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Abstract

The Fast Fourier Transform (FFT) is a computationally intensive operation used in
a variety of fields, such as medicinal image processing. This thesis presents an imple-
mentation of an FFT library in the data-parallel programming language Futhark. The
design of the library is generic with respect to different data-sets and radix, as well
as being transparent to the user. This study also explores the extent to which FFT
computations can be efficiently and generically expressed in a high-level, hardware-
independent language. The results show that the radix has a significant effect on the
performance, with a trend of higher radix giving higher performance. Other optimiza-
tions, algorithmic and compiler-wise, show a varying increase in performance as well,
depending on the hardware. Though the presented implementation is still slower than
the industry standard cuFFT, it holds potential and might show even better results as
the Futhark compiler is optimized in the future.

Keywords: Fast Fourier Transform, Futhark, Graphics Processing Unit, Data-Parallel,
Performance, Fusion
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Chapter 1

Introduction

Computation on graphics hardware and the design of General-Purpose Graphics Pro-
cessing Units (GPGPUs) is an area of ongoing research, as performance of graphics
hardware is rapidly increasing [1]. High performance and low cost are the main factors
that have caused interest in this are [2]. The generated need for programmability is
what calls for high-level, data-parallel programming languages such as Futhark, devel-
oped by the APL Group at the Department of Computer Science at the University of
Copenhagen (DIKU) [3].

The Discrete Fourier Transform (DFT) is a mathematical conversion of a sequence
of function samples into a function of frequency. The reverse conversion is called In-
verse DFT. Due to the relatively high asymptotic time complexity of O(N2), several
algorithms with complexity O(NlogN) [4] have been developed in order to increase
efficiency. They are collectively known as Fast Fourier Transforms (FFTs). FFTs are
used in a variety of fields, such as medicinal image processing, digital recording and
quantum mechanics, therefore there is a need for performance-oriented implementa-
tions of FFTs.

Previous research has looked into the benefits of using GPGPUs for performing FFT
computations, and for organizing generic FFTs libraries, which are easy to use. For
example, Owens et al., 2007 [1] explains the motivations and techniques used in general
purpose GPU computation. Both Govindaraju, Lloyd, Dotsenko, Smith & Manferdelli,
2008 [2] and Nukada, Ogata, Endo, & Matsuoka, 2008 [5] independently achieve a sig-
nificant speed-up to any existing FFT implementation such as cuFFT, using NVIDIA
CUDA. Matteo Frigo, 1999 [6] designed a specialized compiler that automatically dis-
criminates the optimal way to compute the FFT for a specific data-set and hardware.
Jørgensen & Hansen, 2018 [7] implement a simple FFT library in Futhark.

1.1 Thesis Objectives

The objective of this thesis is two-fold. The first objective is to investigate to what
extent FFT computations can be efficiently and generically expressed in a high-level,
hardware-independent language such as Futhark. Here the study examines both (1)
algorithmic improvements, such as the effect of the radix on performance, and (2) gen-
eral compiler optimization strategies, such as efficient exploitation of inner parallelism
at the level of the CUDA block.
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The second objective is to study the software engineering concerns that allow several
implementations of FFTs to be combined into one library in a way that is transparent
for the user. Specific instances are a generic representation of the radix that minimizes
code clones, and techniques (based on the inspector-executor model) for analyzing the
current data-set and discriminating the optimal implementation for the specific data-
set.

1.2 Thesis Structure

Chapter 2 gives an overview of the background for the topics discussed in this the-
sis. It gives an introduction to the Futhark programming language, including the most
common Second-Order Array Combinators (SOACs). After this follows a short section
on GPU architecture and the idea of the GPGPU. Finally, the related works briefly
mentioned in this introduction will be explained slightly more in-depth.

Chapter 3 explains the mathematical theory behind DFTs and FFTs needed in order
to understand the implementation in Chapter 4. After giving the intuition for the
DFT including time complexity, it shows how Cooley-Tukey - one of the most com-
mon FFT algorithms - is derived from the DFT formula. First, the pseudocode for
the common recursive version of this algorithm is shown and the process is exemplified
graphically with a computation tree. The time complexity for the algorithm follows
from the tree and is proved by induction. Now a parallel version of Cooley-Tukey is
derived in order to give the intuition for and show the similarity with the Stockham
FFT algorithm. This points out the difference between different radix by showing the
pseudocode for radix-2 and radix-4. The last part of this chapter explains the concept
of factorization as used in hierarchical FFT computation, first by giving the mathe-
matical derivation from the DFT to the formula and then by outlining the algorithm
step-wise.

Chapter 4 takes the theory from the previous chapter and translates it into usable
Futhark code. After outlining the way that the code is distributed over three different
modules, the rationale behind this structure is explained. Here, a radix-2 specialized
FFT implementation in Futhark is shown and the necessary changes to implement a
generic representation of the radix are explained. Thereafter, the implementation of
each module is discussed in more detail, always referring back to the theoretic back-
ground in Chapter 3. First, the main functionality of the FFT algorithm in the
main FFT module is explained, after which the implementation of a single iteration is
zoomed in on. Lastly, the planner-executor module combines several implementations
into a module with user transparency. In the second part of the chapter, the differ-
ence between global and shared memory implementations is explained. Here, it is also
shown how to pre-compute the twiddle factors for a global memory implementation,
and the optimal way to implement factorization in Futhark is discussed.

Chapter 5 analyzes and discusses the performance of our implementation, while
Chapter 6 provides a conclusion.
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Chapter 2

Background

For readers unfamiliar with some of the topics discussed in this thesis, this chapter
gives a short overview of the Futhark programming language, general purpose GPU
programming and related work on these topics.

2.1 Futhark

Futhark is a high-level, data-parallel, functional array language developed by the
APL Group at the Department of Computer Science at the University of Copenhagen
(DIKU) [3; 8; 9]. It is named after the Runic alphabet, which is why the front page
of this thesis has the letters ”FFT” written in Elder Futhark on it. The main Futhark
compiler generates optimized code to run on the GPU and is currently implemented
via OpenCL, but the language itself is hardware agnostic. Futhark also has a C com-
piler that generates C-code to run on the CPU, but this should primarily used for
debugging/experimentation. The intended use for Futhark is to provide acceleration
of the computationally heavy parts of an application, which are typically small. This
is already possible despite the fact that the language is not fully realized yet, since the
generated code from the compiler is easily integrable with other languages.

For example, an experiment has been reported [10], where a substantial subset of
the interpreted and hence slow APL language [11] has been automatically translated
to Futhark, accelerated on GPGPUs, and integrated within Python applications using
a Futhark-to-Python code generator. This builds on earlier work on inter-operating
computer algebra systems [12; 13].

Futhark has a few built-in functions called Second-Order Array Combinators (SOACs)
that compile to parallel code. The difference between First-Order Array Combinators
(FOACs) and SOACs is that FOACs always perform the same operation (i.e. concate-
nate two arrays), while the exact functionality of SOACs depend on the function they
take as an input. The SOACs account for much of the data-parallelism in the code.
The following gives a quick overview of their functionalities.
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• map takes a function and any non-zero amount of arrays as its input, and applies
the function to each element of the array, returning the resulting new array. It is
a so-called an array transformer. Usually, the operation of applying the function
is executed in parallel for all elements. Using the notation [n]α to denote an
array of length n of elements of type α, and the notation [a1, . . . , an] to denote
an array literal, the type and semantics of map are formally defined as:

(α → β) → [n]α → [n]β
map f [a1, . . . , an] = [f a1, . . . , f an]

• reduce is an array aggregator, taking a binary-associative operator, a neutral
element and an array as its input and returning the result of combining the array
elements via the operator. Its type and semantics are:

(α → α → α) → α → [n]α → α
reduce ⊕ e [a1, . . . , an] = e ⊕ a1 . . . ⊕ an

Compositions of map and reduce are aggressively fused into an operator named
redomap, which has an efficient GPU implementation [14]. A redomap nested
inside a map is also efficiently supported [15].

• scan is similar to reduce but instead of aggregating one single result, it returns
one result for each prefix of the input array. Its type and semantics are:

(α → α → α) → α → [n]α → [n]α
scan ⊕ e [a1, . . . , an] = [a1, a1 ⊕ a2,. . ., a1 ⊕ . . . ⊕ an]

• scatter x inds vals updates (in place) the elements of array x at the indices
provided in inds with the values provided in vals. If an index falls outside the
bounds of x then the corresponding update is ignored. Using the notation ∗[n]α
to denote the type of an array which is ”consumed” / created by an in-place
update, scatter’s type is:

∗[n]α → [m]int → [m]α → ∗[n]α

Since scatter puts a high pressure on the memory system, the compiler at-
tempts to fuse a scatter with the map operators that produce its input indices
and/or values arrays whenever possible. The FFT implementation presented in
this thesis relies heavily on scatter and on the ability of the compiler to fuse
compositions like this.
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2.2 Parallelism and GPGPUs

While CPU architectures exploit a limited amount of parallelism, GPGPUs are massively-
parallel systems, supporting tens-to-hundred of thousands of hardware threads. They
were originally intended for graphic processing and thus their architecture was opti-
mized to efficiently process independent computations on pixels. Nowadays, they are
used mainstream to accelerate general-purpose computations, for example option pric-
ing [16] in finance domain, and may offer impressive speedups in comparison to CPU
systems.

Futhark already optimizes code with the aforementioned SOACs, but in order to effi-
ciently implement FFTs, the used algorithms must include a high amount of parallel
operations and/or loops. As the next chapter will show, some algorithms are better
than others. By analyzing the way they work, they can sometimes be re-written to
increase parallelism.

One possible drawback in GPGPUs is the high latency of global memory, which is
a few orders of magnitude slower than registers. However, GPGPU architectures ad-
dress this somewhat by offering another type of memory known as shared memory
(scratchpad memory), which has a latency comparable to that of registers. It can be
viewed as a user-programmable cache. However, there is a limited supply (v64k) of
shared memory on each GPU multiprocessor. One can choose to either implement the
FFT calculation using global or shared memory and both ways will be discussed in
Chapter 4.

2.3 FFT Related Work

While this chapter has already reviewed various related work, for example on the de-
sign of the Futhark language, the remainder of this section discusses work related to
FFT implementations aimed at execution on GPGPU.

Matteo Frigo, 1999 [6] explains the design and implementation of the FFT com-
piler genfft, which was developed for the open-source C FFT subroutine library Fast
Fourier Transform in the West (FFTW). The compiler has a specialized case for real
input and generates 95% of the performance-critical code for an arbitrary input length.
Furthermore, genfft creates a plan transparent to the user, depending on factors such
as input size and underlying hardware. The compiler uses a variety of well-known al-
gorithms but has independently ”found” further simplifications and optimizations for
these.

Govindaraju, Lloyd, Dotsenko, Smith & Manferdelli, 2008 [2] present some new FFT
algorithms designed specifically to perform well on the GPU using the NVIDIA CUDA
architecture. They execute smaller input size FFTs in shared memory and larger ones
in global memory or using hierarchical FFT algorithms. Just like in Frigo, 1999 [6],
the choice depends on the input size as well as the specific hardware. The implemen-
tation is a mixture of known and new FFT algorithms. The speed-up is 2-4 that of
the cuFFT CUDA implementation.
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Nukada, Ogata, Endo, & Matsuoka, 2008 [5] implement a 3-D FFT kernel in CUDA
that is faster than any existing FFT implementation on the GPU at the time of pub-
lication. The kernel is designed to take full advantage of the GPU architecture, as
well as identifying and facing many of the challenges that arise in general purpose
GPU computation, specifically regarding FFTs. The presented 3-D FFT algorithm
is optimized for the CUDA architecture by exploiting the way memory works on the
GPU. They achieve a factor 3+ speed-up compared to cuFFT.

Owens et al., 2007 [1] explain the motivation and background for developing General-
Purpose Graphics Processing Units (GPGPUs) and introduce the techniques used for
this. They also survey the status of the research in the field at the time.

Jørgensen & Hansen, 2018 [7] implement a simple, radix-2 specialized FFT library
for real and complex input in Futhark, using Cormen and Stockham algorithms.
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Chapter 3

Theory

Fast Fourier Transforms (FFTs) are algorithms that implement the Fourier Transform
(FT) in an efficient way. They are used in a variety of fields, such as medicinal image
processing, digital recording and quantum mechanics; Therefore there is a need for
performance-oriented implementations of FFTs.

