
1 A first Step into Parallel Programming 
Before we endeavor into cluster programming and scalable parallel architectures we will take a look at the simplest 
parallel architectures and how they are programmed. The problems that must be addressed with these shared 
memory machines must also be solved in all other parallel programming models so that one of the reasons why we 
take the time to learn these ‘non cluster’ architectures and programming techniques, is that we need to crawl before 
we can walk. Another reason why we look into the non-scalable architectures is that when you understand why we 
cannot scale these machines into hundreds of processors, you will better understand the choices that are made to 
make machines scalable and why you as the programmer must pay some of the price of the scalability you want, by 
increased complexity of the application code that you write. 

1.1 Symmetrical Multiprocessor Architectures 
The trivial computer contains one CPU and one memory block. If this one CPU runs a multithreaded application, 
the memory will appear as shared amongst the threads. More realistic versions of shared memory are several CPUs 
connected to the same memory block or memory blocks using either a shared bus or a crossbar switch. This is 
sometimes called Symmetrical Multi Processing, SMP, though SMP has come to mean the shared bus approach 
more specifically. Taken together the two are more often refereed to as Uniform Memory Access, UMA, 
architectures. Uniform because access to a memory address has the same cost independently of the address. This 
uniform cost may be partly hidden by caching, but this in effect does not change the UMA property. 
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Figure 1 UMA approaches, (a) crossbar switch and (b) Shared bus 

The crossbar switch approach can be found in machines such as the HP Exemplar V Class, while the shared bus 
approach can be found in machines such as the Intel x86 based multiprocessors, SGI Power Challenge and the Sun 
Enterprise Server. The latter may intuitively not look like an UMA machine, as processors and memory modules 
are collected on the same system boards, which then interface with the shared bus. Non the less this is a standard 
UMA architecture, since a CPU can access memory in a different system board in the same time it takes to access 
memory on its own system board.  

The core mechanism behind the SMP architecture is the shared memory model, what we intend this model to mean 
is that if one processor writes a value to an address X, then another processor will receive the same value if it reads 
from address X. As obvious as this seems, there are many problems associated with achieving this with modern 
processors, which has come to depend heavily on caches for performance, usually two and some times even three 
levels of cache. Maintaining the shared memory behavior with multiple CPU’s with each their cache is known as 
cache coherence or cache consistency. Maintaining cache coherence with the crossbar SMP approach is very 
complex and out of the scope of this text. Achieving coherence on a shared bus is simpler, but by no means trivial 
either. Since most SMP machines are shared bus machines, we’ll go on to describe a coherence technique for these 
machines very briefly. For a thorough walkthrough of the cache coherence problems and their solutions, consult 
[Culler 98]. 

The most common coherence algorithm is the MESI protocol, which is also the one that is used in the Intel x86 
architecture. The Modified-Exclusive-Shared-Invalid, MESI, protocol, allows any cache line to be in any of the 
four states: Modified, Exclusive, Shared and Invalid. A line in Modified state, contains information which is the 
only correct version of that data, this in turn means that if the cache line is flushed to make room for another entry, 
then the contents must be written to main memory. Exclusive cache lines are, as the name indicates an exclusive 
cache copy of the data, e.g. there still exist a coherent version in main memory, but no other CPU has a copy. A 
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cache line in Shared state contains information, which exists in more than one copy, e.g. two or more CPU’s has 
the cache line in cache memory. An Invalid cache line is a cache line in which the information is no longer valid, 
e.g. the cached address has been changes by another CPU.  

A Modified cache line can turn into a Shared if another CPU reads a copy of the data, or it can become Invalid if 
another CPU writes to the cache line. An Exclusive entry can enter the Shared or Invalid state in the same way, or 
it may become Modified if the CPU writes to the cache line. A Shared entry can become Modified if the CPU 
writes to it, or Invalid if another CPU writes to it. Invalid entries may become Shared or Exclusive on a read to 
them, Shared if the information is delivered by another cache and Exclusive if the information comes from main 
memory, if the cache line is written to it shifts state to Modified. 

M E S I

 
Figure 2 State Machine Transactions for the MESI protocol 

Programming shared memory machines are often presented as trivial and as if linear speedup can be achieved 
without considering architectural details. This perception often results in a very disappointed programmer. There is 
a multitude of considerations to take, none of which are not part of optimizing sequential programs. If one does not 
consider these factors, even the simplest parallel applications will show poor performance. The following is a brief 
description of some of the most important factors to consider. 

The operating system architecture is a very important factor with respect to performance. Some operating systems 
will stop all CPU’s in a system when one CPU enters OS modus, this way the application is serialized every time 
any process accesses the OS, luckily these operating systems are rare today but if one writes an application for such 
an operating systems, minimizing system calls is imperative for performance. A more common OS flaw is that 
only one processor may be in kernel modus at a time, this way the other processes won’t be stalled simply because 
one process enters the OS. A process will still be stalled if it tries to go to the kernel and another processor is 
already in kernel modus. Thus in this case it is important to consider this factor in an application and avoid that 
different parts of ones application tries to access the kernel at the same time. This is not as rare an event as it might 
sound, since many applications will naturally have a flow where they synchronize and the all attempt to access the 
file system at the same time. Other operating systems again will allow any number of processors to be in kernel 
modus at the same time, granted that they do not access the same data or for some OS that they do not use the same 
functions. The most important issue with these OS is usually that their Achilles heal is that they still need to 
interrupt the other processors when the do memory allocation, e.g. in general for any SMP machine it is better to 
allocate one large chunk of memory than to issue several small allocations. 

Interrupts in general presents a problem when programming for performance, and more so when working with 
multiprocessors. Depending on the architecture and operating system most systems will deliver all interrupts to one 
processor only, if a parallel application runs a fine grained parallel job interrupting one processor will easily result 
in a similar sized stall of the other processor before a synchronization point. Imagine a dual processor that need to 
add two vectors before moving on to another part of the application, adding two vectors is a trivial parallel job, 
since one processor may work on the first half of the vector, while the other may add the latter part of the vectors. 
After completion the two processors synchronize before going on. If one processor is delayed x cycles due to 
interrupts then the other processors will have to wait x cycles before synchronization is possible, thus the actual 
loss of computation time is 2x rather than x, it is evident that scaling to more processors will increase this delay 
linearly. The cost of interrupts varies much with the CPU architecture, the Intel x86 architecture, which is widely 
used as in low-cost clusters has a very high interrupt cost, while other CPU architectures, e.g. the HP PA-RISC 
architecture has a direct interrupt cost of only a few clock-cycles. However there are indirect costs from interrupts, 
most importantly processing the interrupt will almost always introduce noise in the cache and TLB of the 
processing CPU. As most high performance applications are highly tuned to efficient cache and TLB utilization, 
this indirect cost easily outweighs the direct interrupt cost. Programming with interrupt interference in mind is 
hard, and not event possible at all times, however in some cases, like the vector adding example one might skew 
the workload slightly to the side of the processor that does not process interrupts. Some operating systems does not 
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provide the programmer with the means of identifying which processor a given process runs on, and in these cases 
one can do little to compensate for interrupt cost. 

Unfortunately interrupts are by no means the only or even biggest threat to performance in SMP systems. Any 
resource that may become sparse during execution is a potential bottleneck. The most obvious such resource is the 
processor-memory, PM, bus. The PM bus of a Pentium III is at the time of writing a 64-bit wide bus running at no 
more than 133MHz, e.g. a theoretical bandwidth of just more than one giga-byte per second, reading an instruction 
requires two bus operations, e.g. a theoretical maximum around 500 MB/sec. A 1.5 GHz processor can 
theoretically issue 4.5*109 instructions per second. In other words, the PM bus cannot even keep one CPU busy in 
the worst-case scenario. Luckily caches eliminate these problems and CPUs are most often stalled due to fetching 
data and not instructions, the problem is the same here though, thus is a program traverses data structures that 
either does not exhibit temporal locality or are so large that they does not fit in the cache and thus does not allow 
the CPU to benefit from temporal locality.  So if the PM bus can become a bottleneck for one CPU, then the risk of 
the PM bus becoming a bottleneck grows with the number of processors that are connected to the bus. The limited 
bandwidth of the PM bus is also the primary reason why SMP architectures only grow to a very limited number of 
processors. 

The MESI protocol, or any other SMP bus coherence protocol, is also responsible for potential performance 
degradation. If one processor has modified a variable, e.g. increased a counter, and another processor wish to do 
the same, then the cache line, which is in Exclusive state, need to be copied to the reading CPU and enter the 
Shared state at both CPUs, then the second CPU may increase the variable and write the new value, which means 
that the cache line at the first CPU must be invalidated, e.g. enter the Invalid state. Migrating cache lines back and 
forth like this may easily reduce the performance of a system to a level where a uni-processor system would 
perform better. To ensure correct execution in cases as the one of the shared counter being increased by more than 
one processor, such variables are usually protected by synchronization variables, which increase the problem even 
further. This scenario is examined in a later example. 

