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ABSTRACT
We study the feasibility and performance efficiency of expressing a
complex financial numerical algorithm with high-level functional
parallel constructs. The algorithm we investigate is a least-square
regression-based Monte-Carlo simulation for pricing American
options. We propose an accelerated parallel implementation in
Futhark, a high-level functional data-parallel language. The Futhark
language targets GPUs as the compute platform and we achieve
a performance comparable to, and in particular cases up to 2.5×
better than, an implementation optimised by NVIDIA CUDA engi-
neers. In absolute terms, we can price a put option with 1 million
simulation paths and 100 time steps in 17 ms on a NVIDIA Tesla
V100 GPU. Furthermore, the high-level functional specification is
much more accessible to the financial-domain experts than the
low-level CUDA code, thus promoting code maintainability and
facilitating algorithmic changes.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;
Massively parallel algorithms; Massively parallel and high-
performance simulations; Parallel programming languages; •
Applied computing → Economics; • Computer systems or-
ganisation→ Multicore architectures.
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1 INTRODUCTION
Pricing American options is a fundamental business case in the
financial services sector, because such financial instruments are
widely traded in the derivative markets. American options can be
exercised at any time between the present date and the time to
maturity. This aspect puts them in contrast to European options,
which can be exercised only at their maturity. In the usual case, the
option holder is expected to exercise the option as soon as it is more
profitable to do so rather than wait until its expiration. Effectively,
the value of an American option is the value achieved by exercising
it at the optimal time. This embedded optimal stopping problem is
a challenge, for which there is no general closed-form formula [28].
Instead, the option value must be approximated with a numerical
simulation, which constitutes a substantial computational effort
that must be executed efficiently to be acceptable for time-critical
financial applications.

Currently, the most efficient accelerated simulations are imple-
mented in dedicated languages and frameworks such as CUDA [1,
24, 43], OpenCL [10, 53], MPI [16], OpenMP [54] and other tech-
nologies [15]. A challenge with such implementations is the poor
expressibility, which makes them inaccessible to domain experts
and difficult to maintain. Specialist developers must be appointed
to implement and maintain the code, which require a deep under-
standing of the underlying hardware and experience with code
transformations aimed at optimising potentially-conflicting factors
such as locality of reference and the degree of parallelism.

We propose a functional approach to implementing an acceler-
ated option pricing model. The use of high-level parallel constructs
lets us express the algorithm in an intuitive manner, without the
concerns of mapping the code to the architecture. The Futhark lan-
guage and the optimising compiler behind it makes this approach
possible [33]. The paper makes the following contributions:

(1) We present a high-level data-parallel implementation of the
Longstaff-Schwartz algorithm for pricing American options
using Monte Carlo Simulation with Least-Square Regression
(abbreviated LSMC) [37]. The implementation serves as a
reference implementation and can easily be ported to other
languages. Moreover, the algorithm makes explicit the avail-
able parallelism by using high-level data-parallel constructs.

(2) We give a detailed description of the algorithmic changes
required to achieve an efficient parallel implementation of
the LSMC algorithm.

(3) We present an optimised efficient version of the algorithm
and describe how the original algorithm is rewritten in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


IFL’19, September 2019, Singapore Wojciech Michal Pawlak, Martin Elsman, and Cosmin Eugen Oancea

Futhark to achieve performance results that in most cases
matches a CUDA version, which is a hand-tuned implemen-
tation of the algorithm, written in a dedicated low-level
programming model (by CUDA engineers). In addition, we
present specific cases, in which the Futhark version achieves
up to 2.5× speedup over the CUDA version.

The remainder of the paper is organised as follows. In Section 2,
we examine the problem solved by our application and describe
the high-level algorithm for American option pricing. In Section 3,
we describe the Futhark language and show how American option
pricing is implemented in Futhark. In Section 4, we describe and
demonstrate how the inefficient version of the algorithm is turned
into an efficient version targeting GPUs. Section 5 presents and
discusses the main experimental results. Section 6 reviews related
work and Section 7 summarises our main findings.

2 AMERICAN OPTION PRICING
An option contract is defined by its payoff function. For the vanilla-
type options like calls and puts, it compares the strike price K and
the current asset spot price S and thereby determines the cash flow
of an option. The strike price K is an agreed fixed price, at which
the option holder can buy (in case of a call) or sell (in case of a put)
the underlying asset. The spot price S is a price of the underlying
asset like stock or commodity, that the option derives its value from.
S varies over time, which can be described using a stochastic pro-
cess. Such a process is defined by a stochastic differential equation
(SDE), which cannot be solved directly using a closed-form formula.
Instead, we use a numerical simulation method.

In practice, Monte Carlo (MC) simulation is the most widely used
and robust method for solving general SDE problems, and option
pricing problems in particular. It is popular in the quantitative
finance community, because (1) it is relatively simple to implement
(and parallelise) and (2) it allows for pricing of complex instruments
that depend on many underlying assets. Such instruments cannot
be priced with deterministic methods such as finite difference or
lattice models suitable for low-dimensional instruments. In fact,
Monte Carlo is the only numerical method that can be used for
multi-factor pricing in dimensions greater than four [25].

The Monte Carlo Simulation method is based on two theorems of
probability theory. The first one is the Strong Law of Large Numbers,
which guarantees the convergence of a certain series of indepen-
dent random numbers having the same distribution to a value of an
integral. The second is the Central Limit Theorem, which determines
the convergence rate of the first law [4, 48]. In a standard Monte
Carlo simulation, the paths of the state variables are simulated for-
ward in time, which is, in particular, the case for pricing European
options. Given an option payoff, a forward (future) price is deter-
mined for each path at the maturity date. To estimate the present
price of the instrument, the future cash flows (prices in different
points in future time) have to be discounted to the present time
using some established discount interest rate (i.e., money available
now is worth more than the identical amount in the future.) Finally,
an unbiased estimate of the current option price is a mean average
of these prices.

In contrast to pricing European options, the pricing of Ameri-
can options happens backward in time. First, the optimal exercise

price is determined at maturity and, subsequently, is recursively
propagated and discounted backward in time (until the current
time) using dynamic programming. Although an American option
can be exercised at any time, the exercise times are discretised and
restricted to a fixed set of times (e.g., daily or monthly). The overall
goal here is to provide an approximation of the optimal stopping
rule that maximises the value of the American option.

At maturity t = T , the option holder will exercise the option if it
is in-the-money (ITM), that is, if the value of the option, if exercised,
will generate a positive cash flow (e.g., in case of a call option, a
spot price higher than the strike price is preferable.) For any other
time ti , the holder needs to choose whether to exercise the option
or continue to hold it. The option value is at the maximum if the
exercise happens as soon as the immediate exercise cash flow is
greater than or equal to the continuation value (i.e., the discounted
expected option value at the next instance in time.) However, this
continuation value at any given time ti is not known, so it needs to
be estimated.

In practice, we want to price large portfolios of options through
simulation within seconds for real-time decision making. That is
why GPUs, which allow for a high degree of parallelism due to its
massive number of cores, are a good fit for such workloads.

2.1 The Longstaff-Schwartz Algorithm
Several authors have proposed the use of regression to estimate con-
tinuation values from simulated paths and thereby enable American
option pricing through simulation [11, 37, 52]. There are several rea-
sons for choosing the Longstaff-Schwartz approach [37]. First, it is
the most widely adopted algorithm for American option pricing in
the financial industry. Second, it is based on an easily-parallelisable
Monte Carlo simulation. Finally, the convergence of the Longstaff-
Schwartz algorithm have been widely studied together with its
dependence on the number of simulated paths [18].