The Discrete Fourier Transform (DFT) is the discrete form of the FT, while the inverse
operation of summing the frequency components to get the time domain representa-
tion, is called the Inverse Discrete Fourier Transform (IDFT). This section will explain
the mathematical background of the DFT and IFT, perform a short time complexity
analysis, and discuss how one can speed up both of these transforms with some smart
algorithms.

3.1 Discrete Fourier Transforms

First, let us take a look at the formal declaration of the DFT and IDFT:

Xk =
N−1∑
n=0

xn cos
2π

N
kn− i sin

2π

N
kn, k = 0, 1, ..., N − 1 (3.1)

xn =
1

N

N−1∑
k=0

Xk cos
2π

N
kn+ i sin

2π

N
kn, , n = 0, 1, ..., N − 1, (3.2)

([17]). Here, (3.1) represents the DFT while (3.2) represents the IDFT. The notation
i =
√
−1 is used. Note that the only difference between the two formulae is the mul-

tiplication by 1
N

in (3.2), as well as the different signs of i.

Commonly, the declarations are referred to in a more compact form, recalling Eu-
ler’s formula eiθ = cos θ + i sin θ. This gives following equations:

Xk =
N−1∑
n=0

xne
−i 2π

N
kn, k = 0, 1, ..., N − 1 (3.3)

xn =
1

N

N−1∑
n=0

Xke
i 2π
N
kn, n = 0, 1, ..., N − 1 (3.4)
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To reduce even further, one can define WN = e−i
2π
N and write:

Xk =
N−1∑
n=0

xnW
kn
N , k = 0, 1, ..., N − 1 (3.5)

xn =
1

N

N−1∑
k=0

XkW
−kn
N , n = 0, 1, ..., N − 1 (3.6)

In the future, I will mainly refer to (3.5) and (3.6) when mentioning the DFT and
IDFT, respectively.

3.1.1 Time Complexity

A short analysis of equation (3.5) shows clearly that the time complexity of the DFT
is O(N2). The formula sums N products of complex numbers, i.e. between the fuc-
tion/sequence value xk and the factor W−kn

N .

This complexity is suboptimal and several algorithms with complexity O(NlogN) [4]
have been proposed to increase efficiency. They are collectively known as Fast Fourier
Transforms (FFTs).

3.2 Fast Fourier Transforms

There are many variants of FFT algorithms, but most of them are based on Cooley-
Tukey and Stockham. These are the two main algorithms that will be discussed here,
as they have a similar approach to the problem, but differ in execution.

3.2.1 Cooley-Tukey

The first paper to propose an FFT was published in 1965 by James Cooley and John
Tukey, resulting in the name Cooley-Tukey for the proposed algorithm.

The main idea behind this algorithm is to follow the divide-and-conquer algorithm
design paradigm and divide the problem into several smaller ones that are easier to
solve, and then to combine these solutions. The term radix is used to describe how
many parts the DFT is split into. The most common form is the radix-2 FFT, in
which (3.3) is divided into two parts:

Xk =
N−1∑
n=0

xne
−i 2π

N
kn

=

N/2−1∑
n=0

x2n · e−i
2π
N

2kn +

N/2−1∑
n=0

x2n+1 · e−i
2π
N

2k(n+1) (3.7)

Here, the left side of the summation is the sum of the even indexes of the DFT, while
the right side is the sum of the uneven indexes.
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However, in order to decrease the running time it would be nice if the two sums were
more similar. To achieve this, the right-hand exponential function can be broken in
two:

Xk =

N/2−1∑
n=0

x2n · e−i
2π
N

2kn + e−i
2π
N
k ·

N/2−1∑
n=0

x2n+1 · e−i
2π
N

2kn (3.8)

=

N/2−1∑
n=0

x2n · e−i
2π
N/2

kn + e−i
2π
N
k ·

N/2−1∑
n=0

x2n+1 · e−i
2π
N/2

kn (3.9)

=

N/2−1∑
n=0

x2n ·W kn
N/2 +W k

N ·
N/2−1∑
n=0

x2n+1 ·W kn
N/2 (3.10)

This shows that computing an FFT of length N can be reduced to recursively solv-
ing two FFTs of length N/2 - one corresponding to the even and odd indices of the
original sequence, respectively. Furthermore, note that in the original equation 3.5:
Xk =

∑N−1
n=0 xnW

kn
N , the twiddle factor W kn

N has been calculated N times, since the
sum goes up to N. In 3.10, the twiddle factor (here W kn

N/2) is the same in both of the
summations up to N/2, hence it only needs to be calculated N/2 times, half as often
as originally.

For further optimization, one might take a look at the FFT of k + N/2, expressed
Xk+N/2. Substituting into 3.10, the result is:

Xk+N/2 =

N/2−1∑
n=0

x2n ·W n(k+N/2)
N/2 +W

k+N/2
N ·

N/2−1∑
n=0

x2n+1 ·W n(k+N/2)
N/2 (3.11)

This equation is quite similar to 3.10, except that the twiddle factors are different. If
the twiddles in 3.11 can somehow be re-written to look more like the ones in 3.10, one
might be able to use fewer operations to calculate the two equations. The calculations
below demonstrate how to do that:

W
n(k+N/2)
N/2 = e

−i2πnk+N/2
N/2

= e
−i2πnk
N/2 · e

−i2πnN/2
N/2

= e
−i2πnk
N/2 · e

−i2πn2N
2N

= W kn
N/2 · e−i2πn

= W kn
N/2 · 1

= Wkn
N/2

W
k+N/2
N = e

−i2πk+N/2
N

= e
−i2πk
N · e

−i2πN
2N

= W k
N · e−iπ

= W k
N · −1

= −Wk
N

The result of substituting these re-written twiddle factors back into 3.11 is:

Xk+N/2 =

N/2−1∑
n=0

x2n ·W kn
N/2 −W k

N ·
N/2−1∑
n=0

x2n+1 ·W kn
N/2 (3.12)
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Recalling 3.10:

Xk =

N/2−1∑
n=0

x2n ·W kn
N/2 +W k

N ·
N/2−1∑
n=0

x2n+1 ·W kn
N/2,

you can see that the only difference between the two equations is the twiddle factor
W k
N , which changes sign, while the other twiddle factor W kn

N/2 remains the same. It’s

still not evident how this minimizes the running time from O(N2) to O(N logN). A
better understanding is achieved when describing the algorithm in pseudocode. The
most common version of Cooley-Tukey is the recursive one, but one of the next sections
will also show how to derive a non-recursive, parallel version and compare the two.

Pseudocode for the recursive Cooley-Tukey algorithm (Radix-2)

1: function fft-ct-rec(X,R,N,S)
2: if N=1 then X[0]
3: else
4: X[0,..,N/R-1] = fft-ct-rec(X,R,N/R,2S)
5: X[N/R,...,N-1] = fft-ct-rec(X+S,R,N/R,2S)
6: for k=0; N/R-1; k++ do
7: t ← W k

N · X[k+N/R]
8: xk ← X[k]
9: X[k] ← xk+t
10: X[k+N/R] ← xk - t
11: end for
12: end if
13: end function

This function should be called with R=2 and S=1. As described in the previous sec-
tion, the algorithm divides the input into an odd and an even part and then recursively
processes those parts. This is represented in the pseudocode in lines 4-5 with a re-
cursive call to the same function. The stride (S) is multiplied by two in each call, as
the indexing changes in each iteration; first one takes every second number (as this is
radix-2), then every fourth and so on. Furthermore, the size of the input is divided by
two (the radix) in each iteration. So all this corresponds to the two sums in 3.10.

The loop in line 6 combines the smaller DFTs into bigger ones, using the fact that
3.10 and 3.12 are so similar. The right-hand sum of 3.10 is calculated first and is then
added to/ subtracted from the left-hand side in order to calculate Xk and Xk+N/2,
respectively.
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Computation tree for recursive Cooley-Tukey algorithm (Radix-2)

fft2[x0, · · · , xN−1]

fft2[x0, x2, · · · , xN−2]

X ′′[0] = X ′[0] +W 0
4 ·X ′[2]

X ′′[2] = X ′[0]−W 0
4 ·X ′[2]

X ′′[1] = X ′[1] +W 0
4 ·X ′[3]

X ′′[3] = X ′[1]−W 0
4 ·X ′[3]

fft2[x0, x4, · · · ]

X’[0] = X[0] + W0
2 ·X[4]

X’[1] = X[0] - W0
2 ·X[4]

fft2[x2, x6, · · · ]

X’[2] = X[2] + W0
2 ·X[6]

X’[3] = X[2] - W0
2 ·X[6]

fft2[x1, x3, · · · , xN−1]

X ′′[4] = X ′[4] +W 0
4 ·X ′[6]

X ′′[6] = X ′[4]−W 0
4 ·X ′[6]

X ′′[5] = X ′[5] +W 0
4 ·X ′[7]

X ′′[7] = X ′[5]−W 0
4 ·X ′[7]

fft2[x1, x5, · · · ]

X’[4] = X[1] + W0
2 ·X[5]

X’[5] = X[1] - W0
2 ·X[5]

fft2[x3, x7, · · · ]

X’[6] = X[3] + W0
2 ·X[7]

X’[7] = X[3] - W0
2 ·X[7]

Time complexity and parallelism of Cooley-Tukey

Both the pseudocode and computation tree demonstrate clearly how the algorithm
divides the input sequence into two new sequences of size N/2. It then recursively
divides those into half, resulting in four sequences of size (N/2)/2 and so on. Combining
the results of the sub-problems has the complexity O(N), as this simply assembles a
list of size N. Assuming that N is a power of two, so the input is divided completely
equal, the following recurrence is derived:

T (N) = 2T (N/2) +O(N),

with the base-case T (1) = O(1) because a sequence of length 1 is processed at line 2
where the element is returned unmodified. T (N/2) corresponds to the recursive call
in lines 4-5, while the addition of O(N) corresponds to the loop at line 6.

Using this recurrence, one can use induction to prove the time complexity ofO(N lgN).

• Express N as N = 2k and the complexity of N as C2k .

• For the base case, N = 20 = 1 and C20 = 1.

• We want to show that C2k = 2k lg 2k = k2k.

• Now we assume that C2k−1 = (k − 1)2k−1.

Using the recurrence, it is apparent that:

C2k = 2C2k−1 + 2k

= 2(k − 1)2k−1 + 2k

= (k − 1)2k + 2k

= k2k

This means the time complexity of O(N lgN) can be proved by induction.

As for parallelism, the loop in the algorithm is actually parallel in the sense that
it can be computed for different values of k at the same time. This is because none of
the operations in the loop use any values that are computed in other iterations. It is
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evident when looking at the computation tree, as each of the leaves can be computed
by themselves and combing two nodes is also independent from combining two other
nodes at the same level. However, there are certainly dependencies between the differ-
ent levels of the tree. The next section will take a look at the parallel Cooley-Tukey
algorithm that can be derived from the computation tree.

Pseudocode for parallel Cooley-Tukey algorithm (Radix-2)

1: function fft-ct-parallel(X,N,R,bits)
2: R = 2
3: Y = malloc space
4: Z = malloc space
5: twiddles ← map (x -> twiddle(x)) [1 · · ·n− 1]
6: offset ← 0
7: for i=0; i<bits; i++ do
8: for j=0; j<N/R-1; j++ do
9: Ns ← 2i

10: t ← twiddles[offset+(j%Ns)]
11: idx ← ((j/Ns)*Ns*R) + (j%Ns)
12: Y[idx] ← X[idx] + t
13: Y[idx + Ns] ← X[idx + N/R] - t
14: Z ← X
15: X ← Y
16: Y ← Z
17: offset ← offset + 2i

18: end for
19: end for
20: end function

The parallel Cooley-Tukey algorithm is quite similar to the recursive one, but instead
of depth-first, it uses a breadth-first search to calculate the nodes of the computation
tree. The twiddle factors are precomputed as there is a fixed amount of them. Double
buffering is used to ensure the parallelism of the inner loop; first, the computed values
for the output array are re-written into an entirely new array Y (lines 12-13). Then,
the current output array is saved into Z (line 13) and afterwards the new value is
written into the output array (line 15). Finally, Y is changed to contain the values of
the output array. This results in a lack of data dependency in the inner loop, which
may now be executed in parallel.

