1 Afirst Step into Parallel Programming

Before we endeavor into cluster programming anthbtaparallel architectures we will take a looltret simplest
parallel architectures and how they are programriiée. problems that must be addressed with thesedsha
memory machines must also be solved in all othelledprogramming models so that one of the reasdny we
take the time to learn these ‘non cluster’ architexs and programming techniques, is that we reeechivl before
we can walk. Another reason why we look into thae-acalable architectures is that when you undedstdry we
cannot scale these machines into hundreds of mases/ou will better understand the choices thatnaade to
make machines scalable and why you as the programost pay some of the price of the scalability yant, by
increased complexity of the application code tlmat yrite.

1.1 Symmetrical Multiprocessor Architectures

The trivial computer contains one CPU and one megrhtwck. If this one CPU runs a multithreaded agatdlon,

the memory will appear as shared amongst the thréake realistic versions of shared memory arers¢\CPUs
connected to the same memory block or memory bloskgg either a shared bus or a crossbar switcis. i$h
sometimes called Symmetrical Multi Processing, S#iBugh SMP has come to mean the shared bus approac
more specifically. Taken together the two are moften refereed to as Uniform Memory Access, UMA,
architectures. Uniform because access to a mentlohess has the same cost independently of theszddriis
uniform cost may be partly hidden by caching, big in effect does not change the UMA property.

M
M M
! !
M
e
$ $ $ $
P P P P
@) (b)

Figure 1TUMA approaches, (a) crossbar switch and (b) Shémesl

The crossbar switch approach can be found in mestgaoch as the HP Exemplar V Class, while the dHaue
approach can be found in machines such as thexBidbased multiprocessors, SGI Power Challengeten8un
Enterprise Server. The latter may intuitively nmok like an UMA machine, as processors and memagutes
are collected on the same system boards, whichititerfiace with the shared bus. Non the less ¢his standard
UMA architecture, since a CPU can access memoaydifferent system board in the same time it ta@exccess
memory on its own system board.

The core mechanism behind the SMP architectuteeistiared memory model, what we intend this madeldan

is that if one processor writes a value to an adt¥ethen another processor will receive the sameavifilitireads
from addressX. As obvious as this seems, there are many probdesseciated with achieving this with modern
processors, which has come to depend heavily dmesdor performance, usually two and some times #vwee
levels of cache. Maintaining the shared memory tiehavith multiple CPU’s with each their cache isdwn as
cache coherence or cache consistency. Maintairaehec coherence with the crossbar SMP approachrys ve
complex and out of the scope of this text. Achiguioherence on a shared bus is simpler, but byeansttrivial
either. Since most SMP machines are shared busimeackve’ll go on to describe a coherence techniguthese
machines very briefly. For a thorough walkthroudghh® cache coherence problems and their solutmorssult
[Culler 98].

The most common coherence algorithm is the MESiopod, which is also the one that is used in thellr86
architecture. The Modified-Exclusive-Shared-InvaMdESI, protocol, allows any cache line to be iry arf the
four states: Modified, Exclusive, Shared and Irdiaf line in Modified state, contains informatiorhieh is the
only correct version of that data, this in turn methat if the cache line is flushed to make roonmahother entry,
then the contents must be written to main memoxglusive cache lines are, as the name indicatexelnsive
cache copy of the data, e.g. there still existt@pent version in main memory, but no other CPUzasepy. A

cache line in Shared state contains informationighvbxists in more than one copy, e.g. two or n@eR&J)’s has
the cache line in cache memory. An Invalid cache is a cache line in which the information is aonder valid,
e.g. the cached address has been changes by atBtbier

A Modified cache line can turn into a Shared if ttwieo CPU reads a copy of the data, or it can bedoxradid if

another CPU writes to the cache line. An Exclusingy can enter the Shared or Invalid state irsttree way, or
it may become Modified if the CPU writes to the lvadine. A Shared entry can become Modified if @RU

writes to it, or Invalid if another CPU writes tb invalid entries may become Shared or Exclusiveaaead to
them, Shared if the information is delivered bythro cache and Exclusive if the information conresnf main
memory, if the cache line is written to it shiftate to Modified.

Figure 2 State Machine Transactions for the MESI protocol

Programming shared memory machines are often pesbas trivial and as if linear speedup can beexeli
without considering architectural details. Thisqegation often results in a very disappointed progreer. There is
a multitude of considerations to take, none of Wigice not part of optimizing sequential prograrhenke does not
consider these factors, even the simplest paagigications will show poor performance. The follogvis a brief
description of some of the most important factorsdansider.

The operating system architecture is a very impoffector with respect to performance. Some opagatystems
will stop all CPU’s in a system when one CPU en@8modus, this way the application is serializeergtime
any process accesses the OS, luckily these opgstitems are rare today but if one writes an egijmin for such
an operating systems, minimizing system calls igeirative for performance. A more common OS flavhast
only one processor may be in kernel modus at a tinmeway the other processes won't be stallegblsitnecause
one process enters the OS. A process will stilstadled if it tries to go to the kernel and anotpescessor is
already in kernel modus. Thus in this case it ipdrtant to consider this factor in an applicationl @avoid that
different parts of ones application tries to acthsskernel at the same time. This is not as namvant as it might
sound, since many applications will naturally havow where they synchronize and the all atterotdcess the
file system at the same time. Other operating systagain will allow any number of processors tdrb&ernel
modus at the same time, granted that they do wesadhe same data or for some OS that they desadhe same
functions. The most important issue with these ©%isually that their Achilles heal is that theyl steed to
interrupt the other processors when the do memitogadion, e.g. in general for any SMP machines ibétter to
allocate one large chunk of memory than to issueraésmall allocations.

Interrupts in general presents a problem when progring for performance, and more so when workingp wi
multiprocessors. Depending on the architectureogredating system most systems will deliver allnntpts to one
processor only, if a parallel application runsrefgrained parallel job interrupting one procesgtireasily result
in a similar sized stall of the other processoplef synchronization point. Imagine a dual pramegst need to
add two vectors before moving on to another pathefapplication, adding two vectors is a triviaradlel job,
since one processor may work on the first halhefitector, while the other may add the latter phthe vectors.
After completion the two processors synchronizeoteefjoing on. If one processor is delayedycles due to
interrupts then the other processors will have &it wcycles before synchronization is possible, thesattual
loss of computation time isxZather tharx, it is evident that scaling to more processors widrease this delay
linearly. The cost of interrupts varies much witle {CPU architecture, the Intel x86 architectureictviis widely
used as in low-cost clusters has a very high mp¢rcost, while other CPU architectures, e.g. tieRA-RISC
architecture has a direct interrupt cost of onfgva clock-cycles. However there are indirect césim interrupts,
most importantly processing the interrupt will abhalways introduce noise in the cache and TLBhef t
processing CPU. As most high performance applicatare highly tuned to efficient cache and TLBization,
this indirect cost easily outweighs the direct finipt cost. Programming with interrupt interferernemind is
hard, and not event possible at all times, how@vepme cases, like the vector adding example dghtrakew
the workload slightly to the side of the procedbat does not process interrupts. Some operatsigreg does not

provide the programmer with the means of identgyivhich processor a given process runs on, arfiesetcases
one can do little to compensate for interrupt cost.