2.1.1 Least-Square Regression. To start with, we turn our focus to
the core challenge of the algorithm—the estimation of the contin-
uation values Ci at each time step i . Let us assume that Si j is an
asset spot price at time step i on a path j. Each continuation value
Ci (Si j ) is the regression of the option value in the next time step on
the value of Si j in the current time step and path. The procedure is
to approximateCi by a linear combination of basis functions of the
current state and use regression to estimate the best coefficients
for this approximation. The approximation accuracy depends on
the choice of functions used in the regression.

Following the Longstaff-Schwartz approach, we apply an or-
dinary least-squares regression across the simulated paths at any
given time ti to estimate the continuation valueCi . The least-square
regression is a method for finding approximate solutions of over-
determined1 systems of linear equations by minimising the sum
of the squares of the errors in the equations [9]. However, since
the decision to exercise the option is relevant only when the op-
tion is in-the-money, we regress only paths that are in-the-money.
This choice results in an improved algorithmic efficiency without
negative impact on accuracy.

1 There are more equations to solve than variables to choose.
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To begin with, the ITM paths are parameterised using a quadratic
polynomial β0 + β1Si j + β2S2i j , where Si j is a variable—an asset spot
price at a time step i , here for some ITM path j. In particular, each
term of a polynomial, a monomial with basis 1,x ,x2, . . . , is a basis
function. We chose to use up to second order polynomials in the
basis. Having said that, we mention that this choice is usually left
as a parameter to the algorithm. In contrast, we deliberately settle
on a particular type of basis function. This makes it possible to
implement specialised versions of matrix transformations, and as
a result enable performance optimisations. The number of used
polynomials matches the number of different time steps i , because
one regression is performed for each step. A point cloud of asset
spot prices Si j, distributed for each path across the time steps, is
obtained from a simulation. The regression problem is then to find,
separately for each of these time steps, the best fit in terms of β
coefficients and basis functions for a quadratic polynomial. We
discuss this procedure further in Section 4.

Essentially, we deal with an over-determined system of equa-
tions, because the number of equations is larger than the number
of unknown coefficients (i.e., 3β coefficients). For the sake of pre-
sentation, let us assume we solve a system of equations of form
Ax = b. We minimise the objective function ∥ Ax − b ∥2 by finding
a variable vector x̂ from all possible choices of x . In other words, it
is a least squares approximate solution to ∥ Ax̂ − b ∥2⩽∥ Ax − b ∥2.
In our case, we assume that the number of ITM paths itm is signifi-
cantly larger than the number of the basis functions (3). It follows
that A is a tall data matrix of size itm × 3 and b is a data column
vector of size itm. The variable of this system of equations is the
column vector x of size 3. In particular, A is a matrix of powers of
asset spot prices Si built from the chosen polynomial. b is a vector
of cash flows V̂i dependent on the payoff function p(Si ), specific
for an option that is priced. Finally, x is a vector of polynomial
coefficients βk , that we want to fit with the least squares method.
We arrive at the following system of equations:

1 S0 S20
. . .

1 Sj S2j
. . .

1 Sitm−1 S2itm−1



β0
β1
β2

 =


p(S0)
. . .

p(Sj )
. . .

p(Sitm−1)


(1)

The textbook solution for solving this least-square problem is to
multiply both sides by AT , resulting in ATAx̂ = ATb. Since ATA is
a square matrix, we can now multiply both sides with its inverse2
resulting in the unique solution: x̂ = (ATA)−1ATb. The matrix
(ATA)−1AT is the pseudo-inverse of the matrix A, denoted A†. The
approach to constructing A† is the main algorithmic challenge and
the source for optimisations. There exist different methods to build
A†. For the first naive implementation, we use the formula directly,
applying matrix multiplication, transpositions, and inversion on A.
In Section 4.2, we present an efficient algorithm for a pseudo-inverse
construction, adapted for massive parallelism on GPUs.

2.1.2 Algorithmic Structure. The generic structure of a simulation
algorithm that employs a linear least squares regression according
to the Longstaff-Schwartz algorithm [25] is summarised as follows.
2 A fundamental assumption of least squares method is that the columns of matrix A
are linearly independent, therefore ATA is always invertible.

We assume we are given the number of time stepsm, the number
of paths n, and the option-specific payoff function pi (Si j ), where Si j
is an asset spot price at time step i and path j . Payoffpi is discounted
back from the maturity T (time stepm − 1) to current time (time
step i).

A generic linear combination of basis functions is denoted by
a polynomial function ψi : Rr → R and constant coefficients
βik , where r is the highest degree of the chosen polynomial with
each term being a basis function k = 0, . . . , r − 1. Moreover, βi =
[βi0, . . . , βim−1] andψ (Si )T = [ψ0(Si ), . . . ,ψm−1(Si )]T .

(1) Generate a matrixW (n,m) of random numbers drawn from
a standard normal distribution.

(2) Using W , simulate (by forward induction) n independent
paths S0j , . . . , Sm−1j , j = 0, . . . ,n−1 of Geometric Brownian
Motion stochastic processes for the underlying asset prices.

(3) At the last stepm − 1 (at maturity T ), compute the option
value V̂mj = pm (Smj ), j = 0, . . . ,n − 1 applying the payoff
function p at the last stepm − 1.

(4) Apply backward induction for each step i =m − 2, . . . , 1 to
compute cash flows:

(a) Select the ITM paths.
(b) Build the matrixψi from asset prices Si and the right hand

side cash flows vector V̂i+1 only for the ITM paths for the
least-square linear equationψi (Si )βi = V̂i+1(Si+1).

(c) Use regression to calculate β̂i by solving a pseudo-inverse

ψ (Si )
† = (ψ (Si )

Tψ (Si ))
−1ψ (Si )

T

in
β̂i = ψ (Si )

†V̂i+1(Si+1).

(d) Approximate the continuation function Ĉi (Si ) = β̂iψ (Si )T .
(e) Decide to early-exercise based on the value of the contin-

uation function Ĉi for each ITM path j:

V̂i j =

{
pi (Si j ), pi (Si j ) ⩾ Ĉi (Si j );
V̂i+1, j , pi (Si j ) < Ĉi (Si j ).

(2)

(5) Return V̂0 = (V̂10 + · · · + V̂1n−1)/n discounted to time step
i = 0.

3 THE FUTHARK LANGUAGE
Futhark is a statically typed parallel functional array language. The
language is based on an ML or Haskell style syntax and is equipped
with a number of second-order array combinators (SOACs), such as
map, reduce, scan, and filter. The Futhark surface language features
a higher-order module system [21], polymorphism, and limited
support for higher-order functions [35].3 Just as higher-order func-
tions and modules are eliminated entirely at compile time, using a
no-overhead approach, arrays of records (or tuples) are turned into
records of flat arrays. The language also features a uniqueness type
system and explicit sequential loop constructs, which, together with
support for array-updates, allows for implementing imperative-like
algorithm in a functional style.