A related problem, which can be even harder to detect, is called false sharing. The problem is the cache line 
migration issue again, but this need not be because two different processors access the same variable, but because 
different processors access two different variables. This may occur because the cache works with a granularity of 
cache lines, not variables. Imagine two processors the uses each their counter, x1 and x2 and x1 and x2 are placed 
contiguously in memory, then x1 and x2 are placed on the same cache-line, and thus the same problem of migrating 
and invalidating as above occurs, even though we explicitly have tried to avoid it by using different variables. 
There are different ways to address this, but an easy rule of tomb is to use local variable as much as possible, e.g. 
data placed on the stack rather than the heap. 

i j

int i,j;

 
Figure 3 A common pitfall in shared memory programming, two apparently independent variables ends up competing for the same cache-

line 

The use of development libraries is another common source of problems in parallel application development. If the 
library is not safe for use in parallel applications this is a huge problem which is often discovered late in the 
debugging process, most modern development platforms use libraries that are safe to use with SMP architectures, 
these are often referred to as ‘thread-safe’ libraries, more on threads in section 1.2. Even if the libraries behave 
correctly on parallel architectures they often represent a significant performance problem, and parallel applications 
tend to use the standard libraries as little as possible. This is easily seen if we compare the performance on an 
application that uses random numbers heavily as seen in Figure 4. 
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Figure 4 Performance of an application that relies heavily on random numbers, if the standard C-library random function is used the 

application runs significantly slower with eight CPUs compared to a one 

The obvious bottleneck when working with more that one CPU, be it SMP or any other parallel architecture, is IO. 
Roughly speaking is it of little gain to have much processing power if the CPUs are constantly waiting for data. 
The IO bottleneck may exist at many levels of a system, the IO bus, e.g. a PCI bus, the disk or tape or a network 
interface from which the data arrives. IO in parallel systems is a topic in its own right and will not be covered 
further in this text.  

1.1.1 The Intel Multiprocessor architecture 
The Intel multiprocessor architecture is one of the most widely available multiprocessors, and most of the control 
hardware that is needed to implement multi-processing is placed on the CPU itself, with the result at a dual-
processor Intel machine is only marginally more expensive than the cost of a uni-processor and the additional CPU. 
As you can imagine this makes these machines attractive from at cluster point-of-view since a 16 CPU cluster 
made up of eight dual-processor machines is notably less expensive than a similar cluster made from 16 standard 
PC. We will look into the factors that one should consider when building a cluster in a later chapter. 

Intel’s MP architecture is a shared bus architecture, which is why the machines that are based on it are fairly cheap, 
but this is also the reason why the machines only scale to very few processors in each machine. Each CPU has an 
execution core, an interrupt controller, a bus controller, which interfaces the processor to the processor-memory 
bus, and two levels of cache. Both levels of cache are kept coherent in compliance with the MESI protocol, as 
we’ve seen earlier in this chapter. A common problem with the MESI protocol is that two or more processors may 
compete to change the contents of a given address, this typically occurs when a process or thread tries to set a lock 
variable. If two or more CPUs try to change a given address at the same time they will repeatedly get a shared copy 
and then try to get exclusive access to this address, this can go on many times before one CPU is able to complete 
the change the address, and thus obtain the lock. This problem of course is rare and is only a performance problem 
and it will not result in an incorrect behavior. However to ensure that this is not a problem Intel have introduced the 
option of locking the bus for the duration of an instruction, and since the Intel processor is a CISC architecture this 
is enough to easily perform a synchronization lock. Locks will be investigated in further depth in the next section. 

poll:  
MOV AL,0 
MOV BL,1 
LOCK 
CMPXCHG <sem>, BL 
JNZ poll 
//Now we have the semaphore 

Example 1. An efficient polling lock in the Intel Architecture 
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Figure 5 The Intel MP architecture 

A more detailed description of the Intel MP architecture may be found in [2]. 

1.1.2 The SUN Enterprise architecture 
The SUN Enterprise architecture represents the best within scalable SMP architectures. The Enterprise architecture 
may be thought of as a three-tier architecture, which consists of the CPU with a standard cache hierarchy, a 
gateway to scalable memory called the Ultra Port Architecture, UPA and an intra UPA system called the 
GigaPlane bus. An important part of this design is that each of these tiers are autonomous protocols, and the actual 
implementation may be changed without consideration to the other protocols, i.e. SUN also makes smaller SMP 
machines which eliminates the GigaPlane component and only scales as far as one UPA module allows, and the 
CPUs are used in small systems without any UPA components as well. 

The Ultra Port Architecture is a split transaction memory protocol, which simply means that every memory 
operation may be split into multiple logical parts and the UPA interface supports many such partial memory 
operations to exist concurrently. In the Enterprise architecture the UPA modules communicate via the GigaPlane 
bus, which is a different kind of bus than the Intel MP-bus one we examined in depth previously. The GigaPlane 
bus is not one physical bus but a set of interconnected busses, the effect of this is that when a UPA module posts an 
operation to the GigaPlane bus this is not immediately visible to all other UPA modules, but the GigaPlane 
subsystem will make sure that the operation is propagated to all the GigaPlane sub-busses. In essence this allows 
the Enterprise to use snooping busses but without requiring the busses to hold the same information at the same 
time. An in-depth coverage on the transaction protocol and the necessary timing considerations that are required to 
implement this is beyond the scope of this text. Readers that want a more detailed understanding of the Enterprise 
architecture are encouraged to read [Culler98][SUN]. 
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Figure 6 The Sun Enterprise Architecture 

1.1.3 The SUN MAJC Architecture 
The SUN MAJC (pronounced Magic) processor is an example of a SMP architecture which scales very poorly, 
however the CPUs that it does include may communicate faster than any of the previous SMP architectures. The 
idea is to place the CPUs on the same physical chip. This allows the CPUs to share all caches, in effect eliminating 
the need for cache-coherency protocols. Shared cache and a direct connection between the CPUs allow the MAJC 
CPUs to share work at a much finer granularity than any other SMP architecture, in fact the MAJC architecture 
includes components to allow a non-parallel application to use both CPUs by detecting instructions that may 
execute in parallel at runtime, however if the programmer provides more than one thread this level of parallelism 
will be used instead.   

An important feature in the MAJC architecture is SUN’s concept of ‘vertical multithreading’. Vertical 
multithreading means that each CPU may execute several threads concurrently and the scheduling of these threads 
are handled in hardware. The concept of threads is covered in the next section, but for now it suffices to think of 
threads as processes that happen to share the same address space. The hardware handling of threads in the MAJC 
processor allows the CPU to schedule a new thread if the active thread is delayed. This means that when a thread 
issues an operation to a memory cell which is not placed in the cache, e.g. a cache-miss, another thread can be 
scheduled so that the CPU does not stand idle while waiting for main memory. In many ways this is similar to out-
of-order execution, but rather than relying on the CPU to detect potential instructions for out-of-order execution, 
the application programmer can create another thread to run on the CPU. 
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Figure 7 The SUN MAJC 5200 SMP on a chip Architecture 
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In this context the ‘vertical multithreading’ is quite interesting as it is nothing more than a chip level integration of 
a well-established technique called latency hiding. The idea is, simply put, to keep several components busy at the 
same time, e.g. the processor and the memory sub-system or once we start looking at actual clusters, the cluster 
nodes and the cluster interconnect. Vertical multithreading is also available in other architectures such at the Intel 
Xeon class CPUs, in this architecture the CPU appears like a dual-CPU on a chip, as in Figure 7, however there are 
not two CPU cores on the chip but only two register-files and a little extra control logic. 

The MAJC architecture is an example of integration of instruction set, memory architecture and runtime 
environment to improve performance, and extensive coverage of the architecture will not fit here. We are likely to 
see similar multiprocessor-on-a-chip CPUs in the near future where existing architectures are merged into on-chip 
multiprocessors. Once these CPUs become readily available they are likely to form the basis of many desktop 
systems, and we will definitively find them in cluster-nodes. 

1.2 Programming the SMP 
Now that the SMP architecture has been demystified it is time to start considering how to program with shared 
memory. While the trivial solution is to run distinct programs or processes on each processor, we mainly focus on 
speeding up one program/process by using more than one CPU. 

1.2.1 The thread model 
The usual way of programming shared memory architectures is by using threads. Threads are sometimes referred 
to as lightweight processes which refer to the fact that a thread is basically everything a process is, except for the 
address space, e.g. multiple threads exist within the same address space. This is the very feature that is well suited 
for shared memory architectures, if one thread writes to a variable x then another thread that reads x will read that 
value. 
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Figure 8 Two processes, a single threaded and on with two threads 

Thread packages exist in a multitude, each with their own API and a few special characteristics. The most common 
thread package is POSIX threads, Solaris threads and Java threads for UNIX like operating systems and WIN32 
threads and Java threads for the Windows platform. POSIX and Solaris threads are fairly similar in both API and 
functionality, while Java threads are an integrated part of Java and as such has an entirely object oriented API, Java 
threads also represent a functional minimum with fewer options than other thread packages.  

For the purpose of high performance programming, which after all is our agenda, it is important to notice that 
threads are a programming concept, and thus is not linked to any implementation. This is important to us since 
there are three basic approaches to implementing threads, user-level threads, kernel-level threads and mixed 
threads. 

User level threads, as the name says, are implemented entirely on user level. They provide the programmer with a 
useful way of structuring her work, but since the operating system only know of the one main thread in the process, 
user-level threads are not able to utilize more than one processor per process, which in essence makes user-level 
threads unsuitable for our purpose. So if you write a multi-threaded application and don’t receive any performance 
improvement the first thing to check is whether your application does activate more than one processor. 

Kernel level threads too are exactly what the name indicates, i.e. threads which are known by and controlled by the 
operating system kernel. This way the operating system knows of the threads and can schedule different threads on 
different processors so that we can achieve a real speedup. On the downside kernel-level threads are controlled 
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only be the kernel, which means that if one thread is suspended and need to be woken by another thread this can 
only happen through a costly call to the operating system. 

