Minimum intrusion Grid
Tutorial

Special version for DIKU students

Minimum intrusion Grid, MiG, is a Grid middlewarkdt seeks to make access to Grid as easy as
possible for both users of - and contributors t@@Gn addition to solving a number of other
problems that are found with most other Grid system

Abstract model

The MiG model is based on a dual client-serveritacture, where clients communicate with the
servers that constitute Grid and resources doesatime as you can see in the figure below.

User
User
Resource

User
Resource

Figurel. Abstract model of the MiG architecture

Resource

HIEH

Thus to use the resources on Grid you must comratenith Grid and not, as seen in most other
Grid models, with the resources directly.

This model ensures amongst other things that teeargl resource remains mutually anonymous
and that Grid can take responsibility for failiresources and resubmit jobs without the users
intervention if a resource fails to execute a fotiais been assigned.

Jobs are scheduled on the resources based onmmonacal model which will not be covered in
this tutorial. For most users the scheduling wilb@ar as a FIFO queue.

The actual Grid of course is a distributed systechlaoks more like this,

User

GRID

GRID

User /

GRID

User

Figure2. Thereal MiG architecture

Requirements to get started

To use MIG you need not install any Grid specibétware at all. All you need is a web-browser
that is HTTPS and x.509 enabled. You then go tdvilig web-site to request a certificate, go to
www.migrid.org and follow the MiG menu point. Yolkien arrive at a page that looks as

2 MiG certificate request - Mozilla Firefox

M I NI MUM I NTRUSION G R I D

Welcome to the MiG certificate generation request page,

Please enter your data below. Pressing the Submit button sends a certificate generation request email to the MiG administrators.

Warne: ["~ (please avoid special and accented chars)
Two letter country-code: | (GBIDE/. , help)

Organization:

State

i [

Password (can be read by MiG3 administrators in clear textl)
Verify passwor. d

Clomment ot reason why gou
should have & ceat:

Subrnit
ane

mig-1mada. s dka052 (4 1M

Figure3. The MiG certificate request page
You fill in the required fields and press submithd@ your request has been accepted you will
receive a certificate which you must import intauybrowser.

DIKU students should clearly state that they are DIKU students and refer to Brian Vinter in the
field noted Comments. You must use your DIKU email-address for verification; no outside emails
will be accepted for this.

Getting Started

Once you receive and import your certificate inboitybrowser you are ready to get started. You
open the browser you imported the certificate amd go to the URL https://www.migrid.org. Note
that this is exactly the same address you visiegdrb, but by asking for a secure connection (by
using https), you are directed to your personat page as shown below.

This is your personal entry-page and will in thibofeing be referred to simply as the entry-page.

Note that MiG is a distributed system which meduag you will not nessesarely arrive at the same
physical host every time you go to the entry-patfmvever, you should not be able to tell the
difference, all your files and jobs will be availatirom any node within the MiG system.

From the entry page there are a number of optrnst of which you should ignore for now, you
really only need the first tw&ubmit Job andFiles and Folders.

%3 Untitled Page - Mozilla Firefox

File Edt 4ew Go Bookmarks Took Help

<):| Y B - é.;] R”/ﬂ MG https: /it migrid.org) B @ s [CL
Gocgle ~ #| Gl st~ 4o s gD TIBO) - A cp v
M1 N M u M I N TRWLUB I.El N G R I D
c =
, I8
Submit }*,“g Files and %
Job | £y Folders &
wr 7 ." E
k Tega j N
& — 2
Job l i ¥
Status and 'o \I\jlg:: emen
Management| = 2 ity
N = o
S|
Manage =5 0| |pownloads
Resources =

Done s migrid.org (5[]

Figure4. The MiG start page for users.

Files and Folders

One element in MiG that differentiates it from astiter Grid you may have tried is the fact that as
a registered user you have a home-directory, pishaan ordinary computer system. This means
that once your are ready to start running jobs od $u can simply refer to files by their path
relative to your MiG home-directory. Your files grerfectly safe from other users of course and
computing resources are only allowed to see ths flhat you specify.

If you have not worked with other Grids before yoay not understand why we make such a point
of accessing files since it probably seems intaitiy you, however if you have had to work with
storage elements and gftp up- and downloads ydwnuaiilce a major difference in the way MiG
works with respect to files.

So now you can click theiles and Folder s button and you get to your personal home diregtory
which of course is empty. From here you can upfdes using the upload feature in the bottom of
the page, or you can create subdirectories usatgotbiton. Pretty soon your MiG home directory
will be as messy as the desktop on your PC.

