CSP

The Algebra

(mostly from C.A.R Hoare)
Communicating Sequential Processes

A mathematical theory for specifying and verifying complex patterns of behavior arising from interactions between concurrent objects.

CSP has a formal, and *compositional*, semantics that is in line with our informal intuition about the way things work.
Why CSP?

• Encapsulates fundamental principles of communication.
• Semantically defined in terms of structured mathematical model.
• Sufficiently expressive to enable reasoning about deadlock and livelock.
• Abstraction and refinement central to underlying theory.
• Robust and commercially supported software engineering tools exist for formal verification.
Why CSP?

• **CSP** libraries available for Java (**JCSP**, **CTJ**).
• Ultra-lightweight kernels have been developed yielding **sub-microsecond** overheads for context switching, process startup/shutdown, synchronized channel communication and high-level shared-memory locks.
 – not yet available for JVMs (or Core JVMs!)
• Easy to learn and easy to apply …
Why CSP?

• After 5 hours teaching:
 – exercises with 20-30 threads of control
 – regular and irregular interactions
 – appreciating and eliminating race hazards, deadlock, etc.

• CSP is (parallel) architecture neutral:
 – message-passing
 – shared-memory
So, what is CSP?

CSP deals with *processes, networks* of processes and various forms of *synchronization / communication* between processes.

A network of processes is also a process - so CSP naturally accommodates layered network structures (*networks of networks)*.

We do not need to be mathematically sophisticated to work with CSP. That sophistication is pre-engineered into the model. We benefit from this simply by using it.
INTRODUCTION

• CSP is a simple programming language designed for multiprocessor machines
• Its key feature is its reliance on non-buffered message passing with explicit naming of source and destination processes
• CSP uses guarded commands to let processes wait for messages coming from different sources.
The Model

- Each process runs on its own processor
- All communications between concurrent processes are made through message passing.
- CSP relies on the most primitive message passing mechanism:
 - Non-buffered sends and receives
 - Explicit naming of source and destination processes
Non buffered sends and receives

• When a process issues a send(), the system call does not complete until the message is received by another process
 Also called “blocking send”

• When a process issues a receive(), the system call does not complete until a message is received by the process
 Also called “blocking receive”
Explicit naming

- Also known as *direct naming*
- A process issuing a send() specifies the name of the process to which the message is sent
- A process issuing a receive() specifies the name of the process from which it expects a message
The alternative: indirect naming

• Most message passing architectures include an intermediary entity often called port but also mailbox, message queue or socket
• A process issuing a send() specifies the port number to which the message is sent
• A process issuing a receive() specifies a port number and will wait for the first message that arrives at that port
The problem (I)

- Processes should be able to receive messages from different senders
- Can use **blocking receive** and **indirect naming**
 - Process issuing a receive will wait for first message arriving at that port
- Can also use **non-blocking receive** and **direct naming**
 - Requires receiving process to poll senders
The problem (II)

• Using blocking receives with direct naming does not allow the receiving process to receive any messages from any process but the one it has specified

receive(Q, message)
The problem (III)

- CSP paper presents a solution involving **guarded commands**
- Guarded commands are a **very unconventional** programming construct
- So is CSP syntax
 - Do not let yourself be intimidated by it
CSP

• A CSP program consists of a sequence of commands

• Commands can either succeed or fail
 \[a = b \] will fail if either
 • \(b \) is undefined or
 • the types of \(a \) and \(b \) do not match

• Success and failure of a command are time-dependent
Parallel Commands

- `<command_list1> || <command_list2>` specifies that the two command lists should be executed in parallel
- `<CL1> || <CL2> || ... || <CLn>` can have more than two processes per command lists
- producer:: `<CL1> ||` consumer:: `<CL2>` can add process labels
I/O Commands (I)

- **Input command:**
 <source_process> ? <target value>
 keyboard ? m

- **Output command:**
 <destination_process> ! <value>
 screen ! average

- **Input and output commands are** blocking:
 - Messages are never buffered
I/O Commands (II)

• Communication will take place whenever:
 – Process P executes an input command specifying process Q as its source and
 • Process Q executes an output command specifying process P as its destination
 • The target variable in the input statement matches the value in the output statement.
I/O Commands (III)

• An input command will fail when its source process terminates
• An output command will fail when either
 – its destination process terminates
 – the value it attempts to send becomes undefined
Guarded Commands (I)

• Command preceded by a **guard**:

 \[v > 0; \text{ client?P() } \rightarrow v := v - 1 \]

