxs0 does not have its own direct
last use later on, overriding any inherited last use from the existential mxs.

Since ts0 is created between the creations of ys and ts1, we can set it to reuse mxs0, and
simplify mts0 away.

To handle this in the general case, we informally extend the last use analysis to record an array
variable a as lastly used at a statement if

• some existential array variable b that aliases a has its last use at that statement; and

• a itself does not have a last use later on in the loop body

Informal Algorithm: Interference Analysis

We build upon the memory block variants of our first and last analyses and show the basic
algorithm for finding interferences in figure 6.5.

1. Let live be Vm, i.e. a set of currently live memory blocks. Initialize it to be empty.

2. Let result be a mapping Vm
fin→ V[m], i.e. from memory block to a set of memory blocks.

Initialize it to be empty.

3. Traverse every statement in the program in a top-down fashion. For each statement
let v = e:

(a) For each first use of a memory block m in v (i.e. array creation point):

i. Extend result with all combinations m→ ml and ml → m, ∀ml ∈ live.
ii. Add m to live.

(b) For each last use of a memory block m in v:

i. Remove m from live.

4. Return result.

Figure 6.5: The algorithm for finding memory block interferences.

Interference Exceptions

The basic algorithm is simple and works, but also captures interferences that are not really inter-
ferences: interferences on memory blocks where we can use index access analysis to determine
that there can be memory reuse without changing the meaning of the program; see figure 6.6
for a small example. Here, an array ys is created by a map over xs. By the interference analysis,
since xs does not have its last use until the creation of ys, their two memory blocks interfere.
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1 let main (ns: []i32): []i32 =
2 let xs = map (+ 1) ns
3 let k0 = xs[0]
4 let ys = map (+ k0) xs
5 in ys

Figure 6.6: A Futhark program where xs and ys would appear to interfere, but where index
access analysis shows that they do not. We use k0 to avoid fusion of the two arrays.

If we view this program in its EXPLICITMEMORY form, we have the two kernels in figure 6.7
(though we only spell out the second one). The nested body of ys is run for every thread, for as
many elements as there are in xs. The gtid variable is a scalar that refers to the current thread
index, and a thread writes its result to the output array at this index – in this case ys[gtid].

We notice that each thread at index gtid reads from just xs[gtid] and writes to just ys[gtid],
in that order. By this we reason that there is no problem with xs and ys using the same memory.

1 let main (ns: []i32): []i32 =
2 let xs = kernel map ...
3 let k0 = xs[0]
4 let ys = kernel map (gtid < size_xs)
5 let binop = xs[gtid]
6 let res = binop + k0
7 return res
8 in ys

Figure 6.7: The program in a pseudo-EXPLICITMEMORY form.

We handle this for both loops and kernels by extending the algorithm in figure 6.5 to, for
every body, find all interference exceptions and remove those from the ordinarily calculated
interferences. We find the interference exceptions for a body this way:

1. Find all pairs of memory blocks (mnew,mkilled), where mnew is the memory block of a
firstly used variable, and mkilled is the memory block of a lastly used variable in the same
body. This is a body-local analysis. In the example above, xs has its local last use in the
binop statement, and res (which is written to ys) has its first use, so there would be one
pair with (mys,mxs).

2. Filter the pairs:

• Do their related arrays have the same index functions?

• Are they accessed with the same slices, i.e. is mnew written to in the same way that
mkilled is read from?

• Do the arrays have the same primitive byte sizes? For example, an array of 32-bit
integers still interferes with an array of 64-bit integers even if the other constraints are
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fulfilled, since otherwise they will have different alignments.

This extra check works for arbitrarily nested bodies.
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Chapter 7

Enabling Transformations

In this chapter we describe the program transformations that are not absolutely critical to the
core transformations, but which will make the core transformations extract more memory block
mergings. We cover allocation hoisting and allocation size hoisting.

Allocation Hoisting

We use allocation hoisting to enable more memory block mergings in the memory block coalescing
core transformation.

Consider the program in figure 7.1. We would like to coalesce marr into mres through the
copy expression on line 7. However, we cannot currently satisfy safety condition 2: That the
destination memory exists at the creation of the source array. If we go ahead with the coalescing,
arr will be set to use memory that has not been allocated yet!

1 let main (n: i32): []i32 =
2 let marr = alloc n · bytesize(i32)

3 -- Memory: marr

4 let arr = [0..<n]
5 let mres = alloc n · bytesize(i32)

6 -- Memory: mres

7 let res = copy arr
8 in res

Figure 7.1: A program in need of allocation hoisting.

We solve this by hoisting the allocation of mres up to the beginning of the body; see figure 7.2.
Safety condition 2 can now be satisfied, and we can perform the coalescing (not shown).
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1 let main (n: i32): []i32 =
2 let marr = alloc n · bytesize(i32)

3 let mres = alloc n · bytesize(i32)

4 -- Memory: marr

5 let arr = [0..<n]
6 -- Memory: mres

7 let res = copy arr
8 in res

Figure 7.2: The program with memory allocations hoisted to the top.

In general we cannot just hoist an allocation to the top of the body. An allocation depends on a
size, and that size can be declared either in a function paramater or in a statement of its own; in
both cases, the allocation must occur after the size declaration.

In some cases it is not enough to hoist just the allocation: if an array is written to in an in-place
update, we will also have to hoist its creation to avoid overwriting the update; see figure 7.3 and
figure 7.4 for a non-transformed program and the naively allocation-only transformed program
with coalescing, respectively.

Now t0 writes to part of mt1 on line 4 – but right after that, on line 6, t1 writes to the entire
array, overvriting the contents of t0. We solve this by also hoisting the creation array t1, as show
in figure 7.5.

The other two coalescing cases, copy and concat, do not suffer from this problem, as they write
to the entirety of an array, and not just part of it.

1 let main [n] (i: i32, ns: [n]i32): [n][n]i32 =
2 let mt0 = alloc n · bytesize(i32)

3 -- Memory: mt0

4 let t0 = map (+ 1) ns
5 let mt1 = alloc n · bytesize(i32)

6 -- Memory: mt1

7 let t1 = replicate n [0..<n]
8 let t1[i] = t0
9 in t1

Figure 7.3: A program where hoisting of mt1 also requires hoisting of t1 itself.
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1 let main [n] (i: i32, ns: [n]i32): [n][n]i32 =
2 let mt1 = alloc n · bytesize(i32)

3 -- Memory: mt1; element offset: i · n
4 let t0 = map (+ 1) ns
5 -- Memory: mt1

6 let t1 = replicate n [0..<n]
7 let t1[i] = t0
8 in t1

Figure 7.4: The program where only mt1 has been hoisted, but where we have performed a
coalescing on line 8 nevertheless.

1 let main [n] (i: i32, ns: [n]i32): [n][n]i32 =
2 let mt1 = alloc n · bytesize(i32)

3 let t1 = replicate n [0..<n]
4 -- Memory: mt1; element offset: i · n
5 let t0 = map (+ 1) ns
6 -- Memory: mt1

7 let t1[i] = t0
8 in t1

Figure 7.5: The program where both mt1 and t1 has been hoisted, and where we have performed
the coalescing.

We show our algorithm overview in figure 7.6.

1. Traverse every statement in the program. For each statement letm = alloc d:

(a) Filter out any m that is used by neither copy nor concat – those are the only kinds of
memory we care about, since those are the cases handled by coalescing.

(b) If the array creation that uses m is used in an in-place update (like in the example
above), also handle that statement.

(c) For each statement let v = e:

i. Find all free variables in e and recursively hoist their statements (unless they are
parameters) upwards in the program body as much as possible.

ii. Move the v statement to the line just after the (potentially new) location of the
least hoisted variable of e.

Figure 7.6: The basic hoisting algorithm.

However, we will have to extend this a bit in section 3.
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Allocation Size Hoisting

We use allocation size hoisting to enable more memory block mergings in the memory reuse core
transformation.

First consider the program in figure 7.7. We would like to let ys reuse mxs. We follow the
algorithm laid out in chapter 5 and maximise the size of mxs to include the size of mys, as
described in section 5.7, ending up with the program in figure 7.8.

1 let main [n] (xs0: [n]i32, i: i32): []i32 =
2 let mxs = alloc n · bytesize(i32)

3 -- Memory: mxs

4 let xs = map (+ 1) xs0
5 let k = xs[i]
6 let n1 = n + 1
7 let mys = alloc n1 · bytesize(i32)

8 -- Memory: mys

9 let ys = replicate n1 k
10 in ys

Figure 7.7: A program in need of allocation size hoisting.

1 let main [n] (xs0: [n]i32, i: i32): []i32 =
2 let maxed = max n n1
3 let mxs = alloc maxed · bytesize(i32)

4 -- Memory: mxs

5 let xs = map (+ 1) xs0
6 let k = xs[i]
7 let n1 = n + 1
8 -- Memory: mxs

9 let ys = replicate n1 k
10 in ys

Figure 7.8: The program after performing the max trick, but not doing any allocation size hoisting.

The size of mxs has been extended by using the new scalar maxed from line 2, so it should be okay
for ys to use the memory. However, maxed depends on the variable n1, which is not defined until
later, so this is an invalid transformation, and will not be allowed by the core transformation. To
make it doable we need to first perform allocation size hoisting on all allocation sizes – just n
and n1, and only n1 is declared in a statement. We show the proper program in figure 7.9.
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1 let main [n] (xs0: [n]i32, i: i32): []i32 =
2 let n1 = n + 1
3 let maxed = max n n1
4 let mxs = alloc maxed · bytesize(i32)

5 -- Memory: mxs

6 let xs = map (+ 1) xs0
7 let k = xs[i]
8 -- Memory: mxs

9 let ys = replicate n1 k
10 in ys

Figure 7.9: The program after performing both allocation size hoisting and the max trick.

The body of the allocation size hoisting algorithm is the same as the allocation hoisting algorithm;
the difference lies in the first step: Instead of finding all allocation statements, we find all
statements that declare scalars used in allocation statements.

Allocation hoisting will also end up performing allocation size hoisting, since recursively hoisting
dependencies of an allocation statement includes hoisting its size, but having this as a separate
enabling transformation allows us to apply memory block reuse without first having to perform
memory block coalescing, which is useful for testing.

Hoisting Heuristics

So far we have taken the approach of unapologetically hoisting the interesting parts – allocations
or just allocation sizes – and their dependencies up as much as possible, and hoping for the best.
This works as expected for most of our written-for-the-occasion tests, but we have had to limit
the extent of the hoisting a bit to avoid it restricting coalescings: If we hoist too much, we can
end up changing the base structure of a program in a way that is hurtful.

We present a program in figure 7.10 that cannot handle brakes-off allocation hoisting (to keep it
short, we show it without memory annotations).
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1 let main [n] (wsss0: [n][n][n]i32, ns: [n]i32, i: i32, j: i32):
2 ([n][n][n]i32, [n][n][n]i32) =
3 let wsss = map (\wss -> map (\ws -> map (+ 1) ws) wss) wsss0
4 let xs = map (+ 1) ns
5 let k = xs[0]
6 let use_wsss = map (\wss -> map (\ws -> map (+ k) ws) wss) wsss
7 let vss = replicate n (replicate n 2)
8 let vss[j] = xs
9 let wsss[i] = vss

10 in (wsss, use_wsss)

Figure 7.10: A program where full-on hoisting is limiting.

We find these key observations about the program:

• Line 3 creates an array wsss into which other arrays can be coalesced.

• Line 4 creates an array xs that, at some point, will be inserted into vss.

• Line 6 uses wsss. It is important that this is use is before the creation of vss.

• Line 7 creates an array vss.

• On line 8, we note that xs cannot be coalesced into vss[j], since vss is used (in the
previous statement) after the creation of xs, thus violating safety condition 3.

• On line 9, we note that vss can be coalesced into wsss[i] – even without allocation
hoisting, since mwsss will be declared at the very top of the body (just before wsss).

So far we know that we can extract a single memory block coalescing from this program – vss
into mwsss. However, we always run allocation hoisting prior to checking this; see the result of
this transformation in figure 7.11 (again we leave out allocations and memory block annotations;
these are not interesting in this case).

Ignoring allocations, which will all have moved to the top, the only change is that vss has moved
up to line 4, just after wsss. This transformation makes it impossible to perform any coalescing:

• We still cannot coalesce xs into mvss, for the same reasons as before.

• Additionally, we now cannot coalesce vss into mwsss, since wsss is used between the
creation of vss and its insertion into wsss (safety condition 3).
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1 let main [n] (wsss0: [n][n][n]i32, ns: [n]i32, i: i32, j: i32):
2 ([n][n][n]i32, [n][n][n]i32) =
3 let wsss = map (\wss -> map (\ws -> map (+ 1) ws) wss) wsss0
4 let vss = replicate n (replicate n 2)
5 let xs = map (+ 1) ns
6 let k = xs[0]
7 let use_wsss = map (\wss -> map (\ws -> map (+ k) ws) wss) wsss
8 let vss[j] = xs
9 let wsss[i] = vss

10 in (wsss, use_wsss)

Figure 7.11: The program with allocations and related statements aggressively hoisted.