Equally intuitive is the nature of mixed threads, which as you’d imagine seek to provide a best of both worlds to 
the thread modeling. The main philosophy behind the mixed-level threads is that each process has exactly one 
kernel level thread per CPU in the system, and as many user-level threads as the programmer creates. The user-
level threads are then scheduled on the pool of kernel threads. This way we get true multiprocessing while 
minimizing the number of costly operating system calls. 

1.2.2 Java Threads 
In Java threads are an integrated part of the environment and using threads in Java is straightforward. Java contains 
a generic Thread class and to write code that should run as a thread the programmer simply need to place the code 
in a class that extends the Thread class. New thread classes must contain a public method called run, which can 
neither receive nor return data. 

class dummyThread extends Thread { 
  int id; 
  public dummyThread(int id){this.id=id;} 
  public void run(){System.out.println(“Hello World  from thread “+id); 
} 

Example 2. A minimal thread class 

The above code implements a class called dummyThread, which can be used to create a new thread – once running 
the thread will simply write the classic ‘Hello World’ message tagged with an id of the thread. This id is given by 
the thread that instantiates the dummyThread class, and thus is not an integrated part of the thread sub-system, as 
we will see below other thread systems do provide a system assigned thread id. 

It is important to understand that instantiating a new Java thread class does not start a new thread, starting the 
thread must be done specifically using the start method which has been inherited from the system Thread class. So 
if we wish to create a dummyThread we need to first create a new instantiation of the class and then start up the 
thread. 

dummyThread dt = new dummyThread(42); 
dt.start(); 

Example 3. Instantiating and starting a new thread 

If threads are used to divide work between multiple processors it is usually necessary to know when the thread that 
handle a specific task has finished, this could be done by the programmer but the thread sub-system provides a nice 
way of doing this by providing a built in method join. Calling the join method in another thread object will suspend 
the calling thread until the thread in the called object have terminated.  

dt.join(); 

Example 4. Waiting for a thread to terminate 

This technique is often used to ease programming, imagine that we have a machine with eight processors and thus 
we wish to divide a given job into eight sub-tasks. We can then do one of two things; either the main thread creates 
eight identical threads to handle each portion of the job and waits for all eight to finish, or the main thread creates 
only seven threads and perform the last task itself, after which it will return and wait for the termination of the 
remaining threads. Which of these two techniques is preferable is left as an exercise. 

What really makes shared memory programming so easy compared to the techniques we will look at later on, is the 
fact that we need only concern ourselves with controlling the code, if two or more threads use the same data they 
will simply read and write them at the same memory address. Reading and writing an address is straightforward 
but unfortunately here lies the first and perhaps most dangerous pitfall in shared memory programming; the race-
condition. Imagine an application where multiple threads all need to increase the same variable is part of the global 
result, nothing seems simpler than increasing a variable: 

i++; 

Example 5. Increasing a variable 

However as you probably know this is not how it is done in the computer, what actually goes on is that the variable 
is read from memory into a register, which is then increased and written back: 
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read a,i 
inc a 
write i,a 

Example 6. Assembly pseudo-code to increase a variable 

Now consider what happens when two threads wish to increase a shared variable at approximately the same time. 
Two copies of the instructions in Example 6 may be combined in 22 ways of which only two will return the correct 
result. So if the simplest instruction with only two threads only has one chance in eleven to execute correctly, 
you’d expect that race-conditions are easily caught, especially if the operation(s) on shared variable(s) are 
performed by more than two threads, however to capture the error more than one thread executes the code that 
changes the shared variables at the same time. Exercise 10) examines this question in further depth. 

The solution is to ensure that only one thread is allowed to access the shared variables at a time, such operations is 
called a critical section. Controlling that only one thread at a time is in a critical section is called mutual exclusion, 
or often simply ‘mutex’. Java provides a very powerful yet simple mechanism to ensure mutual exclusion called 
monitors, those that are familiar with Hoare-monitors should be forewarned that Java’s monitors are not Hoare 
monitors but use a far simpler scheduling model. A monitor is a set of data-variables and methods to access these 
data, very similar to an object, however in monitors only one thread may be inside the object at a given time. Java 
monitors are standard objects but the programmer can convert the object to a monitor by stating that one or more 
methods should ensure mutual exclusive access to the object, the keyword to specify such methods is 
synchronized. 
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Figure 9 Logical picture of a Hoare Monitor 

class counter() { 
  int i; 
  synchronized void inc(){i++;}; 
} 

Example 7. A monitor in Java – the increment of I will be atomic even if two threads call it at the same time 

If you know a little about compilers and optimizations you’d probably argue that the assembly code in 0 is not 
realistic since most compilers would try to keep the variable i in the register a for later use, this objection would be 
quite right, compilers do try to include the CPU registers into the memory hierarchy and keeps a variable in a 
register until such a time that is finds it more efficient to use the register to hold another variable. This of course 
poses a problem to our multithreaded applications, what is the purpose of ensuring mutual exclusion on access to 
shared variables if we cannot ensure that the result is written to memory so that it can be seen by other threads? 
The solution to this problem is to tell the compiler not to keep a given variable in a register after use, this is done by 
telling the compiler that this variable is volatile, i.e. sensitive to changes that the compiler cannot detect. 

volatile int i;  

Example 8. Defining a variable as volatile 

The great thing about multi-threaded programming is that results that are written by one thread, may immediately 
be read by another. We use this quite often in iterative algorithms, where the source data for iteration n is in fact the 
result of iteration n-1, but the thread that uses the result is not necessarily the same thread that produces the data, 
thus we need to make sure that result has been written before it is read – otherwise what we read is either outdated 
or outright garbage. The technique we use for this if called a barrier and the idea is quite simple, when a set of 
threads need to agree that they have all finished one step of a computation they all go to the barrier, which in turn 
will only allow them to leave once all have arrived. Barriers may be implemented in two basic ways, either by 
letting each thread actively spin until all threads have arrived, or by having threads sleep until all other threads have 
arrived. 
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class counter { 
  int cnt; 
  public void counter(){cnt=0;} 
  synchronized public int inc(){return ++cnt;} 
  synchronized public void reset(){cnt=0;} 
} 
 
class Barrier { 
 counter c; 
 int members; 
 volatile boolean spin; 
 public Barrier(int num){members=num; spin=true; c= new counter();} 
 public void meet(){ 
    boolean state=spin; 
    if(c.inc()==members){ 
      c.reset(); 
      spin=!spin; 
    } 
    while(spin==state); 
 } 
} 

Example 9. A Barrier which is implemented by spinning the threads until all have arrived 

A spinning barrier as the one demonstrated in Example 9 is characterized by two facts; latency is low, as soon as 
the last thread joins the barrier all threads will return and continue the calculation within a CPU cycles. On the 
other hand the threads keeps the CPUs active by spinning on the counter variable, which prohibits the CPU from 
doing valuable work in the mean time. In java this could be the garbage collection thread, which might as well 
spent the time cleaning up dead objects while the thread is waiting. To allow this one need a barrier that allows a 
thread to be descheduled at the arrival to the barrier and rescheduled once all threads arrives these are also know as 
a signal-wait barrier. 

class Barrier { 
  int cnt, members; 
  public Barrier(int members){this.members=members; } 
  public synchronized void meet() { 
    if(++cnt==members){ 
      cnt=0; 
      notifyAll(); 
    } 
    else try {wait();} catch(Exception e){}; 
  } 
} 

Example 10. A Barrier which is implemented by sleep and wakeup 

The tradeoffs in the signal wait barrier are the exact reverse of the spinning implementation, any tread that is not 
the last to arrive, will go to sleep until the last thread signals the others that the barrier is completed and they may 
go on. This way the CPUs which were running these threads are free to do valuable work, on the other hand 
descheduling a thread, scheduling and descheduling another and finally rescheduling the original thread requires a 
number of CPU cycles so that the latency of the barrier increases significantly. 

The remaining question is; which type of barrier should one use? This question does not have a valid answer since 
each model has its right depending on the application. If an application requires the threads to meet at barriers very 
often, it is most likely that the code is well balanced, which means that all threads will arrive at the barrier at 
approximately the same time, in this case the overhead of a signal-wait barrier is too costly and the spinning 
version is likely to be the fastest solution. On the other hand if barriers are rarely called then the work is also more 
likely to be unbalanced and utilizing the waiting period on a CPU for the barrier to complete is more likely to be 
worthwhile. A generic barrier will often combine the two approached, so that threads start out by spinning for 
completion, once a thread has spun for as long time as a sleep-wakeup takes all spinning threads goes to sleep and 
the barrier changes to a signal-wait barrier. It is easily seen that this solution is two-worst. 