3.2.2 Stockham

One of the many other FFT algorithms based on Cooley-Tukey is the Stockham auto-
sort FFT [18]. Let us take a look at the Stockham algorithm for radix-2 and 4. So
far this study has only looked at radix-2, but there is an endless amount of different
radix for FFT algorithms. The radix-4 algorithm divides the input into four pieces
instead of two, which means one needs to compute four indexes and four values in each
iteration.
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Pseudocode for the Stockham radix-2 algorithm

1: function fft-stockham(X,N,R)
2: R = 2
3: Z = malloc space
4: Y = malloc space
5: for Ns = 1; Ns < N; Ns *= R do
6: for j=0; j<N/R ; j++ do

7: t ← W j%Ns
Ns·R · X[j+N/R]

8: Y[(j/Ns)*Ns*R + (j%Ns)] ← X[j] + t
9: Y[(j/Ns)*Ns*R + (j%Ns) + Ns] ← X[j] - t
10: Z ← X
11: X ← Y
12: Y ← Z
13: end for
14: end for
15: end function

Pseudocode for the Stockham radix-4 algorithm

1: function fft-stockham(X,N,R)
2: R = 4
3: Z = malloc space
4: Y = malloc space
5: for Ns = 1; Ns < N; Ns *= R do
6: for j=0; j<N/R ; j++ do

7: t1 ← W j%Ns
Ns·R · X[j+N/R]

8: t3 ← W j%Ns
Ns·R · X[j+3N/R]

9: Y[(j/Ns)*Ns*R + (j%Ns)] ← X[j] + X[j+2*N/R] + t1 + t3
10: Y[(j/Ns)*Ns*R + (j%Ns) + Ns] ← X[j] - X[j+2*n/r] + t1 − t3
11: Y[(j/Ns)*Ns*R + (j%Ns)+2*Ns ← X[j] + X[j+2*N/R] - t1 − t3
12: Y[(j/Ns)*Ns*R + (j%Ns)+3*Ns ← X[j] - X[j+2*n/r] - t1 + t3
13: Z ← X
14: X ← Y
15: Y ← Z
16: end for
17: end for
18: end function

Similar to the parallel Cooley-Tukey algorithm, the algorithm uses a breadth-first
approach to calculate all the values, which promotes parallel execution as discussed
previously. However, it uses a different sorting network than Cooley-Tukey. But since
the parallel Cooley-Tukey algorithm has already been derived, this one should be easy
to understand. Note that the twiddle factors could be calculated beforehand, but as
they commonly are not, that optimization hasn’t been included in the pseudocode.
Most of the inner loop is parallel due to the double-buffering; each of the four calcula-
tions reads from one array and writes to another, similar to the parallel Cooley-Tukey
algorithm. Furthermore, each iteration is independent from the others.
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3.2.3 Factorization and Hierarchical FFT

Factorization of an input sequence has the potential to optimize the calculation of an
FFT further. If the length N of an sequence can be factorized so that N = N1 · N2,
one can also re-write n = n1N2 + n2 and k = k1 + k2N1 and then substitute into the
DFT formula 3.5 (Xk =

∑N−1
n=0 xnW

kn
N ):

Xk1+k2N1 =

N1N2−1∑
n1n2=0

xn1N2+n2W
(k1+k2N1)(n1N2+n2)
N1N2

=

N2−1∑
n2=0

N1−1∑
n1=0

xn1N2+n2 · e
−2πi
N1N2

(k1+k2N1)(n1N2+n2)

=

N2−1∑
n2=0

N1−1∑
n1=0

xn1N2+n2 · e
−2πi
N1N2

(k1n1N2+k1n2+k2N1n1N2+k2N1n2)

=

N2−1∑
n2=0

N1−1∑
n1=0

xn1N2+n2 · e
−2πi
N1

k1n1 · e
−2πi
N

k1n2 · e−2πik2n1 · e
−2πi
N2

k2N1n2

=

N2−1∑
n2=0

[(
N1−1∑
n1=0

xn1N2+n2W
k1n1
N1

)
W k1n2
N

]
W k2n2
N2

, (3.13)

[6]. Note that the factor e−2πik2n1 vanishes, as e−2πix = 1 for all integers x.

Imagine the input sequence as a 2-D matrix of size N1 x N2. The FFT can be computed
according to 3.13 by following these steps, known as hierarchical FFT computation:

1. Perform N2 FFTs column-wise. This corresponds to the inner sum in 3.13.
The column number N2 is fixed from the outside, while the row number N1 is
invariant.i

2. Multiply with the twiddle factors W k1n2
N .

3. Perform N1 FFTs row-wise; one FFT per N1, which are the number of rows.
This corresponds to the outer sum in 3.13. These are performed on the result
from step 2.

4. Transpose the result from step 3.ii

The best way to divide N depends on a variety of factors, such as the length of the
input sequence and the block-size of the system, but this issue will be addressed when
discussing how to implement factorization.

iAn easy way to compute this is in parallel is to transpose the array, then perform the FFTs
row-wise (on the previous columns), and then transpose back the result.

iiThe original matrix has the dimensions N1 x N2, but the indexing of the result Xk1+k2N1
is that

of the transposed matrix, which has the dimensions N2 x N1.
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Chapter 4

Modularity

The main objective of this thesis is to study a performance-oriented generic FFT
implementation in Futhark, as well as the software engineering concerns that would
allow several implementations of FFTs to be combined into one library in a way that
is transparent for the user.

The suggested implementation contains a generic representation of the radix that
minimizes code clones from the current Futhark FFT library, and analyzes the current
data-set to discriminate the optimal implementation for the specific data-set. It also
allows the user to choose between using a global or shared memory FFT implementa-
tion, and uses algorithmic optimization such as pre-computation of the twiddle factors.

This chapter describes the implementation and organization of the FFT library. The
extended source code can be found in the appendix.

4.1 Modules

In order to maintain a high level of flexibility and reduce code complexity, I split the
implementation of the library into three Futhark modules with the following main
functionalities:

1. The FFT iteration. A module that implements the calculation of an FFT for
a sequence that has the length of the radix (2, 4, 8 etc.).

2. The main functions of the FFT algorithm. A parametric module that
receives an iteration module and implements the skeleton of the FFT algorithm;
a loop with lgN iterations which updates and shuffles the elements in each
iteration.

3. The creation and execution of a plan. A module that creates a plan by
taking the input size N and pre-computes all the information that depends on
N only. Then, that plan can be executed as many times as needed. The user
receives no information on how the plan was created, i.e. what radix is used etc.

I will describe the implementation of these on a general level in the following sections,
and zoom in on more specific parts of the implementation in relation to global vs.
shared memory FFTs afterwards.
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4.1.1 Rationale of the Structure

This section takes a look at the current radix-2 specialized Futhark implementation
of an FFT library, and explains what changes were necessary in order to implement a
generic representation of the radix.

1 let fft_iteration [n] (forward: f32) (ns: i32) (data: [n]complex) (j: i32) :

2 (i32 , complex , i32 , complex) =

3 let angle = (-2f32 * forward * f32.pi * r32 (j % ns)) / r32 (ns * radix)

4 let (v0, v1) = (data[j], data[j+n/radix] complex .*

5 (complex.mk (f32.cos angle) (f32.sin angle )))

6 let (v0, v1) = (v0 complex .+ v1 , v0 complex.- v1)

7 let idxD = ((j/ns)*ns*radix) + (j % ns)

8 in (idxD , v0, idxD+ns, v1)

Listing 4.1: FFT iteration function for radix-2

This function implements the functionality of a single FFT iteration, more precisely
one iteration of the inner for-loop in the Stockham radix-2 algorithm (section 3.2.2).

The twiddle factor is computed in lines 4-5, where the angle or W j%Ns
Ns·R is multiplied

with X[j+N/R]. The return values are calculated by adding the twiddle factor to X[j]
and subtracting it from X[j+N/R] in line 6. The indices calculated in lines 7-8 are the
exact same ones as in the Stockham algorithm.

The fft_iteration function is called by the fft’ function, which corresponds to
fft-stockham as presented in (section 3.2.2).

1 let fft ’ [n] (forward: f32) (input: [n]complex) (bits: i32) : [n]complex =

2 let input = intrinsics.cosmin_flatten (copy (intrinsics.unflatten

3 (n/radix , radix , input )))

4 let output = intrinsics.cosmin_flatten (copy (intrinsics.unflatten

5 (n/radix , radix , input )))

6 let ix = iota(n/radix)

7 let NS = map (radix **) (iota bits)

8 let (res ,_) =

9 loop (input ’: *[n]complex , output ’: *[n]complex) = (input , output)

10 for ns in NS do

11 let (i0s , i1s , v0s , v1s) =

12 unsafe (unzip

13 (map (fft_iteration forward ns input ’) ix))

14 in (scatter output ’ (i0s ++ i1s) (v0s ++ v1s), input ’)

15 in res

Listing 4.2: FFT main function for radix-2

Denoting radix by r, the array NS created at line 7, holds values [r0, r1,. . ., n/r]

(because bits is logr n and iota q, creates the array [0,. . .,q-1] for some q). The
loop between lines 9 and 14, executes sequentially bits iterations, in which the values
of ns are (consecutively) taken from the elements of array NS. The variables whose
values are variant to the loop, i.e., input’ and output’, are initialized to input and
output and are bound in order to the result of the loop body (line 14) for the next
iteration.

Note that the implementation of the loop uses double buffering, since the scatter-
updated value of output’ is bound to loop-variant array input’ for the next iteration.
Similarly, the map at line 13 implements the innermost loop in the FFT pseudocode,
and operates on array ix, which is constant and is initialized at line 6 with [0,. . .,n/r-
1]. The result of the map is unzipped, resulting in 2 arrays of indexes and 2 arrays of
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values (r = radix). Finally, the two index and the two values arrays are concatenated
into two arrays, based on which, the array combinator scatter distributes the results
(line 14).

If one was to implement these functions for radix-4, fft_iteration would return
a tuple of four indices and four values. It follows that the return type would be differ-
ent from radix-2. This goes on to have an effect on line 11 in fft’, which would also
have four arrays of indexes and four arrays of values, so that scatter would have to
operate at line 14 on a concatenation of four index and four value arrays, respectively.
As all of these differences are type-based, an evident solution is to create abstracted
types that depend on the radix.

First, a return type for the fft_iteration function is needed: a tuple of r indices and
r values (r=radix). Second, that type needs to be ”multiplied”, i.e. a tuple of r arrays
of indices and r arrays of values, which is the result of mapping the iteration onto the
iterator ix. This will call for specialized unzip and concatenate to fit the abstract
types. The following two sections will show how to implement this into modules.

4.1.2 The FFT Iteration Module

This module implements the functionality of a single FFT iteration with abstract types
to fit any radix. One module of this type must created for each radix.

1 module type fft_iteration = {

2 type tuple_inds_vals

3 type iter_ret

4
5 val radix: i32

6 -- | Concatenate the specified tuples of indexes or values;

7 -- | result type is not specialized , as it needs to fit into scatter

8 val concat_inds: tuple_inds_vals -> []i32

9 val concat_vals: tuple_inds_vals -> [] complex

10
11 -- | A regular unzip returns an array of tuples , but this one

12 -- returns the specific type we created

13 val unzip_it: []( iter_ret) -> tuple_inds_vals

14 -- | One iteration of the fft loop

15 val fft_iter: f32 -> i32 -> [] complex -> i32 -> iter_ret

16 -- | One iteration of the fft loop with pre -computed twiddles

17 val fft_iter_precomp: i32 -> i32 -> [] complex -> [] complex

18 -> i32 -> iter_ret

19 }

Listing 4.3: FFT iteration module type

The types of indexes and values will be the same for all kinds of FFT iterations, but
the module has two abstract types that depend on the radix:

• tuple_inds_vals: A tuple of r arrays of indexes and r arrays of values to write
to these, where r is the radix of the FFT iteration. This is used in the main FFT
module as a return type of mapping the iteration onto the input.