In this case our enabling transformation has actually restricted a core transformation! The core of
this problem is that this enabling transformation is overly simple, and the best solution might
be to design a better one. Instead we have extended the existing transformation to never hoist
across kernels or loops. When a statement is moved upward in a program body, switching places
with other statements one by one, it will stop if it tries to switch places with a loop or a kernel.

This is not a good solution, as we have no real arguments for why this is a good heuristic, but it
works well on our many written-for-the-purpose tests, among them the program above.
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Chapter 8

A First Attempt at Formalising
Memory Block Coalescing

This chapter presents an attempt at formalising a subset of the memory block coalescing transfor-
mation described in chapter 5.

Refer to chapter 3 for the grammar of the Futhark language in its EXPLICITMEMORY representa-
tion.

Environment

We first describe the environment necessary to describe our main transformation rules; see
figure 8.1.

Recall from the grammar in chapter 3 that: m denotes a memory block name, d a scalar name, x
an array name, and v denotes any variable name. ealg denotes a scalar expression, c denotes a
constant, and i denotes an index function.
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Vk Set of k
V[k] Set of sets of k

Static environment parts (computed separately):

B ∈ Vv
fin→ Vt × Ve

LU ∈ Vv
fin→ V[m]

BBC ∈ Vx
fin→ V[x]

VA ∈ Vv
fin→ V[v]

S ∈ Vd
fin→ Vealg

Dynamic environment parts (computed in the top-down pass):

CI ∈ Va
fin→ V[(a,ealg)]

Full environment:

Σ = (B,LU ,BBC,VA,S, CI)

Auxiliary functions:

UB ∈ Vv × Vv → V[v]
FI ∈ Vi → V[x]
EI ∈ Vi × S → Vi

Figure 8.1: Environment and auxiliary functions for analysis.

Most of these are needed to facilitate the safety condition checks described informally in chapter 5:

• B is a finite mapping from a variable x to its type and its expression in the binding of x.

• LU is a finite mapping from a variable to the memory blocks that are lastly used at the
binding of the variable.

• BBC is a finite mapping from a variable to all previously bound variables that are available
at the binding of the variable.

• VA is a finite mapping from each delayed array variable to its source array variable. We
define VA(v) to be ∅when v is an ordinary array.

• S is a finite mapping from a scalar variable to its scalar value expression in the program.

• CI is a finite mapping from an array variable a to a set of array variables that have all been
coalesced into ma. We use this to keep track of chains of coalescings, and modify it as
we traverse the program: If at some point we want to try letting a reuse memory mb, we
need to know which arrays have been coalesced into ma, since now they should instead be
coalesced into mb along with a. The ealg describes the offset at which a previous merging
occured. In a remerge, we need to use both the old offset and any new offset.
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• UB computes which arrays are used (alive) between two statements in which the first
statement dominates the second statement.

• FI computes the set of all free variables in an index function.

• EI transforms each variable in an index function to more primitive constituents if possible,
and repeats until a fixpoint is reached.

Rules

In this section we present inference rules for the memory block coalescing algorithm. The analysis
gets quite complex, so we also explain them in detail in words, and provide examples where
necessary.

The inference rules use the previously defined environment and auxiliary functions, and has the
shape Σ ` bout ⇒ R .

Here, bout is an unoptimized body, and R is a mapping Va
fin→ Vm × Vi describing the result of

the memory block coalescing transformation. R describes a mapping from an array name to its
new memory block and index function. This result can then be used to transform a program as
described in chapter 5.

We first declare a macro mergeable for checking that src can be set to to use the memory of dst
(possibly with a new index function as well; that is described further down in the text).

mergeable(Σ, src, dst) =

(B,LU ,BBC,VA,S, CI) = Σ,

mergeable0(Σ, src, dst),

∧srck∈map(#1,CI(src)) (mergeable0(Σ, srck, dst))

mergeable0(Σ, src, dst) =

(B,LU ,BBC,VA,S, CI) = Σ,

(_@mdst{idst}, _) = B(dst),

msrc ∈ LU(dst),

mdst ∈ BBC(src),

mdst 6∈ UB(src, dst),

VA(src) = ∅,
FI(EI(idst)) ⊆ BBC(msrc)

Here, map(#1, k) returns a set of all first elements in the set k of tuples. The final five constraints
correspond to the five informally given safety conditions in chapter 5 for coalescing a variable
src into a memory block mdst:

msrc ∈ LU(dst)

The memory of the right-hand side variable is in its last use.

mdst ∈ BBC(src)

The allocation of mdst occurs before the creation of src.
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mdst 6∈ UB(src, dst)

There is no use of the left-hand side memory block mdst after the creation of src and before
the creation of dst.

VA(src) = ∅
src is a newly created array.

FI(EI(idst,S)) ⊆ BBC(msrc)

The new index function of src only uses variables declared prior to the first use of msrc.
EI(idst,S) takes the index function idst and replaces every scalar variable name d with
an expression from S(d) if possible, and continues to do so until a fixpoint is reached,
and the index function cannot be further expanded. Note that, in this simple formulation,
this has the risk of expanding the index function more than needed by also incorporating
variables defined prior to src, and thereby introducing redundant recalculations in the
index functions.

Note that when we take the union m = m1 ∪m2 of two finite maps m1 and m2, and the two
maps have a key k in common, we set m(k) = m2(k).

We then describe the three main cases: copy, concat, and in-place updates:

(B,LU ,BBC,VA,S, CI) = Σ,

(τdst@mdst{idst}, _) = B(dst),

Σ′ ` b⇒ R′
WHERE

R′ = R∪

{
R0 ∪R1 if mergeable(Σ, src, dst)

∅ otherwise
R0 = src 7→ (mdst, idst)

R1 =
⋃

(srck,e
alg
k )∈CI(src)

(srck 7→ (mdst, offset(idst, e
alg
k , srck))

CI ′ = CI ∪

{
(dst 7→ ((src, idst) ∪ CI(src))) if mergeable(Σ, src, dst)

∅ otherwise
Σ′ = (B,LU ,BBC,VA,S, CI ′)

Σ ` let dst : ρ = copy src in b⇒ R
(COAL-COPY)

Here, we define offset(i, ealg, src) to be shorthand for i->Slice(ealg, element_length(src)).

As an example of how this works its way through a body, consider the program

1 let main (n: i32): []i32 =
2 -- Memory: ma; index function: Direct(n)

3 let a = [0..<n]
4 -- Memory: mb; index function: Direct(n)

5 let b = copy a
6 -- Memory: mc; index function: Direct(n)
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7 let c = copy b
8 in c

In the actual Futhark compiler, one of the copy expressions will be simplified away in a pass
prior to the memory block merging optimisations, but we ignore that. We pass through the
program:

• On line 5 we have a copy expression. mergeable(Σ, a, b) succeeds, so we get

– R′ = [a 7→ (mb, Direct(n))], and

– CI ′ = [(b, [a])].

• On line 7 we have another copy expression. We check both
mergeable(Σ, b, c) and mergeable(Σ, a, c) (through CI(b)). Both succeed, so we get a new

– R′ = [a 7→ (mc, Direct(n)), b 7→ (mc, Direct(n))], and

– CI ′ = [(c, [b, a])].

This finalR′ tells us that we need to transform the program so that a is set to use mc, and b is
also set to use mc, all with the same index functions.

concat expressions can take more than one input array, and can thus result in more than one
coalescing:

(B,LU ,BBC,VA,S, CI) = Σ,

(_@mdst{idst}, _) = B(dst),

Σ′ ` b⇒ R′
WHERE

R′ = R∪

(
N⋃
s

{
R0(srcs, icur(s)) ∪R1(srcs, icur(s)) if mergeable(Σ, srcs, dst)

∅ otherwise

)
icur(s) = offset(idst,

∑s−1
j size(srcj), srcj)

R0(srcs, is) = srcs 7→ (mdst, is)

R1(srcs, is) =
CI(srcs)⋃

(srck,e
alg
k )

(srck 7→ (mdst, offset(is, e
alg
k , srck)))

CI ′ = CI ∪

(
N⋃
s

{
(srcs, icur(s)) if mergeable(Σ, srcs, dst)

∅ otherwise

)
Σ′ = (B,LU ,BBC,VA,S, CI ′)

Σ ` let dst : ρ = concat srcN in b⇒ R
(COAL-CONCAT)

Here, size(a) gives the outer shape size of a, which we can use as an offset. A concat expression
can have arbitrarily many arguments, and we need a way to support coalescing each of them.
We accomplish this by extending the result R with a union of all the succeeding merges, and
also updating CI in the same manner.
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In-place updates are similar to copy, except the index functions of src and dst will not be the
same even if merged.

(B,LU ,BBC,VA,S, CI) = Σ,

(_@mdst{idst}, _) = B(dst),

Σ′ ` b⇒ R′
WHERE

R′ = R∪

{
R0 ∪R1 if mergeable(Σ, src, dst)

∅ otherwise
R0 = src 7→ (mdst, slice(idst, k))

R1 =
CI(src)⋃

(srck,e
alg
k )

(srck 7→ (mdst, offset(slice(idst, k), ealgk , srck)))

CI ′ = CI ∪

{
(dst 7→ ((src, slice(idst, k)) ∪ CI(src))) if mergeable(Σ, src, dst)

∅ otherwise
Σ′ = (B,LU ,BBC,VA,S, CI ′)

Σ ` let dst[k] : _@ _{_} = copy src in b⇒ R
(COAL-COPY-INPLACE)

Here, slice refers to the function defined in chapter 3, whereby an index function gets to consist

of the Slice
(
ealgstart, e

alg
length

)
constructor.

Discussion

The attempted coalescing formalisation only covers a very small part of the actual transformation.
Specifically, we have not described

• Coalescings through aliasing operations – as described in chapter 5 we do have limited
support for coalescing through reshape expressions.

• Aliasing operations in general – if an array gets a new memory block and index functions,
all of its aliased arrays should also be updated, which our rules do not describe.

• The special handling necessary for if and loop expressions.

• Having to handle all previously-merged entries from CI at every potential coalescing (since
they may have to reassigned to a new memory block) has inefficient worst-case quadratic
time. If we instead were to coalesce in a bottom-up fashion, we would follow the direction
of the coalescings more naturally, and might not have to revisit previous mergings as much.

Refer to chapter 5 for the full algorithms, albeit more informally stated.
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Chapter 9

Limitations

We describe in this chapter the limitations of our transformations and the implementation of
them. We divide the limitations into two categories: Those caused by our choice of algorithm,
and those caused by a lacking implementation. It is possible that this list is incomplete.

Memory Coalescing

Array Reshapes

We currently do not handle the coalescing of reshapes from a source array if it has aliases. See
figure 9.1 for an example. This program has two arrays: t0 and t1. It is instructive to look at the
memory block-annotated version of the program; see figure 9.2.

1 let main [n] (ns: [n]i32): [1][n]i32 =
2 let t0 = map (+ 1) ns
3 let t0a = reshape (1, n) t0
4 let t1 = copy t0a
5 in t1

Figure 9.1: A potential coalescing “hidden behind” a reshape operation.
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1 -- Memory of ns: mns

2 let main (ns: [n]i32) =
3 let n_bytes = n * 4
4

5 let mt0 = alloc n_bytes
6 -- Memory: mt0; index function: Direct(n)

7 let t0 = kernel map ...
8

9 -- Memory: mt0; index function: Direct(1, n)

10 let t0a = reshape (1, n) t0
11

12 let mt1 = alloc n_bytes
13 -- Memory: mt1; index function: Direct(1, n)

14 let t1 = copy t0a
15

16 in t1

Figure 9.2: The program in figure 9.1 run through the GPU pipeline in the Futhark compiler, and
simplified a bit.

Since mt1 has the same size as mt0, and since n = 1 · n, it should be possible to coalesce t0a into
mt1 if we ignore safety condition 4. If we do this, and we change t0a to use mt1, we however
also need to update all its aliased variables – t0 – and set them to use the index function of t1.

Assuming we are not doing this wrong, this does not seem way too cumbersome to properly
describe and make work. However, now consider the (un-annotated) program in figure 9.3.

1 let main [n] (t1: *[2][1][n]i32, ns: [n]i32): [2][1][n]i32 =
2 let t0 = map (+ 1) ns
3 let t0a = reshape (1, n) t0
4 let t1[1] = copy t0a
5 in t1

Figure 9.3: A program with reshape and an in-place update.

Since t1 is an in-place update copying t0a, its index function will be different from t0a, whose
index function is already different from t0 because of the reshape. Coalescing t0a into t1
would then mean changing both the index function of t0a and t0, but in different ways.

Again, assuming we could formalize this, it should be doable, but it does start getting hairy.