Below is a simulation of a multithreaded application that synchronizes via a barrier. Work is simulated by one 
thread as adding a new random number to a variable given number of timers, the more loops that simulate work the 
more unbalanced the application is. The simulated work creates a new Random object each time, which ensures 
that we will need garbage collection. 
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import java.util.Random; 
 
class Worker extends Thread { 
  private int max_work; 
  Barrier bar; 
  public Worker(int work, Barrier barrier){max_work =work; bar=barrier;} 
  public void run(){  
    int x=0; 
    for(int i=0;i<1000;i++) { 
      for(int j=0; j<max_work; j++) x+=new Random() .nextInt(); 
      bar.meet(); 
    } 
  } 
} 
     
public class barrier_simulation { 
  public static void main(String argv[]){ 
    int worktime=new Integer(argv[0]).intValue(); 
    Worker w1,w2; 
    Barrier barrier=new Barrier(2); 
    w1=new Worker(0, barrier); 
    w2=new Worker(worktime, barrier); 
    double start=new java.util.Date().getTime(); 
    w1.start(); w2.start(); 
    try {w1.join(); w2.join();} catch(Exception e){ };  
    double stop=new java.util.Date().getTime(); 
    System.out.println(((stop-start)/1000) +" secon ds"); 
  } 
} 

Example 11. Barrier simulation 

Figure 10 show the result of blocking and spinning barriers with the simulation shown in Example 11, as we vary 
the simulated work from one through 10,000 iterations. If the unbalance between the two threads workload is only 
one iteration then the spinning barrier performs significantly better than the blocking version, the spinning version 
is 0.04 seconds faster than the version that initiates rescheduling of the threads. Because the simulation creates a 
new Random object for each iteration the execution actually do force the garbage-collector thread in the Java 
virtual machine, to be activated, which means that at some time the blocking-barrier becomes more efficient than 
the spinning version, in this case it happens somewhere between a simulated workload of 100 and 500 iterations, at 
100 iterations the spinning version is 0.01 seconds faster than the blocking version, at 500 the relationship has 
changed so that the blocking version is 0.01 seconds faster than spinning. When the simulated workload reaches 
10,000 iterations the advantage of blocking over spinning has grown to 0.45 seconds, unfortunately we cannot see 
this from the graph and in percentages it is not as significant at the advantage of spinning over blocking with a 
small unbalance, but the difference is there nonetheless and one should carefully consider the nature of the 
application when choosing a barrier technique. 

Barriers are used with most parallel programming APIs and once we get to distributed-memory architectures more 
advanced, and more scalable, barrier techniques will be outlined. 
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Figure 10 Comparing Blocking and Spinning barriers on a dual processor machine 

The results that are shown in Figure 10 clearly show that the Java threads in this case utilize more than one 
processor, thus the Java virtual machine and the operating system supports kernel level threads. Java in fact allows 
you to choose whether you want to use user-level or kernel-level threads, though not all Java implementations 
implement both versions. How you tell Java which thread model to use depends on your particular platform, but 
user-level threads are generally referred to as ‘green’ threads and kernel level threads as ‘native’ threads. 

setenv THREADS_FLAG green 
setenv THREADS_FLAG native 

Example 12. Setting Java to use user-level respectivly kernel-level threads in Linux 

1.2.3 POSIX Threads 
Outside the Java world the most common thread package is POSIX threads, these are often simply referred to as 
pthreads. POSIX threads are supported by most UNIX-like operating systems, including the popular open-source 
versions Linux and BSD. Since POSIX threads is a language independent library the actual interface to the thread 
package is a little more complex than Java threads, but the only major difference is the lack of monitors and the 
fact that threads are active as soon as they are created, as opposed to the Java version which requires threads to be 
activated after creation. POSIX threads are based on functions and a new thread of execution is given a start 
address in the form of the address of a function where the thread should start its life. A function that should be used 
as a stand-alone thread should take a void pointer as its only parameter and return a void pointer. 

#include <pthread.h> 
void * my_thread(void *my_id){ 
  printf("Hello world from thread #%d thread id #%d \n",\ 
          (int)my_id, pthread_self()); 
  return NULL; 
} 
 
main(){ 
  pthread_t thread; 
  pthread_create(&thread, NULL, my_thread,(void *)4 2); 
  pthread_join(thread,NULL); 
} 

Example 13. Hello world with POSIX threads  

Since POSIX threads are language independent critical regions cannot be implemented as easily as the 
synchronized methods in Java, instead POSIX threads are based on the classic technique of token holding. Each 
critical region is associated with a token, and in order to enter the critical region a thread has to pick up the token, 
leaving the critical region means releasing the token. A pthread token is called a mutex, mutual exclusion variable 
and a critical region is entered and left by locking or unlocking a mutex.  
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static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIA LIZER; 
pthread_mutex_lock(&mutex); 
pthread_mutex_unlock(&mutex); 

Example 14. Initilizing, locking and unlocking a POSIX mutual exclusion variable 

Pthread based applications too, need to allow threads to go to sleep and be woken by another thread. Once again 
the language independence makes the procedure a little more cumbersome, but it is still straightforward. Pthreads 
are suspended and woken on condition variables, i.e. a thread issues a wait with a condition variable and is put to 
sleep until another thread either signals to the same condition variable or broadcasts to it, a signal to a broadcast 
variable means that one thread may be woken and resume execution, a broadcast means that all threads that are 
waiting for a condition variable may be woken. There is however an obvious potential race-condition with this kind 
of signal and wait, if one thread issues a wait and another at the same time issues a signal on the same condition 
variable. To avoid this the POSIX thread interface requires a thread to pass another variable to a wait call, this 
second parameter is a mutex variable, which must be locked at the time of calling wait. A wait statement then 
translates into an operation sequence that goes; unlock mutex, wait for condition, lock mutex, where the mutex 
unlock and the wait is performed atomically. Any thread that signals a condition variable should then remember to 
lock the same mutex variable before sending the signal or broadcast. This way race-conditions are avoided. 

static pthread_cond_t done = PTHREAD_COND_INITIALIZ ER; 
pthread_cond_wait(&done,&mutex); 
pthread_cond_signal(&done); 
pthread_cond_broadcast(&done); 

Example 15. Creating, waiting, waking one and waking all threads with POSIX threads 

POSIX threads has no immediate semantics for defining shared data variables1 but must languages, including C 
which we use here, support the notation of volatile variables, and the defining keyword is usually volatile. If we 
combine all of the above synchronization techniques for POSIX threads we can define a blocking barrier 
mechanism similar to the Java version found in Example 10. The C/POSIX threads version is found in Example 16 
and it is clear that the language independence which POSIX threads provides do increase the complexity of using 
it, once you get used to it however it is fairly easy. 

barrier() { 
  static volatile int barcnt=0; 
  static pthread_cond_t done = PTHREAD_COND_INITIAL IZER; 
  static pthread_mutex_t mutex = PTHREAD_MUTEX_INIT IALIZER; 
 
  pthread_mutex_lock(&mutex); 
  barcnt++; 
  if(barcnt<WORKERS){ 
    pthread_cond_wait(&done,&mutex); 
  } 
  else{ 
    barcnt=0; 
    pthread_cond_broadcast(&done); 
  } 
  pthread_mutex_unlock(&mutex); 
} 

Example 16. A blocking barrier implemented in POSIX threads 

1.2.4 Solaris Threads 
The first thing to notice with Solaris threads is that the logical elements that we called threads in the previous two 
sections are called light weight processes, LWPs, in Solaris. Except from the name and the order on some 
parameters Solaris LWP are very similar to POSIX threads. The Solaris thread model however provides yet 
another level of sub-tasking which are then named threads. A Solaris thread may be fixed to run within one LWP 
in which case it is denoted a bounded thread or it may float amongst the different LWPses in the system and is then 
called unbounded. 

                                                 
1 It does however provide the programmer with an interface to provide each threads with a private data-segment if you should need this. 
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thr_create(NULL, 0, my_thread, (void *)42, NULL, &t hread); 
thr_join(thread, NULL, NULL); 

Example 17. Creating and joining with a Solaris thread is very similar to the same operations with a POSIX 
thread, apart from the order of the parameter order 

Newer versions of the Solaris operating system also support POSIX threads directly and SUN discourages the use 
of Solaris threads. 

1.2.5 WIN32 Threads 
WIN32 threads are designed to interface naturally with the WIN32 programming API, WIN32 threads also extends 
threads with another level called fibers. 

threads[0] = CreateThread(NULL, 0, my_thread, &args , 0, &thread_ID); 
WaitForMultipleObjects(1, threads, TRUE, INFINITE);   

Example 18. Creating and joining with a new thread in the WIN32 systems 

1.2.6 OpenMP 
OpenMP is a fairly new approach to easing parallel programming while adding as little new semantics as possible. 
Currently OpenMP exist in a C/C++ and a Fortran version. OpenMP is based on an well established parallel 
programming technique called Fork-Join. The idea is that an application runs sequentially up until a point where a 
section may be parallelized. At this point a set of threads are created, each of which execute its own part of the 
code section, after finishing the parallel block the threads terminates and the main thread continues after all parallel 
threads have finished. 

OpenMP is a crude macro-oriented approach to parallel programming, which is its main attraction. If a sequential 
version of an application exists this can be expanded with OpenMP macros, without modifying the original code, 
e.g. the sequential code for a vector addition: 

for(i=0; i<length; i++) 
  c[i]=a[i]+b[i]; 

Example 19. Sequential Vector addition 

Can be turned into a parallel version simply by adding an OpenMP macro: 

#pragma omp parallel for 
for(i=0; i<length; i++) 
  c[i]=a[i]+b[i]; 

Example 20. Parallel Vector addition using OpenMP 

After which all processors in a machine may be used to perform the addition in parallel.  

 
Figure 11 The Fork-Join parallel execution model in OpenMP 

It is important to realize that OpenMP is a simple macro-oriented language extension, which means that if a 
programmer specifies a loop for parallel execution but this is not immediately possibly, e.g. because of the result of 
one iteration is dependant on the result of a previous iteration, the OpenMP will still execute the loop in parallel, 
but the result will be incorrect. 

While OpenMP seems like an attractive way of writing parallel applications, it is important to recognise that one 
can only expect limited processor utilization with OpenMP. First of all only sections that are explicitly made 
parallel will execute in parallel, which in turn means that speedup is limited by the part of the execution time that is 
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spent in the sections that are parallelizable. Another cost that limits the efficiency of OpenMP is the Fork-Join 
execution model, creating and joining threads easily becomes costly if it happens often. However for a set of 
applications the OpenMP is a simple and efficient model, it is simply no a silve bullet for generel parallel 
programming. As clusters frequently use SMP machines as nodes the use of OpenMP is also becoming 
increasingly popular in the cluster world.  