Unfortunately interrupts are by no means the omlgwen biggest threat to performance in SMP systémg
resource that may become sparse during executipasential bottleneck. The most obvious suchuresois the
processor-memory, PM, bus. The PM bus of a Penftiusiat the time of writing a 64-bit wide bus ming at no
more than 133MHz, e.g. a theoretical bandwidthusf fnore than one giga-byte per second, readimgséamiction
requires two bus operations, e.g. a theoreticalimax around 500 MB/sec. A 1.5 GHz processor can
theoretically issue 4.5*f0nstructions per second. In other words, the P! dannot even keep one CPU busy in
the worst-case scenario. Luckily caches eliminia¢se problems and CPUs are most often stalledodigéching
data and not instructions, the problem is the share though, thus is a program traverses datatwtescthat
either does not exhibit temporal locality or ardage that they does not fit in the cache and thaes not allow
the CPU to benefit from temporal locality. Sch&tPM bus can become a bottleneck for one CPU thigerisk of
the PM bus becoming a bottleneck grows with thelremof processors that are connected to the busliffifted
bandwidth of the PM bus is also the primary reasbyp SMP architectures only grow to a very limitagnber of
processors.

The MESI protocol, or any other SMP bus coherenagopol, is also responsible for potential perfonce
degradation. If one processor has modified a vigriabg. increased a counter, and another processbrto do
the same, then the cache line, which is in Excusitate, need to be copied to the reading CPU ied the
Shared state at both CPUs, then the second CPUneraase the variable and write the new value, vhieans
that the cache line at the first CPU must be ideddid, e.g. enter the Invalid state. Migrating edaies back and
forth like this may easily reduce the performanfeasystem to a level where a uni-processor systewld
perform better. To ensure correct execution insasethe one of the shared counter being incrégsetbre than
one processor, such variables are usually protéstesynchronization variables, which increase ttoblem even
further. This scenario is examined in a later examp

A related problem, which can be even harder toctlete called false sharing. The problem is thehealine

migration issue again, but this need not be becauselifferent processors access the same variabtdyecause
different processors access two different varialiégss may occur because the cache works with autagty of

cache lines, not variables. Imagine two procestmrsises each their countet,andx2 andx1 andx2 are placed
contiguously in memory, thexl andx2 are placed on the same cache-line, and thus tive gaoblem of migrating
and invalidating as above occurs, even though vpdiogly have tried to avoid it by using differemtiriables.

There are different ways to address this, but ag ede of tomb is to use local variable as mucpassible, e.g.
data placed on the stack rather than the heap.

intij;

Figure 3A common pitfall in shared memory programming, apparently independent variables ends up compédtinghe same cache-
line

The use of development libraries is another comswumce of problems in parallel application develeptnlf the

library is not safe for use in parallel applicasothis is a huge problem which is often discovdetd in the

debugging process, most modern development plagfoise libraries that are safe to use with SMP tactoires,

these are often referred to as ‘thread-safe’ liesamore on threads in section 1.2. Even if theafies behave
correctly on parallel architectures they often espnt a significant performance problem, and rafiplications
tend to use the standard libraries as little asiples This is easily seen if we compare the peréorce on an
application that uses random numbers heavily asisdeigure 4.

25

20

15 7

O1CPU
W8 CPUs

Seconds

10

drand48 Custom rand

Figure 4Performance of an application that relies heavily mndom numbers, if the standard C-library randéunction is used the
application runs significantly slower with eight OB compared to a one

The obvious bottleneck when working with more thia¢ CPU, be it SMP or any other parallel architegtis 10.
Roughly speaking is it of little gain to have mymiocessing power if the CPUs are constantly waitbngdata.
The 10 bottleneck may exist at many levels of aesysthe 10 bus, e.g. a PCI bus, the disk or taze retwork
interface from which the data arrives. 10 in palafiystems is a topic in its own right and will e covered
further in this text.

1.1.1 The Intel Multiprocessor architecture

The Intel multiprocessor architecture is one of riest widely available multiprocessors, and moghefcontrol
hardware that is needed to implement multi-proogss& placed on the CPU itself, with the resuliaadual-
processor Intel machine is only marginally moreasgive than the cost of a uni-processor and thigi@ua CPU.
As you can imagine this makes these machines tatraitom at cluster point-of-view since a 16 CPluster
made up of eight dual-processor machines is notabl/expensive than a similar cluster made froratdfdard
PC. We will look into the factors that one shoutehsider when building a cluster in a later chapter.

Intel's MP architecture is a shared bus architegtwhich is why the machines that are based aw ita@rly cheap,

but this is also the reason why the machines ardlesto very few processors in each machine. E&dl kas an
execution core, an interrupt controller, a bus aletr, which interfaces the processor to the pgsoememory
bus, and two levels of cache. Both levels of camfeekept coherent in compliance with the MESI otpas

we've seen earlier in this chapter. A common probléth the MESI protocol is that two or more praa@s may
compete to change the contents of a given addtessypically occurs when a process or thread tigeset a lock
variable. If two or more CPUs try to change a giaddress at the same time they will repeatedly gétared copy
and then try to get exclusive access to this addtkis can go on many times before one CPU istaldemplete

the change the address, and thus obtain the & pfoblem of course is rare and is only a peréoroe problem
and it will not result in an incorrect behavior.\ever to ensure that this is not a problem Inteehatroduced the
option of locking the bus for the duration of astmction, and since the Intel processor is a GiBitecture this
is enough to easily perform a synchronization lagcks will be investigated in further depth in thext section.

poll:

MOV AL,0

MOV BL,1

LOCK

CMPXCHG <sem>, BL

JNZ poll

//INow we have the semaphore

Example 1. An efficient polling lock in the Intel Architecture

CPU CPU CPU

Interrupt
Controller
Memory Bus
Controller
Cache Controller
Cache Memory
Interrupt
Controller
Memory Bus
Controller
Cache Controller
Cache Memory
Interrupt
Controller
Memory Bus
Controller
Cache Controller
Cache Memory

|

Processor Memory Bus

Interrupt Controller Communications Bus

N S I

Interrupt Interrupt
Shared Controller . Controller
Frame Buffer
Memoy
I/O Interface 1/O Interface

Figure 5The Intel MP architecture

A more detailed description of the Intel MP arctiitee may be found in [2].

1.1.2 The SUN Enterprise architecture

The SUN Enterprise architecture represents thevidsh scalable SMP architectures. The Enterpaishitecture
may be thought of as a three-tier architecture clwvluonsists of the CPU with a standard cache lieyara
gateway to scalable memory called the Ultra Porthecture, UPA and an intra UPA system called the
GigaPlane bus. An important part of this desigthég each of these tiers are autonomous protaatsthe actual
implementation may be changed without consideratiothe other protocols, i.e. SUN also makes sm&P
machines which eliminates the GigaPlane componahtoaly scales as far as one UPA module allows,thad
CPUs are used in small systems without any UPA compts as well.