Note that the implementation actually ad-hoc handles reshape (dim) expressions, i.e. reshape
operations with only one dimension. These are occasionally used in the Futhark compiler to
require that two sizes are equal – e.g. if you have a sequence
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1 let xs = some array of size t
2 let ys = reshape (u) xs

then you guarantee that the program can only complete if t = u. This case is simple to handle, as
it does not require changing index functions.

Lack of Memory Block Merge Parameters

Consider the program in figure 9.4.

The coalescing of a1 into mx on line 5 causes problems for the loop: In the first iteration b0 uses
ma0 – which has no special index function – but in the second iteration, if there is a coalescing,
b0 uses mx with an index function representing the nonzero offset of the first concat argument
(since a1 is the second argument).

Currently this case is disabled, but a better solution is maybe to extend the internal loop
accumulators with index functions, so that each iteration can use different index functions.
Currently we have just disabled the case where a loop is coalesced into an array with an index
function more complex than a Direct(. . .).

This is not just a problem for concat; the same happens for in-place updates, since they add a
slice to the index function of the coalesced array.

1 let main [n] (a0: [n]i32): []i32 =
2 let a1 = loop b0 = a0 for _i < n do
3 let b1 = map (+ 1) b0
4 in b1
5 let x = concat a0 a1
6 in x

Figure 9.4: A Loop with merge paramaters in its EXPLICITMEMORY form.

Index Analysis Across Loop Iterations

Consider the program in figure 9.5.

The b1 memory currently cannot be coalesced into the accumulator memory, because b1 and b0
can refer to the same memory block due to aliasing. As described in chapter 6, we do have an
index access analysis that finds the cases where writing to one array while reading from another
array happens in the same indices (interference exceptions), resulting in potentially more reuses.

However, this analysis does not work across loop iterations right now, which is why this program
will end up with two allocations – b1 and a generated accumulator memory block – instead of
one – just the accumulator memory block, reused by b1.
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1 let main [n] (a0: [n]i32): []i32 =
2 let a1 = loop b0 = a0 for _i < n do
3 let b1 = map (+ 1) b0
4 in b1
5 in a1

Figure 9.5: A program where the memory block can vary across iterations.

It should be possible to extend the algorithm to handle the very specific cases for this.

concat Memory Copying Removal

The concat feature described in section 5.5 – whereby code generation for concat expressions
does not copy the memory of its arguments if they have been coalesced – is currently imple-
mented as a kludge. It would be nice to do this properly.

If the memory block coalescing optimisation has been run prior to this pass, it may have coalesced
the source and destination memory of some concat expressions, in which case there is no need
to insert a data copy in the imperative code.

We have extended the compiler with the first four lines in the snippet

let needs_copy = not usesMemoryBlockMergingCoalescing
|| (let srcmem = memLocationName srcloc

in srcmem /= destmem)
when needs_copy $

copy (elemType xtype) destloc srcloc $ arrayOuterSize yentry

where the fifth line is the original handling. It should be self-explanatory.

We have manually verified that this indeed does generate C code without memory copying, but
this does not scale, implementation-wise. For this reason it exists only at the benchmarking branch
(used for benchmarking Futhark programs) described in appendix A. This minor optimisation
should only have an effect on speed, not memory usage.

In the master branch of Futhark, we would like to do this properly by comparing the index
functions in the general Futhark compiler copy Haskell function, instead of only at the concat
handling. This is more elegant and more future-proof.

Compiler Inefficiencies Because of Modularization

The current compiler implementation for the transformations described in chapter 5 is likely not
as efficient as it could be. Note that we are discussing the speed of the code generator, not the
generated code.

For the memory coalescing transformation, several of the five safety conditions described in
chapter 5 are implemented in separate modules like this:
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Safety condition 2 Traverses each function body once and records all allocations.

Safety condition 3 Has a function that traverses each function body once and records all vari-
ables that are used between two bindings. This is O(n) time, but the function can be called
many times.

Safety condition 5 Traverses each function body once and records, for every memory block that
it finds, all the variable names in scope at that point. The traversal is O(n) time, but the
resulting mapping can become quite large for large programs.

The benefit is that the implementation is arguably fairly readable, but the downside is that we
have unappealing time complexities, and several intermediate structures from the results of
having multiple separate passes through programs. We have not made any measurements, but
we believe there are many low-hanging fruits to pick in this area – though we warn against
starting an efficiency tirade without considering the complexity of this project. There are so
many edge cases, and it would be very, very nice if the implementation remains readable.

Memory Reuse

Limitations of the Linear Scan Algorithm

The program in figure 9.6 is a demonstration of how the linear scan register allocation-inspired
algorithm of memory reuse does not produce an optimal result. The optimisation can reduce the
number of allocations from 4 to 3, while an optimal analysis can reduce it to 2 allocations.

1 let main [n] (ns: [n]i32): [n]i32 =
2 let k0 = 1
3 let xs0 = map (+ k0) ns
4

5 let k1 = xs0[0]
6 let xs1 = map (+ k1) ns
7

8 let k2 = xs1[0]
9 let xs2 = interfering_map k2 xs1

10

11 let k3 = xs2[0]
12 let xs3 = interfering_map2 k3 xs0 xs2
13

14 in xs3

Figure 9.6: A program that our linear scan cannot handle optimally.

where interfering_map and interfering_map2 are map functions in nature, but with uneven
index accesses for reading and writing, so that our input reuse (index access) analysis will not
remove their interferences. We define them as so:
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1 let interfering_map [n] (k: i32) (t: [n]i32): [n]i32 =
2 map (\i -> t[n - i - 1] + k) [0..<n]
3

4 let interfering_map2 [n] (k: i32) (t: [n]i32) (u: [n]i32): [n]i32 =
5 map (\i -> t[n - i - 1] + u[n - i - 1] + k) [0..<n]

The actual results do not matter; we only care about them producing interferences in the analysis.

We get this interference table:

1. xs0 interferes with nothing

2. xs1 interferes with nothing

3. xs2 interferes with xs1, xs3

4. xs3 interferes with xs0, xs2

By following the reuse algorithm we get this top-down traversal:

1. xs0 cannot use anything

2. xs1 uses xs0; xs0 and xs1 now interfere

3. xs2 cannot use anything

4. xs3 cannot use anything

We get a single memory block merging. We have tried to ad-hoc find a better way, and managed
to end up with these mergings:

1. xs2 uses xs0

2. xs3 uses xs1

3. xs0 cannot use anything

4. xs1 cannot use anything

These mergings are valid because there are no interferences between xs2 and xs0, or between
xs3 and xs1. We have shown that the reuse algorithm can produce non-optimal results.

Conditional Last Uses

See the program in figure 9.7.

66/116



1 let main [n] (xs0: [n]i32, cond: bool, i: i32): [n]i32 =
2 let xs = map (+ 1) xs0
3 let k = xs[i]
4 let ys =
5 if cond
6 then let zs_then = replicate n k
7 in zs_then
8 else let zs_else = xs
9 in zs_else

10 in ys

Figure 9.7: A program with different last uses depending on which branch is taken.

Depending on which branch you take in the if-then-else expression on line 5, xs can be thought
of to have different live intervals:

• If the program execution takes the then branch, the last use of xs is in the k statement on
line 3.

• If the execution takes the else branch, the last use of xs is in the zs_else statement on
line 8.

We would like the zs_then array in the then branch to reuse the memory of xs, which should be
possible because we know it has been lastly used if we the program execution enters that branch.

However, our current analysis declares conservatively that the last use of xs is in the entire loop
statement of ys, so we do not get this memory merging.

A way to handle this could be “conditional last uses”: For example, the k statement would
include the last use of mxs with an attribute denoting “this is only true if the execution takes the
then branch in the if expression whose result is stored in ys”, but this idea needs way more
work.

Limitations on First-Order-Transformed Programs

When compiling Futhark code into C via a CPU-oriented pipeline in the compiler, it first follows
the initial steps of the general pipeline and at some point ends up with a program in an intermedi-
ate representation with kernels – similar to EXPLICITMEMORY, but without memory annotations.
A CPU-specific pass than performs a first-order transform on all kernels and transforms them
to loops. These loops calculate exactly the same as the kernels, just sequentially instead of in
parallel.

Our analyses and transformations work on both kernels and loops. However, implementation-
wise, loops originating from kernels are often harder to analyse than their original kernels, so we
have kludges here and there to make sure we extract the right relationships for both kinds of
constructs. This works well for the most part.
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See figure 9.8 for a program that gets two fewer memory block mergings in the CPU pipeline
compared to the GPU pipeline.

1 let main (xss: *[][]i32): [][]i32 =
2 map (\xs ->
3 let ys = map (+ 1) xs
4 let k = ys[0]
5 let zs = map (+ k) ys
6 in zs) xss

Figure 9.8: The program in the source language.

In the GPU pipeline, the program gets flattened into the two two-dimensional kernels in figure 9.9,
corresponding to the two inner maps in the source program. This is easy to analyse and results
in two memory reuses into the unique parameter memory.

1 let main (xss: *[][]i32): [][]i32 =
2 ...
3 kernel map
4 ...
5 kernel map

Figure 9.9: The program structure in its kernel representation.

In the first-order-transformed program, we end up with the structure in figure 9.10. In this
representation, each map expression from the source language corresponds to one of the inner
loops and the outer loop. To handle this, we need to maintain a context of which loop we are
inside, and try to reconstruct the original construct, and make sure that its guarantees still hold.

1 let main (xss: *[][]i32): [][]i32 =
2 loop
3 loop
4 loop

Figure 9.10: The program, first-order-transformed from kernels into loops.

Alternatively, we could maybe perform the first-order transform after memory block merging, or
we could keep the kernel structure around for a while, but this is outside the scope of this thesis.
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Meta-limitation: Constructing Interesting Programs

As described in chapter 3, the memory block transformations happen in the EXPLICITMEMORY

representation. Before a Futhark program reaches this point, it has been through a long pipeline
of various compiler transformations, so it can be hard to write a Futhark program in the source
language with the intention of it looking a certain way when it reaches the EXPLICITMEMORY

representation.

For example, we were not able to write a really good test for data race interferences (described
in section 5.9), even though we know it occurs in a benchmark program. A programmer
currently needs to be intimate with both the theoretical foundations of the published Futhark
transformations, and the internals of the Futhark compiler, to be able to predict what is going to
happen with a program.

It might be nice with a way to write Futhark programs in their intermediate representations. All
our transformations take a program in EXPLICITMEMORY form and returns a program in EXPLIC-
ITMEMORY form, so we would only absolutely need to write programs in that representation.
Several disadvantages pop up, though:

• We would have to freeze the intermediate representation(s). Currently we have the benefit
of being able to change them without affecting the programmer experience, as long as the
source language does not change.

• Someone would have to make a proper grammar for the intermediate representation(s).
Currently they can be formatted, but this formatting is ad-hoc and likely not precise enough
on its own to be able to write a parser.

• Programmers would be able to write a program in an intermediate representation that
would never have gotten there “naturally”, i.e. through the normal pipeline. This is not
necessarily bad, but might lead to writing programs for meaningless scenarios.
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Chapter 10

Evaluation

In this chapter we evaluate our algorithms and implementation; qualitatively by analysing the
effects of the optimisations on purposely-written pathological test programs and four benchmark
programs, and quantitatively by running a large automatic test suite. We also show the im-
provements and slowdowns we get by enabling our optimisations on more than 30 pre-existing
Futhark benchmark programs.

Existing Transformation: In-Place Lowering

Futhark has an existing memory block optimisation called in-place lowering, which we want
to be better than. We describe here its purpose, so we can argue how well our memory block
optimisations can replace it.

In-place lowering is an optimisation that reduces memory copying by moving in-place updates
into loops. As an example, the map expression of

1 let main [n][m] (rss: *[n][m]i32): [][]i32 =
2 map (\(rs: *[]i32) ->
3 loop rs for j < m do
4 let rs[j] = rs[j] + 1
5 in rs) rss

is – in the CPU pipeline – first turned into (morally)

1 loop rss for i < n do
2 let arg = rss[i]
3 let rs = copy arg
4 let rs = loop rs for j < m do
5 let rs[j] = rs[j] + 1
6 in rs
7 let rss[i] = copy rs
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8 in rss

in which both the outer and inner loops make in-place updates. The generated copy statement
on line 7 is an easy way to ensure that the transformed program is still valid, and can often be
optimised away. Applying in-place lowering to the program in its current state results in

1 loop rss for i < n do
2 let arg = rss[i]
3 let rs = copy arg
4 in loop rss for j < m do
5 let rss[i, j] = rss[i, j] + 1
6 in rss

where the last copy has been removed in favour of lowering the rss[i] = ... statement into
the inner loop body by replacing occurences of rs[j] with rss[i, j]. This is one way to get rid
of the copying. As mentioned earlier, our memory block coalescing algorithm instead does this
by index function trickery and merging memory blocks.