ﬂ"‘MiG list files - Windows Internet Explorer
—— = T r -
{f g @ Jegi-binfls.py?flags=a ﬁ] srch G0 =

) =50 | @miclistfiles

uuuuuuuuuuuuuuu R D

MiG file list for: Brian_Vinter

Fiker g %7 et

Faramater it ez Disstie

Long format Fae 5l &y

i

I
i

Pragrwnt

QuaEns.Cas

RagE

SUM-vLEE

Sandoax
TartAreasr B 37 008§ 41 J4mEE
Ve

EHERRELNE

Badatradel.c

]

Backraon .codmor oo b

£ 2

2 Done @ Internet 0% v

Figure5. Atypical and messy home-directory

Submitting a job

You now go back to the entry page and pfagsmit Job to get you to the page that allows us to
submit a job. If you are un familiar with batch-pessing systems this may seem quite alien to you,
but the point is that to get to any high performeanomputing resource one always goes through a
gueue, this happens to ensure exclusive accelss gystem for your needs. Thus on the submission
page you get to specify the job you would like &wd places in the queue.

The language we use to specify the jobs is verpleimnd you will figure it out quickly. The
notation is that we have a number of keywords, alidiegin and end by two colons,

i.e. :KEYWORD::. The lines following a keyword aitee specifications you have with respect to
that keyword and all lines up until an empty lindl tve treated under the above keyword. The
keywords that are available are: EXECUTE, INPUTFR,®OUTPUTFILES, EXECUTABLES,
CPUTIME, MEMORY, DISK, RUNTIMEENVIRONMENT, JOBNAME NOTIFY,
ARCHITECTURE, ENVIRONMENT, CPUCOUNT, NODECOUNT, MAPRICE.

For most of your jobs you will only need a few bése keywords.

Once you have written your job you press submitthedob is placed in the queue. An example
job will be presented later in this tutorial.

EXECUTE

The lines following the EXECUTE keyword are the pad the script you get executed on the
resource. You can typically try out these linea iscript of your own before submitting.

INPUTFILES

The lines following this keyword are simply fildsat should be available to the job, they are either
copied to the resource or they are made availableemote access from the resource. The path of
the files are relative to your home-directory analt tpath will be preserved at the resource, i.e.
tesddir/input.txt will be places at testdir/inpxt.at the resource side also!

OUTPUTFILES

The lines following OUTPUTFILES are the result §ilthat are produced by your job. They are
either copied to your home-directory at the enthefjob or they are written directly to the MiG
storage. Paths are preserved as with INPUTFILE®, that at file may both be an input and an
output file at the same time.

EXECUTABLES

Executables are just like INPUTFILES except thalythre always copied to the resource and once
there they are marked as executables.

CPUTIME

The line following this line is interpreted as tim@ximum time, in seconds, your job will be
running, normalized to a 1GHz P4. If your job rimsger than that it will be assumed that an error
has occurred and the job will be killed. Note ttiet longer you specify your job will take the
longer you are likely to wait in the queue. Thigwkerd is ignores any but the first following line.

MEMORY

The line following the keyword states how much memmur job needs, specified in MB. The
more you ask for the fewer resources will be ablmatch your request and you will wait longer in
line.

DISK

The line following the keyword states how much diskir job needs, specified in GB. The more
you ask for the fewer resources will be able toamgbur request and you will wait longer in line.

RUNTIMEENVIRONMENT

The lines after this keyword specifies the preiltestiaruntime-environments you need. These are
applications or libraries that the resource mustaaly have installed. You can see the available
runtime environments by clicking ti&untime Environments button on the entry-page.

JOBNAME

The first line following this keyword is a symbol@me that you may assign to a job. No such
name is needed but if you run many similar jobs gaw use this filed to tell the jobs apart.

NOTIFY

The notification option allows you to be informedce MiG has completed your job. Possible
notifications are email, jabber, yahoo, icq, aolink as jabber: <your jabber id> or email: <your
email address> specifies that your want a jablyeznil, message once the job has been executed.
The message will include the status of the exeowiad links to standard output and error.

ARCHITECTURE
Here you may specify a required CPU architecuttuweently supported architectures are:

i386

X86

IAG4
AMDG64
Itanium
SPARC
SPARC64
SUN4U
SPARC-T1
PS3

CELL

ENVIRONMENT

This keyword allows you to specify environment ahies that you want to be set before your job
runs. An example could be OMP_NUM_THREADS=8.

CPUCOUNT

The line after this keyword is an integer that $igeshow many CPUs you need in the machine
you request. Note that this refers to CPUs in glsinode. If you need to specify a cluster you need
the next keyword NODECOUNT.

Two lines as:

: - CPUCQOUNT: :

8

Will thus mean that you need a machine with attl8aEPUs.

DIKU students should simply use the CPUCOUNT 8 to get access to the 8 CPU machine for their
tests.

NODECOUNT

The line after this keyword is an integer that sigehow many nodes in a cluster you need in the
machine you request. If you want a cluster of SMBes you use both CPUCOUNT and
NODECOUNT in your job description.