The Ultra Port Architecture is a split transactioemory protocol, which simply means that every mgmo
operation may be split into multiple logical passd the UPA interface supports many such partiahong
operations to exist concurrently. In the Enterpasehitecture the UPA modules communicate via tigaB&ane
bus, which is a different kind of bus than the lIM#-bus one we examined in depth previously. TigaBlane
bus is not one physical bus but a set of intercctedebusses, the effect of this is that when a @®@#aule posts an
operation to the GigaPlane bus this is not immebjiatisible to all other UPA modules, but the Gigafe
subsystem will make sure that the operation is qyafed to all the GigaPlane sub-busses. In essieiscallows
the Enterprise to use snooping busses but withemutining the busses to hold the same informatictheatsame
time. An in-depth coverage on the transaction paltand the necessary timing considerations tieatexjuired to
implement this is beyond the scope of this texadees that want a more detailed understandingeoEtiterprise
architecture are encouraged to read [Culler98][SUN]

Memory

CPU CPU Memory
Cache Cache Memory
Cache Cache 4 [Mem. cil.]
4 4 [[Mem. cti.]
[Mem. ctl. | [|
A 4 A 4 |

UPA Interface |

GigaPlane BUS

1/0 Extension 1/0 Extension

Figure 6 The Sun Enterprise Architecture

1.1.3 The SUN MAJC Architecture

The SUN MAJC (pronounced Magic) processor is amgt@ of a SMP architecture which scales very pgorly
however the CPUs that it does include may commtmifzester than any of the previous SMP architestufbe
idea is to place the CPUs on the same physical Thip allows the CPUs to share all caches, ircefftminating
the need for cache-coherency protocols. Sharececawth a direct connection between the CPUs allewthAJC
CPUs to share work at a much finer granularity taay other SMP architecture, in fact the MAJC asttiure
includes components to allow a non-parallel appboato use both CPUs by detecting instructions thay
execute in parallel at runtime, however if the pamgmer provides more than one thread this levebodllelism
will be used instead.

An important feature in the MAJC architecture is NB&J concept of ‘vertical multithreading’. Vertical
multithreading means that each CPU may executgadteeads concurrently and the scheduling ofelteeads
are handled in hardware. The concept of threadsviered in the next section, but for now it suffi¢ge think of
threads as processes that happen to share theaddness space. The hardware handling of threatthe iIMAJC
processor allows the CPU to schedule a new thiethé iactive thread is delayed. This means thanvehthread
issues an operation to a memory cell which is tetqu in the cache, e.g. a cache-miss, anotheadtoan be
scheduled so that the CPU does not stand idle wiaiitng for main memory. In many ways this is danito out-
of-order execution, but rather than relying on @RU to detect potential instructions for out-of@r@xecution,
the application programmer can create anotherdhcesun on the CPU.

North Graphics pCI
UPA Preprocessor
f , «)
Memory
Instruction Controller Instruction
Cache |, [- Cache
Data
CPU, Cache [¢ CPU,
P South R
b UPA g

iy

Figure 7The SUN MAJC 5200 SMP on a chip Architecture

In this context the ‘vertical multithreading’ isitiinteresting as it is nothing more than a chigel integration of
a well-established technique called latency hidirte idea is, simply put, to keep several compankusy at the
same time, e.g. the processor and the memory sibrsyor once we start looking at actual clustées,cluster
nodes and the cluster interconnect. Vertical ntuk#ding is also available in other architectureh st the Intel
Xeon class CPUs, in this architecture the CPU appi@ a dual-CPU on a chip, as in Figure 7, heewehere are
not two CPU cores on the chip but only two regifites and a little extra control logic.

The MAJC architecture is an example of integratmhinstruction set, memory architecture and runtime
environment to improve performance, and extensiveiage of the architecture will not fit here. We Bkely to
see similar multiprocessor-on-a-chip CPUs in ther eture where existing architectures are merges on-chip
multiprocessors. Once these CPUs become readiijableathey are likely to form the basis of manyskiep
systems, and we will definitively find them in desnodes.

1.2 Programming the SMP

Now that the SMP architecture has been demystifiezitime to start considering how to program wsttared
memory. While the trivial solution is to run distirpprograms or processes on each processor, wdyrf@as on
speeding up one program/process by using moreotiaiCPU.

1.2.1 The thread model

The usual way of programming shared memory ardhites is by using threads. Threads are sometiniesae
to as lightweight processes which refer to the flaat a thread is basically everything a processxsept for the
address space, e.g. multiple threads exist witlérsame address space. This is the very features tvall suited
for shared memory architectures, if one threadesrit a variable then another thread that readwill read that
value.

Stack 1

Stack Stack 0

Data Data

Code Code

Figure 8 Two processes, a single threaded and on with tveats

Thread packages exist in a multitude, each with tven AP| and a few special characteristics. Tloshcommon
thread package is POSIX threads, Solaris threadslave threads for UNIX like operating systems AANI32
threads and Java threads for the Windows platfe@5IX and Solaris threads are fairly similar infbaP1 and
functionality, while Java threads are an integrgiaxd of Java and as such has an entirely objestted API, Java
threads also represent a functional minimum wittefeoptions than other thread packages.

For the purpose of high performance programmingchviafter all is our agenda, it is important toioetthat
threads are a programming concept, and thus i$imetd to any implementation. This is importantu® since
there are three basic approaches to implementirgadb, user-level threads, kernel-level threads rangd
threads.

User level threads, as the name says, are implechentirely on user level. They provide the progremwith a
useful way of structuring her work, but since tipemting system only know of the one main threatiénprocess,
user-level threads are not able to utilize more thiae processor per process, which in essence makesevel
threads unsuitable for our purpose. So if you vaitaulti-threaded application and don’t receive pesformance
improvement the first thing to check is whetherryapplication does activate more than one processor

Kernel level threads too are exactly what the nandieates, i.e. threads which are known by androtiet by the
operating system kernel. This way the operatingegsyknows of the threads and can schedule difféhesads on
different processors so that we can achieve aspdup. On the downside kernel-level threads @m&ratled

only be the kernel, which means that if one thrieaglispended and need to be woken by another ttirsachn
only happen through a costly call to the operasiygiem.

Equally intuitive is the nature of mixed threadsiiet as you'd imagine seek to provide a best off vedrlds to
the thread modeling. The main philosophy behindrimeed-level threads is that each process has lgxaioe
kernel level thread per CPU in the system, and asynuser-level threads as the programmer createsu3er-
level threads are then scheduled on the pool aiekghreads. This way we get true multiprocessitiglen
minimizing the number of costly operating systetisca

1.2.2 Java Threads

In Java threads are an integrated part of the @mvient and using threads in Java is straightforwkarea contains
a generic Thread class and to write code that dhowl as a thread the programmer simply need teeile code
in a class that extends the Thread class. Newdtrleases must contain a public method called winich can
neither receive nor return data.

class dummyThread extends Thread {
int id;
public dummyThread(int id){this.id=id;}
public void run(){System.out.printin(“Hello World from thread “+id);

Example 2. A minimal thread class

The above code implements a class called dummyd@hvedch can be used to create a new thread —roncéng
the thread will simply write the classic ‘Hello Wbrmessage tagged with an id of the thread. Tdis igiven by
the thread that instantiates the dummyThread dembsthus is not an integrated part of the thredidsystem, as
we will see below other thread systems do proviggstem assigned thread id.