For this program example, the end result is the same in terms of peak memory usage and memory
access for both in-place lowering and memory block coalescing, but this is just one example. We
will look at at least one benchmark program that our memory block optimisations seemingly do
not handle as well as in-place lowering.

In-Depth Analyses

In this section we manually go through large Futhark programs and describe how they are
handled by our optimisations, serving as an evalution of those. We completely ignore what these
benchmarks are supposed to do, and only care about their structure.

Memory Coalescing

Benchmark Analysis: Srad

We start by analysig a small benchmark program where the GPU pipeline leads to no coalescings,
while the CPU pipeline leads to several ones. Srad (rodinia/srad/srad.fut in the Futhark
benchmarks repository) is a benchmark ported from the Rodinia[24] benchmark suite into
Futhark.

However, the coalescings in the CPU pipeline are not due to a more easily-analysable program,
but rather the inserted double-buffer memory blocks described above. These go away with
the in-place lowering algorithm, and they also go away with our memory block coalescing
algorithm.

Note: This benchmark has no change in memory usage compared to using the existing in-place
lowering optimisation. We show it to argue that our optimisation performs the same duties as
in-place lowering. See figure 10.1 for an abstract overview.
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1 main =
2 loop
3 loop
4 loop
5 loop
6 let res = loop
7 copy res
8 loop

Figure 10.1: An overview of the structure of the srad program run through the CPU pipeline.

We ignore variable names except when they are used later on in a copy expression, of which we
have one. We extend line 6 and 7 in figure 10.2.

1 let {[size_1][size_2]f32 res} =
2 -- map_outarr : *[size_1][size_2]f32@mem_outarr->Direct(size_1, size_2)
3 loop {*[size_1][size_2]f32 map_outarr} = {result_3994}
4 for i:i32 < size_1 do {
5 ...
6 }
7 -- double_buffer_array : [size_1][size_2]f32@double_buffer_mem->Direct(size_1, size_2)
8 let {[size_1][size_2]f32 double_buffer_array} = copy res

Figure 10.2: A closeup of the expression and its copy statement.

It is important to note that it is irrelevant that res is itself a loop; the double buffer memory and
the copy statement is inserted because they are inside the loop started at line 3.

Our optimisation correctly identifies this as a coalescing opportunity, and ends up having
map_outarr write to double_buffer_mem instead of its original mem_outarr.

Benchmark Analysis: Series

Contrary to the srad benchmark, the series benchmark (jgf/series/series.fut in the
Futhark benchmarks repository) has coalescing – two of them – that are not handled by the in-
place lowering algorithm (while still handling all the cases already handled by in-place lowering).
The series benchmark is ported from the jgf benchmark suite.

We present the core part of the source program in figure 10.3. Both first and rest are arrays of
the same type of tuples, though they have different sizes: first has element size 1, while rest
has element size array_rows − 1. At the end, these two arrays are concatenated, resulting in
a return array of array_rows elements. unzip is a syntanctic construct that takes an array of
tuples and gives back a tuple of arrays.
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1 let main (array_rows: i32): ([array_rows]f64, [array_rows]f64) =
2 let first = [(..., 0.0)]
3 let rest = map (\i -> ...) [0..<(array_rows-1)]
4 in unzip (concat first rest)

Figure 10.3: An overview of the structure of the series source program.

We focus only on the memory block mergings that the coalescing optimisation will bring, and
not those that already occur when using in-place lowering; see the program overview after being
run through the GPU pipeline in figure 10.4 – we leave out memory annotations, but know that
every array name in the program has an associated memory block.

1 main =
2 let first_0 = replicate(1, ...)
3 let first_1 = replicate(1, 0.0)
4 let (rest_0, rest_1) = kernel map
5 let result_0 = concat@0(first_0, rest_0)
6 let result_1 = concat@0(first_1, rest_1)
7 in (result_0, result_1)

Figure 10.4: An overview of the structure of the series program run through the GPU pipeline.

The silly thing about this small benchmark is that, to accomodate the structure of the return
arrays – one initial element, followed by n− 1 “ordinary” rest elements – it has large memory
blocks for both the return arrays and the intermediate rest arrays, and copies every element once.
If we were writing this in an imperative programming language, we would have rewritten it to
not have this inefficiency; instead our compiler pass handles it with index function trickery, as
shown in figure 10.5.
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1 let main =
2 -- Memory of first_0: mresult_0; index function: Direct(1)

3 let first_0 = replicate([1], ...)
4 -- Memory of first_1: mresult_1; index function: Direct(1)

5 let first_1 = replicate([1], 0.0)
6 -- Memory of rest_0: mresult_0; index function:
7 -- Direct(array_rows)− > Slice(1, array_rows− 1)

8 -- Memory of rest_1: mresult_1; index function:
9 -- Direct(array_rows)− > Slice(1, array_rows− 1)

10 let (rest_0, rest_1) = kernel map
11 -- Memory of result_0: mresult_0; index function: Direct(array_rows)
12 let result_0 = concat@0(first_0, rest_0)
13 -- Memory of result_1: mresult_1; index function: Direct(array_rows)
14 let result_1 = concat@0(first_1, rest_1)
15 in (result_0, result_1)

Figure 10.5: An overview of the structure of the series program run through the GPU pipeline.

The interesting thing about the benchmark is how much it benefits from the concat part of our
coalescing optimisation. As shown in section 6, this benchmark actually gets a 50% reduction in
peak memory usage just by merging memory blocks.

Memory Reuse

Benchmark Analysis: Canny

We present the canny (accelerate/canny/canny.fut in the Futhark benchmarks repository;
ported from Accelerate) benchmark program in figure 10.6.

1 let main input =
2 -- Unique input memory: m0

3 map -- Create memory block: m1

4 map -- Create memory block: m2

5 map -- Create memory block: m3

6 map -- Create memory blocks: m4,m5

7 map -- Create memory block: m6

8 scanomap -- Create memory blocks: m7,m8

9 replicate -- Create memory block: m9

10 in m9

Figure 10.6: A memory block-centric overview of the canny program as run through the CPU
pipeline.
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By running our interference analysis on the program, we get the interferences in figure 10.7.

m0 → m1, m1 → m0,m2, m2 → m1,m3, m3 → m2,m4,m5,

m4 → m3,m5,m6, m5 → m3,m4,m6, m6 → m4,m5,m7,m8,

m7 → m6,m8,m9, m8 → m6,m7,m9, m9 → m7,m8

Figure 10.7: Interferences in canny.

We perform this analysis on the CPU pipeline. This makes the analysis slightly simpler, as the
GPU pipeline introduces additional memory blocks to aid its kernels.

Recall that an interference table is not enough to determine if a memory block can be reused. It
must also be the case that the memory block sizes match or can be maximised. For simplicity, we
omit a sizes table. See figure 10.8 for the program after our pass.

1 let main input@m0 =
2 map@m1 -- No reuses.
3 map@m2 -- Reuses: m2 reuses m0

4 map@m3 -- Reuses: m3 reuses m1

5 map@m4,m5 -- Reuses: m4 reuses m0

6 map@m6 -- Reuses: m6 reuses m1

7 scanomap@m7,m8 -- Reuses: m7 reuses m5

8 replicate@m9 -- No reuses.
9 in m9

Figure 10.8: The results of running the memory reuse pass on the canny program.

We have gone from 10 to 5 memory blocks: m0,m1,m5,m8,m9. Since the input memory is
allocated by the caller, this means that we have gone from 9 to 4 memory block allocations. For
each of the 4 still-allocated memory blocks, we investigate why they cannot reuse other memory.
Recall that the algorithm works by doing a single top-down pass.

m1 At this point in the program, only m0 is available, but this block interferes with m1.

m5 Available memory blocks:

m0 Currently reused by m2,m4. m5 interferes with m4, so it cannot reuse m0.

m1 Currently reused by m3. m5 interferes with m3, so it cannot reuse m1 either.

m8 Available memory blocks:

m0 Currently reused by m2,m4. None of these memory blocks interfere with m8, but m0

has a different size than m8. Since m0 is created by the caller, we cannot change its
size.
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m1 Currently reused by m3,m6. m8 interferes with m6, so it cannot reuse m1.

m5 Currently reused by m7. m8 interferes with m7, so it cannot reuse m5 either.

m9 Available memory blocks: m0,m1,m5,m8. Some interfere, some do not. However, they all
have a different size than m9. The size of m9 is only determined at the end of all previous
calculations, so it cannot be hoisted up before any of the previous memory allocations, and
so none of the available memory blocks can have their size changed to accomodate m9.

The take-away so far is that m1 and m9 will never be able to reuse any memory, and that the
linear algorithm results in 5 reuses. We want to find out if this is optimal: Can we get more
reuses if we pick them by hand? See figure 10.9 for an ad-hoc attempt at this.

1 let main input@m0 =
2 map@m1 -- No reuses.
3 map@m2 -- Do not reuse anything. Instead let m2 be available.
4 map@m3 -- Reuses: m3 reuses m0

5 map@m4,m5 -- Reuses: m4 reuses m1, m5 reuses m2

6 map@m6 -- Reuses: m6 reuses m1

7 scanomap@m7,m8 -- Reuses: m7 reuses m5, m8 reuses m2

8 replicate@m9 -- No reuses.
9 in m9

Figure 10.9: The result of an ad-hoc reuse strategy.

For no particular reason, we choose to not let m2 reuse m0, allowing us to reuse m2 for both m5

and m8, thus getting one more memory reuse in total.

We can perform these two reuses because

• Neither m5 or m8 interferes with m2 or any of the existing reuses – at the point of m5, none;
at the point of m8, only m5, and

• m2 and m5 have the same size, and

• m2 and m8 do not have the same size, but the size of m8 is entirely determined by the
function parameters, and so they are all in scope at the creation of m2, meaning that the
size of m2 can be extended.

In section 9.2 we showed that the linear scan algorithm was non-optimal for a pathological test
created for the occasion. Here we have shown that non-optimality can also occur in a real-world
benchmark.

Benchmark Analysis: Option Pricing

We present the Option Pricing benchmark program (finpar/OptionPricing.fut in the reposi-
tory) in figure 10.10. This benchmark is ported from the Finpar[1, 20] benchmark suite.
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1 let main =
2 replicate@m1

3 replicate@m2

4 kernel chunked_map@m3

5 loop@m4

6 copy@m5

7 copy@m6

8 loop
9 if-then-else@m7

10 loop@m8

11 loop@m9

12 loop@m10

13 loop@m11

14 loop@m10

15 loop@m10

16 copy@m10

17 loop@m12 -- Reuses: m12 reuses m8

18 loop@m13

19 loop@m13

20 copy@m13

21 loop@m14

22 copy@m5

23 copy@m6

24 loop@m15 -- Reuses: m15 reuses m4 (or m15 reuses m5)
25 if . . . then
26 -- Reuses: m16 reuses m1 (or m16 reuses m2)
27 kernel segmented_redomap__large_comm_one@m16

28 combine@m17

29 else
30 kernel segmented_redomap__large_comm_many@m18

31 combine@m19

32 if . . . then
33 -- Reuses: m20 reuses m2

34 kernel segmented_redomap__large_comm_one@m20

35 combine@m21

36 else
37 kernel segmented_redomap__small_comma@m22

38 combine@m23

39 combine@m24

40 scan@m23

41 kernel map@m25 -- Reuses: m25 reuses m3

Figure 10.10: The results of running the memory reuse pass on the OptionPricing program.

Note that for this benchmark we have already gone through the coalescing part, which explains
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why some expressions already share memory blocks. Also, we present it in its GPU pipeline
version to highlight the changes that may lead to.

This program is very large compared to the canny benchmark. There are 25 memory blocks
(though a few of them are existential), and too many interferences to show. We have left out
many details to keep it on a single page. For all these reasons we choose to take a bird’s eye
approach to analysing it.

We only get five memory block mergings. Before the program reaches this form, it has been
through many passes:

• A part of the source program has been turned into a chunked map kernel, meaning it maps
over an array in chunks, which is why the body of the kernel contains several loops: Each
chunk is sequentialised.

• A part of the source program has been turned into a segmented redomap, meaning a kind
of reduce . map fusion being mapped in segments.

These transformations (among others) have led to this program that we find too hard to properly
understand all aspects of; we give up on analysing it any further, and leave that for future work.

In general, our memory block optimisations do analyses both outside and inside kernel bodies –
which is also evident from the reuses in the program that occur inside a kernel – but perhaps they
need more extensions and heuristics to do it better, and to somehow reduce the interference table,
whose size is the main culprit in limiting mergings here. However, it is not clear to us whether
this giant interference table is overly conservative, or if the transformed benchmark program is
just impossible to optimise further without resorting to completely different algorithms.

Quantitative Testing

We have created 95 memory block-specific Futhark test programs of varying complexity, many of
which have been used as examples throughout this thesis. All of these tests are annotated with
at least one (and typically both) structure tests for the number of allocations in the transformed
programs:

• structure cpu { Alloc n }

• structure gpu { Alloc n }

Here, n is the number of expected allocations in the final program, fully optimised program,
which we have a tool to automatically check. structure cpu covers the CPU pipeline, while
structure gpu covers the GPU pipeline. This is a very rough check: We essentially measure a
side-effect of our optimisations, namely the subsequent removal of unused allocations.