• iter_ret: A tuple of r indexes and r values, where r is the radix. This is the
return type for one iteration.
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For the main function of the module, there are two variations: one with pre-computed
twiddle factors, and one without. There are some code clones between the two vari-
ations, which is something that could be improved in the future. I will discuss pre-
computation of the twiddle factors in the section regarding global memory FFTs and
only explain the regular version here.

1 module fft_iteration2: (fft_iteration) = {

2 type ind = i32

3 type vl = complex

4 type inds = []ind

5 type vals = []vl

6 type tuple_inds_vals = (inds , inds , vals , vals)

7 type iter_ret = (ind , ind , vl, vl)

8
9 let radix = 2i32

10 let concat_inds ((a,b,_,_): tuple_inds_vals) = concat a b

11 let concat_vals ((_,_,c,d): tuple_inds_vals) = concat c d

12
13 let unzip_it (x: []( iter_ret )) = unzip x

14 let fft_iter [n] (forward: f32) (ns: i32) (data: [n]complex) (j: i32) : (iter_ret) =

15 let angle = (-2f32 * forward * f32.pi * r32 (j % ns)) / r32 (ns * radix)

16 let (v0, v1) = (data[j], data[j+n/radix] complex .*

17 (complex.mk (f32.cos angle) (f32.sin angle )))

18 let (v0, v1) = (v0 complex .+ v1 , v0 complex.- v1)

19 let idxD = ((j/ns)*ns*radix) + (j % ns)

20 in (idxD , idxD+ns, v0, v1)

Listing 4.4: FFT iteration module for radix-2

This implementation only differs from the radix-2 specialized one (see subsection 4.1.1)
in using the abstract return type iter_ret (line 7) instead of a regular tuple of indexes
and values.

1 module fft_iteration4: (fft_iteration) = {

2 type ind = i32

3 type vl = complex

4 type inds = []ind

5 type vals = []vl

6 type tuple_inds_vals = (inds , inds , inds , inds ,

7 vals , vals , vals , vals)

8 type iter_ret = (ind , ind , ind , ind , vl, vl, vl, vl)

9
10 let radix = 4i32

11 let concat_inds ((a,b,c,d,_,_,_,_): tuple_inds_vals) = a ++ b ++ c ++ d

12 let concat_vals ((_,_,_,_,a,b,c,d): tuple_inds_vals) = a ++ b ++ c ++ d

13
14 let unzip_it (x: []( iter_ret )) = unzip x

15 let twiddle (a: complex) : complex =

16 complex.mk (complex.im a) (- (complex.re a))

17
18 let fft_iter [n] (forward: f32) (ns: i32) (data: [n]complex) (j: i32)

19 : (iter_ret) =

20 let angle = (-2f32 * forward * f32.pi * r32 (j%ns)) / r32 (ns * radix)

21 let tw = complex.mk (f32.cos angle) (f32.sin angle)

22 let a0 = data[j]

23 let a1 = tw complex .* (data[j+n/radix])

24 let a2 = data[j+2*n/radix]

25 let a3 = tw complex .* (data[j+3*n/radix])

26
27 let tw = tw complex .* tw

28 let a2 = tw complex .* a2

29 let a3 = tw complex .* a3

30
31 let b0 = a0 complex .+ a2

32 let b1 = a0 complex.- a2

33 let b2 = a1 complex .+ a3

34 let b3 = twiddle (a1 complex.- a3)
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35
36 let v0 = b0 complex .+ b2

37 let v2 = b0 complex.- b2

38 let v1 = b1 complex .+ b3

39 let v3 = b1 complex.- b3

40
41 let idxD = ((j/ns)*ns*radix) + (j % ns)

42 in (idxD , idxD+ns, idxD +2*ns, idxD +3*ns, v0, v1, v2, v3)

Listing 4.5: FFT iteration module for radix-4

The radix-4 module implementation follows the algorithm described in section 3.2.2.
Although it returns a different tuple than the radix-2 module, it fits the iter_ret type
specified in this module (line 8). All other functions and types are also specialized for
radix-4. Lines 21-38 are slightly more verbose than the pseudocode in order to make
the computation of radix-4 FFT values more clear.

Trivial functionality of the iteration module is an implementation of the radix (line 2),
functions to concatenate the indexes and values with each other (lines 11-12), as well
as an unzip function for the specified types (line 14).

4.1.3 The Main FFT Module

This module implements the main functionality of the FFT for complex and real input.

1 module type fft_module = {

2 val radix: i32

3 -- | Find out whether input size is a power of the radix

4 val powOfR: i32 -> bool

5 -- | FFT of complex numbers

6 val fft [n]: [n](f32 , f32) -> bool -> [n](f32 , f32)

7 -- | FFT of 2-D array of complex numbers for factorization

8 val fact: [][](f32 ,f32) -> i32 -> [](f32 , f32)

9 -- | FFT of real numbers

10 val fft_real [n]: [n]f32 -> bool -> [n]f32

11 }

Listing 4.6: FFT main module type

Modules with this type should be parametric, meaning they take an FFT iteration
module as input and produce an FFT module. This way, they use the same radix as
the specified iteration module.

1 module fft_module(Iter: fft_iteration ): fft_module = {

2 let radix = Iter.radix

3 ...

4 }

Listing 4.7: Parametric FFT module

The function of interest in this module is fft, which computes the FFTs for complex
input. For real numbers, the input is converted into complex numbers, transformed
with fft and then converted back to real format, as the following code exemplifies:

1 let fft_real [n] (data: [n]f32) (precomp: bool): ([n]f32) =

2 map (\r -> complex.re r)

3 (fft (map (\r -> complex.mk_re r) data) (precomp ))

Listing 4.8: FFT for real input
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The boolean parameter precomp specifies whether a pre-computation of the twiddle
factors should be performed. If the input is real, that information is sent on to fft,
otherwise it is specified there.

1 let generic_fft [n] (forward: bool) (data: [n](f32 ,f32)) (precomp: bool):

2 [n](f32 ,f32) =

3 let n_bits = logR n

4 let forward ’ = if forward then 1f32 else -1f32

5 in if (precomp == false) then take n (fft ’ forward ’ data n_bits)

6 else take n (fft_precomp ’ forward ’ data n_bits)

7
8 let fft [n] (data: [n](f32 , f32)) (precomp: bool): [n](f32 , f32) =

9 generic_fft true data precomp

Listing 4.9: FFT wrapper function

The fft function is actually a wrapper function that calls a more generic function,
which is a wrapper for forward and inverse FFTs. For inverse FFTs, generic_fft is
called with the parameter forward set to false. The generic function now calls fft’,
which is where the actual implementation of the FFT algorithm is hidden. Depending
on whether pre-computation of the twiddle factors is demanded, fft_precomp’ can
be chosen as well, but this will be discussed in the global memory FFT chapter.

1 let fft ’ [n] (forward: f32) (input: [n]complex) (bits: i32) : [n]complex =

2 let input = intrinsics.cosmin_flatten (copy (intrinsics.unflatten

3 (n/radix , radix , input )))

4 let output = intrinsics.cosmin_flatten (copy (intrinsics.unflatten

5 (n/radix , radix , input )))

6 let ix = iota(n/radix)

7 let NS = map (radix **) (iota bits)

8 let (res ,_) =

9 loop (input ’: *[n]complex , output ’: *[n]complex) = (input , output)

10 for ns in NS do

11 let (inds_vals: Iter.tuple_inds_vals) =

12 unsafe (Iter.unzip_it

13 (map (Iter.fft_iter forward ns input ’) ix))

14 in (scatter output ’ (Iter.concat_inds inds_vals)

15 (Iter.concat_vals inds_vals), input ’)

16 in res

Listing 4.10: FFT main function for generic radix

This implementation is quite similar to the radix-2 specialized one (see section 4.1.1),
but it is using a version of fft_iter that returns the abstract type iter_ret - a tuple
of r indices and r values, r being the radix. This type is ”hidden” in the above code
though, because the above function uses the iteration function in a map over [1..N/R]
(lines 6 and 13). This returns an array of length (N/radix) of iteration results instead
of a single result of type iter_ret.

As the indices and values need to be separated, essentially the SOAC unzip (line
12) is used to change the array of iteration results into a tuple of r arrays of indices
and r arrays of values. This is the second abstract type from the iteration module,
tuple_inds_vals.
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The use of the abstract type calls for a specialized unzip function that returns this
type, which has been implemented in the iteration module. Futhermore, in order to
concatenate the indices and values with each other respectively in a generic way, two
specialized concatenate functions are implemented, which will concatenate either the
r index arrays (line 14) or the r value arrays (line 15) with each other. In the function,
the map in line 13 and scatter in line 14 are fused together by the compiler in order
to increase parallelization.

A trivial functionality of the fft module is the function powOfR to determine whether
the input size is a power of the radix, which can be useful in deciding how to split the
input for shared memory FFTs. The module also contains a function fact to compute
FFTs of 2-dimensional input for factorization. This will be discussed in detail in an
upcoming section on shared memory FFTs.

4.1.4 The Planner-Executor Module

This module implements a planner to determine the best FFT implementation for a
given input, as well as an executor that executes the plan.

1 module type fft_planex = {

2 type n_t

3 -- | A record of information about the plan for the input

4 type plan_t

5
6 -- | Create a plan how to calculate the fft

7 val planner: i32 -> i32 -> plan_t

8 -- | Execute the plan; calculate the fft

9 val executor [n]: [n]n_t -> plan_t -> [n]n_t

10 val planex [n]: [n]n_t -> i32 -> [n]n_t

11 val planex_batch [n][m]: [n][m]n_t -> i32 -> [n][m]n_t

12 }

Listing 4.11: FFT planner/executor module

The type plan_t is a record with information on how to calculate the FFT for the
given input. The only parameter needed to develop a plan is the size of the input and
for shared memory the block size as well. For global memory, the plan only includes
the radix, but for shared memory, there is also the block size of the GPU environment
and the number of splits. The choice for these values is made by the planner function,
which will be explained more thoroughly in the two upcoming sections.

After the best plan has been chosen, it must be executed by passing the input as
well as the plan record on to the executor function. The plan is then executed with
the given input, either by using the main function from the FFT main module, or by
splitting the data as determined by the plan and then using the FFT function on the
different segments. This will be discussed in more detail in the two following sections.
Finally, the function planex is a combining wrapper for the planner and executor

and planex_batch does the same for a batch of FFTs.

4.2 Global and Shared Memory FFTs

One objective of this thesis is an efficient exploitation of the GPU architecture in order
to increase the performance of FFTs in Futhark. Here it makes sense to look at mem-
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ory latency. The latency of global memory on the GPU is a few orders of magnitude
higher than register latency, but there is another type of memory known as shared
memory, which has a latency comparable to that of register latency. It can be viewed
as a user-programmable cache. However, there is a limited supply (v64k) of shared
memory on each GPU multiprocessor.

This means one can choose to either implement the FFT calculation using global or
shared memory. The global memory implementation is a naive implementation that
mainly follows the code examples from the previous sections. However, there are a
few possible optimizations, such as pre-computation of the twiddle factor that will be
discussed. The other way is called hierarchical FFT and is aimed at implementing the
sequential loop of lgN iterations in shared memory with the goal of increasing perfor-
mance. An example and explanation of hierarchical FFT implementation follows after
the global memory section.

4.2.1 Implementation of Global Memory FFTs

This section will follow the FFT implementation that uses only global memory through
the different modules. Pre-computation of the twiddle factors will be explained after
a brief description of what happens in the planner-executor module.