It is important to understand that instantiatingeav Java thread class does not start a new thseating the
thread must be done specifically using the stathatewhich has been inherited from the system Thotass. So
if we wish to create a dummyThread we need to €irstite a new instantiation of the class and tham @p the
thread.

dummyThread dt = new dummyThread(42);
dt.start();

Example 3. Instantiating and starting a new thread

If threads are used to divide work between mulffplecessors it is usually necessary to know whenhiead that
handle a specific task has finished, this coulddr®e by the programmer but the thread sub-systewidas a nice
way of doing this by providing a built in methodrjoCalling the join method in another thread objeitl suspend
the calling thread until the thread in the callégeot have terminated.

| dtjoin(); |

Example 4. Waiting for a thread to terminate

This technique is often used to ease programminggine that we have a machine with eight processaishus

we wish to divide a given job into eight sub-tadk& can then do one of two things; either the rtai@ad creates
eight identical threads to handle each portiorhefjbb and waits for all eight to finish, or theimthread creates
only seven threads and perform the last task ,itaétfr which it will return and wait for the temaition of the

remaining threads. Which of these two techniqueséaterable is left as an exercise.

What really makes shared memory programming so @asyared to the techniques we will look at lateris the
fact that we need only concern ourselves with otlittg the code, if two or more threads use theesdata they
will simply read and write them at the same menamigress. Reading and writing an address is stfarglard

but unfortunately here lies the first and perhapstndangerous pitfall in shared memory programmnting;race-
condition. Imagine an application where multiplestids all need to increase the same variable ti®ptre global
result, nothing seems simpler than increasing iabiar

| i+ |

Example 5. Increasing a variable

However as you probably know this is not how dlége in the computer, what actually goes on istti@variable
is read from memory into a register, which is thremeased and written back:

read a,i
inca
write i,a

Example 6. Assembly pseudo-code to increase a variable

Now consider what happens when two threads wishctease a shared variable at approximately the sene.
Two copies of the instructions in Example 6 mayxbmbined in 22 ways of which only two will retutmetcorrect
result. So if the simplest instruction with onlyawhreads only has one chance in eleven to exetutectly,
you'd expect that race-conditions are easily cgughpecially if the operation(s) on shared vari@lare
performed by more than two threads, however toucephe error more than one thread executes the tad
changes the shared variables at the same timeci&xd0) examines this question in further depth.

The solution is to ensure that only one threadlasvad to access the shared variables at a tinod, gperations is
called a critical section. Controlling that onlyeotihread at a time is in a critical section isezhinutual exclusion,

or often simply ‘mutex’. Java provides a very pofukyet simple mechanism to ensure mutual exclusalfed
monitors, those that are familiar with Hoare-morsitehould be forewarned that Java’s monitorsnateHoare
monitors but use a far simpler scheduling modeméitor is a set of data-variables and methodstess these
data, very similar to an object, however in momitonly one thread may be inside the object at engime. Java
monitors are standard objects but the programmeicoavert the object to a monitor by stating thad or more
methods should ensure mutual exclusive access doobject, the keyword to specify such methods is
synchronized.

Data

Access Queue

S S

Code

Figure 9Logical picture of a Hoare Monitor

class counter() {
inti;
synchronized void inc(){i++;};

}

Example 7. A monitor in Java — the increment of | will be atoraven if two threads call it at the same time

If you know a little about compilers and optimizats you'd probably argue that the assembly cod# ig not
realistic since most compilers would try to keep vYariable in the registea for later use, this objection would be
quite right, compilers do try to include the CPlisters into the memory hierarchy and keeps a blariem a
register until such a time that is finds it moréo@nt to use the register to hold another vagafihis of course
poses a problem to our multithreaded applicatiagt is the purpose of ensuring mutual exclusiomesess to
shared variables if we cannot ensure that thetresulritten to memory so that it can be seen Iheothreads?
The solution to this problem is to tell the compiiet to keep a given variable in a register aftes, this is done by
telling the compiler that this variable is volatiie. sensitive to changes that the compiler cadetect.

| volatile int i; |

Example 8. Defining a variable as volatile

The great thing about multi-threaded programminiipas results that are written by one thread, mayédiately

be read by another. We use this quite often iatiter algorithms, where the source data for iterdtiis in fact the
result of iteratiom-1, but the thread that uses the result is not nadhsthe same thread that produces the data,
thus we need to make sure that result has beetemviiefore it is read — otherwise what we readtligeoutdated

or outright garbage. The technique we use forithislled a barrier and the idea is quite simplagw a set of
threads need to agree that they have all finisimedstep of a computation they all go to the baridrich in turn

will only allow them to leave once all have arriv&@hrriers may be implemented in two basic waytheeiby
letting each thread actively spin until all threddse arrived, or by having threads sleep untibdder threads have
arrived.

class counter {
int cnt;
public void counter(){cnt=0;}
synchronized public int inc(){return ++cnt;}
synchronized public void reset(){cnt=0;}

}

class Barrier {
counter c;
int members;
volatile boolean spin;
public Barrier(int num){members=num; spin=true; c= new counter();}
public void meet()}{
boolean state=spin;
if(c.inc()==members){
c.reset();
spin=!spin;

while(spin==state);
}
}

Example 9. A Barrier which is implemented by spinning the #d® until all have arrived

A spinning barrier as the one demonstrated in E¥a®ps characterized by two facts; latency is las,soon as
the last thread joins the barrier all threads wvaturn and continue the calculation within a CPU4ley. On the
other hand the threads keeps the CPUs active hpisgion the counter variable, which prohibits @RU from
doing valuable work in the mean time. In java ttosld be the garbage collection thread, which maghtvell
spent the time cleaning up dead objects whiletireat is waiting. To allow this one need a baittiat allows a
thread to be descheduled at the arrival to thedvamd rescheduled once all threads arrives t#hresalso know as
a signal-wait barrier.

class Barrier {
int cnt, members;
public Barrier(int members){this.members=members; }
public synchronized void meet() {
if(++cnt==members){
cnt=0;
notifyAll();

}
else try {wait();} catch(Exception e){};

}

Example 10. A Barrier which is implemented by sleep and wakeup

The tradeoffs in the signal wait barrier are thaotxeverse of the spinning implementation, angdrénat is not
the last to arrive, will go to sleep until the l&stead signals the others that the barrier is ¢etegh and they may
go on. This way the CPUs which were running théseatls are free to do valuable work, on the otlaedh
descheduling a thread, scheduling and deschedatiather and finally rescheduling the original tireaquires a
number of CPU cycles so that the latency of thedraincreases significantly.

The remaining question is; which type of barriesidd one use? This question does not have a vadider since
each model has its right depending on the appbicatf an application requires the threads to raéearriers very
often, it is most likely that the code is well batad, which means that all threads will arrivetet barrier at
approximately the same time, in this case the @asttof a signal-wait barrier is too costly and $pinning

version is likely to be the fastest solution. Oa tither hand if barriers are rarely called thenvibek is also more
likely to be unbalanced and utilizing the waitingripd on a CPU for the barrier to complete is niikely to be

worthwhile. A generic barrier will often combineethwo approached, so that threads start out bynisygjrfor

completion, once a thread has spun for as long disre sleep-wakeup takes all spinning threadstgaseep and
the barrier changes to a signal-wait barrier. #asily seen that this solution is two-worst.