In addition to structure test, we have also annotated almost all programs with input-output
checks:

• input { arguments to the main function }
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• output { expected return values }

These ensure (to some extent) that, not just are the programs transformed as expected, but they
still give the right results. The automatic tool also handles these annotations. For input-output
annotations we need to tell the tool which pipeline we want to run. We run both.

Additionally, the Futhark compiler distribution contains 765 general non-memory-block-specific
tests (as of this writing), many of which also have input-output annotations. For our purposes,
these tests do not check whether our transformations work as expected, but they do check (to
some extent) that any transformations that do happen still produce programs that give the right
results.

We have run all tests with in-place lowering disabled, memory block coalescing enabled, and
memory block reuse enabled.

All of our 95 memory block tests validate on both kinds of automatic tests, and on both pipelines.
All 765 pre-existing general tests also validate.

Benchmarking

The Futhark compiler distribution comes with 39 benchmarks (as of this writing), Several of
them variations over a theme; if we were to discount benchmarks that are merely variations of
other benchmarks and compute the same things, the number goes down to 30. The benchmarks
cover areas such as physics simulations, financial contracts, graph algorithms, and more.

Each benchmark program has a set of input-output dataset pairs. We have run each benchmark
(including variants), checked that it validates, and measured several metrics. Each benchmark
has been run in two configurations:

Before

• In-place lowering enabled.

• Memory block coalescing disabled.

• Memory block reuse disabled.

After

• In-place lowering disabled.

• Memory block coalescing enabled.

• Memory block reuse enabled.

The Before configuration is the vanilla Futhark compiler behaviour.

We have collected the following metrics:

Peak memory usage
Per-dataset. How many bytes does the program use at its peak? In this section we will
focus on the average peak memory usage over all datasets of a benchmark, but all raw
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measurements are in the appendix. These kinds of measurements are coloured blue in the
plots.

Runtime
Per-dataset. How long does it take to run the program in wall-clock time (ignoring initial and
final input-output data transfers)? Each dataset is averaged over 10 runs, and preceded by
a warmup run whose result is ignored. As in the peak memory usage metric, we will look
at the averaged runtimes over all datasets of a benchmark. These kinds of measurements
are coloured red in the plots.

Additionally we have also measured

1. the total number of bytes allocated (per-dataset);

2. the total number of bytes freed (per-dataset);

3. the number of memory coalescings (in the compilation phase); and

4. the number of memory reuses (in the compilation phase)

but choose not to focus on them in this section; metrics 1 and 2 are partly covered by the peak
memory usage metric, and metrics 3 and 4 are more interesting as secondary metrics.

We have run the benchmarks on a system with these attributes:

• CPU: 4 HT cores of Intel Core i7-4720HQ at 2.60GHz

– L1 cache: 32 KiB

– L2 cache: 256 KiB

– L3 cache: 6 MiB

• GPU: GeForce GTX 960M

See appendix B for the raw measurements.

All benchmarks validate with all input-output datasets in the After configuration, except one –
called heston32 – which segfaults in the program generated with the CPU pipeline; we discuss
this in section 7.

We have measured the peak memory usage metric for all benchmark programs. We have
measured the runtime metric only for the benchmark programs that show a non-zero reduction
in peak memory usage in the After configuration. We found this restriction to be necessary to
avoid overly long total benchmarking times – runtimes are averaged over 10 runs, while peak
memory usage is found in a single run. This way we could get all interesting runtimes overnight.

We now present our measurements. The show the relative improvement going from the Before
configuration to the After configuration. For each metric we leave out all benchmarks with zero
change between the Before and After configurations.

Figure 10.11 shows the average peak memory usage improvement in the CPU pipeline.
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Figure 10.12 shows the average runtime improvement in the CPU pipeline.

Figure 10.13 and figure 10.14 show the average peak memory usage improvement in the GPU
pipeline.

Figure 10.15 and figure 10.16 show the average runtime improvement in the GPU pipeline.
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Figure 10.11: Average peak memory usage improvement in the CPU pipeline.
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Figure 10.12: Average runtime improvement in the CPU pipeline.
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Figure 10.13: Peak memory usage improvement in the GPU pipeline.
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Figure 10.14: Peak memory usage improvement in the GPU pipeline, continued.
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Figure 10.15: Average runtime improvement in the GPU pipeline.
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Figure 10.16: Average runtime improvement in the GPU pipeline, continued.

We can derive several conclusions from these measurements. Our main takeaways are that

• The peak memory usage never gets any worse in the After configuration compared to
the Before configuration; there is always a non-negative reduction. This is true for both
the average peak memory usage – as shown in the plots – and per-dataset peak memory
usages – as shown in the appendix. The best improvement is in the canny benchmark,
which gets a 70% reduction.

• The runtimes get better for some benchmarks, and worse for other benchmarks.

• The range in runtime improvements in the CPU pipeline are low, ranging from −5% to
+11%.

• The range in runtime improvements in the GPU pipeline are larger, ranging from −28% to
+15%.

We choose to ignore two measurements:

• We ignore the canny runtime results; the noted x1.56 average speedup in the GPU pipeline
is based on a single, very small dataset. We would need much larger datasets to be able to
state improvements with some certainty.

• We ignore the radix_sort_blelloch runtime results; for some reason our automatic
benchmark runner tool measured its runtime in the After configuration as more than twice
the length as that in Before. Upon rerunning it manually, we have found that there is very
little variation.
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We now take a closer look at some of the benchmarks with the largest improvements or largest
regressions. We limit the number of picks in order to go into details with the ones that we do pick,
and hope that our picks will exhibit optimisation patterns that also occur in other benchmarks
with large improvements or regressions.

Failure: heston32

When compiled with the CPU pipeline and then run, the benchmark heston32 (located in
misc/heston/ in the Futhark benchmarks repository) gives a segmentation fault. This happens
only when memory block reuse is enabled; it validates with memory block coalescing enabled.
Everything validates with the GPU pipeline.

There are two variants of the Heston benchmark: heston64, which uses 64-bit floats, and
heston32, which uses 32-bit floats. The 64-bit version validates in all configurations, so it is
interesting that the 32-bit version fails; other than different float precisions, they are identical (by
utilising a module system that is part of the Futhark source language).

We discovered this very late in the thesis process, and have not been able to fix it.

Regression: LocVolCalib

The LocVolCalib benchmark (located in finpar/ in the Futhark benchmarks repository) has a
x1.44 reduction in average peak memory usage in the GPU pipeline, but a x1.10 increase (x0.91
reduction) in average runtime; the After configuration is almost 300 milliseconds slower in the
largest dataset.

We have tried to find the cause of this regression by running the benchmark in different con-
figurations. The runtime is very close to that of the Before configuration in all configurations
where memory reuse is disabled, so it appears that enabling the memory reuse algorithm is the
root cause.

To further narrow it down, we have tried disabling every memory reuse extension, keeping only
the conservative “the memory blocks must not interfere, and the size variables must be exactly
the same” requirements. This causes less of a slowdown, but only about half; the largest dataset
is now about 150 milliseconds slower.

We are at a loss as to why this regression happens. The structure of the program is fairly simple:
First a sequence of allocations (which becomes shorter after the optimisations) and map kernels,
and then a loop with map kernels.

Regression: LUD

The LUD benchmark (located in rodinia/lud/ in the Futhark benchmarks repository) has
a x1.13 reduction in average peak memory usage in the GPU pipeline, but a x1.39 increase
(x0.72 reduction) in average runtime. We note that this number is averaged over all datasets
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measurements, and that in the largest dataset – likely the one with the least noise effect – it is
“just” a x1.11 increase.

Running the benchmark in different configurations, we see that having in-place lowering disabled
always results in a runtime increase very close to that of the After configuration; it seems very
likely that in-place lowering manages to remove data copying statements – and thus become
faster – in places where our memory block optimisations do not.

We have found that in-place lowering lowers exactly one memory copying: The generated
EXPLICITMEMORY code has a statement

let dst[i] = copy res

which in-place lowering optimises away by lowering the in-place update into the expression of
res. The copying only copies 256 bytes, but happens in a loop, so it does so for many iterations,
which explains why it adds up to a noticable increase in runtime.

We would expect our memory block coalescing algorithm to also handle this case, but our
debugging tells us that safety condition 3 is not fulfilled, i.e. the memory of dst is used between
the definition of res and the dst[i] statement.

We have manually verified that this is indeed the case: the expression of res is a map kernel
whose body contains several uses of the memory of dst, meaning we consider the memory to be
used between res and dst[i]. However, the memory block is not used anywhere outside the res
expression (ignoring the final dst[i] use), so it is a limited case of violating safety condition 3.

There is a reason why we consider a memory block m to be used between two statements x and y
even if m is only used inside the expression of the x statement, and not in a separate statement
between x and y: The expression of x might read from one index in m but write to another, either
in a kernel or in a loop, resulting in the overwriting of data that was supposed to be read later on.

We think this can be solved by using the index access analysis described in section 6.4 for
potential coalescings of this pattern as well. This way, we would ignore safety condition 3 if the
expression of x reads from and writes to the same index in each thread or iteration. The lud
benchmark exhibits this behaviour in the expression of res, so we think it is possible to remove
its efficiency dependency on in-place lowering this way.

Improvements: Myocyte and Option Pricing

The myocyte benchmark (located in rodinia/myocyte/ in the Futhark benchmarks repository)
has a x1.49 reduction in average peak memory usage in the GPU pipeline, and a x1.15 reduction
in average runtime; the After configuration is about 140 milliseconds faster in the largest dataset.
For the Option Pricing benchmark we get a similar x1.14 average GPU runtime decrease.

Running the two benchmarks in different configurations, we see that having memory block
coalescing disabled always results in a runtime increase very close to that of the respective Before
configurations; it seems very likely that memory block coalescing manages to remove data
copying statements – and thus become faster – in places where in-place lowering cannot.

We have counted 4 memory block coalescings in myocyte, and 3 in Option Pricing. We have also
compared each generated program with and without in-place lowering, and we can see that they
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are identical, meaning our memory block coalescing algorithm handles cases where in-place
lowering gives up – as we want it to.

But why do these two benchmarks have better runtime reductions than the other benchmarks?
They do not have that many coalescings compared to the large sizes of the programs. We think
it is because of the locations of the coalescings: In both benchmarks, several of the coalescing-
enabling copy statements are located inside loops or kernels, meaning they are potentially
executed many times, which means that our optimisation reduces data copying many times.

Note that the runtime reductions in the CPU pipeline are less impressive – x1.01 and x1.02,
respectively. We have counted 2 memory blocks coalescings in each benchmark, which is less
than in the GPU pipeline for both benchmarks, and might explain at least part of this lack of
speedup.
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Chapter 11

Related Work

Mechanisms for supporting memory abstraction free the programmer from worrying about the
low-level hardware details, such as the memory hierarchy and efficient access patterns. This
section surveys several classes of approaches and compares them with the solutions proposed in
this thesis.

Reference-tracing garbage collection (GC) is perhaps the most popular mechanism for auto-
matic memory management; for example, it is used by many mainstream languages, such as
Java, C#, F#, Haskell, SML, and by computer algebra systems, such as Maple and Mathematica.
A rich body of literature has explored techniques aimed at reducing the (non-negligible) runtime
overhead of garbace collection: this is e.g. achieved by allowing GC to proceed concurrently with
the execution of the program [4], or by parallelizing “stop-of-the-world” (generational-copying)
collectors [18, 21].

One problem, however, is that GC solutions seem (fundamentally) unsuitable for programs
executing on heterogeneous hardware such as GPUs, because, for example, global-memory
(de)allocation is not permitted from inside GPU kernels. A second problem is that interoperability
solutions [3, 22] between GC’ed languages are often complicated by the need to provide protocols
whereby the GCs of the two systems can cooperate when structures span the two system
heaps [29].

In comparison, our approach allows us to statically optimize – i.e. with no runtime overheads –
the memory reuse and copying overheads, even between arrays used inside the same (or across
multiple) GPU kernel(s), and does not hinder interoperability solutions. For example, the current
infrastructure that enables interoperability [5, 9] between APL, Python and Futhark would still
work without any modification. We note that the uniqueness-type mechanism provides the
means for transferring the control of memory from the host language to Futhark: for example,
if an array is passed as unique, then it is guaranteed that it cannot be referenced from the host
language after the foreign function call, meaning its memory can be safely reused within the
Futhark program.

Region-based memory management [28] refers to a class of techniques, initially developed in
the context of the SML language, that are aimed at promoting an optimized stack-based memory
management policy. In essence, the analysis statically infers a grouping of “related” objects
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(e.g. recursive datatypes) that are to be allocated into the same memory region. Regions are
then inserted syntactically in the program as let regions, which allows bulk deallocation of the
objects in a region when the region goes out of scope. The approach has the nice property that it
can be formalized within the type theory domain [8]: instantiating the technique over (all) valid
type-unification strategies will result in all possible memory-correct programs.