• Previous line reads

 – *When value is positive, wait for* \(P() \) *message from process client*

 – *When message arrives, decrement value*
Guarded Commands (II)

• A guard consists of
 – a possibly empty list of declaration and Boolean expressions
 – optionally followed by a single input statement

\(\text{in<out + 10; producer?buffer(in mod 10)} \rightarrow \)
Guarded Commands (III)

- Execution of a guarded command is **delayed** until either
 - The **guard succeeds** and the command is executed or
 - The **guard fails** and the command aborts without being executed
Alternative Commands (I)

• An alternative command consists of
 – list of one or more guarded commands
 – separated by "||"
 – surrounded by square brackets

 \[[x \geq y \rightarrow \text{max} := x \mid\mid y \geq x \rightarrow \text{max} := y] \]
Alternative Commands (II)

- An alternative command specifies the execution of exactly one of its components
 - If all of them fail, the command fails
 - Otherwise an arbitrary component with a successfully executable guard is selected and executed

- **Order of components does not matter**

 \[x \geq y \rightarrow \text{max} := x \lor y \geq x \rightarrow \text{max} := y \]
Alternative commands (III)

• We can now write

\[
\begin{align*}
Q \ ? \ msg & \rightarrow \ <process \ msg \ from \ Q> \\
R \ ? \ msg & \rightarrow \ <process \ msg \ from \ R> \\
S \ ? \ msg & \rightarrow \ <process \ msg \ from \ S>
\end{align*}
\]

• Process will wait for first message from any of three senders Q, R and S
Repetitive command

• Alternative command preceded by an asterisk

 *\[i > 0 \rightarrow \text{fact} := \text{fact} \times i; i := i - 1 \]\n
• Executed repeatedly until they fail: in the previous command until i becomes zero
A bounded buffer

buffer: (0..9) portion;
in, out : integer; in:=0; out:=0;

*[
in<out + 10; producer?buffer(in mod 10) ->
in:=in + 1

 ||

 out < in; consumer?more() ->
 consumer!buffer(out mod 10) -> out:=out + 1
]
One shorthand notation

\[(i:1..100) \ X(i) \? \ V() \rightarrow \ v:=v + 1\]

stands for

\[X(1) \? \ V() \rightarrow \ v:=v + 1 \ ||
\[\ldots \ ||
\[X(100) \? \ V() \rightarrow \ v:=v + 1\]
A semaphore

v : integer; v := 0;

[*]
 v > 0; (i:1..100) X(i)?P() ->
 v := v - 1

||

 (i:1..100) X(i)?V() ->
 v := v + 1

]
A binary semaphore

\[v : \text{integer}; \ v : = 0; \]
\[*[
 \begin{align*}
 v & > 0; \ (i:1..100) \ X(i)?P() \rightarrow \\
 v & : = 0 \\
 \end{align*}
\]
\[\| \\
 \begin{align*}
 (i:1..100) \ X(i)?V() \rightarrow \\
 v & : = 1 \\
 \end{align*}
\]
]
Working with CSP

No algebra required
(mostly from Peter Welch)
Processes

- A **process** is a component that encapsulates some data structures and algorithms for manipulating that data.

- Both its data and algorithms are **private**. The outside world can neither see that data nor execute those algorithms! [They are not *objects*.]

- The algorithms are executed by the process in its own thread (or threads) of control.

- So, how does one process interact with another?
• The simplest form of interaction is *synchronised* message-passing along *channels*.
• The simplest forms of channel are *zero-buffered* and *point-to-point* (i.e. *wires*).
• But, we can have *buffered* channels (*blocking/overwriting*).
• And *any-1*, *1-any* and *any-any* channels.
• And structured multi-way synchronisation (e.g. *barriers*) …
• And high-level (e.g. *CREW*) *shared-memory* locks …
Synchronized Communication

A may write on c at any time, but has to wait for a read.

B may read from c at any time, but has to wait for a write.
Only when both A and B are ready can the communication proceed over the channel c.

$(A(c) || B(c)) \setminus \sigma$
‘Legoland’ Catalog

IdInt (in, out)

SuccInt (in, out)

PlusInt (in0, in1, out)

Delta2Int (in, out0, out1)

PrefixInt (n, in, out)

TailInt (in, out)
‘Legoland’ Catalog

• This is a catalog of fine-grained processes - think of them as pieces of hardware (e.g. chips). They process data (ints) flowing through them.