The Futhark compiler supports aggressive fusion of parallel con-
structs [32], and specialised code generators for key parallel op-
erators, such as map-scan and (segmented) map-reduce composi-
tions [31, 36]. Essentially, since all available parallelism is assumed
3 Functions may not be stored in arrays or returned by conditional expressions.
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1 iota n = [ 0 , . . . , n−1]
2 replicate n v = [ v , . . . , v ] −− v r e p e a t e d n t im e s
3 map f [ a1 , . . . , an ] = [ f a1 , . . . , f an ]
4 map2 g [ a1 , . . . , an ] [ b1 , . . . , bn ] = [ g a1 b1 , . . . , g an bn ]
5 reduce ⊙ e⊙ [ a1 , . . . , an ] = e⊙ ⊙ a1 ⊙ . . . ⊙ an
6 scaninc ⊙ e⊙ [ a1 , . . . , an ] = [ a1 , . . . , a1 ⊙ . . . ⊙an ]
7 scanexc ⊙ e⊙ [ a1 , . . . , an ] = [ e⊙ , a1 , . . . , a1 ⊙ . . . ⊙an−1 ]
8 sgmscan inc ⊙ e⊙ [ . . . , 1 , 0 , . . . , 0 , 1 , . . . ]
9 [ . . . , ak1 , ak2 , . . . , akn , ak+11 , . . . ] =

10 [ . . . , ak1 , ak1 ⊙ak2 , . . . , ak1 ⊙ . . . ⊙akn , ak+11 , . . . ]
11 scatter [ a0 , a1 , a2 , a3 , . . . , an−1 ]
12 [ 2 , −1 , 0 , 3 ] [ b0 , b1 , b2 , b3 ] =
13 [ b2 , a1 , b0 , b3 , . . . , an−1 ]

Figure 1: Futhark data-parallel array combinators.

to be explicit in the program, Futhark can be seen as a sequential-
ising compiler that attempts to efficiently sequentialise the paral-
lelism in excess of what the hardware can support, thus enabling
opportunities for locality-of-reference optimisations.

In this sense, the compiler supports a code transformation, named
moderate flattening [33], that translates arbitrarily-nested, but reg-
ular4 parallelism to a flat form that can be straightforwardly and
efficiently mapped to the underlying GPU hardware, in the com-
mon case. (Whereas perfectly-nested parallel constructs can easily
be translated to flat parallelism, it is not straightforward to do so
with imperfectly-nested constructs.)

Futhark also implements a notion of incremental flattening [34],
which generates multiple code versions in situations where the
optimal optimisation strategy is sensitive to the input dataset.5 The
dynamic code selection is auto-tuned globally, resulting in one pro-
gram that offers (in most cases) quasi-optimal performance for all
datasets. However, given a problem exhibiting irregular parallelism,
in general, to achieve a work efficient algorithm,6 the Futhark pro-
grammer is required to implement the flattening strategy by hand,
which is not necessarily straightforward [22] unless the problem is
particularly simple [23]. The programmer may choose to apply a
non-work-efficient padding approach instead (i.e., treat all problems
to be of the same size), which might be the most efficient strategy
in practice.

Finally, Futhark supports integration with various mainstream
programming environments, such as Python [29].

3.1 Data-Parallel Functional Notation
We use (i) [n]α to denote the type of an array whose n elements
have type α , (ii) [a1,. . .,an] to denote an array literal, and (iii)
(a,b) to denote a tuple (record) value. Applying a function f on
two arguments a and b is written f a b.

The semantics of several key parallel operators are presented in
Figure 1: iota applied to an integer n creates the array containing
4 By regular parallelism we mean that the size of the inner-parallel operators is
invariant to the outer-parallel nest.
5 For example, the optimal GPU code for dense matrix-multiplication depends on
the sizes of the matrix dimensions: If enough parallelism is available in the outer
two parallel levels, then the dot-product dimension should be sequentialised, thus
enabling various tiling strategies that optimise temporal locality. Otherwise, the inner
dimension should also be executed in parallel.
6 A parallel algorithm is work efficient if the work (i.e., the number of operations) per-
formed by the algorithm is of the same asymptotic complexity as the work performed
by the best known sequential algorithm that solves the same problem.

elements from 0 to n-1, and replicate n v creates an array of
length n whose elements are all v. map produces a result array
by applying its function argument f to each element of its input
array. The function can be declared in the program or can be an
anonymous function; for example, map (λx->x+1) arr adds one to
each element of arr. Similarly, map2 applies its function argument
to (corresponding) elements from the array arguments. reduce
successively applies a binary-associative operator ⊕ to all elements
of its input array (e⊕ denotes the neutral element).

scan [5] is similar to reduce, except that it produces an array
of length n containing all prefix sums of its input array: the in-
clusive scan (scaninc ) starts from the first element of the array,
and the exclusive scan (scanexc ) starts from the neutral element.
Segmented scan (sgmscan) has the semantics of a scan applied on
each subarray of an irregular array of subarrays. The latter is rep-
resented (i) by a flag array made of zeroes and ones in which a one
denotes the start of a (new) subarray, and (ii) by a matching-length
flat array containing all elements of all subarrays. For example,
flag [1,0,1,0,0,0,1] denotes an array with three rows, having
two, four and one elements, respectively. Segmented scan can be
implemented as a scan with a modified operator.

The last operator, scatter x is vs updates in place the array x
at indices contained in array is with the values contained in array
vs, except that out-of-bounds indices are ignored (not updated). For
example, in Figure 1, value b1 was not written in the result because
its index -1 is out of bounds.

Finally, the notation supports the usual unary/binary operators
and (normalised) let bindings, which have the form let a=e1 let
b=e2. . .in en and are similar to a block of statements followed by a
return denoted by keyword in. In-place updates to array elements
are allowed and are written as let arr[i]=x. The notation sup-
ports if expressions, of form if c then e2 else e3 and semantics
similar to the C ternary operator c? e1 : e2, and loop expressions
of the form: loop (x) for i<n do e. Here, x is a loop-variant
variable that is initialised for the first iteration with an in-scope
variable bearing the same name. loop executes iterations i from 0
to n-1, and the result of the loop-body expression e provides the
value of x for the next iteration.

3.2 An Implementation of the Naive Algorithm
We first present a Futhark implementation of the naive LSMC al-
gorithm, as specified in the original paper. The Futhark function
lsmc_naive, which implements the main part of the algorithm is listed
in Figure 2. The function takes as arguments (1) a two-dimensional
array containing generated paths, (2) the maturity time (T) as a year
fraction, (3) a risk-free interest rate r used for discounting, and (4)
a payoff function pFun.

4 DESIGN AND IMPLEMENTATION
First of all, we emphasise that, in our implementation of LSMC, we
follow the same algorithmic choices as taken by NVIDIA in their
CUDA implementation [19]. However, as we could not find any
published material on the exact linear algebra transformations that
are undertaken, we specify the process in detail in the following
sections. Therefore, we present the algorithmic consideration and
an efficient approach to an implementation of a financial algorithm
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1 l e t l smc_na ive [ pa th s ] [ s t e p s ]
2 ( Ss : [ pa th s ] [ s t e p s ] r e a l )
3 ( T : r e a l ) ( r : r e a l ) ( pFun : r e a l → r e a l )
4 : r e a l =
5 l e t S s t = transpose Ss
6 l e t d t = T / ( r e a l ( s t ep s −1 ) )
7 −− compute d i s c o u n t f a c t o r s
8 l e t d i s c = map (λ i → exp ( r ∗ r e a l ( − ( i + 1 ) ) ∗ d t ) )
9 ( iota ( s t ep s −1 ) )

10 −− p r e p a r e i n i t i a l p a y o f f s
11 l e t Ps = map (λ j i →

12 l e t j = j i / s t e p s
13 l e t i = j i % s t e p s
14 in i f i < s t ep s −1 then z e ro
15 e l se pFun ( Ss [ j , i ] )
16 ) ( iota ( p a th s ∗ s t e p s ) )
17 −− i t e r a t i v e l y upda t e t h e p a y o f f s g o i ng backwards
18 l e t ( Ps , _ ) =
19 loop ( Ps , h ) = ( Ps , s t e p s − 1 )
20 while h >= 1 do
21 −− compute p a t h s t h a t a r e in−the−money
22 l e t p i c k edpa t h s =
23 filter (λ j → pFun ( S s t [ h , j ] ) > ze ro )
24 ( iota pa th s )
25 −− p r e p a r e f o r and pe r f o rm r e g r e s s i o n
26 l e t Y = map (λ j →