Below is a simulation of a multithreaded applicatithat synchronizes via a barrier. Work is simwlatg one
thread as adding a new random number to a varig®e number of timers, the more loops that sinewedrk the
more unbalanced the application is. The simulatetkwreates a new Random object each time, whishres
that we will need garbage collection.

10

import java.util.Random;

class Worker extends Thread {
private int max_work;
Barrier bar;
public Worker(int work, Barrier barrier){max_work =work; bar=barrier;}
public void run(){
int x=0;
for(int i=0;i<1000;i++) {
for(int j=0; j<max_work; j++) x+=new Random() .nextint();
bar.meet();
}
}
}

public class barrier_simulation {

public static void main(String argv[]}{
int worktime=new Integer(argv[0]).intValue();
Worker wl,w2;
Barrier barrier=new Barrier(2);
wl=new Worker(0, barrier);
w2=new Worker(worktime, barrier);
double start=new java.util.Date().getTime();
wl.start(); w2.start();

try {wl.join(); w2.join();} catch(Exception e){ L

double stop=new java.util.Date().getTime();

System.out.printin(((stop-start)/1000) +" secon ds");
}

}

Example 11.Barrier simulation

Figure 10 show the result of blocking and spinrbagriers with the simulation shown in Example 14 we vary
the simulated work from one through 10,000 iteratidf the unbalance between the two threads wadkis only

one iteration then the spinning barrier perforngsi§icantly better than the blocking version, tipégnging version
is 0.04 seconds faster than the version that te#tisescheduling of the threads. Because the dipnlereates a
new Random object for each iteration the executictually do force the garbage-collector threadhien dava
virtual machine, to be activated, which means @taome time the blocking-barrier becomes moreiefit than
the spinning version, in this case it happens sdmesvbetween a simulated workload of 100 and ®&0ations, at
100 iterations the spinning version is 0.01 secdadter than the blocking version, at 500 the i@lghip has
changed so that the blocking version is 0.01 secfemter than spinning. When the simulated workleasthes
10,000 iterations the advantage of blocking ovérspg has grown to 0.45 seconds, unfortunatelycamnot see
this from the graph and in percentages it is natigsificant at the advantage of spinning over kilog with a

small unbalance, but the difference is there natess and one should carefully consider the natfirthe

application when choosing a barrier technique.

Barriers are used with most parallel programmingsAdhd once we get to distributed-memory architestmore
advanced, and more scalable, barrier techniquébevilutlined.

11

100,00
10,00 1 //
1] /
=]
s 1,00 ,/
3 Pz
n
010 /
0,01 T T T T
1,00 10,00 100,00 1000,00 10000,00
Thread unbalance (iterations)
\—Spinning -- Blocking\

Figure 10Comparing Blocking and Spinning barriers on a dpedcessor machine

The results that are shown in Figure 10 clearlywsitimat the Java threads in this case utilize mbas tone
processor, thus the Java virtual machine and teetipg system supports kernel level threads. ivefzct allows
you to choose whether you want to use user-levédeanel-level threads, though not all Java impletatgns
implement both versions. How you tell Java whictedid model to use depends on your particular pratfbut
user-level threads are generally referred to aefgrthreads and kernel level threads as ‘nathre’ads.

setenv THREADS_FLAG green
setenv THREADS_FLAG native

Example 12. Setting Java to use user-level respectivly keraedllthreads in Linux

1.2.3 POSIX Threads

Outside the Java world the most common thread gaclsaPOSIX threads, these are often simply refeioeas
pthreads. POSIX threads are supported by most UikéXeperating systems, including the popular opeurce
versions Linux and BSD. Since POSIX threads isnguage independent library the actual interfagheathread
package is a little more complex than Java threadsthe only major difference is the lack of morstand the
fact that threads are active as soon as they eated;, as opposed to the Java version which rechireads to be
activated after creation. POSIX threads are basefloctions and a new thread of execution is gisestart
address in the form of the address of a functioeralthe thread should start its life. A functioattshould be used
as a stand-alone thread should take a void pastéds only parameter and return a void pointer.

#include <pthread.h>
void * my_thread(void *my_id){
printf("Hello world from thread #%d thread id #%d \n"\
(intymy _id, pthread_self());
return NULL,;
}

main(){
pthread_t thread;
pthread_create(&thread, NULL, my_thread,(void *)4 2);
pthread_join(thread,NULL);

Example 13.Hello world with POSIX threads

Since POSIX threads are language independent atritiegions cannot be implemented as easily as the
synchronized methods in Java, instead POSIX thraggbased on the classic technique of token tgldiach
critical region is associated with a token, andrder to enter the critical region a thread hagit& up the token,
leaving the critical region means releasing thetold pthread token is called a muteytual exclusion variable
and a critical region is entered and left by logkim unlocking a mutex.

12

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIA LIZER;
pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);

Example 14.Initilizing, locking and unlocking a POSIX mutuaictusion variable

Pthread based applications too, need to allow disrém go to sleep and be woken by another threade @gain
the language independence makes the procedutke aridre cumbersome, but it is still straightfordiaPthreads
are suspended and woken on condition variables tleread issues a wait with a condition variaivid is put to
sleep until another thread either signals to ttmeseondition variable or broadcasts to it, a sigoa broadcast
variable means that one thread may be woken amdnheegxecution, a broadcast means that all thréedsate

waiting for a condition variable may be woken. Th&xrhowever an obvious potential race-conditiot wiis kind

of signal and wait, if one thread issues a wait amother at the same time issues a signal on the sandition

variable. To avoid this the POSIX thread interfagguires a thread to pass another variable to toalj this

second parameter is a mutex variable, which mudbdied at the time of calling wait. A wait statamh¢hen

translates into an operation sequence that gods;kumutex, wait for condition, lock mutex, whegetmutex

unlock and the wait is performed atomically. Anyetid that signals a condition variable should tle@member to
lock the same mutex variable before sending theasigy broadcast. This way race-conditions aredsegbi

static pthread_cond_t done = PTHREAD_COND_INITIALIZ ER;
pthread_cond_wait(&done,&mutex);

pthread_cond_signal(&done);

pthread_cond_broadcast(&done);

Example 15.Creating, waiting, waking one and waking all threaglith POSIX threads

POSIX threads has no immediate semantics for aefishared data variabtelsut must languages, including C
which we use here, support the notation of volatdlgables, and the defining keyword is usuallyatité. If we
combine all of the above synchronization techniqfasPOSIX threads we can define a blocking barrier
mechanism similar to the Java version found in Exeri0. The C/POSIX threads version is found inrEpie 16
and it is clear that the language independencehaP{@SIX threads provides do increase the complexitysing

it, once you get used to it however it is fairlppa

barrier() {
static volatile int barcnt=0;
static pthread_cond_t done = PTHREAD_COND_INITIAL IZER;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INIT IALIZER;

pthread_mutex_lock(&mutex);
barcnt++;
if(barcnt<WORKERS){
pthread_cond_wait(&done,&mutex);
}
else{
barcnt=0;
pthread_cond_broadcast(&done);

pthread_mutex_unlock(&mutex);

}
Example 16.A blocking barrier implemented in POSIX threads

1.2.4 Solaris Threads

The first thing to notice with Solaris threadshattthe logical elements that we called threadkémprevious two
sections are called light weight processes, LWRsSélaris. Except from the name and the order aneso
parameters Solaris LWP are very similar to POSI¥dts. The Solaris thread model however providés ye
another level of sub-tasking which are then narheebtls. A Solaris thread may be fixed to run withie LWP

in which case it is denoted a bounded threadrosit float amongst the different LWPses in the sysded is then
called unbounded.