OpenMP consist of a large number of macros, most of which are more complex than the parallel for example that 
was described here. In addition to simplifying parallelaization of existing sequential applications OpenMP is also 
gaining popularity as an intermediate language for self-parallelizing compilers. 

1.3 Orchestrating for Shared Memory 
The term orchestration means dividing the problem into sub-tasks and distributing these tasks among the 
processors. Orchestration is a central part of creating a parallel application and errors that are introduced in this step 
may introduce significant correctness or performance problems. Orchestration of applications requires 
considerations towards both architecture and programming language, since the orchestration will be directly visible 
in the end code. 

The importance of correct orchestration of parallel applications cannot be over-rated, and in many ways the field of 
parallel application design and implementation boils down to this one issue, how to do orchestration. Orchestration 
principles and techniques may be coarsely divided into two groups, general techniques and architecture specific 
techniques. Thus as we revisit orchestration in the later chapters some of the techniques that are introduced will be 
applicable for other architectures also, however to the extend that it is possible orchestration techniques are 
presented with the architectures that they are most often used with. 

Orchestration for SMP architectures may be fairly simply on an abstract level or it may be detailed to the level 
where cache-line-width, main memory layout and other issues are considered. For now we will consider only the 
orchestration techniques on the most abstract levels, finer points will be made later in the chapter and some are left 
as exercises. 

1.3.1 Static Orchestration of Parallel Threads 
The easiest approach to orchestration of parallel threads is to divide the data into n chunks and have n workers 
work on each their portion of the data. Not only is this the simplest way to divide the work it is also likely to be the 
most efficient in the cases where it is doable. The catch is naturally that a static division of the data amongst 
processors is rarely immediately possible, most often we need to redefine a function or in some other way modify 
the application to allow data to be distributed amongst the processors. Usually the computed value of a data-
element will in some way depend on the result of one or more of its neighbors and we need to add synchronization 
and define update-order to ensure correct execution. We will investigate an example of such a scenario later in this 
chapter. 

A different, but less obvious, problem with static orchestration is that it requires the work that should be done on 
the different data-blocks must be fairly well balanced. If the work is not well balanced one processor might finish 
quickly while another processor will work for a long time, the result is that the speedup that we get is far smaller 
that what we would expect. This problem often comes as a surprise to the application programmer and results in a 
reorchestration of the application. There are two primary approaches to resolving an unbalanced application, either 
change the static layout of the data or shift to a dynamic orchestration of the work. Dynamic orchestration is 
described in the next section and the approach of well-considered work distribution is the main point of the first 
programming project ‘The Desert Map’.  

1.3.2 Dynamic Orchestration of Parallel Threads 
Orchestrating the work in a dynamic fashion is the natural opposite to the static approach and is best suited if the 
time it takes to perform a sub-task if varying and unpredictable. Dynamic distribution of the data is best suited if 
the data is not dependent on sub-results from the same iteration over the data. Dynamic orchestration is usually 
implemented by dividing the work into many small tasks, where the number of tasks should be much larger than 
the number of processors. The tasks are then placed on a queue, and the workers simply work by repeatedly 
fetching a job from the queue and executing is. Once the work-queue is empty the workers terminate. It is 
important that the tasks on the queue are small, otherwise the balance of the execution becomes poor with a low 
speedup as the result. 
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The dynamic task orchestration is a special case of a common technique in parallel processing known as the ‘bag-
of-tasks’ technique, where workers both consume and generate tasks for execution. This technique will be further 
investigated in later chapters.   

1.3.3 Specialized Workers 
The third and last of the basic orchestration techniques is known as the specialized workers approach. This 
approach is quite different in that it is not focused on the data but rather on the instructions, i.e. if an application 
consists of two or more logical tasks then a thread may handle each such task. This is exactly what happens within 
a pipelined CPU, the execution of a single instruction is divided into several logical steps and to implement each 
such step there is a pipeline stage to execute that portion of the instruction. Because of this specialized worker 
implementations are also often referred to as pipelined applications. 

There are several reasons why the specialized workers approach is not common in parallel processing, first of all it 
is less intuitive to consider the instructions for parallelization than the data, parallelizing the code also requires a 
much more detailed understanding of the code than previous orchestration strategies. A more important reason why 
we rarely see the specialized workers paradigm in use is the fact that it often limits the degree of parallelism that 
may be achieved, since we need to identify a unique task for each CPU we wish to activate. There are however 
applications where specialized workers are superior to the data-parallel versions, one of these are ray-tracing and 
we will examine this and others later on in the programming project ‘The Clone Machine’ 

1.4 Monte Carlo Simulation 
The following example represents a somewhat stupid way of finding π, based on a Monte Carlo simulation. The 
model is fairly simple; if we take a square with two units side length and inscribe that by a circle with unit radius 
then we can throw a dart at the drawing multiple times, each time the dart fall within the circle we will increase a 
counter. We know that the area of the square is four unit-squared and the area of the circle is π, thus the ratio of 
darts that fall within the circle is the ratio of four unit-squared that π represents. For simplicity we reduce the 
problem to the upper right quadrant of the circle, e.g. one fourth of the original problem. 

 
Figure 12 The Monte Carlo Pi model 

Obviously this is an extremely inefficient way of determining the value of π, however Monte Carlo methods and 
the closely related Las Vegas methods are quite valuable tools in various fields of science and the simple model 
that we present here may be replaced by a set of ‘real’ problems within physics, chemistry and biology. See the 
exercises section for more examples of Monte Carlo methods. 

1.4.1 Sequential version 
The sequential code is straightforward: 
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import java.util.Random; 
public class PI { 
  public static void main(String argv[]){ 
    final int LIM=10000000; //We throw 10E7 darts  
    int i,count=0; 
    double x,y; 
    Random r=new Random(); 
 
    for(i=1;i<=LIM;i++) { 
      x=r.nextDouble(); 
      y=r.nextDouble(); 
      if((x*x+y*y)<=1.0)count++; 
    } 
    System.out.println("PI is " + 4.0*count/LIM); 
  } 
} 

Example 21. Sequential Monte Carlo simulation to find PI 

Performance 
Running the code with the time command returns: 

time java PI 
PI is 3.141338 
0.100u 0.010s 1:51.26 0.0%      0+0k 0+0io 4739pf+0 w 

It takes one minute and 51 seconds to perform the ten million simulated dart throws, and returns π with only three 
correct decimals. There are of course much better ways of calculating π but the Monte Carlo simulation technique 
is in fact a useful mechanism for other problems, so speeding up the simulation is of real interest.  

1.4.2 Statically Orchestrated Parallel Version 
Parallelizing the code is straightforward, instead of one simulated dart and one target, we’ll simply make two. The 
two darts can be thrown in parallel without any problem since the result of one dart does not influence the result of 
any other dart. 

Using threads the code is very similar to the above, but has grown some in order to handle the threads: 
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import java.util.Random; 
 
class data {   
public int count;   
data(){ count=0; } 
} 
 
class Worker extends Thread {   
private int id,LIM;  data cnt; 
  public Worker(int id, int LIM, data cnt){this.id= id; this.LIM=LIM; 
this.cnt=cnt;} 
  public void run() {  
    int i; 
    double x,y; 
    Random r=new Random();  
    for(i=0;i<LIM;i++) { 
      x=r.nextDouble(); y=r.nextDouble(); 
      if((x*x+y*y)<=1.0)cnt.count++; 
    } 
  } 
} 
     
public class PI { 
  public static void main(String argv[]){ 
    Worker w1,w2; 
    data cnt; 
    int LIM=10000000; 
    cnt=new data(); 
    w1=new Worker(0,LIM/2,cnt); w2=new Worker(1,LIM /2+LIM%2,cnt);  
    w1.start(); w2.start(); 
    try { w1.join(); w2.join();} catch (Interrupted Exception e) {}; 
    System.out.println("PI is " + 4.0*cnt.count/LIM ); 
  } 
} 

Example 22. Statically orchestrated parallel Monte Carlo simulation to find PI (faulty!) 

The actual simulation code is almost identical to the sequential version the only difference is that the counter that is 
increased when a dart falls within the circle is not a local counter, but a shared counter. The main program creates 
the shared counter this way the main program can read the resulting number of hits directly once the threads have 
finished the work. 

Running the code with the time command returns: 

PI is 3.1221796 
118.910u 0.090s 0:59.73 199.2%  0+0k 0+0io 7109pf+0 w 

The immediate focus of attention is the achieved speedup, which is 111/60=1.85, which in turn corresponds to a 
processor utilization of 0.925, which is not too bad. 

However, when we look at the result, the error on π has been increased from three correct decimals to only one. 
Though we cannot expect to get identical results from two runs, since we use random input, the added error is too 
large to be based on a unfortunate random number chain, something must have gone wrong in the conversion to a 
parallel version.  

The problem is the increasing of the global counter. cnt.count++  looks very atomic, but what actually happen 
is read(count);increase(count);write(count)  and then it is far more obvious what happens, while 
one processor is executing the increase part the other may be reading count, which will result in the first increase is 
lost.  