1 module fft_globalmem : (fft_planex) = {

2 type n_t = f32

3 type plan_t = {rad: i32}

4
5 let planner (n) (block_sz: i32) : plan_t =

6 -- Preferrably use radix 8

7 let plan_rad = if (fft_mod8.powOfR n == true) then 8

8 else if (fft_mod4.powOfR n == true) then 4 else 2

9 in {rad = plan_rad}

10
11 let executor [n] (data: [n]n_t) (plan: plan_t) : [n]n_t =

12 if (plan.rad == 8) then fft_mod8.fft_real data true

13 else if (plan.rad == 4) then fft_mod4.fft_real data true

14 else fft_mod2.fft_real data true

15
16 let planex [n] (data:[n]n_t) (block_sz: i32) =

17 let plan = planner n block_sz

18 in executor data plan

19
20 let planex_batch [n][m] (data: [n][m]n_t) (block_sz: i32) : [n][m]n_t =

21 let plan = planner n block_sz

22 in map (\f -> executor f plan) data

23 }

Listing 4.12: Global FFT planner/executor module

Since the input size for the FFT functions must be a power of the radix, the module
uses powOfR to determine whether the input can be used for a certain FFT implemen-
tation. The algorithm chooses the highest possible radix (lines 6-9), since this typically
translates to higher performance, assuming that the sequence is large enough to fully
utilize the GPU parallelism. In order to use pre-computation of the radix, the main
FFT module function is called with the precomp parameter set to true (lines 12-14).
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In a naive FFT implementation, each of the N lgN iterations computes exactly N/r
twiddle factors (r=radix), which leads to some redundant computation. To observe
this, recall that in each FFT iteration (see 4.1.2), the angle W k

N for the factor is
computed using the following formula:

W k
N = (2π(j%ns))/(ns · r),

where j indicates which index from [0 · · ·N/r − 1] is being computed and ns is the
value of the iterator NS = [r0, r1, · · · , rk−1]. For a certain value of ns, the number of
distinct twiddle factors is in fact ns, due to the modulo operation. For example, for
ns = 1 there is one twiddle factor and so on upto ns = rk−1. So the total number of
distinct twiddle factors for all iterations (i.e., elements ns ∈ NS) is:

1 + r + r2 + · · ·+ rk−1 =
rk − 1

r − 1
=
n− 1

r − 1

1 let fft_precomp ’ [n] (forward: f32) (input: [n]complex) (bits: i32) : [] complex =

2 let input = intrinsics.cosmin_flatten

3 (copy (intrinsics.unflatten (n/radix , radix , input )))

4 let output = intrinsics.cosmin_flatten

5 (copy (intrinsics.unflatten (n/radix , radix , input )))

6
7 -- Precomputation of twiddle factors

8 let wk_ns =

9 map (\ind ->

10 let (n’,ind ’) =

11 loop (s,ind) = (1,ind) while ind >= 0 do

12 (s * radix , ind - s)

13 let k’ = ind ’ + (n’ / radix)

14 let angle = (-2f32 * forward * f32.pi * (r32 k’)) / (r32 n’)

15 in complex.mk (f32.cos angle) (f32.sin angle)

16 ) (iota ((n-1)/( radix -1)))

17
18 let ix = iota(n/radix)

19 --let NS = map (radix **) (iota bits)

20 let (res ,_,_) =

21 loop (input ’: *[n]complex , output ’: *[n]complex , offset: i32) =(input , output , 0)

22 for i < bits do

23 let ns = radix ** i

24 let (inds_vals: Iter.tuple_inds_vals) =

25 unsafe (Iter.unzip_it

26 (map

27 (Iter.fft_iter_precomp ns offset wk_ns input ’) ix))

28 in (scatter output ’ (Iter.concat_inds inds_vals)

29 (Iter.concat_vals inds_vals),

30 input ’, offset +(radix**i))

Listing 4.13: Global FFT main function

The pre-computation of the angles happens in the main FFT module inside the
fft_precomp’ function. To compute all angles prior to any FFT calculation, a map

over an array of all needed angles is performed (lines 9-16). This works generically for
all radix, as the only variables are the size of the input and the radix.

The rest of the function is quite similar to the fft’ function (4.1.3), except that
it has an offset parameter which is used in the iteration module to access the twiddle
factor. This amounts in some code clones that should fixed in future revisions of the
code.
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1 let fft_iter_precomp [n] (ns: i32) (offset: i32) (wk_ns: [] complex)

2 (data: [n]complex) (j: i32) : (iter_ret) =

3 let k = j % ns

4 let wk_n = unsafe wk_ns[offset+k]

5 let (v0, v1) = (data[j], data[j+n/radix] complex .* wk_n)

6 let (v0, v1) = (v0 complex .+ v1 , v0 complex.- v1)

7 let idxD = ((j/ns)*ns*radix) + (j % ns)

8 in (idxD , idxD+ns, v0, v1)

Listing 4.14: Global FFT iteration radix-2

There is no big difference between the iteration with pre-computed twiddle factors and
without, except that the twiddle factor does not need to be calculated. Instead, it is
taken from wk_ns[offset+k] at line 4, which requires offset as a parameter.

4.2.2 Implementation of Hierarchical FFTs

This section looks at the implementation of the hierarchical FFT algorithm with fac-
torization as described in subsection 3.2.3.

1 module fft_sharedmem : (fft_planex) = {

2 type n_t = f32

3 type plan_t = {rad: i32 , block: i32 , num: i32}

4
5 let planner (n) (block_sz: i32) : plan_t =

6 -- Always use r4 if input is power of 4

7 let plan_rad = if (fft_mod4.powOfR n == true) then 4 else 2

8 let plan_block = (plan_rad * block_sz)

9 let plan_num = if (n <= plan_block) then 0

10 else 1

11 in {rad = plan_rad , block = plan_block , num = plan_num}

12
13 let executor [n] (data: [n]n_t) (plan: plan_t) : [n]n_t =

14 let no_splitting (data ’: [n](n_t , n_t)) : [n](n_t , n_t) =

15 if (plan.rad == 2) then fft_mod2.fft data ’ true

16 else fft_mod4.fft data ’ true

17
18 let splitting1 (data ’: [n](n_t , n_t)) (plan ’: plan_t) :

19 [n](n_t , n_t) =

20 let n1 = plan ’.block

21 let n2 = n/(plan ’.block)

22 let data ’ = unflatten n1 n2 data ’

23 let data ’ = if (plan ’.rad == 2) then fft_mod2.fact data ’ n

24 else fft_mod4.fact data ’ n

25 in data ’

26 let data_real = map (\r -> complex.mk_re r) data

27 let res = if (plan.num == 0) then (no_splitting data_real)

28 else (splitting1 data_real plan)

29 in map (\r -> complex.re r) res

30
31 let planex [n] (data:[n]n_t) (block_sz: i32) : [n]n_t =

32 let plan = planner n block_sz

33 in executor data plan

34
35 let planex_batch [n][m] (data: [n][m]n_t) (block_sz: i32) : [n][m]n_t =

36 let plan = planner n block_sz

37 in map (\f -> executor f plan) data

38 }

Listing 4.15: Shared FFT planner/executor module
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In order to use shared memory, the size of the input Nx on each block should be at
most the product of the radix and the block size: Nx ≤ r ·bs. This is because the input
is divided into r FFTs of size N/r, so they can be run in parallel on different blocks.
This suggests that factorization as described in subsection 3.2.3 should be used. The
planner calculates the maximum block size size and saves it as a part of the planner
object (line 8). Only radix-2 and radix-4 can be used, and this will be explained in
chapter 5, as it has to do with the block size for the machines that the tests were
perfomed on.

Furthermore, the plan includes the information of how often the input should be split.
If the input is smaller than the block size, it doesn’t need to split, but otherwise it
does (lines 9-10). As splitting is only implemented one (i.e. one split into two factors),
this is a binary choice. Finally, the plan is executed in the executor.

The executor transforms the input into complex data and checks whether the in-
put should be split or not, if not it uses the regular global memory FFT with pre-
computation of the twiddle factors (line 15). Otherwise, it splits the data greedily
into a 2-D matrix of size N1 x N2, where N1 is the highest possible number, i.e. the
block size. N2 is the remaining values of the input (line 21). It then uses the factoriza-
tion function discussed below, and in the end transforms the result back to real output.

1 let fact [n1][n2] (data: [n1][n2](f32 ,f32)) (n: i32) : [](f32 , f32) =

2 let data = transpose data

3 let data = map (\d -> fft d false) data

4 -- multiplication with twiddle factors

5 let data = map (\(j2,row) ->

6 map (\(i1,v) ->

7 let angle = (-2f32 * f32.pi * (r32 i1) * (r32 j2)) / (r32 n)

8 let twiddle = complex.mk (f32.cos angle) (f32.sin angle)

9 in v complex .* twiddle

10 ) (zip (iota n1) row)

11 ) (zip (iota n2) data)

12 let data = transpose data

13 let data = map (\d -> fft d false) data

14 in flatten (transpose data)

Listing 4.16: Hierarchical FFT main function

This function in the main FFT module corresponds to the factorization algorithm
described in subsection 3.2.3. Lines 2-3 implement step 1, N2 column-wise FFTs, by
computing the row-wise FFTs on the transposed array, which is transposed back in
line 12. Lines 5-11 implement step 2, multiplication with the twiddle factors W k1n2

N .
Line 13 implements step 3, N1 row-wise FFTs and finally, step 4 is performed by
transposing the entire matrix one last time.
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Chapter 5

Evaluation

This chapter presents the performance results of the implementation discussed in chap-
ter 4. Tests were performed on the DIKU GPU1 machine with an NVIDIA GK110B
GPU, as well as an AMD machine with a FirePro AMD GPU. The exact test results
can be found in the appendix. For each test, a baseline result for performance on the
CPU is provided to compare with. As the current implementation does not support
padding, the applicable data-sets for each radix varied.

5.1 AMD

5.1.1 Method

Benchmarking for global memory was done using the Futhark benchmarking tool
futhark-bench on constant work test files. All test files were compiled using
--compiler=futhark-opencl, except when generating data to show the CPU perfor-
mance, in which case the futhark-c compiler was used. The size N of the input files
was 2k where k = [6, 10, 15, 16, 18, 20, 22, 24]. The constant work test files create a
testing infrastructure that generates an equal amount of work for each size by creating
a map of size W on top, so that the workload is that the highest k (in our case, it’s
24). Recalling that the time complexity / work load of FFT is ON lgN , it should be
24 · 224 for an input of size 224. Then for k < 24, W can be found in the following way:

W · k2k = 24 · 224

W = (24 · 224)/(k2k)

W = (24 · 224)/(N lgN)

Hierarchical FFTs were not tested on the AMD GPU, as the results are clear from
the NVIDIA test in the next section and we didn’t expect an improvement on AMD.
Instead, a different kind of shared memory test was executed by compiling the input
with the flag FUTHARK_INCREMENTAL_FLATTENING=1. This enables shared memory ac-
cess and thus only works for low inputs, i.e. where the data-set is smaller than the
block size.

It was not possible to provide a cuFFT baseline, as cuFFT only works on NVIDIA
machines.
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5.1.2 Expectations

• Higher radix to mostly perform better than lower radix.

• Shared memory to mostly perform better than global memory.

• Pre-computation of twiddle factors to perform better than none.

5.1.3 Results and Discussion

Again, increasing the radix improves the performance in most cases. As on the NVIDIA
machine, radix-4 performs around twice as well as radix-2, while the difference between
radix-4 and radix-8 is much smaller. Contrary to the NVIDIA GPU test, twiddle fac-
tor pre-computation does give a speed-up on the AMD GPU. It is especially significant
for radix-2, and generally most impressive in shared memory.

The shared memory implementation is quite effective, giving just close to a 3x speed-
up compared to global memory in the best cases. Unfortunately it is applicable on
only a few datasets. However, radix-8 performs almost the same as radix-4 in shared
memory. This is because the shared memory version uses r · 2 · 2 (r=radius) words per
thread. When r=8, this amount is too high and affects occupancy; there will not be
enough memory space for the right amount of blocks on the device. One way to fix
this might be to pre-compute all twiddle factors and not just the angles.
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5.2 NVIDIA

5.2.1 Method

Testing on the NVIDIA GPU was done in the same way as on the AMD GPU, with a
few differences:

For hierarchical FFTs with factorization, benchmarking was done without constant
work, in order to show how the current implementation is only working optimally for
a limited input size upto ca. 222. To compare our implementation to the CUDA FFT
library cuFFT, a small program was written in CUDA that creates a batch of FFTs
like the one used in the Futhark tests.

5.2.2 Expectations

• Higher radix to mostly perform better than lower radix.

• Hierarchical FFT implementation to be optimal up to input size of 222.

• Pre-computation of twiddle factors to perform better than none.