! It does however provide the programmer with aarfate to provide each threads with a private datanent if you should need this.

13

thr_create(NULL, O, my_thread, (void *)42, NULL, &t hread);
thr_join(thread, NULL, NULL);

Example 17.Creating and joining with a Solaris thread is vesiynilar to the same operations with a POSIX
thread, apart from the order of the parameter order

Newer versions of the Solaris operating system sisport POSIX threads directly and SUN discourdigesise
of Solaris threads.

1.2.5 WIN32 Threads

WIN32 threads are designed to interface naturaillly the WIN32 programming API, WIN32 threads alsteads
threads with another level called fibers.

threads[0] = CreateThread(NULL, 0, my_thread, &args , 0, &thread_ID);
WaitForMultipleObjects(1, threads, TRUE, INFINITE);

Example 18.Creating and joining with a new thread in the WINS&tems

1.2.6 OpenMP

OpenMP is a fairly new approach to easing parphetjramming while adding as little new semanticp@ssible.
Currently OpenMP exist in a C/C++ and a Fortrarsiger. OpenMP is based on an well established parall
programming technique called Fork-Join. The idethas an application runs sequentially up untibinpwhere a
section may be parallelized. At this point a sethogads are created, each of which execute its pasnof the
code section, after finishing the parallel block threads terminates and the main thread contaftersall parallel
threads have finished.

OpenMP is a crude macro-oriented approach to ph@mtbgramming, which is its main attraction. Isequential
version of an application exists this can be expdngith OpenMP macros, without modifying the oraicode,
e.g. the sequential code for a vector addition:

for(i=0; i<length; i++)
clil=afil+b[i;

Example 19.Sequential Vector addition

Can be turned into a parallel version simply byiagildn OpenMP macro:

#pragma omp parallel for
for(i=0; i<length; i++)
clil=a[il+bfi];

Example 20.Parallel Vector addition using OpenMP

After which all processors in a machine may be wseurform the addition in parallel.

Figure 11The Fork-Join parallel execution model in OpenMP

It is important to realize that OpenMP is a simplacro-oriented language extension, which meansittet
programmer specifies a loop for parallel execubianhthis is not immediately possibly, e.g. becafsbe result of
one iteration is dependant on the result of a previteration, the OpenMP will still execute thegan parallel,
but the result will be incorrect.

While OpenMP seems like an attractive way of wgtparallel applications, it is important to recagnthat one
can only expect limited processor utilization willpenMP. First of all only sections that are exgiicmade
parallel will execute in parallel, which in turn ares that speedup is limited by the part of the @@t time that is

14

spent in the sections that are parallelizable. B@otost that limits the efficiency of OpenMP ig thork-Join
execution model, creating and joining threads pds#icomes costly if it happens often. However fasea of
applications the OpenMP is a simple and efficiemtdet, it is simply no a silve bullet for generelraiiel
programming. As clusters frequently use SMP mashiae nodes the use of OpenMP is also becoming
increasingly popular in the cluster world.

OpenMP consist of a large number of macros, mosthich are more complex than the parallel for exantipat
was described here. In addition to simplifying fiataization of existing sequential applicationse@MP is also
gaining popularity as an intermediate languageétirparallelizing compilers.

1.3 Orchestrating for Shared Memory

The term orchestration means dividing the probleno isub-tasks and distributing these tasks amorg th
processors. Orchestration is a central part otiaga parallel application and errors that areomhticed in this step
may introduce significant correctness or performarroblems. Orchestration of applications requires
considerations towards both architecture and progniag language, since the orchestration will bedlly visible

in the end code.

The importance of correct orchestration of paralfglications cannot be over-rated, and in manyswiag field of
parallel application design and implementationsdidwn to this one issue, how to do orchestra@ahestration
principles and techniques may be coarsely divida two groups, general techniques and architecipeeific
techniques. Thus as we revisit orchestration irlgter chapters some of the techniques that aiedimted will be
applicable for other architectures also, howeveth® extend that it is possible orchestration teples are
presented with the architectures that they are oftest used with.

Orchestration for SMP architectures may be faintgpdy on an abstract level or it may be detailedhe level
where cache-line-width, main memory layout and otbsues are considered. For now we will considdy the
orchestration techniques on the most abstractdefieér points will be made later in the chapted aome are left
as exercises.

1.3.1 Static Orchestration of Parallel Threads

The easiest approach to orchestration of parditelatls is to divide the data inbtochunks and have workers

work on each their portion of the data. Not onlyhis the simplest way to divide the work it isalikely to be the
most efficient in the cases where it is doable. Tateh is naturally that a static division of thetadamongst
processors is rarely immediately possible, mogtnofte need to redefine a function or in some otfzer modify

the application to allow data to be distributed aggt the processors. Usually the computed valua déta-
element will in some way depend on the result & onmore of its neighbors and we need to add sgnization

and define update-order to ensure correct execitienwill investigate an example of such a scenater in this

chapter.

A different, but less obvious, problem with stagichestration is that it requires the work thatustidoe done on
the different data-blocks must be fairly well baled. If the work is not well balanced one processight finish

quickly while another processor will work for a ptime, the result is that the speedup that wesgitr smaller
that what we would expect. This problem often coama surprise to the application programmer asultsein a
reorchestration of the application. There are twmary approaches to resolving an unbalanced agjgit, either
change the static layout of the data or shift tdyaamic orchestration of the work. Dynamic orcha&in is

described in the next section and the approachetifoensidered work distribution is the main paaiftthe first

programming project ‘The Desert Map'.

1.3.2 Dynamic Orchestration of Parallel Threads

Orchestrating the work in a dynamic fashion isrih&ural opposite to the static approach and isetd if the
time it takes to perform a sub-task if varying amgpredictable. Dynamic distribution of the datdést suited if
the data is not dependent on sub-results fromdhee dteration over the data. Dynamic orchestragonsually
implemented by dividing the work into many smaBks, where the number of tasks should be muchrignge
the number of processors. The tasks are then placeal queue, and the workers simply work by repidate
fetching a job from the queue and executing is. eOtie work-queue is empty the workers terminatas It
important that the tasks on the queue are smalkkratse the balance of the execution becomes pitbrastow
speedup as the result.

15

The dynamic task orchestration is a special cageasinmon technique in parallel processing knowthasbag-
of-tasks’ technique, where workers both consumegamérate tasks for execution. This technique bilfurther
investigated in later chapters.

1.3.3 Specialized Workers

The third and last of the basic orchestration tephes is known as the specialized workers approabis

approach is quite different in that it is not foedson the data but rather on the instructionsijfian application
consists of two or more logical tasks then a thmeagt handle each such task. This is exactly whapdras within
a pipelined CPU, the execution of a single instoucts divided into several logical steps and t@lement each
such step there is a pipeline stage to executeptiréibn of the instruction. Because of this splexd worker
implementations are also often referred to as ipipelapplications.