DIKU students should simply use the NODECOUNT 8 to get access to the cluster for their tests.
The nodes are named compute-0-0 through compute-0-14, the hostfile thus becomes:

compute-0-0
compute-0-1
compute-0-2
compute-0-3

compute-0-4
compute-0-5
compute-0-6
compute-0-7
compute-0-8
compute-0-9
compute-0-10
compute-0-11
compute-0-12
compute-0-13
compute-0-14

:EXECUTE::
lamboot -v amigoshosts
lamhalt

NOTIFY::
jabber: vinter @jabber.dk

. INPUTFILES:
amigoshosts

::NODECOUNT::
16

:VGRID::
DIKU
A small testjob for the cluster could be:

EXECUTE::

echo compute-0-0 > hfile
echo compute-0-1 >> hfile
echo compute-0-2 >> hfile
echo compute-0-3 >> hfile
echo amigos24 >> hfile
lamboot -v hfile

mpirun -np 4 hosthame

NOTIFY::
jabber: vinter @jabber.dk

::NODECOUNT::

16

:VGRID::
DIKU

MAXPRICE

The line following this keyword specifies the maxim price you are willing to pay for the
execution of this job. An in depth discussion @& fiticing systems is beyond the scope of this
tutorial and you are referred to the MiG web sitethis.

VGRID

The VGRID keyword specifies the Virtual Organisa(®) you submit this job for execution to. By
this option you can draw on resources that arecéeea with a Virtual Organisation that you are a
member of.

DIKU students should use the VGrid DIKU, i.e.
VAR D

DI KU

To gain access to the resources reserved for DIKU.

An Example

As an example let’s try an write a small test to om Grid. You are going to attack the famous N-
Queens, see http://en.wikipedia.org/wiki/N-quegmeblem by using Grid. You are not going to
attempt to use any smart algorithms, nor are yoniggto use Grid for parallel processing, this is
simply a small test to get to run a job on Grid.

Figure 6. An n-queen example, n=8

The program

The naive algorithm for solving the n-queens probie shown below in Java.
cl ass Queens {

public int n=8;
public int count = O;
int [] all;

bool ean legal (int i){
for(int x=0; x<i;x++){
if(all[i]==all[x])return(false);
if(all[x]-(i-x)==all[i])return(false);
if(all[x]+(i-x)==all[i])return(false);
}

return(true);

}

Queens(int n){
t hi s. n=n;
all =new int[n];
make_boar ds(0);
}
}

public class Ngueens_seq {
public static void main(String args[]){
int n=8;
i f(args.|ength>0)n=new
| nt eger (args[0]).intVal ue();
System out. printl n(new Queens(n).count+" with
"+n+" queens");

}
}

voi d make_boards(int i){
for(int y=0;y<n;y++){
al I [1]=y;
if(legal (i)){
i f(1+1==n)count ++;
el se make_boards(i +1);

}

} Figure7. The Java code for the test program
You save this code under the name Nqueens_se@gayaur local machine and compile to file
with the java compilet, avac Nqueens_seq. | ava, to produce two new files:
Nqueens_seq.class and Queens.class, these arxetiables you are going to use in the Grid job.

The Grid Job

Now you need to write a job description that maybeinto the queue. You are going to try to get
an answer for n=15. The job is quite simple thus ngally only need to run java Nqueens_seq 15.
For java to be able to run this it needs the tvas<ffiles to be available so you first openRkHes

and Folders option on your entry-page and upload the two filegour Grid home-directory.

Once that is done, go back to the entry-page aasgectheSubmit Job option. The job needs to run
java Nqueens_seq 15, and it needs the two inpaitiieejust uploaded. We may assume that this
task can be executed in 100 seconds on a stan@arthis the CPUTIME is set to 100. Our MIiG
job then looks as:

. EXECUTE: :

j ava Nqueens_seq 15

: I NPUTFI LES: :
Nqueens_seq. cl ass
Queens. cl ass

1 CPUTI MVE: :
100

Figure8. The MiG job description for the test
Once you presSubmit the job will enter the queue and you start waifmgthe result. The submit
button should forward you to a page that says

Success
300021 6 6 2007 __8 5 27 mig-l.imada.sdu.dk.O ipthiel assigned.

Naturally the ID of the job will be something othban 300021 6 6 2007 8 5 27 mig-
1.imada.sdu.dk.0 in your case.