• They are presented not because we suggest working at such fine levels of granularity …

• They are presented in order to build up fluency in working with parallel logic.
‘Legoland’ Catalog

• Parallel logic should become just as easy to manage as serial logic.

• This is not the traditionally held view …

• But that tradition is wrong.

• **CSP/occam** people have always known this.

Let’s look at some **CSP pseudo-code** for these processes …
IdInt \ (in, out) = in?x \rightarrow out!x \rightarrow \text{IdInt} \ (in, out)

SuccInt \ (in, out) = in?x \rightarrow out!(x + 1) \rightarrow \text{SuccInt} \ (in, out)

PlusInt \ (in0, in1, out) =
\begin{align*}
 (in0?x0 \rightarrow \text{SKIP} \parallel in1?x1 \rightarrow \text{SKIP}); \\
 out!(x0 + x1) \rightarrow \text{PlusInt} \ (in0, in1, out)
\end{align*}
Delta2Int \((in, out0, out1)\) =
\[\text{in?}x \rightarrow (\text{out0!}x \rightarrow \text{SKIP} \mid \mid \text{out1!}x \rightarrow \text{SKIP});\]
\[\text{Delta2Int}\ (in, out0, out1)\]

PrefixInt \((n, in, out)\) = \text{out!}n \rightarrow \text{IdInt} \ (in, out)

TailInt \((in, out)\) = \text{in?}x \rightarrow \text{IdInt} \ (in, out)
A Blocking FIFO Buffer

FifoInt (n, in, out) =
IdInt (in, c[0]) ||
([||i = 0 FOR n-2] IdInt (c[i], c[i+1])) ||
IdInt (c[n-2], out)

Note: this is such a common idiom that it is provided as a (channel) primitive in some implementations.
A Simple Equivalence

\[(\text{PrefixInt} (n, \text{in}, c) \ || \ \text{TailInt} (c, \text{out})) \ \backslash \ \{c\}\]

\[(\text{IdInt} (\text{in}, c) \ || \ \text{IdInt} (c, \text{out})) \ \backslash \ \{c\}\]

The outside world can see no difference between these two 2-place FIFOs …
Good News!

The good news is that we can ‘see’ this semantic equivalence with just one glance.

[CLAIM] **CSP** semantics cleanly reflects our intuitive feel for interacting systems.

This quickly builds up confidence …

Wot - no chickens?!!
Some Simple Networks

\[
\text{NumbersInt} \ (\text{out}) = \text{PrefixInt} \ (0, \ c, \ a) \ || \ \\
\text{Delta2Int} \ (a, \ \text{out}, \ b) \ || \ \\
\text{SuccInt} \ (b, \ c)
\]

Note: this pushes numbers out so long as the receiver is willing to take it.
Some Simple Networks

\[\text{IntegrateInt} \ (\text{out}) = \text{PlusInt} \ (\text{in}, c, a) \ || \ \text{Delta2Int} \ (a, \text{out}, b) \ || \ \text{PrefixInt} \ (0, b, c) \]

Note: this outputs one number for every input it gets.
Some Simple Networks

Note: this needs two inputs before producing one output. Thereafter, it produces one number for every input it gets.
Some Layered Networks

FibonacciInt (out) = PrefixInt (1, d, a) ∥
PrefixInt (0, a, b) ∥
Delta2Int (b, out, c) ∥
PairsInt (b, c)

Note: the two numbers needed by PairsInt to get started are provided by the two PrefixInts. Thereafter, only one number circulates on the feedback loop. If only one PrefixInt had been in the circuit, deadlock would have happened (with each process waiting trying to input).
Some Layered Networks

\[
\text{SquaresInt (out)} = \text{NumbersInt (a)} \mid\mid \\
\text{IntegrateInt (a, b)} \mid\mid \\
\text{PairsInt (b, out)}
\]

Note: the traffic on individual channels:

\(<a> = [0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots] \quad 81\\n<\text{out}> = [1, 4, 9, 16, 25, 36, 49, 64, 81, \ldots] \quad 64\\n<\text{out}> = [0, 1, 3, 6, 10, 15, 21, 28, 36, \ldots] \quad 36\\n<\text{out}> = [0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots] \quad 9\\n<\text{out}> = [0, 1, 3, 6, 10, 15, 21, 28, 36, \ldots] \quad 16\\n<\text{out}> = [1, 4, 9, 16, 25, 36, 49, 64, 81, \ldots] \quad 49\\n<\text{out}> = [0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots] \quad 25\\n<\text{out}> = [1, 4, 9, 16, 25, 36, 49, 64, 81, \ldots] \quad 4
\]
Quite a Lot of Processes

\[
\begin{align*}
\text{NumbersInt} & \ (a[0]) \ || \\
\text{SquaresInt} & \ (a[1]) \ || \\
\text{FibonacciInt} & \ (a[2]) \ || \\
\text{ParaPlexInt} & \ (a, b) \ || \\
\text{TabulateInt} & \ (b)
\end{align*}
\]
At this level, we have a network of 5 communicating processes.