Note that region-based techniques are not as simple as we make them sound: for example,
regions are still allocated on the heap because their size might grow or shrink dynamically in
ways that cannot be statically (even conservatively) approximated.

More importantly, please note that not all programs are suitable for region management, because
a stack (de)allocation policy assumes a nested lifetime of objects, which does not hold for all
programs. It follows that practical solutions implement memory policies that integrate region-
based memory management with automatic-heap (GC) memory management [7].

More recently, region-based allocation has been proposed for managing pointer-heavy data
structures in the Harlan programming language [15], which is aimed at GPU execution.

Similarly to garbage collection, region-based memory management does not optimize the copy-
ing overhead and is fundamentally unsuitable for executing programs on heterogeneous hard-
ware because it essentially models the object lifetime to be the interval between the allocation
and deallocation points – and this granularity is too coarse-grained for GPU systems, where
(de)allocations are not supported from inside GPU kernels.

Futhark’s approach to memory draws inspiration from region-based memory management in the
manner in which explicit memory blocks and allocations are introduced into memory-agnostic
programs, but diverges by aggressively hoisting allocations (hopefully all the way to the CPU
space), and by separating the notions of where the memory is allocated from where its first use is
(the array creation point). This results in a very different and seemingly more complex analysis,
which unfortunately we have not been able to formalize yet with inference rules.

Fusion. Existing approaches to minimising the copying overhead and the memory footprint
of (functional) array programming languages are primarily based on fusion [6, 19], but this has
limited applicability for optimising memory usage inside the sequential code of parallel regions,
or operations that are not fusable in the typical sense, such as concatenation.

The delayed array representations used in Repa [16] and Obsidian [27] are able to handle
concatenation without manifestation, but at the cost of an unpredictable degree of redundant
computation and code explosion.

In this sense, Futhark supports in its index functions a restricted version of fusion and delayed
arrays, which are guaranteed not to duplicate computation [13].

Register allocation maps the arbitrary number of scalar variables in a program to a finite set
of hardware registers. This requires computing the liveness intervals of scalar variables, and,
based on this, building an interference graph, i.e. a representation which variable pairs cannot
be mapped to the same registers.

Finally, the mapping between variables and registers is obtained by an optimal or a heuristic
graph-coloring algorithm.

For a long time it was believed that optimal register allocation requires solving a NP-complete
problem. However, Bouchez et al. has shown that register allocation through optimal graph
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coloring is actually possible in polynomial time under the assumption that bindings in the
program are in SSA form[2]. (However, this holds only if we do not consider optimal register
spilling and coalescing.)

Our approach to memory-block merging has drawn inspiration from the linear-scan register
allocation [23] proposed by Poletto and Sarkar, which has quickly become the tool of choice in just-
in-time compilers because its simplicity translates directly to fast compilation time. The method
was later extended by Sarkar and Barik with new heuristics, and was shown to achieve code
quality competitive with colouring-based algorithms [25], while still allowing fast compilation.

Our work has aimed for lifting the register allocation and coalescing techniques to operate on
arrays rather than scalars. Since the intermediate representation of Futhark is essentially an SSA
form, an interesting future research direction would be to extend our analysis to support optimal
graph coloring, for example across memory blocks allocated in the same scope.

Futhark. Previous work on Futhark includes fusion[13]; an internal construct for expressing cer-
tain kinds of parallism called redomap[11]; the development of a new source language construct
scatter[26]1; the development of a segmented version of redomap[17]; and more. A core design
principle of the Futhark language is to only support the most necessary constructs for expressing
computations, and in particular avoid exposing constructs that are hard to parallelise, unless
they are very commonly needed in real-world programs. Futhark is a sum of compromises, e.g.

• Futhark has sequential loops, since not everything can be expressed in terms of parallel
operations.

• Futhark supports nested parallelism, but requires all arrays to be regular.

• Futhark is a pure language that supports in-place updates.

A stated goal of the language is for it to be used mainly for performance-critical computation
sections of larger programs written in other languages. Futhark already works well in integration
with Python, and more foreign function interfaces are being developed.

1Called write at the time.
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Chapter 12

Conclusion and Future Work

We have presented two optimisations in the EXPLICITMEMORY intermediate representation of
the Futhark programming language: Memory block coalescing and memory block reuse.

With the aid of enabling analyses and enabling transformations, these optimisations both perform
memory block merging, which we have shown to be effective in reducing peak memory usage across
several pre-existing Futhark benchmarks, and never increase it, ranging from 0% to 70% in
average reductions on the GPU.

Our optimisations introduce one discovered-but-not-fixed bug in the benchmark program of
heston32, and several clear regressions in benchmark runtimes; average runtime reductions
range from -28% (a 39% slowdown) to +16%.

We have validated our optimisations on 95 memory block-specific small test programs, manually
annotated (crudely) with the expected structure after the optimisations, and automatically
testable with a tool. We have also validated our optimisations on pre-existing general Futhark
test programs (and on the Futhark benchmarks).

Future Work

As described in detail in chapter 9, both the current algorithms and the current implementation
are limited in several ways. To reiterate:

• Our memory block coalescing optimisation has only limited support for coalescing through
delayed arrays, such as those created by reshape statements. We plainly need to describe
and implement this.

• We have found at least one case where we could get an extra memory block merging if
index functions were part of the merge parameters (“accumulators”) of loops. We need to
think about whether this is a good idea in general, and how to represent it internally.

• We need to extend our index access analysis to also work across loop iterations.
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• We need to find an elegant, maintainable way of not generating copying statements in the
code generator in the case of a let dst = concat . . . src . . . statement where dst and src
share the same memory block. This is not a hard theoretical problem, but more of a minor
software design problem, and is likely easy to solve.

• Our implementation is slower than it needs to be; we make several independent passes
through a program instead of having only a few (and likely not in a way that the Haskell
compiler can optimise), and we have a top-down worst-case quadratic time coalescing al-
gorithm that we suspect could be handled in linear time by a bottom-up version. However,
we note that it is very important that this efficiency tirade does not take precedence over the
readability of the implementation – compilers are complex enough just by their nature.

• The linear scan algorithm that we are using for our memory reuse algorithm does not
always produce optimal results. We would like to try out other register allocation-based
approaches with different heuristics, and see if some variations are better both in terms of
the number of memory block mergings and speed.

• The representation of our last use analysis does not have fine-grained support for if
expressions, limiting memory block mergings in some cases. We think it is doable to
implement this support, but are not sure about the details.

• Loops that have been first-order transformed from kernels are harder to analyse than the
original kernels. We mostly handle this in the implementation, but not in all cases. It might
be a good idea to think of alternative internal representations.

• It can be hard to write Futhark programs in the source language that end up in their
EXPLICITMEMORY form as one expects. In the far future, when the language has stabilised,
it might be beneficial to support writing programs directly in intermediate representations
instead of exclusively writing in the source language.

Additionally, we note several limitations in our approaches throughout this thesis:

• Our formalization attempt of memory block coalescing is very incomplete. We need more
time to extend it to describe all coalescing cases, and to try formalizing the memory block
reuse optimisation as well.

• We have compared peak memory usage and runtime measurements only internally be-
tween Futhark benchmarks run with different configurations. For better reflection we also
need to compare these measurements with those of the original benchmarks in other lan-
guages (CUDA, OpenCL, Haskell’s Accelerate, etc.) from which the Futhark benchmarks
are ported.

There are seemingly always more program patterns to handle when doing compiler optimisations;
most of our choices boil down to deciding which patterns appear to be most prominent; then
describing and implementing transformations for them; and finally repeating the process.

95/116



Bibliography

[1] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Henglein, Troels Hen-
riksen, Maj-Britt Nordfang, and Cosmin E. Oancea. Finpar: A parallel financial benchmark.
ACM Trans. Archit. Code Optim., 13(2):18:1–18:27, June 2016.

[2] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello. Register allocation:
What does the np-completeness proof of chaitin et al. really prove? or revisiting register
allocation: Why and how. In Proceedings of the 19th International Conference on Languages
and Compilers for Parallel Computing, LCPC’06, pages 283–298, Berlin, Heidelberg, 2007.
Springer-Verlag.

[3] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. Parametric Polymorphism for Computer
Algebra Software Components. In Proc. 6th International Symposium on Symbolic and Numeric
Algorithms for Scientific Comput., SYNASC ’04, pages 119–130. Mirton Publishing House,
2004.

[4] Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector for a
multithreaded implementation of ml. In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’93, pages 113–123, New York, NY,
USA, 1993. ACM.

[5] Martin Elsman and Martin Dybdal. Compiling a subset of apl into a typed intermediate
language. In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ARRAY’14, pages 101:101–101:106, New York, NY, USA,
2014. ACM.

[6] Clemens Grelck and Sven-Bodo Scholz. SAC - A Functional Array Language for Efficient
Multi-Threaded Execution. International Journal of Parallel Programming, 34(4):383–427, 2006.

[7] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference and garbage
collection. In ACM Conference on Programming Language Design and Implementation (PLDI’02).
ACM Press, June 2002. Berlin, Germany.

[8] Fritz Henglein, Henning Makholm, and Henning Niss. Advanced Topics in Types and Pro-
gramming Languages, chapter Effect type systems and region-based memory management.
MIT Press, Cambridge, Mass., 2005.

[9] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel Gavin, Hjalte
Abelskov, Martin Elsman, and Cosmin Oancea. APL on GPUs: A TAIL from the Past,

96



Scribbled in Futhark. In Proceedings of the 5th International Workshop on Functional High-
Performance Computing, FHPC 2016, pages 38–43, New York, NY, USA, 2016. ACM.

[10] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. Size slicing: A hybrid approach
to size inference in futhark. In Proceedings of the 3rd ACM SIGPLAN Workshop on Functional
High-performance Computing, FHPC ’14, pages 31–42, New York, NY, USA, 2014. ACM.

[11] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. Design and gpgpu performance
of futhark’s redomap construct. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY 2016, pages
17–24, New York, NY, USA, 2016. ACM.

[12] Troels Henriksen and Cosmin E. Oancea. Bounds checking: An instance of hybrid analysis.
In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers
for Array Programming, ARRAY’14, pages 88:88–88:94, New York, NY, USA, 2014. ACM.

[13] Troels Henriksen and Cosmin Eugen Oancea. A t2 graph-reduction approach to fusion. In
Proceedings of the 2Nd ACM SIGPLAN Workshop on Functional High-performance Computing,
FHPC ’13, pages 47–58, New York, NY, USA, 2013. ACM.

[14] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea.
Futhark: Purely functional gpu-programming with nested parallelism and in-place array
updates. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, pages 556–571, New York, NY, USA, 2017. ACM.

[15] Eric Holk, Ryan Newton, Jeremy Siek, and Andrew Lumsdaine. Region-based memory
management for gpu programming languages: Enabling rich data structures on a spartan
host. SIGPLAN Not., 49(10):141–155, October 2014.

[16] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and
Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell. In Proceedings of
the 15th ACM SIGPLAN International Conference on Functional Programming, ICFP ’10, pages
261–272, New York, NY, USA, 2010. ACM.

[17] Rasmus Wriedt Larsen and Troels Henriksen. Strategies for regular segmented reductions
on gpu. In Proceedings of the 6th ACM SIGPLAN International Workshop on Functional High-
Performance Computing, FHPC 2017, pages 42–52, New York, NY, USA, 2017. ACM.

[18] Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. Parallel generational-
copying garbage collection with a block-structured heap. In Proceedings of the 7th International
Symposium on Memory Management, ISMM ’08, pages 11–20, New York, NY, USA, 2008. ACM.

[19] Trevor L. McDonell, Manuel MT Chakravarty, Gabriele Keller, and Ben Lippmeier. Optimis-
ing Purely Functional GPU Programs. In Procs. of Int. Conf. Funct. Prog. (ICFP), 2013.

[20] Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz Henglein.
Financial software on gpus: Between haskell and fortran. In Proceedings of the 1st ACM
SIGPLAN Workshop on Functional High-performance Computing, FHPC ’12, pages 61–72, New
York, NY, USA, 2012. ACM.

97/116



[21] Cosmin E. Oancea, Alan Mycroft, and Stephen M. Watt. A new approach to parallelising
tracing algorithms. In Proceedings of the 2009 International Symposium on Memory Management,
ISMM ’09, pages 10–19, New York, NY, USA, 2009. ACM.

[22] Cosmin E. Oancea and Stephen M. Watt. Domains and Expressions: An Interface Between
Two Approaches to Computer Algebra. In Proceedings of the 2005 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’05, pages 261–268, New York, NY, USA, 2005.
ACM.

[23] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Trans. Program.
Lang. Syst., 21(5):895–913, September 1999.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A
Benchmark Suite for Heterogeneous Computing. In Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC), pp. 44-54, Oct. 2009.