If you can’t be bothered to test if the job hasrbeempleted you can add a notification request to
the job, like:

- NOTI FY: :
| abber: <Your jabber conpatible I M address>

Figure9. Notification request in the job
Which will give you an instant messenger notifioativhen the job has completed. If you do so at
one point you will get a message that looks somgtlike:

% mig_daemon@jabbernel. dk Q@@
* mig_daemoni@jabbernet.dk/BitlE ee Brian Yinter

[10:08 02] = mig_daemon@ijabbemet dk is Dffine

[10:07:52] <mig_daermon@jabbemet. dk: MiG JOB finished: rour MG job with JOB 1D
300021_E_F_2007__8_5 27 mig1.imada sdu dk.0 has finished. Outputfiles can be faund here:

hittps: £imig1.imada. sdu. dk/cgibingls. py

[10:07:52] <mig_daemon@jabbernet.dk> The commands and exit codes:

[10:07:53] <mig_daemoni@jsbbemet.dk> date 0

[10:07:53] <mig_daemon{®jabbemet. dk> Link to stdout file:

hittps://mig-1.imada. sdu dk/cert redirect/300021 6 & 2007 8 5 27 mig-l.imada sdu.dk. 0. stdout (might not be
available)

[10:07-54] <mig_daeman@jabbemet di Link to stder file:

hittps:##mig-1.imada. sdu dk/cert redirect/300021 B B 2007 8 5 27 mig1.imada. sdu.dk. 0. stder [might not be
available)

[10:07:54] <mig_daemon@jabbernet.dk> Replies to this meszage will not be read!

Figure 10. The jabber message that your job has finished
Once the job is finished you can see the resylour home directory under the job-id.stdout. If you
chose the IM notification it will include a direltk to the standard out of your job. If you opée t
file, either from your home-directory or the dirdick, you should see something like:

mig-1 imadda,sedk £ [

Figure 11. Theresult of your job.
And you have successfully run your first job. lfuygob had included result-files marked
under ::OUTPUTFILES::, they too would be availafstan your home-directory.

DIKU Examples

Shared Memory

The shared memory machine is very simple to ug@aseed nothing special to set up execution,
any multithreaded program should compile and ruhavut problems. To see that you are on the
DIKU 8 way machine you can run a simple testjob:

. EXECUTE: :

cat /proc/cpuinfo

VAR D
Dl KU

: » CPUCOUNT: :
8

MPI

For various reasons LAM MPI makes some rather ggassumptions about the execution model
that does not fit with MiG. So to run LAM mpi jolos1 MiG you create a script that is your actual
execution, here it's called mympi.sh. In this scwe descripe our job, i.e. we want to compile the
application, boot lam, run the application and dtop again.

npicc ncpi.c -lm
| amboot -v am goshosts
npirun -np 8 a.out 100000000

| amhal t
Note that we also use a file mpihosts that looks as

cO-
cO-
cO0-
cO0-
cO-
cO-
cO-
cO0-

And in addition we also have a source file mcpi.c.

~N~No o~ WNEO

We can then create a MiG job that executes the mgmgcript:
: EXECUTE: :
./ nynpi . sh

. EXECUTABLES: :
mynpi . sh

.. I NPUTFI LES: :
npi host s
ncpi . c

: - NODECQUNT: :
16

VAR D
Dl KU

Submit this job after you have made sure that myghmnd amigoshosts are in your home
directory and you should be able to run.

PVM

PVM unfortunately does not comply with its own mahand is not able to boot a hostfile as a
parameter. We therefore need to create a custotfiledor pvm, let’s call it pvm_boot that looks
as:

add conpute-0-0

add conpute-0-1

add conpute-0-2

add conput e-0-3

add conpute-0-4

add conpute-0-5

add conpute-0-6

add conpute-0-7

To stop pvm we create a file, pvm_halt, with ome1i
pvm hal t

As with MPI the easiest way to work is through apg¢this will allow you to test the program on a
local system before submitting to MiG. We must rarber that PVM is a somewhat primitive
system so it needs a lot of care to run. The exammgram used here may be found at
http://ups.savba.sk/PASP/calcpi/calcpi.htraind consists of two files calcpi.c and dboargory
chould change the calcpi.c file to pvm_spawn franabsolute path, which we only know if we
copy the calcpi to the root, ie. the line:

rcode = pvmspawn("cal cpi ", NULL, PvnTaskDefault, "", nworkers,
tids);

becomes

rcode = pvm spawn("/honme/ m g/cal cpi”, NULL, PvnTaskDefault, "",
nwor kers, tids);

To compile and run it we thus make a script, mymm.

gcc calcpi.c dboard.c -1/usr/share/ pvnB/incl ude -
L/ usr/share/ pvnB/1ib/LINUX -l pvnB -l gpvnB -0 cal cpi

cp calcpi /honme/ mg/.
pvm < pvm boot

echo 8 | ./calcpi

pvm < pvm hal t

Thus we end up with a MiG job that looks as:
: EXECUTE: :
.l mypvm sh

o | NPUTFI LES: :
pvm boot
pvm hal t
calcpi.c
dboard. c

. . EXECUTABLES:
mypvm sh

: - NODECQOUNT: :
16

VAR D::
Dl KU

Advanced Components
Here we should talk about adding resources, VGeatis,but later