Fixing the synchronization problem 
Because of the synchronization problem we need to protect the count variable from concurrent operations. This 
may be done in a variety of ways, each of which is preferable for a given problem and/or system. The classic way 
of doing this is via a semaphore, e.g. before an increase the semaphore must be locked and then unlocked after the 
write. Alternatively the increase can the performed in a monitor, this approach has the advantage that one does not 
accidentally forget to lock the semaphore before increasing the protected variable. In applications with thousands 
of lines of code, finding the one spot where a variable is accessed without correct protection may be very hard. We 
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have already covered that Java provides a very simple mechanism for monitor-like behavior, the keyword 
synchronized . Using the synchronized instruction the code becomes: 

import java.util.Random; 
 
class data { 
  public int count; 
  public void data(){ count=0;} 
  synchronized void inc() { count++;} 
} 
 
class Worker extends Thread { 
  private int id,LIM; 
  data cnt; 
  public Worker(int id, int LIM, data cnt) 
    {this.id=id; this.LIM=LIM; this.cnt=cnt;} 
  public void run() {  
    int i; 
    double x,y; 
    Random r=new Random();  
    for(i=0;i<LIM;i++) { 
      x=r.nextDouble(); y=r.nextDouble(); 
      if((x*x+y*y)<=1.0)cnt.inc(); 
    } 
  } 
} 
     
public class PI { 
  Nothing changed here! 
} 

Example 23. Statically orchestrated parallel Monte Carlo simulation to find PI (correct – but slow!) 

Running the code with the time command returns: 

PI is 3.1424512 
139.530u 14.160s 1:21.66 188.2% 0+0k 0+0io 7109pf+0 w 

Now the third decimal is not quite there, but this is due to the randomness of the algorithm, more interestingly our 
speedup has fallen to 111/82=1.35 which is a processor utilization of 0.68, much worse than the first version. So 
the question is must we sacrifice speed to get the right result? 

Fixing the speed problem 
The only change from the initial parallel version to the parallel version that yields the correct result is that the 
shared counter is updated via a call to the monitor construct rather than performed directly, thus the 1/3 increase in 
execution time must derive from this. We can conclude that to get good performance we must minimize the use of 
the monitor construct. Since all the counter does is to keep track of the darts that fall within the circle, there is no 
reason why the counter needs to be increased as soon as a dart falls within the circle. Instead each worker may keep 
track of its own hits and update the counter once, just before the worker terminates. All that is needed for this 
change is that each worker gets its own, local, counter and that the increase function in the counter monitor, is 
changed to increase by a parameter, instead of simply by one. The resulting code looks as: 
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import java.util.Random; 
 
class data { 
  public int count; 
  public void data(){ count=0;} 
  synchronized void inc(int by) {count+=by;} 
} 
 
class Worker extends Thread { 
  private int id,LIM; 
  data cnt; 
  public Worker(int id, int LIM, data cnt) 
               {this.id=id;this.LIM=LIM;this.cnt=cn t;} 
  public void run(){  
    int i; 
    double x,y; 
    int lcount=0; 
    Random r=new Random(); 
    for(i=0;i<LIM;i++) { 
      x=r.nextDouble(); y=r.nextDouble(); 
      if((x*x+y*y)<=1.0)lcount++; 
    } 
    cnt.inc(lcount); 
  } 
} 
     
public class PI { 
  Nothing changed here! 
} 

Example 24. Statically orchestrated parallel Monte Carlo simulation to find PI (correct and fast) 

Running the code with the time command returns: 

PI is 3.1424888 
117.180u 0.200s 0:59.04 198.8%  0+0k 0+0io 7109pf+0 w 

Now the result is correct again, and the performance is in fact slightly better than with the faulty parallel version 
with a processor utilization of 0.942 vs. 0.925, so that in conclusion to the question posed above, the answer is no! 
We need not sacrifice performance to get the correct result. While this is true for this example this is not always so, 
often there is a mandatory cost to pay to ensure correct execution. In fact one could argue that this is true in this 
example, see exercise 5). 

1.4.3 Dynamic Orchestrated Version 
While a static orchestrated version is usually preferable when we have exclusive access to the hardware and know 
its configuration, this is sometimes not the case. The application may have to coexist with other applications and/or 
we don’t know the exact configuration of the hardware. 

In the π example jobs are fairly easy to model, since rather than splitting the number of darts evenly amongst the 
processors, the darts are divided into more blocks. Each worker then repeatedly retrieves a job and executes the 
assigned number of darts, until all darts has been thrown. 

The dynamic code looks as: 
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import java.util.Random; 
 
class data { 
  public int count; 
  private int LIM,task; 
  public data(int LIM, int task){this.LIM=LIM; this .task=task; count=0;} 
  synchronized int get_job() { 
    if(LIM>0){LIM-=task; return task;} 
    return 0; 
  } 
  synchronized void inc(int by){ count+=by; } 
} 
 
class Worker extends Thread { 
  private int id,LIM; 
  data cnt; 
  public Worker(int id, data cnt) {this.id=id; this .cnt=cnt;}     
  public void run(){  
    int i; 
    double x,y; 
    int lcount=0; 
    Random r=new Random(); 
    LIM=cnt.get_job(); 
    while(LIM>0){ 
      for(i=0;i<LIM;i++) { 
        x=r.nextDouble(); y=r.nextDouble(); 
        if((x*x+y*y)<=1.0)lcount++; 
      } 
    LIM=cnt.get_job(); 
    } 
    cnt.inc(lcount); 
  } 
} 
     
public class PI { 
  public static void main(String argv[]){ 
    Worker w1,w2; 
    data cnt; 
    int LIM=10000000; 
    cnt=new data(LIM,100); 
    w1=new Worker(0,cnt); w2=new Worker(1,cnt);  
    w1.start(); w2.start(); 
    try {w1.join(); w2.join();} catch (InterruptedE xception e) {}; 
    System.out.println("PI is " + 4.0*cnt.count/LIM ); 
  }     
} 

Example 25. Dynamic orchestrated parallel Monte Carlo simulation to find PI 

Running the code with the time command returns: 

PI is 3.14221 
121.790u 0.830s 1:01.70 198.7%  0+0k 0+0io 7109pf+0 w 

So the dynamically scheduled version is slightly slower than the static version, if the node had been occupied with 
other stuff the situation could have been reversed. In addition the job size of 100 might be too small for this type of 
problem. 

1.4.4 Specialized Worker Orchestration 
Monte Carlo Pi is not the most obvious application to orchestrate with the specialized workers paradigm, but not 
the less it is straightforward, at least for two CPUs beyond that it is much harder. The Pi application may be 
divided into two basic tasks, generating the random numbers and checking whether they hit our unitary circle. Our 
approach to a specialized worker version is thus to have one thread generate the random number and other to test 
for circle-hit. This approach is also know as producer-consumer parallelism since one thread produces the random 
numbers and another consumes them, this type of parallelism will be examined further in the next chapter. 
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The problem we need to consider first is known as the handover problem, e.g. the thread which generates the 
random numbers need to hand them to the thread which consumes them. Correct handover requires attention to two 
issues, first the producer may never overwrite random numbers before they have been read by the consumer and 
second that the consumer may never read random numbers before they have been generated. If we follow this 
approach strictly we will end up with a handover algorithm that uses two barriers. 

barrier.meet(); 
if(producer)coordinates.set(random_coors); 
barrier.meet(); 
if(consumer)random_coors=coordinates.get(); 

Example 26. A strict handover implementation 

It is obvious that this approach is very costly and we don’t need to test it to realize that we won’t get a good 
speedup. The solution is to use a well know data-structure, the bounded buffer. Using a bounded buffer the two 
threads are able to execute with some skew, e.g. the producer is allowed to ahead of the consumer.  

public class bounded_buffer { 
  random_coor [] buf; 
  int size, head, tail; 
  bounded_buffer(int len){ 
    size=len; buf=new random_coor[len]; 
    head=0; tail=len-1; 
  } 
  synchronized void put(random_coor c){ 
    if(tail==head)notify(); 
    buf[head]=c; 
    head=(head+1)%size; 
    if(head==tail) try{wait();}catch(Exception e){} ; 
  } 
  synchronized random_coor get(){ 
    if(tail==head)notify(); 
    tail=(tail+1)%size; 
    if(head==tail) try{wait();}catch(Exception e){} ; 
    return buf[tail]; 
  } 
} 

Example 27. Bounded buffer implementation in Java 

A two specialized workers version of the Monte Carlo Pi then consist of a producer of random numbers and a 
consumer. 
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import java.util.Random; 
 
class Producer extends Thread { 
  int LIM; 
  random_coor c; 
  bounded_buffer b; 
  Producer(bounded_buffer b, int LIM) {this.b=b; th is.LIM=LIM;}     
  public void run(){  
    int i; 
    Random r=new Random(); 
    for(i=0;i<LIM;i++) { 
      c=new random_coor(); 
      c.x=r.nextDouble(); c.y=r.nextDouble(); 
      b.put(c); 
    } 
  } 
} 
 
class Consumer extends Thread { 
  int LIM, hit; 
  random_coor c; 
  bounded_buffer b; 
  Consumer(bounded_buffer b, int LIM) {this.b=b; th is.LIM=LIM;}     
  public void run(){  
    int i; 
    random_coor c; 
    for(i=0;i<LIM;i++){ 
      c=b.get(); 
      if(c==null)System.out.println("Strange NULL r eturned as "+i); 
      if((c.x*c.x+c.y*c.y)<=1.0)hit++; 
    } 
  } 
} 
 
     
public class special_worker_mcpi { 
  public static void main(String argv[]){ 
    int LIM=10000000; 
    bounded_buffer b=new bounded_buffer(128); 
    Producer p=new Producer(b,LIM); 
    Consumer c=new Consumer(b,LIM); 
    p.start(); c.start(); 
    try {p.join(); c.join();} catch (InterruptedExc eption e) {}; 
    System.out.println("PI is " + 4.0*c.hit/LIM); 
  }     
} 

Example 28. Specialized worker version of Monte Carlo Pi 

As you might imagine the specialized version is not very efficient, running the code in Example 28 returns: 

[TEXT NEEDED: Run output] 

1.5 WATOR 
The WAter TORus world, WATOR, is a classic discrete event simulation, and while it provides valuable 
information in itself we chose to introduce it here for reasons similar to the Monte Carlo PI example, namely that it 
is simple and easy to understand, while still being typical for the class of applications that it represents. Discrete 
event simulations are widely used to model everything from digital systems to financial forecasts, logistics and 
traffic simulations. 