5.2.3 Results and Discussion

The performance of the hierarchical FFT implementation decreases after passing in-
put size 222. This was to be expected, as the implementation can only split the input
into two factors. Recalling that the size of one factor Nx should be Nx ≤ r · bs (see
subsection 4.2.2), where bs = 1024 on NVIDIA, the result will be Nx ≤ 211 for radix-2
and Nx ≤ 212 for radix-4. The highest input to be split upto once in this way is then
N = 211 · 211 = 222 for radix-2 and N = 212 · 212 = 224 for radix-4. The input is quite
flat until it reachesNx, since it uses the global memory implementation until that point.
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As expected, a higher radix usually accounts for better performance, both on the
CPU and GPU. However, the increase in performance is significantly higher when
comparing radix-2 and 4 (ca. 2x speed-up), than radix-4 and 8. Interestingly, the
pre-computation of twiddle factors did not give the anticipated optimization. For
radix-2, it gives a visible overhead, while it gives around the same performance as no
pre-computation for radix-4 and 8. This suggests that on an NVIDIA machine, it is
more costly to access the stored twiddle factors in memory, than to compute them ”on
the go”.
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Chapter 6

Conclusion

The thesis presents the implementation of a modular, user-transparent FFT library
in Futhark, using a generic representation of the radix to minimize code clones. The
library analyzes the input data-set and discriminates the optimal implementation to
calculate its FFT.

The results show that the radix has a significant effect on the performance, with a
trend of higher radix giving higher performance. The improvement was more no-
ticeable between radix-2 and 4, than between radix-4 and 8. The effect of twiddle
factor pre-computation depends on the specific hardware. For NVIDIA, it lessened
the performance, indicating that it is more costly to access the stored twiddle factors
in memory, than to compute them ”on the go”. However, pre-computing them did
give a speed-up of up to 2x on AMD GPU. Factorization also seems like a promising
approach, but as its implementation was restricted, it wasn’t possible to fully test the
effects.

There are still ample improvements to be done to the implementation presented in
this thesis. Most prominently, it will be interesting to see the results for implementing
factorization that splits the input data into more than just two components, since the
results for one splitting are promising. Furthermore, there are still some code clones
in the implementation, particularly in the FFT iteration module. A minimization of
these is desirable. Lastly, one can experiment with padding of the input in order to
be able to use the optimal radix for a given input, since at this point, a radix-X can
only be used on input that is a power of X.
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Appendix A

Code

A.1 FFT Iteration Module

import "/ futlib/complex"

module complex = complex f32

type complex = complex.complex

module type fft_iteration = {

type tuple_inds_vals

type iter_ret

val radix: i32

-- | Concatenate the specified tuples of indexes or values;

-- | result type is not specialized , as it needs to fit into scatter

val concat_inds: tuple_inds_vals -> []i32

val concat_vals: tuple_inds_vals -> [] complex

-- | A regular unzip returns an array of tuples , but this one

-- returns the specific type we created

val unzip_it: []( iter_ret) -> tuple_inds_vals

-- | One iteration of the fft loop

val fft_iter: f32 -> i32 -> [] complex -> i32 -> iter_ret

-- | One iteration of the fft loop with pre -computed twiddles

val fft_iter_precomp: i32 -> i32 -> [] complex -> [] complex

-> i32 -> iter_ret

}

-- | Given a radix value , construct a module

-- | implementing specialized fft_iteration for that value

module fft_iteration2: (fft_iteration) = {

type ind = i32

type vl = complex

type inds = []ind

type vals = []vl

type tuple_inds_vals = (inds , inds , vals , vals)

type iter_ret = (ind , ind , vl, vl)

let radix = 2i32

let concat_inds ((a,b,_,_): tuple_inds_vals) = concat a b

let concat_vals ((_,_,c,d): tuple_inds_vals) = concat c d

let unzip_it (x: []( iter_ret )) = unzip x

let fft_iter [n] (forward: f32) (ns: i32) (data: [n]complex) (j: i32) : (iter_ret) =

let angle = (-2f32 * forward * f32.pi * r32 (j % ns)) / r32 (ns * radix)

let (v0, v1) = (data[j], data[j+n/radix] complex .*

(complex.mk (f32.cos angle) (f32.sin angle )))

let (v0, v1) = (v0 complex .+ v1 , v0 complex.- v1)

let idxD = ((j/ns)*ns*radix) + (j % ns)

in (idxD , idxD+ns, v0, v1)

let fft_iter_precomp [n] (ns: i32) (offset: i32) (wk_ns: [] complex)

(data: [n]complex) (j: i32) : (iter_ret) =
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let k = j % ns

let wk_n = unsafe wk_ns[offset+k]

let (v0, v1) = (data[j], data[j+n/radix] complex .* wk_n)

let (v0, v1) = (v0 complex .+ v1 , v0 complex.- v1)

let idxD = ((j/ns)*ns*radix) + (j % ns)

in (idxD , idxD+ns, v0, v1)

}

module fft_iteration4: (fft_iteration) = {

type ind = i32

type vl = complex

type inds = []ind

type vals = []vl

type tuple_inds_vals = (inds , inds , inds , inds ,

vals , vals , vals , vals)

type iter_ret = (ind , ind , ind , ind , vl, vl, vl, vl)

let radix = 4i32

let concat_inds ((a,b,c,d,_,_,_,_): tuple_inds_vals) = a ++ b ++ c ++ d

let concat_vals ((_,_,_,_,a,b,c,d): tuple_inds_vals) = a ++ b ++ c ++ d

let unzip_it (x: []( iter_ret )) = unzip x

let twiddle (a: complex) : complex =

complex.mk (complex.im a) (- (complex.re a))

let fft_iter [n] (forward: f32) (ns: i32) (data: [n]complex) (j: i32)

: (iter_ret) =

let angle = (-2f32 * forward * f32.pi * r32 (j%ns)) / r32 (ns * radix)

let tw = complex.mk (f32.cos angle) (f32.sin angle)

let a0 = data[j]

let a1 = tw complex .* (data[j+n/radix])

let a2 = data[j+2*n/radix]

let a3 = tw complex .* (data[j+3*n/radix])

let tw = tw complex .* tw

let a2 = tw complex .* a2

let a3 = tw complex .* a3

let b0 = a0 complex .+ a2

let b1 = a0 complex.- a2

let b2 = a1 complex .+ a3

let b3 = twiddle (a1 complex.- a3)

let v0 = b0 complex .+ b2

let v2 = b0 complex.- b2

let v1 = b1 complex .+ b3

let v3 = b1 complex.- b3

let idxD = ((j/ns)*ns*radix) + (j % ns)

in (idxD , idxD+ns, idxD +2*ns, idxD +3*ns, v0, v1, v2, v3)

let fft_iter_precomp [n] (ns: i32) (offset: i32) (wk_ns: [] complex)

(data: [n]complex) (j: i32) : (iter_ret) =

let k = j % ns

let wk_n = unsafe wk_ns[offset+k]

let a0 = data[j]

let a1 = wk_n complex .* (data[j+n/radix])

let a2 = data[j+2*n/radix]

let a3 = wk_n complex .* (data[j+3*n/radix])

let tw = wk_n complex .* wk_n

let a2 = tw complex .* a2

let a3 = tw complex .* a3

let b0 = a0 complex .+ a2

let b1 = a0 complex.- a2

let b2 = a1 complex .+ a3

let b3 = twiddle (a1 complex.- a3)

let v0 = b0 complex .+ b2

let v2 = b0 complex.- b2

let v1 = b1 complex .+ b3

let v3 = b1 complex.- b3
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let idxD = ((j/ns)*ns*radix) + (j % ns)

in (idxD , idxD+ns, idxD +2*ns, idxD +3*ns, v0, v1, v2, v3)

}

module fft_iteration8: (fft_iteration) = {

type ind = i32

type vl = complex

type inds = []ind

type vals = []vl

type tuple_inds_vals = (inds , inds , inds , inds ,

inds , inds , inds , inds ,

vals , vals , vals , vals ,

vals , vals , vals , vals)

type iter_ret = (ind , ind , ind , ind , ind , ind , ind , ind ,

vl, vl, vl, vl , vl, vl, vl, vl)

let radix = 8i32

let concat_inds ((a,b,c,d,e,f,g,h,_,_,_,_,_,_,_,_):

tuple_inds_vals) = a ++ b ++ c ++ d ++ e ++ f ++ g ++ h

let concat_vals ((_,_,_,_,_,_,_,_,a,b,c,d,e,f,g,h):

tuple_inds_vals) = a ++ b ++ c ++ d ++ e ++ f ++ g ++ h

let unzip_it (x: []( iter_ret )) = unzip x

let sqrt2 = complex.mk (0.707106781188 f32) (0.0 f32)

let twiddle (a: complex) : complex =

complex.mk (complex.im a) (- (complex.re a))

let mul_p1q4(a: complex) : complex =

let x = complex.mk (complex.re a + complex.im a)

(complex.im a - complex.re a)

in x complex .* sqrt2

let mul_p3q4(a: complex) : complex =

let x = complex.mk (complex.im a - complex.re a)

(-(complex.re a) - complex.im a)

in x complex .* sqrt2

let fft_iter [n] (forward: f32) (ns: i32) (data: [n]complex) (j: i32)

: (iter_ret) =

let angle = (-2f32 * forward * f32.pi * r32 (j%ns)) / r32 (ns * radix)

let tw = complex.mk (f32.cos angle) (f32.sin angle)

let a0 = data[j]

let a1 = tw complex .* (data[j+n/radix])

let a2 = data[j+2*n/radix]

let a3 = tw complex .* (data[j+3*n/radix])

let a4 = data[j+4*n/radix]

let a5 = tw complex .* (data[j+5*n/radix])

let a6 = data[j+6*n/radix]

let a7 = tw complex .* (data[j+7*n/radix])

let tw = tw complex .* tw --W^2

let a2 = tw complex .* a2

let a3 = tw complex .* a3

let a6 = tw complex .* a6

let a7 = tw complex .* a7

let tw = tw complex .* tw --W^4

let a4 = tw complex .* a4

let a5 = tw complex .* a5

let a6 = tw complex .* a6

let a7 = tw complex .* a7

let b0 = a0 complex .+ a4

let b4 = a0 complex.- a4

let b1 = a1 complex .+ a5

let b5 = mul_p1q4 (a1 complex.- a5)

let b2 = a2 complex .+ a6

let b6 = twiddle (a2 complex.- a6)

let b3 = a3 complex .+ a7

let b7 = mul_p3q4 (a3 complex.- a7)

let a0 = b0 complex .+ b2
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let a2 = b0 complex.- b2

let a1 = b1 complex .+ b3

let a3 = twiddle(b1 complex.- b3)

let a4 = b4 complex .+ b6

let a6 = b4 complex.- b6

let a5 = b5 complex .+ b7

let a7 = twiddle(b5 complex.- b7)

let v0 = a0 complex .+ a1

let v4 = a0 complex.- a1

let v1 = a4 complex .+ a5

let v5 = a4 complex.- a5

let v2 = a2 complex .+ a3

let v6 = a2 complex.- a3

let v3 = a6 complex .+ a7

let v7 = a6 complex.- a7

let idxD = ((j/ns)*ns*radix) + (j % ns)

in (idxD , idxD+ns, idxD +2*ns, idxD +3*ns,

idxD +4*ns, idxD +5*ns , idxD +6*ns, idxD +7*ns,

v0, v1, v2, v3, v4, v5, v6, v7)

let fft_iter_precomp [n] (ns: i32) (offset: i32) (wk_ns: [] complex)