[25] Vivek Sarkar and Rajkishore Barik. Extended Linear Scan: An Alternate Foundation for Global
Register Allocation, pages 141–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[26] Niels G. W. Serup. Extending Futhark with a write construct. http://hiperfit.dk/pdf/
niels-thesis.pdf, 2016.

[27] Joel Svensson, Mary Sheeran, and Koen Claessen. Obsidian: A domain specific embedded
language for parallel programming of graphics processors. In Proceedings of the 20th Inter-
national Conference on Implementation and Application of Functional Languages, IFL’08, pages
156–173, Berlin, Heidelberg, 2011. Springer-Verlag.

[28] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on
region-based memory management. Higher Order Symbolic Computation, 17(3):245–265, 2004.

[29] S. M. Watt. A study in the integration of computer algebra systems: Memory management
in a maple-aldor environment. In Proc. International Congress of Mathematical Software, pages
405–411, 2002.

98/116

http://hiperfit.dk/pdf/niels-thesis.pdf
http://hiperfit.dk/pdf/niels-thesis.pdf


Appendix A

Implementation

This chapter briefly describes the basic implementation details of the analyses and transforma-
tions shown in chapter 4.

The home of Futhark implementation is GitHub:
https://github.com/diku-dk/futhark/commits/master

Our (not very well documented) benchmarking tools are located in the
niels-memory-block-merging-benchmarking git branch on GitHub; see
https://github.com/diku-dk/futhark/tree/niels-memory-block-merging-benchmarking

Futhark is under constant development. This thesis is based on the
d8b078cd5e2267c59ffbd8407c377418984bcf37 commit from October 4; see
https://github.com/diku-dk/futhark/tree/d8b078cd5e2267c59ffbd8407c377418984bcf37

Our implementation is located in the src/Futhark/Optimise/MemoryBlockMerging/ directory.

The directory memory-block-merging contains a README.md file that describes how to enable
and disable memory block merging optimisations, and a tests directory with all memory block
merging-specific test programs.
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Appendix B

Measurements

The final memory measurements are from 8 October 2017. The runtime measurements are from
10 October 2017.

All measurements are based on the
https://github.com/diku-dk/futhark/tree/d8b078cd5e2267c59ffbd8407c377418984bcf37
commit from the master branch and the
https://github.com/diku-dk/futhark-benchmarks/tree/24cba07b5b70d3cbcf4195108a4caddbb649481f
commit from the futhark-benchmarks repository.

canny

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 66.141%

lena256.in lena512.in
Before: 2380.496 kB
After: 807.632 kB

Before: 9502.276 kB
After: 3210.820 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 69.561%

lena512.in
Before: 10551.876 kB
After: 3211.844 kB

Runtime with the CPU pipeline:

Average runtime reduction: 8.522%

lena256.in lena512.in
Before: 5.006 ms
After: 4.679 ms

Before: 20.738 ms
After: 18.559 ms

Runtime with the GPU pipeline:

Average runtime reduction: 55.936%

lena512.in
Before: 2.450 ms
After: 1.079 ms
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crystal

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

Dataset #0 Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5
Before: 160.000 kB
After: 160.000 kB

Before: 80.000 kB
After: 80.000 kB

Before: 320.000 kB
After: 320.000 kB

Before: 320.000 kB
After: 320.000 kB

Before: 16000.000 kB
After: 16000.000 kB

Before: 64000.000 kB
After: 64000.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

Dataset #4 Dataset #5
Before: 16000.000 kB
After: 16000.000 kB

Before: 64000.000 kB
After: 64000.000 kB

fluid

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 26.923%

medium.in
Before: 1082.016 kB
After: 790.704 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 26.923%

medium.in
Before: 1082.016 kB
After: 790.704 kB

Runtime with the CPU pipeline:

Average runtime reduction: -1.255%

medium.in
Before: 19.252 ms
After: 19.494 ms

Runtime with the GPU pipeline:

Average runtime reduction: 1.559%

medium.in
Before: 2.733 ms
After: 2.691 ms

mandelbrot

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

Dataset #0 Dataset #1 Dataset #2 Dataset #3 Dataset #4
Before: 1920.000 kB
After: 1920.000 kB

Before: 4000.000 kB
After: 4000.000 kB

Before: 16000.000 kB
After: 16000.000 kB

Before: 64000.000 kB
After: 64000.000 kB

Before: 256000.000 kB
After: 256000.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%
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Dataset #1 Dataset #2 Dataset #3 Dataset #4
Before: 4000.000 kB
After: 4000.000 kB

Before: 16000.000 kB
After: 16000.000 kB

Before: 64000.000 kB
After: 64000.000 kB

Before: 256000.000 kB
After: 256000.000 kB

nbody

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 10.714%

1000-bodies.in 10000-bodies.in 100000-bodies.in
Before: 112.000 kB
After: 100.000 kB

Before: 1120.000 kB
After: 1000.000 kB

Before: 11200.000 kB
After: 10000.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 10.714%

10000-bodies.in 100000-bodies.in
Before: 1120.000 kB
After: 1000.000 kB

Before: 11200.000 kB
After: 10000.000 kB

Runtime with the CPU pipeline:

Average runtime reduction: -1.630%

1000-bodies.in 10000-bodies.in 100000-bodies.in
Before: 5.466 ms
After: 5.278 ms

Before: 514.613 ms
After: 550.853 ms

Before: 51487.686 ms
After: 52148.345 ms

Runtime with the GPU pipeline:

Average runtime reduction: 0.567%

10000-bodies.in 100000-bodies.in
Before: 3.314 ms
After: 3.285 ms

Before: 290.478 ms
After: 289.680 ms

tunnel

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

Dataset #0 Dataset #1 Dataset #2 Dataset #3 Dataset #4
Before: 1922.400 kB
After: 1922.400 kB

Before: 4004.000 kB
After: 4004.000 kB

Before: 16008.000 kB
After: 16008.000 kB

Before: 64016.000 kB
After: 64016.000 kB

Before: 256032.000 kB
After: 256032.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

Dataset #0 Dataset #1 Dataset #2 Dataset #3 Dataset #4
Before: 1920.000 kB
After: 1920.000 kB

Before: 4000.000 kB
After: 4000.000 kB

Before: 16000.000 kB
After: 16000.000 kB

Before: 64000.000 kB
After: 64000.000 kB

Before: 256000.000 kB
After: 256000.000 kB

LocVolCalib

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.911%

large.in medium.in small.in
Before: 1066.960 kB
After: 1063.888 kB

Before: 141.776 kB
After: 139.600 kB

Before: 140.432 kB
After: 139.152 kB
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Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 44.017%

large.in medium.in small.in
Before: 1677997.008 kB
After: 939536.336 kB

Before: 104998.736 kB
After: 58729.808 kB

Before: 13118.864 kB
After: 7349.584 kB

Runtime with the CPU pipeline:

Average runtime reduction: 0.132%

large.in medium.in small.in
Before: 99765.564 ms
After: 99733.178 ms

Before: 6045.985 ms
After: 6006.034 ms

Before: 3071.849 ms
After: 3080.939 ms

Runtime with the GPU pipeline:

Average runtime reduction: -9.187%

large.in medium.in small.in
Before: 4243.993 ms
After: 4540.246 ms

Before: 287.813 ms
After: 293.309 ms

Before: 205.179 ms
After: 243.488 ms

OptionPricing

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 5.637%

large.in medium.in small.in
Before: 187.992 kB
After: 182.104 kB

Before: 2.660 kB
After: 2.564 kB

Before: 0.236 kB
After: 0.212 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 23.017%

large.in medium.in small.in
Before: 1299602.544 kB
After: 1058823.268 kB

Before: 18352.788 kB
After: 14813.832 kB

Before: 2097.860 kB
After: 1442.488 kB

Runtime with the CPU pipeline:

Average runtime reduction: 1.982%

large.in medium.in small.in
Before: 6888.391 ms
After: 6825.220 ms

Before: 884.256 ms
After: 859.534 ms

Before: 741.809 ms
After: 725.244 ms

Runtime with the GPU pipeline:

Average runtime reduction: 13.828%

large.in medium.in small.in
Before: 313.847 ms
After: 267.221 ms

Before: 20.381 ms
After: 16.455 ms

Before: 9.153 ms
After: 8.479 ms

crypt

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in
Before: 3000.208 kB
After: 3000.208 kB

Peak memory usage with the GPU pipeline:
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Average peak memory usage reduction: 14.279%

medium.in
Before: 7003.152 kB
After: 6003.152 kB

Runtime with the GPU pipeline:

Average runtime reduction: 2.685%

medium.in
Before: 2.022 ms
After: 1.968 ms

keys

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

userkey0.txt
Before: 0.224 kB
After: 0.224 kB

series

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 50.000%

10000.in 100000.in 1000000.in
Before: 320.000 kB
After: 160.000 kB

Before: 3200.000 kB
After: 1600.000 kB

Before: 32000.000 kB
After: 16000.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 50.000%

10000.in 100000.in 1000000.in
Before: 320.000 kB
After: 160.000 kB

Before: 3200.000 kB
After: 1600.000 kB

Before: 32000.000 kB
After: 16000.000 kB

Runtime with the CPU pipeline:

Average runtime reduction: 1.565%

10000.in 100000.in 1000000.in
Before: 1708.053 ms
After: 1678.099 ms

Before: 17307.590 ms
After: 16794.450 ms

Before: 167936.157 ms
After: 167973.308 ms

Runtime with the GPU pipeline:

Average runtime reduction: 0.087%

10000.in 100000.in 1000000.in
Before: 124.807 ms
After: 124.542 ms

Before: 1221.331 ms
After: 1221.828 ms

Before: 12130.306 ms
After: 12119.401 ms

heston32

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 1.141%
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100000_quotes.in 10000_quotes.in 1062_quotes.in
Before: 754804.867 kB
After: 752185.655 kB

Before: 69504.164 kB
After: 69109.132 kB

Before: 7688.954 kB
After: 7496.046 kB

Runtime with the GPU pipeline:

Average runtime reduction: 4.755%

100000_quotes.in 10000_quotes.in 1062_quotes.in
Before: 2182.923 ms
After: 2197.321 ms

Before: 235.183 ms
After: 208.166 ms

Before: 41.113 ms
After: 39.700 ms

heston64

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 9.029%

100000_quotes.in 10000_quotes.in 1062_quotes.in
Before: 64263.791 kB
After: 58579.815 kB

Before: 5906.420 kB
After: 5381.100 kB

Before: 636.958 kB
After: 577.410 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.973%

100000_quotes.in 10000_quotes.in 1062_quotes.in
Before: 1503390.023 kB
After: 1500773.819 kB

Before: 138435.744 kB
After: 137887.080 kB

Before: 15315.682 kB
After: 14955.862 kB

Runtime with the CPU pipeline:

Average runtime reduction: 0.135%

100000_quotes.in 10000_quotes.in 1062_quotes.in
Before: 268449.793 ms
After: 268624.746 ms

Before: 24602.883 ms
After: 24593.673 ms

Before: 3490.106 ms
After: 3474.956 ms

Runtime with the GPU pipeline:

Average runtime reduction: 0.787%

100000_quotes.in 10000_quotes.in 1062_quotes.in
Before: 22915.282 ms
After: 22913.375 ms

Before: 2149.019 ms
After: 2144.552 ms

Before: 300.731 ms
After: 294.276 ms

radix_sort

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 30.126%

Dataset #0 radix_sort_100.in
Before: 0.344 kB
After: 0.240 kB

Before: 4.024 kB
After: 2.816 kB

Runtime with the GPU pipeline:

Average runtime reduction: 3.977%

Dataset #0 radix_sort_100.in
Before: 1.946 ms
After: 1.837 ms

Before: 1.880 ms
After: 1.836 ms
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radix_sort_blelloch

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 25.000%

radix_sort_100K.in radix_sort_10K.in radix_sort_1M.in
Before: 3200.000 kB
After: 2400.000 kB

Before: 320.000 kB
After: 240.000 kB

Before: 32000.000 kB
After: 24000.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 39.971%

radix_sort_100K.in radix_sort_10K.in radix_sort_1M.in
Before: 4002.048 kB
After: 2402.048 kB

Before: 400.640 kB
After: 240.640 kB

Before: 40002.048 kB
After: 24002.048 kB

Runtime with the CPU pipeline:

Average runtime reduction: 3.000%

radix_sort_100K.in radix_sort_10K.in radix_sort_1M.in
Before: 23.891 ms
After: 23.851 ms

Before: 2.506 ms
After: 2.343 ms

Before: 288.671 ms
After: 281.985 ms

Runtime with the GPU pipeline:

Average runtime reduction: -105.232%

radix_sort_100K.in radix_sort_10K.in radix_sort_1M.in
Before: 5.977 ms
After: 7.722 ms