27 map (λ i → d i s c [ i ] ∗ Ps [ j ∗ s t e p s + h+ i ] )
28 ( iota ( s t ep s −h ) )
29 | > reduce ( + ) z e ro ) p i c k edpa t h s
30 l e t Xt = map (λ i →

31 map (λ j → S s t [ h , j ] ∗ ∗ ( r e a l i )
32 ) p i c k edpa t h s
33 ) ( iota 3 )
34 l e t X = transpose Xt
35 l e t be t a = Mat . matvecmul_row
36 ( Mat . matmul Xt X | > Mat . inv )
37 ( Mat . matvecmul_row Xt Y )
38 l e t exVa l s =
39 map (λ j → pFun ( S s t [ h , j ] ) ) p i c k edpa t h s
40 l e t con tVa l s = map (λ j →

41 l e t s s t = S s t [ h , j ]
42 in ( . 0 ) < |
43 loop ( r acc , s a c c ) = ( 0 . 0 , 1 . 0 ) for k < 3 do
44 ( r a c c + s a c c ∗ regY [ k ] ,
45 s a c c ∗ s s t )
46 ) p i c k edpa t h s
47 l e t ( updInds , updVals ) = unzip <|
48 map (λ j i →

49 l e t j = j i / s t e p s
50 l e t i = j i % s t e p s
51 l e t j ' = p i c k edpa t h s [ j ]
52 in i f ( c on tVa l s [ j ] < exVa l s [ j ] ) then
53 i f ( i != h ) then ( j ' ∗ s t e p s + i , z e ro )
54 e l se ( j ' ∗ s t e p s + i , exVa l s [ j ] )
55 e l se ( −1 , z e ro )
56 ) ( iota ( ( l e ng t h p i c k edpa t h s ) ∗ s t e p s ) )
57 l e t Ps = scatter Ps updInds updVals
58 in ( Ps , h − 1 )
59 −− compute t h e d i s c o u n t e d mean
60 l e t p r i c e s =
61 map (λ j →

62 map (λ i → d i s c [ i ] ∗ Ps [ j ∗ s t e p s + i + 1 ] )
63 ( iota ( s t ep s −1 ) )
64 | > reduce ( + ) z e ro
65 ) ( iota pa th s )
66 in S t a t s . mean p r i c e s

Figure 2: Futhark code for the naive LSMC algorithm.

for a widespread case of Monte Carlo simulation for American
Option Pricing, which is frequently reimplemented across financial
institutions. This is, to our knowledge, the first state-of-the-art high-
level approach to this particular problem available to the public.

4.1 Main Considerations
Themain inefficiency of the naive (straightforward) implementation
of the LSMC algorithm is that A† = (ATA)−1AT is fully computed
at each time step. We optimise this by means of an algorithmic
refinement which aims to separate the part of the computation
of A† that is intrinsically dependent within the time-step loop
from the one that is not. The latter, independent part can thus be
precomputed in parallel before the time-step loop is entered. The
algorithmic change consists, at a very high level, of working with
a QR decomposition of A = QR, where the R matrices have small
dimensionality (3×3 in our case) and can be efficiently precomputed
in parallel for all time steps. With this, the computation inside the
time-step loop is reduced to A† = R−1QT .

Furthermore, the QT matrix is not actually manifested in mem-
ory, but rather computed on the fly from the sample matrix and
fused in the multiplication with R−1. This requires some redundant
computation, but significantly decreases the number of accesses to
global memory, which are orders of magnitude slower than scalar
arithmetic. Finally, the sample matrix is computed in transposed
layout in order to optimise spatial locality (i.e., coalesced accesses
to global memory on GPU).

4.2 Building the Pseudo-Inverse Efficiently
We take our design goals into consideration and change the algo-
rithm to adhere to parallel computation on GPUs. This approach
was first adapted in the original CUDA implementation by NVIDIA
that we are trying to match in performance [19, 39].

For the sake of brevity, we assume that we work with one system
of equations Ax = b, although one per each time step i needs to be
solved. We follow the standard practice by applying Singular Value
Decomposition (SVD) A = U ΣVT to reduce the dimensions of A
and build the Moore-Penrose pseudo-inverse of a tall matrix A† =

V Σ−1UT . Next, A† is used to compute the solution x̂ = V Σ−1UTb.
Yet, our goal is to build A† efficiently. This is due to the fact that

we need to construct one matrix A for each time step. Thereby it is
simply too expensive in execution time and memory required to
naively compute SVD of A. To remedy this problem, we start with
a QR decomposition of A = QR, and use the fact that R is much
smaller thanA. We specialise the algorithm to work with a 3-degree
parameterisation in terms of a quadratic polynomial. Therefore, R
is of size 3 × 3 in our case. We compute SVD of R = URΣRV

T
R to

build the SVD of A = QURΣRVT
R .

The QR factorisation is typically performed using householder
transformation. However, the naive application of it would mean
3 × n × n memory access as that many elements would need to be
updated. The efficient solution comes from the observation that, in
our case, matrix R can be constructed using only 8 scalars:

S0, S1, S2,
itm−1∑
i=0

S0i ,
itm−1∑
i=0

S1i ,
itm−1∑
i=0

S2i ,
itm−1∑
i=0

S3i ,
itm−1∑
i=0

S4i ,
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1 map ( n ) −− Path G en e r a t i o n
2 loop (m)
3 transpose
4 map (m) −− SVD P r e p a r a t i o n
5 loop ( n )
6 scan ( chunk )
7 map ( n ) | > reduce ( n )
8 map ( n )
9 map (m)

10 loop (m) −− Main R e g r e s s i o n Loop
11 map ( n )
12 map ( n )
13 reduce ( n )

Figure 3: The high-level view of the implemented optimised
algorithm structure presented as a combination of parallel
constructs. It consists of 3 parts with n denoting the num-
ber of paths andm denoting the number of time steps. The
transpose function performs matrix transposition.

where Si is the asset spot price on the ITM path i . Three first scalars
are asset spot prices for the first ITM paths found when traversing
the paths from path 0. The first sum can be translated to a total
number of ITM paths found. The remaining four sums are consec-
utive powers (1, . . . , 4) of spot prices associated with each found
ITM path. These scalars are prepared as part of SVD preparation.
We implement a custom function that uses these scalars to build
the matrix R. Furthermore, thanks to QR factorisation we get a
simple formula for the pseudo-inverse. We use the fact that A is
left-invertible, so its columns are linearly independent. We have

ATA = (QR)T (QR) = RTQTQR = RT R,

so
A† = (ATA)−1AT = (RT R)−1(QR)T = R−1R−T RTQT = R−1QT .

The final equation that we solve in the main loop for each time step
is x̂ = R−1QTb. The R−1 is precomputed for each time step before
the loop using SVD like this: R−1 = VRΣ

−1
R UT

R . The orthogonal
matrix QT = R−TAT does not need to be stored for each time step
and can instead be computed on-the-fly. We again use the fact that
(1) R−1 is by now already precomputed using SVD and (2) matrix
A can itself be computed on-the-fly, where, for our case, each row
comprises 3 elements: 1, Si j , S2i j , i.e., it can be computed from vector
Si that consists of asset spot prices for ITM paths for a given time
step i . Naturally, they need to be processed in transformed form.