WATOR is the simulation of a very special world, first of all the planet is not a sphere as most planets we know, 
rather the planet is shaped as a doughnut, or a torus, which greatly simplifies mapping the world into discrete 
blocks, as shown in Figure 13. As the whole surface of WATOR is covered with water there are only two types of 
life, which we are interested in; fish and sharks. 
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Fish are simple organisms that move around at random, and at some point when a fish comes of age is will have 
two children and die itself. A fish can move into any of its neighboring eight squares, given that the square is 
empty, if all eight neighboring squares are occupied the fish remains in place. At any discrete time step a fish 
becomes one time-unit older, and once it has come of age it will split into two fish, one of which will go to a 
neighbor cell while the other stays in the cell where it was born, both new fish is age zero. 

Sharks are similar simple creatures, however sharks also need to eat fish in order to survive. At each time-step a 
shark moves to a random neighboring cell which holds a fish, if there are no fish which neighbors the shark it 
moves to a random neighboring cell and increases its hunger index, if the hunger index reaches a starvation limit 
the shark dies, when the shark eats it resets the hunger index to zero. Similar to fish, sharks will at some point get 
old enough to breed and once this age is reached the shark is replaces by two new sharks, both with age and hunger 
index zero. Thus the simulation of one time-step consists of two steps, first all fish are moved, then the sharks. 

 
Figure 13 The WATOR world, to the left is the 3-dimensional version and to the right is the unfolded 2-dimensional version 

1.5.1 Sequential version 
The sequential version is very simple, we have let out the actual simulation code here since it has no influence on 
the problem we will investigate in the following, which is porting this application to run in parallel in SMP 
architectures. 

main() { 
  int i; 
  initworld(); 
  for(i=0; i< TIMESTEPS; i++){ 
    movefish(); 
    movesharks(); 
  } 
} 

Example 29. Main loop for the sequential version of WATOR  

The complete code can be found on the web-site. 

1.5.2 Parallel Version 
Turning the WATOR code parallel may be done is various ways, one may either split the fish and sharks among 
the processors or parts of the torus may be split amongst the processors, either statically where each processor 
operates on a given portion of the torus throughout the execution or dynamically so that the torus is re-divided at 
each iteration to attempt to balance the work between the processors. Of the tree previous options, the latter is 
generally preferred. Unfortunately none of the solutions are as straightforward as they may seem if the result of the 
parallel version should return the same result as the sequential version. 

Lets assume that the sequential version moves the fish and sharks as they appear on the unfolded torus, i.e. from 
the upper-left corner to the lower right. If we let one processor move the fish in the upper half and another move 
the ones in the lower half, then the first fish that the second processor are likely move into the cells above them, to 
which the fish on the two rows above them should actually have had precedence. In other words there is no way 
the processor that moves fish in the lower half can begin moving its fish before the preceding processor is done.  
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There are three fundamentally different approaches to solving this problem, all of which are practically applicable. 
One way to handle the dependency problem is to skew the execution of the parts of the torus, as in a pipeline. The 
idea here is that the processor that handles the lower portion of the torus waits until the upper processor is done 
moving its fish, before starting to move its own, while the fish are being moved in the lower part the sharks are 
moved in the upper, and then vise versa. This approach has two major disadvantages, first of all the solution will 
not scale to hundreds of processors since the latency due to the depth of the pipeline becomes a significant part of 
the overall execution time. However the really significant problem with this approach is the unbalanced workload 
that comes from the fact that we must expect the virtual world to hold far fewer sharks than fish, so even though 
the geometric division of the workspace seem intuitive is does by no means translate into a balanced workload. 

A fairly attractive solution in this case is the ostrich approach, e.g. stick our head in the sand and ignore the 
problem. While this is often an attractive solution, it is rare that one can argue that it is a true alternative, but in this 
case it do present a usable alternative. Ignoring the problem is acceptable only because we base the movement of 
both fish and sharks on random numbers and we have no chance of replicating the sequence of random numbers 
generated by one process on two or more processes in such a way that the same random number is returned to the 
same fish or shark at the same iteration. One can therefore argue that either we cannot make the application parallel 
or we can choose to argue that the nature of random numbers allow us to process the movements in a different 
order than the sequential since movements are randomized anyway. If we choose the latter argument, which is 
quite valid in this scenario, turning the application parallel is almost trivial. If we divide the work geometrically on 
the torus we need to ensure that no fish or shark within one iteration is moved from the beginning of one partition 
to the end of another and the moved once again within the new partition, this is easily done by tagging the object as 
moved. Alternatively we can split the work by dividing the fish consequently sharks amongst the processors. This 
way we do not risk that an object is moved twice within one iteration. This solution as a hidden pitfall however, if 
we uncritically divide the objects amongst the processors then all processors are likely to traverse most or all of the 
torus surface checking neighboring cells, this will not only result in a poor cache utilization but also raise the 
chance that performance will suffer from false sharing. Thus if one does choose this approach the objects should be 
sorted before each iteration and then divided between the processors, in effect creating a combination of the 
geometric and object splitting. 

Since we have already argued that WATOR is typical for many discrete event simulators it is natural to ask what to 
do if movement is not random but controlled by a set of causal rules, in this case the ostrich approach won’t help 
us. Imagine that instead of WATOR we should simulate traffic on a road, where each car has its own desired speed 
and we have a set of rules describing the willingness of a driver to take an outer lane and his willingness to leave it 
again. In such a scenario we cannot simply ignore the problem and we will need a more complex solution to the 
problem if we wish to build a parallel version. The technique, which is used for such cases, is called time-warping, 
and is based on the fact that the problem of a collision between objects, which are handled by different processors, 
is not likely, e.g. it is a rare event. Because such collisions are rare we can accept that recovering from them is 
relatively costly. What time-warping does is to introduce the concept of ‘undo’ to the execution, whenever an 
object is moved the previous position is saved, if the object end up competing for the new position with another 
object the object which looses the battle, the rules of which is defined by the rules of the simulation, then reverses 
to its previous state and recalculates the move, now with the knowledge that the first choice in fact is illegal. If the 
population of objects is dense such a time-warping operations may cascade to other objects, thus if time-warping 
should be efficient it does require that collisions are rare. Time-warping is an advanced simulation issue, and we 
won’t pursue this technique any further in this text. 

Since the WATOR model is based on randomized operations and because time-warping would be outside the 
scope of this text, we will base the parallel version of WATOR on a straightforward splitting of the work area into 
blocks, with one block per processor. While this could result is a very unbalanced execution the reality of the 
WATOR model is that most runs will distribute the creatures evenly across the torus and we can base out parallel 
version on a simple geometrical partition of the workload. 
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Figure 14 Splitting the WATOR world into four workers 

The fastest way of porting the sequential version into a threaded version is to use the fork-join model. We simply 
modify the move_fish and move_sharks functions to traverse a portion of the torus, specified by a job-parameter. 
We then replace the call to move_fish by a loop, which spawns a thread per processor, wait until all threads have 
terminated and continue with the move_sharks in the same fashion. 

typedef struct {int from, to} job; 
 
main(){ 
  int blocksize=worldsize/nthreads; 
  job jobs[WORKERS]; 
  pthread_t t[WORKERS];  
  for (i=0; i<nthreads; i++){ 
    jobs[i].from=i*blocksize;  
    jobs[i].to=(i+1)*blocksize; 
  } 
  jobs[nthreads-1].to=worldsize; 
  initworld(); 
  for(i=0; i<timesteps; i++){ 
    for(j=0;j<nthreads;j++) 
      pthread_create(&(t[j], NULL, move_fish,(void *)(&jobs[j])); 
    for(j=0;j<nthreads;j++) 
      pthread_join(t[j]); 
    for(j=0;j<nthreads;j++) 
      pthread_create(&(t[j], NULL, move_sharks,(voi d *)(&jobs[j])); 
    for(j=0;j<nthreads;j++) 
      pthread_join(t[j]); 
} 

Example 30. Fork-join implementation of parallel WATOR 

If we run this on a dual-processor machine and WATOR world 
size of 1000 we get a running time of dd.dd seconds, compared 
to a sequential time of dd.dd seconds. (conclusions on dd vs 
dd) 
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typedef struct {int from, to} job; 
 
void * worker(job *myjob){ 
  int i; 
  for(i=0;i<myjob->itt; i++{ 
    move_fish(myjob->from, i<myjob->to); 
    barrier(); 
    move_sharks(myjob->from, i<myjob->to); 
    barrier(); 
    return (void *)1;  
} 
 
main() { 
  int blocksize=worldsize/nthreads; 
  job jobs[WORKERS]; 
  pthread_t t[WORKERS];  
 
  for (i=0; i<nthreads; i++){ 
    jobs[i].from=i*blocksize;  
    jobs[i].to=(i+1)*blocksize; 
  } 
  jobs[nthreads-1].to=worldsize; 
  initworld(); 
  for(j=0;j<nthreads;j++) 
    pthread_create(&(t[j], NULL, worker,(void *)(&j obs[j])); 
  for(j=0;j<nthreads;j++) 
    pthread_join(t[j]);   
} 