In fact, 28 processes are involved: 18 non-terminating ones and 10 low-level transients repeatedly starting up and shutting down for parallel input and output.
Fortunately, CSP semantics are *compositional* - which means that we only have to reason at each layer of the network in order to design, understand, code, and maintain it.
Deterministic Processes

So far, our parallel systems have been deterministic:
 • the values in the output streams depend only on the values in the input streams;
 • the semantics is scheduling independent;
 • no race hazards are possible.

CSP parallelism, on its own, does not introduce non-determinism.

This gives a firm foundation for exploring real-world models which cannot always behave so simply.
Non-Deterministic Processes

In the real world, it is sometimes the case that things happen as a result of:
 • what happened in the past;
 • when (or, at least, in what order) things happened.

In this world, things are scheduling dependent.

CSP addresses these issues explicitly.

Non-determinism does not arise by default.
A Control Process

Coping with the real world - making choices …

In ReplaceInt, data normally flows from in to out unchanged.

However, if something arrives on inject, it is output on out - instead of the next input from in.
A Control Process

The output stream depends upon:

- The values contained in the `in` and `inject` streams;
- the **order** in which those values arrive.

The output stream is **not** determined just by the `in` and `inject` streams - it is **non-deterministic**.
A Control Process

ReplaceInt \((\text{in}, \text{out}, \text{inject})\) =
\[
\begin{align*}
\text{in}\, ? \, x & \rightarrow ((\text{in}\, a \rightarrow \text{SKIP}) \mathbin{||} (\text{out}\,!x \rightarrow \text{SKIP})) \\
\text{PRI} \, \text{in}\, a & \rightarrow \text{out}\,!a \rightarrow \text{SKIP} \\
\end{align*}
\]

Note: \([\mathbin{||}]\) is the (external) choice operator of CSP.

\textbf{PRI} is a prioritised version - giving priority to the event on its left.
Coping with the real world - making choices …

In ScaleInt, data flows from in to out, getting scaled by a factor of s as it passes.

Values arriving on inject, reset that s factor.
The out stream depends upon:

- The values contained in the in and inject streams;
- the order in which those values arrive.

The out stream is not determined just by the in and inject streams - it is non-deterministic.
Another Control Process

ScaleInt \((s, \text{in}, \text{out}, \text{inject})\) =

\[
\begin{align*}
\text{in}^?a & \rightarrow \text{out}^!s^*a & \rightarrow \text{SKIP} \\
\text{PRI} & \\
\text{in}^?a & \rightarrow \text{out}^!s^*a & \rightarrow \text{SKIP}
\end{align*}
\]

\(\text{in} \rightarrow \text{out}^!s^*a \rightarrow \text{SKIP}\);

ScaleInt \((s, \text{in}, \text{out}, \text{inject})\)

Note: \([\text{PRI}]\) is a prioritised version - giving priority to the event on its left.
This is a *resettable* version of the `NumbersInt` process.

If nothing is sent down `inject`, it behaves as before.

But it may be reset to count from *any* number at *any* time.
Some Resettable Networks

This is a resettable version of the IntegrateInt process. If nothing is sent down inject, it behaves as before. But its running sum may be reset to any number at any time.
An Inertial Navigation Component

- **accIn**: carries *regular* accelerometer samples;
- **velReset**: velocity *initialisation* and *corrections*;
- **posReset**: position *initialisation* and *corrections*;
- **posOut/velOut/accOut**: *regular* outputs.
Final Stage Actuator

- **Sample**(t): every t time units, output *latest input* (or *null if none*); the value of t may be *reset*;

- **Monitor**(m): copy input to output counting *nulls* - if m in a row, send panic message and terminate;

- **Decide**(n): copy non-null input to output and *remember* last n outputs - convert *nulls* to a *best guess* depending on those last n outputs.