4.3 Optimised Algorithm
The optimised version of the algorithm follows closely the imple-
mentation proposed by NVIDIA [19, 39]. We focus on the goal to
match the performance of this public benchmark implementation.
The obtained algorithm outlined in Figure 3 is implemented using
a nested composition of sequential loops and parallel map, reduce,
and scan constructs. The code in Figure 4 demonstrates the main
lsmc_opt function of the optimised algorithm. The function takes
the following arguments: (1) number of time steps m, (2) number
of paths n, (3) a function to verify if the option is ITM is_itm , (4)
a payoff function payoff, (5) the time step size dt as a fraction of
year, (6) initial asset spot price at the current day S0, (7) a risk-free

1 l e t l smc_opt (m: i 3 2 ) ( n : i 3 2 )
2 ( i s _ i tm : r e a l → i 3 2 )
3 ( p ayo f f : r e a l → r e a l ) ( d t : r e a l )
4 ( S0 : r e a l ) ( r : r e a l ) ( s igma : r e a l ) ( s eed : i 3 2 )
5 ( min_itm : i 3 2 ) (CHUNK: i 3 2 ) : r e a l =
6 −− Path G en e r a t i o n
7 l e t pa th s = gene r a t e _ s amp l e s _and_pa th s
8 prng_seed m n S0 d t r sigma payo f f
9 −− SVD P r e p a r a t i o n

10 l e t S s t = transpose pa th s
11 l e t ( svds , a l l _ o tm s ) = p r epa r e _ svd s S s t i s _ i tm
12 min_itm CHUNK
13 −− Main R e g r e s s i o n Loop
14 l e t expmrdt = exp (− r ∗ d t )
15 l e t ( c a sh f l ows , _ ) =
16 loop ( c a sh f l ows , i ) = ( S s t [m − 1 ] , m−2)
17 while i >= 0 do
18 l e t b e t a s = compute_be tas i s _ i tm svds [ i ] S s t [ i ]
19 c a sh f l ows a l l _ o tm s [ i ]
20 l e t new_cashf lows = upda t e_ c a sh f l ows payo f f
21 expmrdt b e t a s S s t [ i ] a l l _ o tm s [ i ] c a sh f l ows
22 in ( new_cashf lows , i − 1 )
23 in expmrdt ∗ ( reduce ( + ) z e ro c a sh f l ows ) / n

Figure 4: Futhark code for the main regression loop.

interest rate r used for discounting, (8) volatility sigma, (9) seed for
RandomNumber Generator and 2 helper parameters that determine
the amount of computation that should be performed sequentially.
The function returns the calculated option price.

In the next sections, we give a detailed description of the imple-
mentation and optimisations involved in the algorithm. The three
main parts of the algorithm are: path generation in Section 4.3.1,
SVD preparation in Section 4.3.2, and main regression loop in Sec-
tion 4.3.3. Each section is accompanied with a code listing present-
ing a Futhark implementation of a function for the given part.

4.3.1 Path Generation. The computational effort of a Monte Carlo
simulation is determined by the number of paths and time steps.
A large number of paths n, usually 100.000 to 1.000.000, needs
to be generated to obtain an accurate value approximation [25].
In American option pricing case, the number of time steps m is
bound to the number of early-exercise opportunities and is usually
much smaller than n. Path generation part consists of two sub-parts:
random number generation and path generation.

For the first part, we use a minimum standard pseudo-random
number generator (RNG) in a parallel skip-ahead fashion. After
seeding the RNG, we drawm × n random samples by splitting the
RNG into n sub-RNGs for each path and than sequentially draw-
ing a sample for each time step of the given path. The samples
are independent from each other. For the process, that we want to
simulate, we need samples drawn from Gaussian (standard normal)
probability distribution. We achieve it in two steps. First, we draw
samples from a uniform probability distribution using the RNG.
Afterwards, we use the Inverse Normal Cumulative Density Function
(CDF) to produce normally-distributed samples out of the generated
uniforms. As there exists no exact formula for Inverse Normal CDF,
we need to use an approximation algorithm. We implement the
Beasley-Springer-Moro algorithm known for its speed and accuracy
following the procedure described in [25]. For the simulation, every
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sample is turned into an asset spot price instance at every simula-
tion time step (or early-exercise opportunity). We use the standard
Geometric Brownian Motion GBM(r ,σ 2) with a mean (drift) equal
to the risk-free interest rate r and variance (diffusion) equal to σ 2
(square of volatility). We use the generated normally-distributed
samples to simulate a stochastic process. In practice, as the process
is a Markov chain, we know that the current step is independent of
the past realisations of the process.

In our case, we deal with only one stochastic factor—the un-
derlying asset spot price, as the American option, that we price,
depends on only one underlying variable. All paths are therefore in-
dependent, which allows us to parallelise the generation efficiently
across paths by having one thread generate one whole path. The as-
sumption of having one underlying is not essential for parallelism,
however. Many stochastic processes could be generated in parallel
as long as we would adjust the simulation for the correlations be-
tween the stochastic variables, which is a necessary step in practice.
The code in Figure 5 presents a compact Futhark implementation
of path generation. For each path and step, the UniDist . rand function
draws first a single random number from a uniform distribution.
The function compGbmNormalStep transforms it to a standard normal
distribution and computes a current GBM step. It uses function
NormRealDist.invNormalCdf to approximate the Inverse Normal CDF of
a uniform sample. At the last time step the cash flow is known
(given the payoff function), as this is the last time the option can
be exercised.

Performance Enabler. We gain most performance here by fusing
the random sample generation and path generation together into
one step like in lines 19–24 in the code in Figure 5.We perform these
actions for each step based on the observation that we work on the
same array for both actions as well as each sample is independent
from the all other ones. This way we read from and write to the
device global memory only once and thereby save the redundant
intermediate memory accesses, that are costly to execute compared
to compute instructions.

4.3.2 SVD Preparation. This part is run before entering the main
regression loop and covers the main algorithmic optimisation. The
main advantage of this approach is that SVD for R in each time step
can be processed in parallel. AsR is small, the intermediate variables
easily fit into registers of one streaming multiprocessor (SM). The
number of SVD matrices to prepare depends on the number of time
stepsm. This part is compute-intensive, but at the same time the
parallelism is limited by the fact thatm is usually much smaller than
n. A sequential loop is needed to find the first three ITM paths to
get the asset spot prices to build R matrix. In the body of prepare_svds
function, the eight required scalars are gathered and computed.
They are subsequently passed to svd_3x3 function that performs the
QR decomposition and SVD decomposition for R and R−1. It start
with assembling the R matrix from the 8 scalars and afterwards
uses the iterative Jacobi method to determine the inverse matrix
R−1. The function returns 6 upper elements of matrix R and 6 upper
elements of the inverse matrix R−1, as the matrices are orthogonal.