Example 31. Parallel WATOR where the threads synchronize between themselves 

At this point you might wonder why the flat representation of the torus is divided in one dimension only, after all 
dividing the model into squares instead of stripes will reduce the number of bytes that need to be passed between 
the caches as we increase the number of processors. The dilemma is known as blocking vs. striping and it is not 
quite as simple as it might present itself. If we seek to lower the communication between the processors we wish to 
minimize the border area between any data-block and its neighbors. If the WATOR world is n-by-n cells then the 
striped version results in a 2n border between any job and its neighbors, while a blocked version would only result 

in a border area of 
p

n
4 , where p is the number of processors. The immediate problem is of course that we 

require p to be a square number if we wish to deploy the straightforward tiling approach, if p is not a square 
number, and most often it won’t be, we can devise a more flexible scheme of sub-division into tasks. Such a non-
symmetric division results in more complex code, which makes it easier to introduce errors, but other from that it is 
simple enough and several applications exist, which use this approach. The real problem is that much of the 
advantage may disappear as the number of processors becomes harder to split into large integer factors. If you have 
a prime number of processors available you will end up with the striped version we decided on earlier. A far more 
interesting problem that may occur is that division of the data into tiles may result in a large degree of false sharing, 
so to implement a tiled version we would need a radical different memory layout in order to avoid false sharing. 
This is a major issue in programming shared memory systems, but to truly understand and appreciate the problem 
we will need a more thorough understanding of the cost of communication so we will postpone this problem until 
the chapter on scalable shared memory systems. 

Porting the WATOR model to a tiled approach is left as an exercise. 

1.5.3 OpenMP version 
The WATOR application is fairly easily ported to use OpenMP rather than hand-coded parallelism. Since the basic 
algorithm simply traverses the data row-by-row we can simply tell OpenMP to paralleize the outer loop. The result 
is that we maintain the main loop as it is in the sequential version and modifies the move operations instead. It’s 
not that simple though, we still need to tag the objects with the iteration flag we used in the POSIX threaded 
version in order to avoid that the same object is moved twice within the same iteration. 
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move_fish(){ 
//Local declarations here 
#pragma omp parallel for 
for(i=0; i<WORLDSIZE; i++) 
  for(j=0;j<WORLDSIZE; j++) 
    //Handle each point (i,j) 

Example 32. OpenMP version of WATOR, only a skeleton of move_fish but move_sharks is identical for the 
shown code 

If you consider the execution of the OpenMP version the fork-join paradigm is quite obvious, for each iteration the 
application will call move_fish and then fork into parallel workers which update each their portion of the matrix, 
the workers then join before calling move_sharks which in turn results in a fork-join step. 

1.6 Exercises 

1) Threads exist in three basic types, kernel level, user level and mixed threads. The kernel handles kernel-level 
threads and user-level threads are handled at the user level, while the mixed version uses both. What are the 
pros and cons of each solution from a supercomputing perspective? 

2) False sharing is a problem that exist at various levels in cluster computing, and as this chapter described, also 
in the simplest SMP node. To verify this, write a small test program where two threads each sum up a million 
numbers. Ensure that in one version the target variables are on the same cache line and on another they are on 
different cache lines. HINTS: You do not have enough control over memory in Java to ensure the placement 
of variables, so if you cannot provoke the expected results use C. Also any fair compiler will use a register for 
the destination variable so you must somehow ensure that data is in fact written and read from memory each 
time. Many compilers will find out if a result is never used and optimise the whole functionality away.  

3) This chapter has described how the processor-memory bus is likely to become a bottleneck is the system, 
identify: 

a) Cases where this may happen 

b) Approaches to avoiding this problem in software 

c) Approaches to avoiding this using hardware 

d) Identify other potential bottlenecks that may exist in a SMP system. Outline how they may be 
avoided (if possible). 

4) The finale static Monte Carlo PI example still uses a synchronized increase of the shared counter, even though 
this is only done once. Why is this necessary and why is it even more dangerous to forget the synchronization 
in this case? 

5) The examples in this chapter came to the surprising conclusion that the correct parallel version was slightly 
faster than the straightforward, but faulty, version. Although the difference is small it is never the less 
consistent every time we run the codes. Since both worker threads need to perform one synchronized monitor 
call, why is this version faster then the incorrect version? And how could we make the faulty version go as fast 
as the correct one? 

6) Why is the dynamic orchestrating approach preferable when the hardware needs to be shared with other 
applications? 

7) Experiment with the dynamic version of the PI code, what happens as the job-size increases? And when it 
decreases? 

8) Experiment with the fast static version of the PI program, what happens if you run other jobs on the machine? 
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9) The fast static version of the PI program uses one thread per CPU and while these threads are active the main 
thread is waiting. In the section on Java Threads two techniques were mentioned, the one where the main 
thread sleeps and another one where the main thread creates one less thread than there are CPUs and then 
performs the last task itself. Take the fast static version of the PI code and transform it so that the main thread 
also participates in the work! How much work would you say that this was? Did you see any performance 
difference? 

10) This chapter claims that race-conditions are dangerous because they are the kind of error that is not visible in 
every execution but only occur under special conditions. Write a Monte Carlo simulator that simulates just 
this. The user should be able to specify or vary the number of threads and the percentage of the total execution 
time a thread spends in the critical region. How many executions do we need to see the wrong result with two 
threads and 10% time spent in the critical region; 10 threads and 1%, 32 threads and 0.001%? 

11) Write a virtual Geiger-counter where a user sets as parameters the amount of radioactive material that should 
be tested (in number of atoms) and the probability that a given atom will fall. The virtual Geiger-counter 
should then use a Monte-Carlo simulator to illustrate the development in radioactivity. 

12) The parallel version of the WATOR example is implemented using striping. Port the code to use tiling instead. 
Do you get any performance improvement? Why (not)? 

13) Small project. The purpose of this exercise is to implement a super-simplified protein folding simulation. 
Real protein folds are quite complex and require much insight and considers a large number of parameters, in 
this super-simplified example we will use proteins of a much simpler nature. Our proteins consist of only two 
types of acids, Hs and Ps. The Ps are neutral and simply exist in the protein, the Hs are hydrophobic and thus 
likes to have other Hs as neighbors. We know that a given protein consist of a sequence of Hs and Ps, so to 
build a protein fold all we have to do is  

a) Take the acid as a start 

b) Go to a random position relative to the current; North, South, West, East, Up or Down so that the 
protein does not cross its own path 

c) Place the next acid of the remaining acids at the new position 

d) If there are more acids left to place go to b) 

e) Calculate the strength of the fold as the number of neighbourhood relations between Hs 

f) If the resulting fold is stronger than the best known fold then replace the old with the new 

A large number of proteins must be tested before we have a good suggestion to an efficient folding of a 
protein, consider for yourself the number of permutations needed to exhaustively search all folds of a protein 
consisting of 1000 acids. 

This project is an example of the derivation of Monte Carlo simulations called random-walks, but the way it is 
simulated is different than the PI example since each parallel task now simulates its own protein and simply 
competes with other threads to get the best result, this kind of parallelism is often called parameter testing, 
even though in this example we generate the parameters as random numbers. This project will be revisited in a 
later chapter. 

14) Large project. The PI example is a well known but rather worthless example of Monte Carlo simulations and 
while there are many actual uses for Monte Carlo methods most of these require some level of understanding 
of the physics, chemistry, biology or other sciences. If you know of an experiment that may be simulated using 
Monte Carlo methods choose to implement this, otherwise here is an actual experiment will require some more 
programming than the previous examples, but should be understandable without intricate knowledge of 
glaciology. We have all seen beautiful icicles during the winter and know how they seem as individual in size 
and shape, but how are they formed?  
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A Monte Carlo Simulation can model this fairly simply. We let the icicle start as one frozen drop of water, and 
at random let more drops of water drip down the icicle. A given drop of water has an initial speed and an 
initial temperature. The more time a drop is in contact with the icicle the closer its temperature will get to the 
temperature of the icicle, if a drop reaches 0oC it will freeze and become part of the icicle. While a drop is still 
liquid it will go down the icicle, the colder it is the slower it will go, due to higher viscosity. A drop of water 
will usually take the direct route down the icicle, however it may at (seemingly – but not really) random 
choose to go another direction, i.e. left and down or right and down, if a drop encounters an obstacle, e.g. a 
previous drop which have frozen, the drop will have to go ‘out’ rather than down, which will improve the 
probability that the drop instead changes direction to a more direct path downwards. 

Write a multi-threaded icicle maker using these simple rules you can vary the different parameters; icicle 
temperature, average and spread of drop frequency, temperature and speed, and the probabilities that describe 
the path taken by a drop. 

The resulting icicles can be visualized with graphics, if you know how, or simply as weight and height of the 
icicle.  

1.7 Further reading 
Threads Programming: 

OpenMP: 

HPF: 

[1] High Performance Fortran; history, overview and current developments, Harvey Richardson, Thinking Machines 
Corporation, 1996. 

SMP architectures: 

[2] MultiProcessor Specification Version 1.4, Intel, May 1997 

A paper on Alpha, SGI or SUN SMP 

 