There are several reasons why the specialized veogpproach is not common in parallel processirg, df all it
is less intuitive to consider the instructions farallelization than the data, parallelizing thélealso requires a
much more detailed understanding of the code thariqus orchestration strategies. A more impomaason why
we rarely see the specialized workers paradigns@isi the fact that it often limits the degree arfgtielism that
may be achieved, since we need to identify a unigsk for each CPU we wish to activate. There areelver
applications where specialized workers are supéridhe data-parallel versions, one of these aréraging and
we will examine this and others later on in thegpaonming project ‘The Clone Machine’

1.4 Monte Carlo Simulation

The following example represents a somewhat stwpig of finding, based on a Monte Carlo simulation. The
model is fairly simple; if we take a square withotwnits side length and inscribe that by a circidr wnit radius
then we can throw a dart at the drawing multipiees, each time the dart fall within the circle wi# imcrease a
counter. We know that the area of the square isdait-squared and the area of the circlegishus the ratio of
darts that fall within the circle is the ratio afuf unit-squared that represents. For simplicity we reduce the
problem to the upper right quadrant of the cirelg, one fourth of the original problem.

__/

Obviously this is an extremely inefficient way adtdrmining the value af, however Monte Carlo methods and
the closely related Las Vegas methods are quitgalste tools in various fields of science and tmepg model
that we present here may be replaced by a seealf problems within physics, chemistry and biolo§ge the
exercises section for more examples of Monte Gadthods.

Figure 12The Monte Carlo Pi model

1.4.1 Sequential version
The sequential code is straightforward:

16

import java.util.Random;
public class PI {
public static void main(String argv[]}{
final int LIM=10000000; //We throw 10E7 darts
int i,count=0;
double x,y;
Random r=new Random();

for(i=1;i<=LIM;i++) {
x=r.nextDouble();
y=r.nextDouble();
if((X*x+y*y)<=1.0)count++;
System.out.printin("Pl is " + 4.0*count/LIM);
}

Example 21.Sequential Monte Carlo simulation to find PlI

Performance
Running the code with the time command returns:

time java Pl

Pl is 3.141338

0.100u 0.010s 1:51.26 0.0% 0+0k 0+0io 4739pf+0 W
It takes one minute and 51 seconds to performethanillion simulated dart throws, and returmwith only three
correct decimals. There are of course much bettgswf calculatingtbut the Monte Carlo simulation technique
is in fact a useful mechanism for other probleraseeding up the simulation is of real interest.

1.4.2 Statically Orchestrated Parallel Version

Parallelizing the code is straightforward, insteddne simulated dart and one target, we’ll simplke two. The
two darts can be thrown in parallel without anylgdeon since the result of one dart does not inflaehe result of
any other dart.

Using threads the code is very similar to the apbuehas grown some in order to handle the threads

17

import java.util.Random;

class data {
public int count;
data(){ count=0; }

class Worker extends Thread {
private int id,LIM; data cnt;
public Worker(int id, int LIM, data cnt){this.id= id; this.LIM=LIM;
this.cnt=cnt;}
public void run() {
inti;
double x,y;
Random r=new Random();
for(i=0;i<LIM;i++) {
x=r.nextDouble(); y=r.nextDouble();
if((x*x+y*y)<=1.0)cnt.count++;

}
}

public class PI {
public static void main(String argv[]{
Worker wl,w2;
data cnt;
int LIM=10000000;
cnt=new data();

wl=new Worker(0,LIM/2,cnt); w2=new Worker(1,LIM [2+LIM%2,cnt);
wl.start(); w2.start();
try { wl.join(); w2.join();} catch (Interrupted Exception e) {};
System.out.printin("Pl is " + 4.0*cnt.count/LIM)

}

}
Example 22. Statically orchestrated parallel Monte Carlo simtiden to find PI (faulty!)

The actual simulation code is almost identicah® $equential version the only difference is thatdounter that is
increased when a dart falls within the circle is adocal counter, but a shared counter. The mgram creates
the shared counter this way the main program caah tiee resulting number of hits directly once threads have
finished the work.

Running the code with the time command returns:

Plis 3.1221796
118.910u 0.090s 0:59.73 199.2% 0+0k 0+0io 7109pf+0 w

The immediate focus of attention is the achievezkdpp, which is 111/60=1.85, which in turn corresjsoto a
processor utilization of 0.925, which is not toalba

However, when we look at the result, the errorrdmas been increased from three correct decimalslioone.
Though we cannot expect to get identical resuttsftwo runs, since we use random input, the added is too
large to be based on a unfortunate random numiaém,ciomething must have gone wrong in the cormertsi a
parallel version.

The problem is the increasing of the global courttet.count++ looks very atomic, but what actually happen
is read(count);increase(count);write(count) and then it is far more obvious what happens,evhil
one processor is executing the increase part beg otay be reading count, which will result in finst increase is
lost.

Fixing the synchronization problem

Because of the synchronization problem we needdteqgt the count variable from concurrent operatiorhis

may be done in a variety of ways, each of whigbréferable for a given problem and/or system. Tassic way
of doing this is via a semaphore, e.g. before arease the semaphore must be locked and then edladter the
write. Alternatively the increase can the perforrmmed monitor, this approach has the advantageothaidoes not
accidentally forget to lock the semaphore befooeeiasing the protected variable. In applicatiorth Wiousands
of lines of code, finding the one spot where aal#é is accessed without correct protection mayelpg hard. We

18

have already covered that Java provides a verylsimpechanism for monitor-like behavior, the keyword
synchronized . Using the synchronized instruction the code bexsom

import java.util. Random;

class data {
public int count;
public void data(){ count=0;}
synchronized void inc() { count++;}

}

class Worker extends Thread {
private int id,LIM;
data cnt;
public Worker(int id, int LIM, data cnt)
{this.id=id; this.LIM=LIM; this.cnt=cnt;}
public void run() {
int i
double x,y;
Random r=new Random();
for(i=0;i<LIM;i++) {
x=r.nextDouble(); y=r.nextDouble();
if(x*x+y*y)<=1.0)cnt.inc();

}
}

public class PI {
Nothing changed here!

}

Example 23. Statically orchestrated parallel Monte Carlo simtiden to find PI (correct — but slow!)

Running the code with the time command returns:

Pl is 3.1424512
139.530u 14.160s 1:21.66 188.2% 0+0k 0+0io 7109pf+0 W
Now the third decimal is not quite there, but ikislue to the randomness of the algorithm, moeréstingly our
speedup has fallen to 111/82=1.35 which is a pearagtilization of 0.68, much worse than the firstsion. So
the question is must we sacrifice speed to getdhé result?