Performance Enabler. The key to performance is that we not
only perform computation in parallel on the outer level across

1 l e t compGbmNormalStep ( d r i f t : r e a l ) ( vo l : r e a l )
2 ( x : r e a l ) : r e a l =
3 d r i f t ∗ exp ( vo l ∗ ( NormRealDis t . invNormalCdf x ) )
4

5 l e t gene r a t e_ s amp l e s_and_pa th s ( seed : i 3 2 )
6 (m: i 3 2 ) ( n : i 3 2 ) ( S0 : r e a l ) ( d t : r e a l )
7 ( r : r e a l ) ( s igma : r e a l ) ( p ayo f f : r e a l → r e a l )
8 : [ n ] [m] r e a l =
9 l e t rng = mins td_rand . rng_f rom_seed [ seed ]

10 l e t s t d _ d i s t = ( 0 . 0 , 1 . 0 )
11 l e t rngs = mins td_rand . s p l i t _ r n g n rng
12 l e t d r i f t = exp ( ( r − 0 . 5 ∗ sigma ∗ sigma ) ∗ d t )
13 l e t dtS igma = sigma ∗ mysqrt ( d t )
14 in map (λ r →

15 l e t path = replicate m 0 . 0
16 l e t ( path ' , _ , _ ) =
17 loop ( path , rng , acc ) = ( path , r , 1 . 0 )
18 for i < m do
19 l e t ( rng , num) = Un iD i s t . rand s t d _ d i s t rng
20 l e t W = compGbmNormalStep d r i f t d tS igma num
21 l e t acc ' = acc ∗ W
22 l e t v = acc ' ∗ S0
23 l e t v ' = i f i < m − 1 then v e l se payo f f v
24 l e t path [ i ] = v '
25 in ( path , rng , acc ' )
26 in path '
27 ) rngs

Figure 5: Futhark code for path generation.

all time stepsm, but that we also enable inner parallelism in the
computation for each time step.

First of all, SVD preparation benefits significantly from the intra-
group parallelism in the first map (lines 4–29 in the code in Figure 6),
which finds the first three ITM paths. The spot prices on these
paths are needed for computing the matrix R. The computation
works on CHUNK paths in parallel. It is achieved by a combination of
parallel constructs like maps, reduces, an exclusive scan scanExc, and
scatter. The CHUNK parameter depends the level of intra parallelism.
The smaller its value, the faster this part performs. However, the
value cannot be smaller than the number of ITM paths needed for
constructing the R SVD matrices. This number is determined by the
min_itm parameter, which is fixed to 4, one larger than the dimension
size of R.

The next beneficial optimisation is the application of segmented
reduction in lines 31–44, which enables parallelism in gathering
the remaining 5 scalars. Afterwards, the map3 in line 45 works in
parallel across time steps, but internally, for each time step, it uses
the matching scalars to compute the partial data in a sequential
manner in the call to svd_3x3.

4.3.3 Main Regression Loop. This part is where the least squares
system of equations is regressed, the continuation value is com-
puted and the cash flow per each time step is updated. It can be
seen in the code in Figure 4 in lines 15–22. This loop has m − 1
iterations. The computation in the loop is greatly simplified thanks
to the SVD preparation that is performed before entering the loop
as most of the sequential computation was performed there. The
code in Figure 7 shows the implementation. Function compute_betas
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1 l e t p r epa r e _ svd s [m] [ n ] ( S s t : [m] [ n ] r e a l )
2 ( i s _ i tm : r e a l → i 3 2 ) ( min_itm : i 3 2 )
3 (CHUNK: i 3 2 ) : ( [m] [ 1 2 ] r e a l , [m] i 3 2 ) =
4 l e t svds = map (λ Ss →

5 l e t svds = replicate 12 ze ro
6 −− Loop t o f i n d 3 f i r s t ITM pa t h s
7 l e t ( svds , _ , _ , _ ) =
8 loop ( svds , found_paths , p a t h _o f f s , e x i t )
9 = ( svds , 0 , 0 , false )

10 while ( ! e x i t && found_pa ths < 3
11 && pa t h _ o f f s < n ) do
12 l e t Ss_chunked = map (λ i →

13 i f i + p a t h _ o f f s < n
14 then Ss [ i + p a t h _ o f f s ]
15 e l se z e ro ) ( iota CHUNK)
16 l e t i tms = map i s _ i tm Ss_chunked
17 l e t e x i t = reduce (&&) true <| map (==0 i 3 2 )
18 i tms
19 l e t scn_ms = scanExc ( + ) 0 i tms
20 l e t to t_sum = scn_ms [CHUNK−1] + i tms [CHUNK−1]
21 l e t i n d s = map2 (λ in_m sm →

22 i f in_m == 1 i 3 2 && found_pa ths +sm < 3
23 then f ound_pa ths +sm
24 e l se −1) i tms scn_ms
25 l e t svds = scatter svds i nd s Ss_chunked
26 l e t f ound_pa ths = found_pa ths + tot_sum
27 in ( svds , found_paths , p a t h _ o f f s +CHUNK, e x i t )
28 in svds
29 ) S s t
30 l e t (ms , sums , a l l _ o tm s ) = unz ip3 < |
31 map (λ Ss →

32 l e t i tms = map i s _ i tm Ss
33 l e t ms = reduce_comm ( + ) 0 i 3 2 i tms
34 l e t sums = map2 (λ in_m S →

35 i f in_m == 1 i 3 2
36 then ( S , S ∗ S , S ∗ S ∗ S , S ∗ S ∗ S ∗ S )
37 e l se ( zero , zero , zero , z e ro )
38 ) i tms Ss
39 | > reduce_comm tup le4_sum_op
40 ( zero , zero , zero , z e ro )
41 l e t a l l _ o tm = i f (ms < min_itm ) then 1 i 3 2
42 e l se 0 i 3 2
43 in (ms , sums , a l l _ o tm )
44 ) S s t
45 l e t svds = map3 svd_3x3 ms sums svds
46 in ( svds , a l l _ o tm s )

Figure 6: Futhark code for SVD preparation.

computes β coefficients required for regression through a multi-
plication of pseudo-inverse A† and cash flow vector. Afterwards,
the update_cashflows estimates a payoff based on βs for each path and
determines continuation value for each of them, comparing the
estimated payoff with a current payoff of the option.

Performance Enabler. Thanks to the SVD preparation, before start
of the main regression loop, the computational work in each loop
iteration is significantly reduced. The other reason is the reduced
size of the matrices that are being processed. All the remaining
computation is performed in parallel across n paths. As presented
in code in Figure 7, compute_betas uses a map (line 8) followed by a
reduce (line 16). The update_cashflows follows with one more map in
line 23. The performance of the loop is highly dependent on the

1 l e t compute_be tas [ n ] ( i s _ i tm : r e a l → i 3 2 )
2 ( svds : [ SLOTS ] r e a l ) ( Ss : [ n ] r e a l )
3 ( c a sh f l ows : [ n ] r e a l ) : [ ] ( r e a l , r e a l , r e a l ) =
4 l e t R00 = svds [ 0 ]
5 −− I n i t i a l i s e R and W ma t r i c e s from s v d s
6 −− and compute i n v e r s e o f R and W
7 −− . . .
8 in map2 (λS i →

9 −− Compute Q i s . The e l em e n t s o f t h e Q mat r i x
10 −− i n t h e QR d e c omp o s i t i o n .
11 −− . . .
12 l e t ca sh f l ow = i f ( i s _ i tm S ) == 1 i 3 2
13 then c a sh f l ows [ i ] e l se z e ro
14 in (WI0 ∗ cashf low , WI1 ∗ cashf low , WI2 ∗ ca sh f l ow )
15 ) Ss ( iota n )
16 | > reduce_comm tup le3_sum_op ( zero , zero , z e ro )
17

18 l e t upda t e_ c a sh f l ows [ n ]
19 ( p ayo f f : r e a l → r e a l ) ( expmrdt : r e a l )
20 ( b e t a : [ ] ( r e a l , r e a l , r e a l ) )
21 ( Ss : [ n ] r e a l ) ( c a sh f l ows : [ n ] r e a l )
22 : [ n ] r e a l =
23 map2 (λS path →

24 l e t o l d_ c a sh f l ow = expmrdt ∗ c a sh f l ows [ path ]
25 l e t cu r _p ayo f f = payo f f S
26 l e t ( be ta0 , be ta1 , b e t a 2 ) = be t a
27 l e t e s t ima t e d _ p a yo f f =
28 ( b e t a 0 + be t a 1 ∗ S + be t a 2 ∗ S ∗ S ) ∗ expmrdt
29 in i f cu r _p ayo f f <= e s t ima t e d _ p a yo f f
30 then o l d_ c a sh f l ow e l se cu r _p ayo f f
31 ) Ss ( iota n )

Figure 7: Futhark code for the main regression loop. It con-
sists of a computation of βs for assessing the continuation
value with a subsequent update of the cash flows.

number of time steps, as they are processed sequentially, because
of the data dependency between consecutive time steps.