Before: 1.628 ms
After: 6.205 ms

Before: 48.807 ms
After: 51.370 ms

mri-q

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

large.in small.in
Before: 5292.032 kB
After: 5292.032 kB

Before: 729.088 kB
After: 729.088 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

large.in small.in
Before: 5292.032 kB
After: 5292.032 kB

Before: 729.088 kB
After: 729.088 kB

sgemm

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in small.in
Before: 16904.192 kB
After: 16904.192 kB

Before: 274.432 kB
After: 274.432 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%
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medium.in
Before: 16904.192 kB
After: 16904.192 kB

stencil

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

default.in small.in
Before: 201457.664 kB
After: 201457.664 kB

Before: 6307.840 kB
After: 6307.840 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

default.in small.in
Before: 201457.664 kB
After: 201457.664 kB

Before: 6307.840 kB
After: 6307.840 kB

tpacf

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

large.in medium.in small.in
Before: 20052.208 kB
After: 20052.208 kB

Before: 7915.448 kB
After: 7915.448 kB

Before: 957.296 kB
After: 957.296 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.240%

large.in medium.in small.in
Before: 501112.216 kB
After: 500162.608 kB

Before: 197582.200 kB
After: 197186.552 kB

Before: 23624.248 kB
After: 23546.192 kB

Runtime with the GPU pipeline:

Average runtime reduction: -0.305%

large.in medium.in small.in
Before: 8605.008 ms
After: 8628.811 ms

Before: 1292.830 ms
After: 1299.625 ms

Before: 29.360 ms
After: 29.394 ms

backprop

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 32.000%

medium.in
Before: 209715.976 kB
After: 142606.984 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 22.619%

medium.in
Before: 352324.396 kB
After: 272632.408 kB
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Runtime with the CPU pipeline:

Average runtime reduction: 2.849%

medium.in
Before: 1357.597 ms
After: 1318.917 ms

Runtime with the GPU pipeline:

Average runtime reduction: 8.688%

medium.in small.in
Before: 32.173 ms
After: 31.593 ms

Before: 2.264 ms
After: 1.911 ms

bfs_seg_fused

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 4.800%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 834.807 kB
After: 832.246 kB

Before: 53803.283 kB
After: 48803.282 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 14.088%

4096nodes.in graph1MW_6.in
Before: 262.078 kB
After: 225.149 kB

Before: 63899.670 kB
After: 54899.157 kB

Runtime with the CPU pipeline:

Average runtime reduction: 1.453%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 1.991 ms
After: 1.945 ms

Before: 259.645 ms
After: 258.137 ms

Runtime with the GPU pipeline:

Average runtime reduction: 2.751%

4096nodes.in graph1MW_6.in
Before: 1.397 ms
After: 1.341 ms

Before: 28.146 ms
After: 27.722 ms

bfs_par_mapwrite

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 794.624 kB
After: 794.624 kB

Before: 2622.464 kB
After: 2622.464 kB

Before: 185999.880 kB
After: 185999.880 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.031%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 811.592 kB
After: 811.012 kB

Before: 2625.040 kB
After: 2624.516 kB

Before: 190000.912 kB
After: 189999.884 kB

Runtime with the GPU pipeline:
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Average runtime reduction: 0.545%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 4.163 ms
After: 4.036 ms

Before: 3.502 ms
After: 3.393 ms

Before: 108.175 ms
After: 113.080 ms

bfs_par_seg

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 17.331%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 2998.873 kB
After: 2486.725 kB

Before: 110379.783 kB
After: 90970.091 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 38.116%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 619.022 kB
After: 387.056 kB

Before: 4531.001 kB
After: 2742.055 kB

Before: 154417.891 kB
After: 96677.753 kB

Runtime with the CPU pipeline:

Average runtime reduction: 8.549%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 1.630 ms
After: 1.470 ms

Before: 192.014 ms
After: 178.052 ms

Runtime with the GPU pipeline:

Average runtime reduction: 15.103%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 4.156 ms
After: 3.358 ms

Before: 3.230 ms
After: 2.560 ms

Before: 50.106 ms
After: 47.415 ms

bfs_par_seg_alt

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 35.125%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 6771.712 kB
After: 4312.064 kB

Before: 223999.010 kB
After: 147999.370 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 42.099%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 1231.236 kB
After: 713.284 kB

Before: 9234.452 kB
After: 5334.788 kB

Before: 300002.750 kB
After: 173999.992 kB

Runtime with the CPU pipeline:

Average runtime reduction: 6.770%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 1.071 ms
After: 1.006 ms

Before: 4.837 ms
After: 4.198 ms

Before: 512.597 ms
After: 507.164 ms

Runtime with the GPU pipeline:

Average runtime reduction: 14.980%
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4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 5.000 ms
After: 4.366 ms

Before: 10.445 ms
After: 6.845 ms

Before: 60.001 ms
After: 61.331 ms

bfs_par

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 1942.500 kB
After: 1942.500 kB

Before: 112725.680 kB
After: 112725.680 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 4.195%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 538.488 kB
After: 505.668 kB

Before: 1948.896 kB
After: 1943.788 kB

Before: 122137.936 kB
After: 114530.108 kB

Runtime with the GPU pipeline:

Average runtime reduction: 8.841%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 8.435 ms
After: 7.113 ms

Before: 5.584 ms
After: 5.011 ms

Before: 30.961 ms
After: 30.781 ms

bfs_par_fused

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 6.290%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 220.923 kB
After: 200.442 kB

Before: 834.807 kB
After: 832.246 kB

Before: 53803.283 kB
After: 48803.282 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 14.088%

4096nodes.in graph1MW_6.in
Before: 262.078 kB
After: 225.149 kB

Before: 63899.670 kB
After: 54899.157 kB

Runtime with the CPU pipeline:

Average runtime reduction: 2.096%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 2.216 ms
After: 2.236 ms

Before: 239.428 ms
After: 227.187 ms

Runtime with the GPU pipeline:

Average runtime reduction: 4.201%

4096nodes.in graph1MW_6.in
Before: 1.413 ms
After: 1.317 ms

Before: 29.894 ms
After: 29.413 ms
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bfs_rodinia_like

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 184.323 kB
After: 184.322 kB

Before: 829.955 kB
After: 829.954 kB

Before: 44999.883 kB
After: 44999.882 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.016%

4096nodes.in graph1MW_6.in
Before: 208.966 kB
After: 208.901 kB

Before: 51095.246 kB
After: 51094.733 kB

Runtime with the GPU pipeline:

Average runtime reduction: 2.150%

4096nodes.in graph1MW_6.in
Before: 1.180 ms
After: 1.131 ms

Before: 50.725 ms
After: 50.658 ms

bfs_sgm_alt

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 16.435%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 5134.339 kB
After: 4312.066 kB

Before: 177999.253 kB
After: 147999.372 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 38.364%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 1042.434 kB
After: 639.553 kB

Before: 7596.562 kB
After: 4720.385 kB

Before: 254002.476 kB
After: 156000.079 kB

Runtime with the CPU pipeline:

Average runtime reduction: -1.683%

512nodes_high_edge_variance.in graph1MW_6.in
Before: 2.574 ms
After: 2.690 ms

Before: 356.861 ms
After: 352.802 ms

Runtime with the GPU pipeline:

Average runtime reduction: 10.818%

4096nodes.in 512nodes_high_edge_variance.in graph1MW_6.in
Before: 1.434 ms
After: 1.284 ms

Before: 2.538 ms
After: 2.002 ms

Before: 45.020 ms
After: 44.654 ms

cfd

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 17.241%
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fvcorr.domn.097K.toa fvcorr.domn.193K.toa
Before: 22514.692 kB
After: 18632.852 kB

Before: 44885.988 kB
After: 37147.028 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 6.847%

fvcorr.domn.097K.toa fvcorr.domn.193K.toa
Before: 28356.172 kB
After: 26415.252 kB

Before: 56499.388 kB
After: 52629.908 kB

Runtime with the CPU pipeline:

Average runtime reduction: -2.237%

fvcorr.domn.097K.toa fvcorr.domn.193K.toa
Before: 106753.567 ms
After: 108115.990 ms

Before: 218708.013 ms
After: 225703.621 ms

Runtime with the GPU pipeline:

Average runtime reduction: 0.130%

fvcorr.domn.097K.toa fvcorr.domn.193K.toa
Before: 2910.776 ms
After: 2903.814 ms

Before: 5913.457 ms
After: 5912.205 ms

hotspot

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

1024.in 512.in 64.in
Before: 16777.216 kB
After: 16777.216 kB

Before: 4194.304 kB
After: 4194.304 kB

Before: 65.536 kB
After: 65.536 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

1024.in 512.in 64.in
Before: 16777.216 kB
After: 16777.216 kB

Before: 4194.304 kB
After: 4194.304 kB

Before: 65.536 kB
After: 65.536 kB

kmeans

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.004%

204800.in kdd_cup.in
Before: 61445.868 kB
After: 61442.412 kB

Before: 148209.420 kB
After: 148207.260 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 15.149%

100.in 204800.in kdd_cup.in
Before: 987.912 kB
After: 894.452 kB

Before: 249633.380 kB
After: 208442.372 kB

Before: 435610.224 kB
After: 350728.712 kB

Runtime with the CPU pipeline:

Average runtime reduction: -0.778%
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204800.in kdd_cup.in
Before: 3587.055 ms
After: 3575.044 ms

Before: 4503.055 ms
After: 4588.174 ms

Runtime with the GPU pipeline:

Average runtime reduction: -0.389%

100.in 204800.in kdd_cup.in
Before: 5.066 ms
After: 5.152 ms

Before: 1038.420 ms
After: 1035.081 ms

Before: 1304.263 ms
After: 1301.634 ms

lavaMD

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

10_boxes.in
Before: 4052.000 kB
After: 4052.000 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

10_boxes.in
Before: 6164.000 kB
After: 6164.000 kB

lud

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 12.832%

2048.in 256.in 512.in
Before: 133730.560 kB
After: 116936.960 kB

Before: 2061.568 kB
After: 1790.208 kB

Before: 8288.512 kB
After: 7229.696 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 12.982%

2048.in 256.in 512.in 64.in
Before: 169086.976 kB
After: 151027.968 kB

Before: 2789.376 kB
After: 2392.320 kB

Before: 10817.536 kB
After: 9470.208 kB

Before: 335.872 kB
After: 286.976 kB

Runtime with the CPU pipeline:

Average runtime reduction: 3.434%

2048.in 256.in 512.in
Before: 1941.034 ms
After: 1821.336 ms

Before: 4.270 ms
After: 4.306 ms

Before: 32.000 ms
After: 30.410 ms

Runtime with the GPU pipeline:

Average runtime reduction: -28.410%

2048.in 256.in 512.in 64.in
Before: 95.050 ms
After: 105.738 ms

Before: 4.000 ms
After: 5.177 ms

Before: 9.290 ms
After: 11.238 ms

Before: 1.056 ms
After: 1.605 ms
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myocyte

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 15.909%

medium.in small.in
Before: 23871.912 kB
After: 23866.452 kB

Before: 17.172 kB
After: 11.712 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 48.831%

medium.in small.in
Before: 787218.989 kB
After: 405537.325 kB

Before: 5685.382 kB
After: 2889.498 kB

Runtime with the CPU pipeline:

Average runtime reduction: 0.955%

medium.in small.in
Before: 23423.790 ms
After: 23183.334 ms

Before: 11.229 ms
After: 11.130 ms

Runtime with the GPU pipeline:

Average runtime reduction: 15.435%

medium.in small.in
Before: 1079.390 ms
After: 938.318 ms

Before: 330.103 ms
After: 271.345 ms

nn-opt-1

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in
Before: 20527.544 kB
After: 20527.544 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 1.660%

medium.in
Before: 15793.712 kB
After: 15531.568 kB

Runtime with the GPU pipeline:

Average runtime reduction: -3.018%

medium.in
Before: 41.647 ms
After: 42.904 ms

nn-opt-4

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%
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medium.in
Before: 10264.304 kB
After: 10264.304 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 6.985%

medium.in
Before: 15011.488 kB
After: 13962.912 kB

Runtime with the GPU pipeline:

Average runtime reduction: -6.266%

medium.in
Before: 43.451 ms
After: 46.174 ms

nn

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in
Before: 10264.160 kB
After: 10264.160 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in
Before: 10265.192 kB
After: 10265.192 kB

pathfinder

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in
Before: 41200.120 kB
After: 41200.120 kB

Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 0.000%

medium.in
Before: 41200.120 kB
After: 41200.120 kB

srad

Peak memory usage with the CPU pipeline:

Average peak memory usage reduction: 0.000%

image.in
Before: 8506.892 kB
After: 8506.892 kB
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Peak memory usage with the GPU pipeline:

Average peak memory usage reduction: 10.837%

image.in
Before: 8513.948 kB
After: 7591.252 kB

Runtime with the GPU pipeline:

Average runtime reduction: 0.219%

image.in
Before: 32.849 ms
After: 32.778 ms
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