(data: [n]complex) (j: i32) : (iter_ret) =

let k = j % ns

let wk_n = unsafe wk_ns[offset+k]

let a0 = data[j]

let a1 = wk_n complex .* (data[j+n/radix])

let a2 = data[j+2*n/radix]

let a3 = wk_n complex .* (data[j+3*n/radix])

let a4 = data[j+4*n/radix]

let a5 = wk_n complex .* (data[j+5*n/radix])

let a6 = data[j+6*n/radix]

let a7 = wk_n complex .* (data[j+7*n/radix])

let tw = wk_n complex .* wk_n --W^2

let a2 = tw complex .* a2

let a3 = tw complex .* a3

let a6 = tw complex .* a6

let a7 = tw complex .* a7

let tw = tw complex .* tw --W^4

let a4 = tw complex .* a4

let a5 = tw complex .* a5

let a6 = tw complex .* a6

let a7 = tw complex .* a7

let b0 = a0 complex .+ a4

let b4 = a0 complex.- a4

let b1 = a1 complex .+ a5

let b5 = mul_p1q4 (a1 complex.- a5)

let b2 = a2 complex .+ a6

let b6 = twiddle (a2 complex.- a6)

let b3 = a3 complex .+ a7

let b7 = mul_p3q4 (a3 complex.- a7)

let a0 = b0 complex .+ b2

let a2 = b0 complex.- b2

let a1 = b1 complex .+ b3

let a3 = twiddle(b1 complex.- b3)

let a4 = b4 complex .+ b6

let a6 = b4 complex.- b6

let a5 = b5 complex .+ b7

let a7 = twiddle(b5 complex.- b7)

let v0 = a0 complex .+ a1

let v4 = a0 complex.- a1

let v1 = a4 complex .+ a5

let v5 = a4 complex.- a5

let v2 = a2 complex .+ a3

let v6 = a2 complex.- a3

let v3 = a6 complex .+ a7

let v7 = a6 complex.- a7
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let idxD = ((j/ns)*ns*radix) + (j % ns)

in (idxD , idxD+ns, idxD +2*ns, idxD +3*ns,

idxD +4*ns, idxD +5*ns , idxD +6*ns, idxD +7*ns,

v0, v1, v2, v3, v4, v5, v6, v7)

}

A.2 FFT Main Module

import "fft_iteration"

module type fft_module = {

val radix: i32

-- | Find out whether input size is a power of the radix

val powOfR: i32 -> bool

-- | FFT of complex numbers

val fft [n]: [n](f32 , f32) -> bool -> [n](f32 , f32)

-- | FFT of 2-D array of complex numbers for factorization

val fact: [][](f32 ,f32) -> i32 -> [](f32 , f32)

-- | FFT of real numbers

val fft_real [n]: [n]f32 -> bool -> [n]f32

}

module fft_module(Iter: fft_iteration ): fft_module = {

let radix = Iter.radix

let powOfR (n: i32) : bool =

let x = 0i32

let (x, _) = loop (x,n) while ((1 < n) && (x == 0)) do

let x = n % radix

let n = n / radix

in (x, n)

let res = if (x == 0) then true else false

in res

let fft ’ [n] (forward: f32) (input: [n]complex) (bits: i32) : [n]complex =

let input = intrinsics.cosmin_flatten (copy (intrinsics.unflatten

(n/radix , radix , input )))

let output = intrinsics.cosmin_flatten (copy (intrinsics.unflatten

(n/radix , radix , input )))

let ix = iota(n/radix)

let NS = map (radix **) (iota bits)

let (res ,_) =

loop (input ’: *[n]complex , output ’: *[n]complex) = (input , output)

for ns in NS do

let (inds_vals: Iter.tuple_inds_vals) =

unsafe (Iter.unzip_it

(map (Iter.fft_iter forward ns input ’) ix))

in (scatter output ’ (Iter.concat_inds inds_vals)

(Iter.concat_vals inds_vals), input ’)

in res

let fft_precomp ’ [n] (forward: f32) (input: [n]complex) (bits: i32) : [] complex =

let input = intrinsics.cosmin_flatten

(copy (intrinsics.unflatten (n/radix , radix , input )))

let output = intrinsics.cosmin_flatten

(copy (intrinsics.unflatten (n/radix , radix , input )))

-- Precomputation of twiddle factors

let wk_ns =

map (\ind ->

let (n’,ind ’) =

loop (s,ind) = (1,ind) while ind >= 0 do

(s * radix , ind - s)

let k’ = ind ’ + (n’ / radix)

let angle = (-2f32 * forward * f32.pi * (r32 k’)) / (r32 n’)

in complex.mk (f32.cos angle) (f32.sin angle)

) (iota ((n-1)/( radix -1)))

let ix = iota(n/radix)

--let NS = map (radix **) (iota bits)
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let (res ,_,_) =

loop (input ’: *[n]complex , output ’: *[n]complex , offset: i32) =(input , output , 0)

for i < bits do

let ns = radix ** i

let (inds_vals: Iter.tuple_inds_vals) =

unsafe (Iter.unzip_it

(map

(Iter.fft_iter_precomp ns offset wk_ns input ’) ix))

in (scatter output ’ (Iter.concat_inds inds_vals)

(Iter.concat_vals inds_vals),

input ’, offset +(radix**i))

in res

let logR (n: i32) : i32 =

let r = 0

let (r, _) = loop (r,n) while 1 < n do

let n = n / radix

let r = r + 1

in (r,n)

in r

let generic_fft [n] (forward: bool) (data: [n](f32 ,f32)) (precomp: bool):

[n](f32 ,f32) =

let n_bits = logR n

let forward ’ = if forward then 1f32 else -1f32

in if (precomp == false) then take n (fft ’ forward ’ data n_bits)

else take n (fft_precomp ’ forward ’ data n_bits)

let fft [n] (data: [n](f32 , f32)) (precomp: bool): [n](f32 , f32) =

generic_fft true data precomp

let fact [n1][n2] (data: [n1][n2](f32 ,f32)) (n: i32) : [](f32 , f32) =

let data = transpose data

let data = map (\d -> fft d false) data

-- multiplication with twiddle factors

let data = map (\(j2,row) ->

map (\(i1,v) ->

let angle = (-2f32 * f32.pi * (r32 i1) * (r32 j2)) / (r32 n)

let twiddle = complex.mk (f32.cos angle) (f32.sin angle)

in v complex .* twiddle

) (zip (iota n1) row)

) (zip (iota n2) data)

let data = transpose data

let data = map (\d -> fft d false) data

in flatten (transpose data)

let fft_real [n] (data: [n]f32) (precomp: bool): ([n]f32) =

map (\r -> complex.re r)

(fft (map (\r -> complex.mk_re r) data) (precomp ))

}

A.3 Planner-Executor Module

import "fft_module"

import "fft_iteration"

module iteration2 = fft_iteration2

module fft_mod2 = fft_module(iteration2)

module iteration4 = fft_iteration4

module fft_mod4 = fft_module(iteration4)

module iteration8 = fft_iteration8

module fft_mod8 = fft_module(iteration8)

module type fft_planex = {

type n_t

-- | A record of information about the plan for the input

type plan_t

-- | Create a plan how to calculate the fft

val planner: i32 -> i32 -> plan_t
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-- | Execute the plan; calculate the fft

val executor [n]: [n]n_t -> plan_t -> [n]n_t

val planex [n]: [n]n_t -> i32 -> [n]n_t

val planex_batch [n][m]: [n][m]n_t -> i32 -> [n][m]n_t

}

module fft_globalmem : (fft_planex) = {

type n_t = f32

type plan_t = {rad: i32}

let planner (n) (block_sz: i32) : plan_t =

-- Preferrably use radix 8

let plan_rad = if (fft_mod8.powOfR n == true) then 8

else if (fft_mod4.powOfR n == true) then 4 else 2

in {rad = plan_rad}

let executor [n] (data: [n]n_t) (plan: plan_t) : [n]n_t =

if (plan.rad == 8) then fft_mod8.fft_real data true

else if (plan.rad == 4) then fft_mod4.fft_real data true

else fft_mod2.fft_real data true

let planex [n] (data:[n]n_t) (block_sz: i32) =

let plan = planner n block_sz

in executor data plan

let planex_batch [n][m] (data: [n][m]n_t) (block_sz: i32) : [n][m]n_t =

let plan = planner n block_sz

in map (\f -> executor f plan) data

}

module fft_sharedmem : (fft_planex) = {

type n_t = f32

type plan_t = {rad: i32 , block: i32 , num: i32}

let planner (n) (block_sz: i32) : plan_t =

-- Always use r4 if input is power of 4

let plan_rad = if (fft_mod4.powOfR n == true) then 4 else 2

let plan_block = (plan_rad * block_sz)

let plan_num = if (n <= plan_block) then 0

else 1

in {rad = plan_rad , block = plan_block , num = plan_num}

let executor [n] (data: [n]n_t) (plan: plan_t) : [n]n_t =

let no_splitting (data ’: [n](n_t , n_t)) : [n](n_t , n_t) =

if (plan.rad == 2) then fft_mod2.fft data ’ true

else fft_mod4.fft data ’ true

let splitting1 (data ’: [n](n_t , n_t)) (plan ’: plan_t) :

[n](n_t , n_t) =

let n1 = plan ’.block

let n2 = n/(plan ’.block)

let data ’ = unflatten n1 n2 data ’

let data ’ = if (plan ’.rad == 2) then fft_mod2.fact data ’ n

else fft_mod4.fact data ’ n

in data ’

let data_real = map (\r -> complex.mk_re r) data

let res = if (plan.num == 0) then (no_splitting data_real)

else (splitting1 data_real plan)

in map (\r -> complex.re r) res

let planex [n] (data:[n]n_t) (block_sz: i32) : [n]n_t =

let plan = planner n block_sz

in executor data plan

let planex_batch [n][m] (data: [n][m]n_t) (block_sz: i32) : [n][m]n_t =

let plan = planner n block_sz

in map (\f -> executor f plan) data

}
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Appendix B

Benchmarks

B.1 AMD

---------------------

-- FirePro AMD GPU --

---------------------

-----------------------------------------------------------------------

-----------------------------------------------------------------------

-- I. RADIX = 2

1. CPU RUNTIMES:

dataset data/input2pow6.in: 6536544.60us (avg. of 5 runs; RSD: 0.18)

dataset data/input2pow8.in: 6848591.50us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow9.in: 6046836.20us (avg. of 10 runs; RSD: 0.13)

dataset data/input2pow10.in: 7040947.40us (avg. of 5 runs; RSD: 0.02)

dataset data/input2pow15.in: 6947698.20us (avg. of 5 runs; RSD: 0.06)

dataset data/input2pow16.in: 5244199.40us (avg. of 5 runs; RSD: 0.10)

dataset data/input2pow18.in: 7160000.60us (avg. of 5 runs; RSD: 0.14)

dataset data/input2pow20.in: 6479949.00us (avg. of 5 runs; RSD: 0.10)

dataset data/input2pow21.in: 9106610.80us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow22.in: 8324531.40us (avg. of 5 runs; RSD: 0.14)

dataset data/input2pow24.in: 11294911.20us (avg. of 5 runs; RSD: 0.02)

2. GPU RUNTIMES: ONLY GLOBAL MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 46470.07us (avg. of 30 runs; RSD: 0.05)

dataset data/input2pow8.in: 44250.77us (avg. of 30 runs; RSD: 0.07)

dataset data/input2pow9.in: 43748.83us (avg. of 30 runs; RSD: 0.08)

dataset data/input2pow10.in: 43328.47us (avg. of 30 runs; RSD: 0.08)

dataset data/input2pow15.in: 41551.50us (avg. of 30 runs; RSD: 0.08)

dataset data/input2pow16.in: 41082.73us (avg. of 30 runs; RSD: 0.08)

dataset data/input2pow18.in: 39574.67us (avg. of 30 runs; RSD: 0.08)

dataset data/input2pow20.in: 37232.23us (avg. of 30 runs; RSD: 0.06)

dataset data/input2pow21.in: 33934.27us (avg. of 30 runs; RSD: 0.00)

dataset data/input2pow22.in: 31599.93us (avg. of 30 runs; RSD: 0.01)

dataset data/input2pow24.in: 34159.67us (avg. of 30 runs; RSD: 0.01)
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3. GPU RUNTIMES: ONLY GLOBAL MEMORY + TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 41340.47us (avg. of 30 runs; RSD: 0.03)

dataset data/input2pow8.in: 38060.87us (avg. of 30 runs; RSD: 0.06)

dataset data/input2pow9.in: 37334.67us (avg. of 30 runs; RSD: 0.08)

dataset data/input2pow10.in: 37159.17us (avg. of 30 runs; RSD: 0.07)

dataset data/input2pow15.in: 35138.20us (avg. of 30 runs; RSD: 0.06)

dataset data/input2pow16.in: 34559.67us (avg. of 30 runs; RSD: 0.07)

dataset data/input2pow18.in: 33857.00us (avg. of 30 runs; RSD: 0.05)

dataset data/input2pow20.in: 33859.30us (avg. of 30 runs; RSD: 0.04)

dataset data/input2pow21.in: 34004.23us (avg. of 30 runs; RSD: 0.04)

dataset data/input2pow22.in: 32241.37us (avg. of 30 runs; RSD: 0.04)

dataset data/input2pow24.in: 37305.13us (avg. of 30 runs; RSD: 0.05)