4.4 Motivation for the Functional Approach
As a final remark to the presented Futhark code, we motivate some
virtues of the functional programming approach that can be espe-
cially valuable for non-technical domain experts. Anyone, who, on
a regular basis, programs in parallel low-level languages targeting
multi-core architectures, will make the immediate observation that
the code contains no explicit kernel setup or device memory man-
agement. In fact, the code is agnostic to the underlying platform
and most of the performance optimisations are provided by the
aggressive optimisation and parallelisation strategies implemented
by the compiler. The effect is that the same Futhark code base is
portable across architectures. The program can be compiled to run
sequentially on a single CPU core or be compiled to run on (and
utilise fully) a massively-parallel GPU. Moreover, when writing
Futhark code, the programmer can focus on expressing the algo-
rithmic details using Futhark’s Second-Order Array Combinators
(SOACs) that mimic the higher-order functions found in conven-
tional functional languages. In Futhark, SOACs have sequential
semantics, but permit parallel execution. The purely functional
nature of Futhark allows the compiler to apply high-level optimisa-
tions. In terms of performance portability, Futhark supports nested
parallelism, which means that the code can be further auto-tuned
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to support efficiently all the available parallelism exposed by the
hardware, which is a rather cumbersome, and often impossible, task
to perform manually.

5 EXPERIMENTAL RESULTS
In this section, we present different experimental tests and discuss
their results. We validate the simulation accuracy and measure the
performance of the implementation by comparing it to other estab-
lished benchmarks. We run the experiments on a Linux system with
a 26-core 2-way HT Intel Xeon Platinum 8167M CPU (2.00GHz),
754 GB DDR RAM and NVIDIA Tesla V100 SXM2 GPU (2688 Volta
FP64 cores, 16 GB HBM2) using CUDA 10.1.

5.1 Accuracy
To start with, we compare the pricing results with an established
benchmark to validate correctness of our implementation. Table
1 presents a comparison of different implementations of Ameri-
can Option Pricing. We are pricing an American put option with a
fixed strike and constant risk-free rate. The remaining parameters
vary as specified in the original paper by Longstaff-Schwartz [37].
Columns FDM and LSMC stand for the results from the original
paper. The two remaining columns comprise results for CUDA im-
plementation, that we used as a benchmark algorithm, and our
Futhark implementation. That said, we mention that the LSMC
simulation from the original paper uses antithetic sampling, which
cuts the number of random samples in half. This algorithmic opti-
misation leads to a reduced variance of the sample paths as well as
an improvement in the overall accuracy of the simulation.

The simulation results compared to FDM method have a low
error. The difference between simulation results varies slightly for
different sets of parameters, but, in general, they are insignificant
and are the outcome of using different RNGs. The same is valid for
both the original CUDA and Futhark implementations.

5.2 Performance Test Case
The pricing test case is presented in Table 2. It is an example of a
typical put option that is ITM on the calculation day.

The performance results are presented in Table 3. The correctness
is validated against the benchmark binomial tree numerical method
for the same problem. We want to obtain a value that is as close
as possible to this benchmark. Futhark targets different hardware
with different backends. We test the CUDA (V1) and OpenCL (V2)
backends, and observe identical execution times for both versions.
In terms of the speedups,Ref is only 1.11× faster thanV2, what can
be considered insignificant. Furthermore, we do not observe large
discrepancies in terms of partial execution times among the three
main parts of the algorithm. This fact demonstrates that Futhark
auto-generated low-level code is similar in complexity and on par
in performance with one that is hand-tuned. Some parts run faster,
while other would benefit from further optimisation (e.g., changing
the algorithm). The (17%) overhead in the Path part is due to the
internal implementation of the RNG. We have used a different RNG
in comparison to Ref, which uses CURAND_RNG_PSEUDO_MRG32K3, a
member of the Combined Multiple Recursive family of pseudo-
random number generators. The 13% difference inMain is caused

Table 1: Comparison between results from the original pa-
per (finite difference method (FDM) and LSMC) and LSMC
implementations in CUDA and Futhark. The strike price of
the put option is 40 and the risk-free rate is 0.06. The remain-
ing parameters are as indicated. All LSMC simulations are
done with 100.000 paths and 50 time steps per year.

S0 σ T FDM LSMC CUDA Futhark

36 0.20 1 4.478 4.472 4.460 4.465
36 0.20 2 4.840 4.821 4.821 4.826
36 0.40 1 7.101 7.091 7.077 7.092
36 0.40 2 8.508 8.488 8.514 8.518
38 0.20 1 3.250 3.244 3.232 3.239
38 0.20 2 3.745 3.735 3.736 3.739
38 0.40 1 6.148 6.139 6.131 6.147
38 0.40 2 7.670 7.669 7.670 7.661
40 0.20 1 2.314 2.313 2.307 2.313
40 0.20 2 2.885 2.879 2.873 2.878
40 0.40 1 5.312 5.308 5.290 5.319
40 0.40 2 6.920 6.921 6.914 6.909
42 0.20 1 1.617 1.617 1.613 1.612
42 0.20 2 2.212 2.206 2.205 2.205
42 0.40 1 4.582 4.588 4.578 4.590
42 0.40 2 6.248 6.243 6.231 6.234
44 0.20 1 1.110 1.118 1.104 1.104
44 0.20 2 1.690 1.675 1.682 1.680
44 0.40 1 3.948 3.957 3.945 3.952
44 0.40 2 5.647 5.622 5.628 5.637

Table 2: Model and simulation parameters for the American
option pricing. The reference value is obtained with a differ-
ent (binomial tree) numerical method.

Model Parameters Value

Option Type, Payoff Put, max(K − S)
Initial Spot price (S0) 80.0
Strike price (K) 90.0
Time to maturity (T ) 1 year
Risk free rate (r ) 5%
Volatility (σ ) 30%
Simulation Parameters

Time steps/Early Exercise dates 100
Paths 1.024.000
Reference value (Binomial Tree) 13.804

by a more optimal handling of memory copies compared to Ref.
The effect is amplified, because the loop has 99 iterations.

5.3 Performance Scalability
5.3.1 Fixed number of paths, various number of time steps. As the
next step we test the scalability behaviour of Futhark implementa-
tion V2 by gradually changing the number of time steps or paths.
These are the main parameters that determine the size of the com-
putation involved in a Monte Carlo simulation. Consequently, we
reuse the test case from Table 2 and compare against the benchmark
Ref for different combinations of these two simulation parameters.
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Table 3: Execution times for the test case. Ref is the original
CUDA benchmark, while V1 is Futhark compiled to OpenCL
and V2 is Futhark compiled to CUDA. Both total and partial
execution times for each part of the algorithm are shown.
The execution times are given in ms and averaged based on
250 runs. Path stands for Path Generation part, SVD — SVD
Preparation, and Main for the Main Regression Loop. The
∆ column compares the speedups against the slowest execu-
tion time. Obtained values are presented in the Val column.