4. GPU RUNTIMES: SHARED MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 49213.30us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow8.in: 25643.40us (avg. of 10 runs; RSD: 0.07)

dataset data/input2pow9.in: 24826.20us (avg. of 10 runs; RSD: 0.06)

dataset data/input2pow10.in: 23624.50us (avg. of 10 runs; RSD: 0.05)

5. GPU RUNTIMES: SHARED MEMORY, WITH TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 32400.80us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow8.in: 16671.10us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow9.in: 15419.00us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow10.in: 15909.60us (avg. of 10 runs; RSD: 0.10)

-----------------------------------------------------------------------

-----------------------------------------------------------------------

-- II. RADIX = 4

1. CPU RUNTIMES:

dataset data/input2pow6.in: 3607812.60us (avg. of 10 runs; RSD: 0.16)

dataset data/input2pow8.in: 3489618.00us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow10.in: 3255675.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 3062832.20us (avg. of 10 runs; RSD: 0.10)

dataset data/input2pow18.in: 3811612.80us (avg. of 10 runs; RSD: 0.11)

dataset data/input2pow20.in: 4498532.80us (avg. of 10 runs; RSD: 0.04)

dataset data/input2pow22.in: 5273312.10us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow24.in: 4693372.00us (avg. of 10 runs; RSD: 0.03)

2. GPU RUNTIMES: ONLY GLOBAL MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 31302.90us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow8.in: 24203.30us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow10.in: 21837.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 19153.20us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow18.in: 18638.50us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow20.in: 18542.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 18464.80us (avg. of 10 runs; RSD: 0.03)
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dataset data/input2pow24.in: 19823.60us (avg. of 10 runs; RSD: 0.01)

3. GPU RUNTIMES: ONLY GLOBAL MEMORY + TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 30409.00us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow8.in: 23688.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow10.in: 21517.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 18891.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow18.in: 18747.10us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow20.in: 19328.20us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow22.in: 17114.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 18720.80us (avg. of 10 runs; RSD: 0.01)

4. GPU RUNTIMES: SHARED MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 33342.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow8.in: 11123.40us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow10.in: 10031.30us (avg. of 10 runs; RSD: 0.00)

5. GPU RUNTIMES: SHARED MEMORY, WITH TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 32640.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow8.in: 9065.40us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow10.in: 7987.50us (avg. of 10 runs; RSD: 0.00)

-----------------------------------------------------------------------

-----------------------------------------------------------------------

-- III. RADIX 8

1. CPU RUNTIMES:

dataset data/input2pow6.in: 3379320.50us (avg. of 10 runs; RSD: 0.04)

dataset data/input2pow9.in: 2484598.40us (avg. of 10 runs; RSD: 0.17)

dataset data/input2pow15.in: 2569843.20us (avg. of 10 runs; RSD: 0.11)

dataset data/input2pow18.in: 4079942.80us (avg. of 10 runs; RSD: 0.10)

dataset data/input2pow21.in: 4763287.50us (avg. of 10 runs; RSD: 0.15)

dataset data/input2pow24.in: 5586481.90us (avg. of 10 runs; RSD: 0.08)

2. GPU RUNTIMES: ONLY GLOBAL MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 28967.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow9.in: 19894.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow15.in: 16104.30us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow18.in: 15284.80us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 15697.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 15502.30us (avg. of 10 runs; RSD: 0.01)

3. GPU RUNTIMES: ONLY GLOBAL MEMORY + TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 28892.00us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow9.in: 19811.90us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow15.in: 15292.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow18.in: 14375.50us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 14597.80us (avg. of 10 runs; RSD: 0.01)
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dataset data/input2pow24.in: 14419.70us (avg. of 10 runs; RSD: 0.01)

4. GPU RUNTIMES: SHARED MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 31872.00us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow9.in: 8891.90us (avg. of 10 runs; RSD: 0.00)

5. GPU RUNTIMES: SHARED MEMORY, WITH TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 31804.30us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow9.in: 7997.20us (avg. of 10 runs; RSD: 0.00)

B.2 NVIDIA

---------------------

-- NVIDIA GPU --

---------------------

-----------------------------------------------------------------------

-----------------------------------------------------------------------

-- I. RADIX = 2

1. CPU SPLIT Runtimes

dataset data/input2pow6.in: 6.90us (avg. of 10 runs; RSD: 0.14)

dataset data/input2pow8.in: 46.70us (avg. of 10 runs; RSD: 0.09)

dataset data/input2pow9.in: 99.00us (avg. of 10 runs; RSD: 0.08)

dataset data/input2pow10.in: 201.30us (avg. of 10 runs; RSD: 0.05)

dataset data/input2pow15.in: 8610.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 18679.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow18.in: 83809.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow20.in: 381296.20us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 795459.50us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 1761053.80us (avg. of 10 runs; RSD: 0.04)

dataset data/input2pow24.in: 7602942.90us (avg. of 10 runs; RSD: 0.01)

2. GPU SPLIT Runtimes

dataset data/input2pow6.in: 115.20us (avg. of 10 runs; RSD: 0.10)

dataset data/input2pow8.in: 153.90us (avg. of 10 runs; RSD: 0.06)

dataset data/input2pow9.in: 162.50us (avg. of 10 runs; RSD: 0.07)

dataset data/input2pow10.in: 200.60us (avg. of 10 runs; RSD: 0.07)

dataset data/input2pow15.in: 225.60us (avg. of 10 runs; RSD: 0.07)

dataset data/input2pow16.in: 269.80us (avg. of 10 runs; RSD: 0.06)

dataset data/input2pow18.in: 552.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow20.in: 1918.40us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 3884.50us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow22.in: 7955.20us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow24.in: 32874.10us (avg. of 10 runs; RSD: 0.02)

3. CPU Runtimes

dataset data/input2pow6.in: 2955597.30us (avg. of 10 runs; RSD: 0.00)
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dataset data/input2pow8.in: 2884452.00us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow9.in: 2865708.40us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow10.in: 2851676.50us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow15.in: 2877989.90us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow16.in: 2879708.80us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow18.in: 2998358.40us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow20.in: 2930226.50us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 2982417.20us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow22.in: 2885437.10us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 3902226.60us (avg. of 10 runs; RSD: 0.00)

4. GPU RUNTIMES: GLOBAL MEMORY + TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 36834.30us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow8.in: 31685.90us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow9.in: 30965.50us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow10.in: 30060.90us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow15.in: 27418.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 27241.90us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow18.in: 27922.10us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow20.in: 27809.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow21.in: 27732.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 26476.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 30453.20us (avg. of 10 runs; RSD: 0.01)

5. GPU RUNTIMES: GLOBAL MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 33650.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow8.in: 28934.00us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow9.in: 28337.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow10.in: 27931.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow15.in: 26475.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 26189.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow18.in: 25935.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow20.in: 25605.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow21.in: 25376.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 23683.00us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 25848.90us (avg. of 10 runs; RSD: 0.00)

-----------------------------------------------------------------------

-----------------------------------------------------------------------

-- II. RADIX = 4

1. CPU SPLIT Runtimes

dataset data/input2pow6.in: 3.10us (avg. of 10 runs; RSD: 0.23)

dataset data/input2pow8.in: 11.80us (avg. of 10 runs; RSD: 0.05)

dataset data/input2pow10.in: 109.70us (avg. of 10 runs; RSD: 0.10)

dataset data/input2pow16.in: 8384.80us (avg. of 10 runs; RSD: 0.02)
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dataset data/input2pow18.in: 37673.80us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow20.in: 181204.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 791705.00us (avg. of 10 runs; RSD: 0.06)

dataset data/input2pow24.in: 4542222.00us (avg. of 10 runs; RSD: 0.00)

2. GPU SPLIT Runtimes

dataset data/input2pow6.in: 152.50us (avg. of 10 runs; RSD: 0.07)

dataset data/input2pow8.in: 159.90us (avg. of 10 runs; RSD: 0.06)

dataset data/input2pow10.in: 235.00us (avg. of 10 runs; RSD: 0.05)

dataset data/input2pow16.in: 361.60us (avg. of 10 runs; RSD: 0.04)

dataset data/input2pow18.in: 628.10us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow20.in: 1569.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 5627.90us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow24.in: 22404.70us (avg. of 10 runs; RSD: 0.03)

3. CPU Runtimes

dataset data/input2pow6.in: 1296727.10us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow8.in: 1213851.40us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow10.in: 1200030.30us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow16.in: 1210837.70us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow18.in: 1433830.80us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow20.in: 1335269.10us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow22.in: 1259790.40us (avg. of 10 runs; RSD: 0.05)

dataset data/input2pow24.in: 1751502.20us (avg. of 10 runs; RSD: 0.00)

4. GPU RUNTIMES: GLOBAL MEMORY + TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 23920.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow8.in: 18345.80us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow10.in: 16953.20us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 15182.80us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow18.in: 15089.70us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow20.in: 14851.10us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 13831.20us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow24.in: 15272.70us (avg. of 10 runs; RSD: 0.00)

5. GPU RUNTIMES: GLOBAL MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 23383.00us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow8.in: 18219.20us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow10.in: 17082.10us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow16.in: 15300.30us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow18.in: 15036.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow20.in: 14649.30us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow22.in: 13483.60us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 14579.40us (avg. of 10 runs; RSD: 0.00)
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-----------------------------------------------------------------------

-----------------------------------------------------------------------

-- III. RADIX 8

1. CPU SPLIT Runtimes

dataset data/input2pow6.in: 2.20us (avg. of 10 runs; RSD: 0.18)

dataset data/input2pow9.in: 13.70us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow15.in: 2879.10us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow18.in: 27023.80us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow21.in: 257328.70us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 3679618.00us (avg. of 10 runs; RSD: 0.01)

2. GPU SPLIT Runtimes

dataset data/input2pow6.in: 132.40us (avg. of 10 runs; RSD: 0.06)

dataset data/input2pow9.in: 165.10us (avg. of 10 runs; RSD: 0.05)

dataset data/input2pow15.in: 253.40us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow18.in: 556.90us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow21.in: 2781.40us (avg. of 10 runs; RSD: 0.01)

dataset data/input2pow24.in: 21521.70us (avg. of 10 runs; RSD: 0.03)

3. CPU Runtimes

dataset data/input2pow6.in: 978961.10us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow9.in: 871656.50us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow15.in: 919394.80us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow18.in: 1338541.40us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow21.in: 1250893.10us (avg. of 10 runs; RSD: 0.11)

dataset data/input2pow24.in: 1683305.40us (avg. of 10 runs; RSD: 0.00)

4. GPU RUNTIMES: GLOBAL MEMORY + TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 27282.40us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow9.in: 17112.50us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow15.in: 13330.10us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow18.in: 12757.30us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 12135.10us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow24.in: 12084.10us (avg. of 10 runs; RSD: 0.00)

5. GPU RUNTIMES: GLOBAL MEMORY, WITHOUT TWIDDLE PRECOMPUTATION

dataset data/input2pow6.in: 29448.10us (avg. of 10 runs; RSD: 0.03)

dataset data/input2pow9.in: 17185.30us (avg. of 10 runs; RSD: 0.02)

dataset data/input2pow15.in: 13672.60us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow18.in: 12932.60us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow21.in: 12266.80us (avg. of 10 runs; RSD: 0.00)

dataset data/input2pow24.in: 12009.90us (avg. of 10 runs; RSD: 0.00)
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