Path SVD Main Total ∆ Val

Ref 4.7 (30%) 1.8 (12%) 8.9 (58%) 15.4 1.11× 13.778
V1 8.0 (47%) 1.4 (8%) 7.7 (45%) 17.1 1.00× 13.789
V2 8.0 (47%) 1.4 (8%) 7.7 (45%) 17.1 1.00× 13.789

First of all, we fix the number of paths to a relatively high num-
ber 1.024.000 and test against 5 different numbers of time steps.
High number of paths allows for massive parallelism across the
path dimension and thus full utilisation of the GPU hardware. Fig-
ure 8 shows the results of this experiment. Contributions of three
algorithmic parts are distinguished and sum up to a total execution
time for each tested case.

The main observation is that for the low number of time steps,
Futhark V2 is faster than benchmark CUDA Ref. In particular,
for very few time steps like 10, it is ∼ 2.5× faster. The difference
diminishes with increasing number of time steps to match at ∼ 100
time steps. For more time steps, Ref is slightly faster than V2, but
the ratio is maintained with increasing time steps. For instance, it
is 1.25× faster for 250 time steps.

The next observation is that, for many time steps, the Path part
becomes the main computational bottleneck. It takes 40% for 10
time steps, but more than 52% for 250. This is caused by the neces-
sary transposition of the layout that the sampled paths matrix is
organised in. The transposition enables coalesced accesses to global
memory on GPU across time steps, which benefits the performance
of the SVD part. The next observation is that the contribution of
SVD part decreases with more time steps. It is more efficiently im-
plemented in V2 as it is always faster than the one in Ref. Finally,
we achieve better performance on the sequential part Main by
ensuring that no device-to-host memory transfers are initiated. On
GPU architectures such transfers introduce significant delays in
execution, so all intermediate data should be kept on the device. The
compute_betas and update_cashflows functions in 7 exchange an array of
βs that is computed sequentially and not in parallel (it holds only
three elements).

5.3.2 Fixed number of steps, various number of paths. We observe
similar scalability, when the number of paths is increased. Futhark
V2 is faster than CUDA Ref on low number of paths. For 10240
paths, it is ∼ 1.25× faster. The difference diminishes with increasing
number of time steps to match at ∼ 1024000 paths.

5.3.3 Various number of time steps and paths. Figure 10 presents
the results for different combinations of time steps and paths. The
ratio between them is kept so, that the required work as well as
memory requirements are constant. These cases saturate the mem-
ory available on V100. We can see that the impact of the time steps
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Figure 8: Execution time comparison of CUDA (Ref) and
Futhark (V2). Absolute performance is presented for a fixed
number of 1.024.000 paths. Execution time is given inms.
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Figure 9: Execution time comparison of CUDA (Ref) and
Futhark (V2). Absolute performance is presented for a fixed
number of 100 steps. Execution time is given inms.

on the overall execution time is slightly higher than the number
of paths. For V2 it goes from 39 ms to 45 ms. This is caused by the
computations in Main loop, that need to be run one step at a time.
In general, the performance of both Ref and V2 is stable across
different configurations, which shows that Futhark matches the
CUDA performance. We can observe that Futhark V2 is slightly (1
ms to 13 ms) slower than Ref on all cases.

6 RELATEDWORK
The most efficient implementations of Monte Carlo based American
option pricing are implemented in low-level dedicated data-parallel
languages and frameworks, such as CUDA [1, 24, 43, 54]. Other
efficient parallel implementations are based on task-parallel ap-
proaches [15, 16], which are suitable for multi-core architectures.
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Figure 10: CUDA (Ref) and Futhark (V2) are compared in
terms of execution times. Absolute performance is pre-
sented for different combinations of number of time steps
and paths. Execution time is given inms.

We are not aware of any accelerated implementations of American
option pricing using functional languages.

Previous work has investigated the use of Futhark for implement-
ing Monte Carlo based European option pricing [2, 40]. Whereas
European option pricing is simpler than (and a special case of)
American option pricing, the previous work covered a number of
advanced features that the present work does not consider. In par-
ticular, the previous work on European option pricing considered
European options with multiple underlying assets, Sobol sequence
generation [30], and options that are so-called path dependent, mean-
ing that the price of an option not only depends on the value of
the underlying at maturity, but also on intermediate values of the
underlying. Using the module language features of Futhark, we
believe it will be possible to parameterise the implementation in
such a way that multiple underlying assets and path dependence
are features that are supported by the American pricing engine (we
consider such advanced features future work). It is also straightfor-
ward to replace the pseudo-random number generation used with
Sobol sequence generation.

There are quite a few functional language approaches aiming at
generating efficient data-parallel GPU code for applications writ-
ten using high-level array language constructs. Such high-level ap-
proaches include SaC [26, 27], a functional array-based language fea-
turing a parallelisable with-loop construct, and Obsidian [17, 50, 51]
and Accelerate [13], which are both domain specific languages em-
bedded in Haskell. None of these approaches, however, feature
arbitrary nested parallelism. Approaches that support arbitrary
nested parallelism includes the seminal work on flattening of nested
parallelism in NESL [6, 7], which was extended to operate on a
richer set of values in Data-parallel Haskell [12], and the work on
data-only flattening [55]. However, such general compiler-based
flattening is challenging to implement efficiently in practice, partic-
ularly on GPUs [3]. Other promising attempts at compiling NESL
to GPUs include Nessie [47], which is still under development, and

CuNesl [55], which aims at mapping different levels of nested paral-
lelism to different levels of parallelism on the GPU, but lacks critical
optimisations such as fusion.

Imperative approaches typically rely on low-level analysis—of
loop nests using affine indexing and branch condition—for dis-
covering and optimising parallelism, for example the polyhedral
model [8, 44]. Since the affine domain is too restrictive in practice,
several techniques use explicit annotations to extend the applica-
bility of polyhedral transformations [14, 46]. Other techniques rely
on more dynamic analysis coupled with multi-versioned code gen-
eration, for example to identify sufficient conditions under which
loops are parallel [38, 42] or to optimise locality of reference and
communication [20, 41, 45, 49]. In this sense, our implementation
uses Futhark’s multi-version code generation facilities [34] to adapt
the compilation to the particularities of datasets and hardware.

7 CONCLUSION
In this work, we present the results of the accelerated implemen-
tation of a well-known LSMC algorithm for a common financial
use case of American Option Pricing. We choose to use a high-level
functional approach to the implementation, express the algorithm
using succinct parallel constructs and let the optimising compiler
auto-generate an efficient parallel code that targets massively par-
allel hardware. For this purpose, we use the Futhark language and
address GPUs as a suitable compute platform. We demonstrate that
with this approach it is possible to achieve the execution times that
are, in general, at the same level as the hand-tuned implementa-
tions in dedicated languages like CUDA, but there exist particular
smaller cases, where the implementation beats the benchmark by
up to 2.5×. This promising finding motivates further work on the
optimisation compiler and the algorithm.

We consider the high-level functional specification as being
much more suitable and accessible for the financial-domain ex-
perts than the low-level dedicated code, that is usually written
by expert software developers. Its expressibility and modularity
enables code maintainability, hiding the implementation details
targeting particular parallel architecture, and instead turning focus
to algorithmic and domain-specific consideration. It also facilitates
algorithmic changes, so prevalent in the financial industry, with its
multitude of financial instruments traded in the global markets.
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