Fixing the speed problem

The only change from the initial parallel versianthe parallel version that yields the correct lteisuthat the
shared counter is updated via a call to the moniostruct rather than performed directly, thusItf®eincrease in
execution time must derive from this. We can cothelthat to get good performance we must minimigeuge of
the monitor construct. Since all the counter deds ikeep track of the darts that fall within tlikele, there is no
reason why the counter needs to be increased asasapdart falls within the circle. Instead eaciker may keep
track of its own hits and update the counter ongs, before the worker terminates. All that is resbdor this

change is that each worker gets its own, localn@yuand that the increase function in the coumtenitor, is

changed to increase by a parameter, instead ofysbypne. The resulting code looks as:

19

import java.util.Random;

class data {
public int count;
public void data(){ count=0;}
synchronized void inc(int by) {count+=by;}

}

class Worker extends Thread {
private int id,LIM;
data cnt;
public Worker(int id, int LIM, data cnt)
{this.id=id;this.LIM=LIM;this.cnt=cn
public void run(){
inti;
double x,y;
int Icount=0;
Random r=new Random();
for(i=0;i<LIM;i++) {
x=r.nextDouble(); y=r.nextDouble();
if((x*x+y*y)<=1.0)lcount++;

cnt.inc(lcount);

}
}

public class PI {
Nothing changed here!

}

t;}

Example 24. Statically orchestrated parallel Monte Carlo simtiden to find PI (correct and fast)

Running the code with the time command returns:

Pl is 3.1424888
117.180u 0.200s 0:59.04 198.8% 0+0k 0+0io 7109pf+0

w

Now the result is correct again, and the perforradaadn fact slightly better than with the faultsrpllel version
with a processor utilization of 0.942 vs. 0.925ttst in conclusion to the question posed aboweattswer is no!
We need not sacrifice performance to get the corestilt. While this is true for this example tlagot always so,
often there is a mandatory cost to pay to ensuneaoexecution. In fact one could argue that idigue in this

example, see exercise 5).

1.4.3 Dynamic Orchestrated Version

While a static orchestrated version is usuallygragfle when we have exclusive access to the hazdaval know
its configuration, this is sometimes not the ca$e application may have to coexist with other mpaibns and/or

we don’t know the exact configuration of the hardsva

In the texample jobs are fairly easy to model, since ratin splitting the number of darts evenly amortigst
processors, the darts are divided into more blogksh worker then repeatedly retrieves a job amdugrs the

assigned number of darts, until all darts has lte@mvn.

The dynamic code looks as:

20

import java.util.Random;

class data {
public int count;
private int LIM,task;
public data(int LIM, int task){this.LIM=LIM; this .task=task; count=0;}
synchronized int get_job() {
if(LIM>0){LIM-=task; return task;}
return O;
}
synchronized void inc(int by){ count+=by; }

}

class Worker extends Thread {
private int id,LIM;
data cnt;
public Worker(int id, data cnt) {this.id=id; this .cnt=cnt;}
public void run(){
inti;
double x,y;
int Icount=0;
Random r=new Random();
LIM=cnt.get_job();
while(LIM>0){
for(i=0;i<LIM;i++) {
x=r.nextDouble(); y=r.nextDouble();
if((x*x+y*y)<=1.0)lcount++;

}
LIM=cnt.get_job();
cnt.inc(lcount);

}

public class PI {
public static void main(String argv[]}{
Worker wl,w2;
data cnt;
int LIM=10000000;
cnt=new data(LIM,100);
wl=new Worker(0,cnt); w2=new Worker(1,cnt);
wl.start(); w2.start();
try {w1l.join(); w2.join();} catch (InterruptedE xception e) {};
System.out.printin("Pl is " + 4.0*cnt.count/LIM);
}
}

Example 25.Dynamic orchestrated parallel Monte Carlo simulatit find Pl

Running the code with the time command returns:

Plis 3.14221

121.790u 0.830s 1:01.70 198.7% 0+0k 0+0io 7109pf+0 W
So the dynamically scheduled version is slighthnar than the static version, if the node had lmeenpied with
other stuff the situation could have been reverisedddition the job size of 100 might be too srfallthis type of
problem.

1.4.4 Specialized Worker Orchestration

Monte Carlo Pi is not the most obvious applicatiororchestrate with the specialized workers paradigut not
the less it is straightforward, at least for twol8Pbeyond that it is much harder. The Pi applicaticay be
divided into two basic tasks, generating the randombers and checking whether they hit our uniténgte. Our
approach to a specialized worker version is thusaige one thread generate the random number aedtottest
for circle-hit. This approach is also know as praEtaconsumer parallelism since one thread prodineesandom
numbers and another consumes them, this type allgdesm will be examined further in the next clept

21

The problem we need to consider first is knownhas handover problem, e.g. the thread which gerethte
random numbers need to hand them to the threacdhwbitsumes them. Correct handover requires attetatitwo
issues, first the producer may never overwrite camehumbers before they have been read by the cansam
second that the consumer may never read randomensrbefore they have been generated. If we follugs t
approach strictly we will end up with a handoveyoaithm that uses two barriers.

barrier.meet();
if(producer)coordinates.set(random_coors);
barrier.meet();
if(consumer)random_coors=coordinates.get();

Example 26. A strict handover implementation

It is obvious that this approach is very costly avel don’t need to test it to realize that we waget a good
speedup. The solution is to use a well know dat&stre, the bounded buffer. Using a bounded buffertwo
threads are able to execute with some skew, egrtiducer is allowed to ahead of the consumer.

public class bounded_buffer {
random_coor [] buf;
int size, head, tail;
bounded_buffer(int len){
size=len; buf=new random_coor(len];
head=0; tail=len-1;

synchronized void put(random_coor c){
if(tail==head)notify();
buf[head]=c;
head=(head+1)%size;
if(head==tail) try{wait();}catch(Exception e){}

synchronized random_coor get(){
if(tail==head)notify();
tail=(tail+1)%size;
if(head==tail) try{wait();}catch(Exception e){}
return bufftail];
}
}

Example 27.Bounded buffer implementation in Java

A two specialized workers version of the Monte €& then consist of a producer of random numbedsaa
consumer.

22

import java.util.Random;

class Producer extends Thread {
int LIM;
random_coor c;
bounded_buffer b;
Producer(bounded_buffer b, int LIM) {this.b=b; th is.LIM=LIM;}
public void run(){
inti;
Random r=new Random();
for(i=0;i<LIM;i++) {
c=new random_coor();
c.x=r.nextDouble(); c.y=r.nextDouble();
b.put(c);

}
}

class Consumer extends Thread {
int LIM, hit;
random_coor c;
bounded_buffer b;
Consumer(bounded_buffer b, int LIM) {this.b=b; th is.LIM=LIM;}
public void run(){
inti;
random_coor c;
for(i=0;i<LIM;i++){
c=b.get();
if(c==null)System.out.printin("Strange NULL r eturned as "+i);
if((c.x*c.x+c.y*c.y)<=1.0)hit++;

public class special_worker_mcpi {
public static void main(String argv[]}{
int LIM=10000000;
bounded_buffer b=new bounded_buffer(128);
Producer p=new Producer(b,LIM);
Consumer c=new Consumer(b,LIM);
p.start(); c.start();
try {p.join(); c.join();} catch (InterruptedExc eption e) {};
System.out.printin("Pl is " + 4.0*c.hit/LIM);
}
}

Example 28. Specialized worker version of Monte Carlo Pi

As you might imagine the specialized version isvesy efficient, running the code in Example 2&iras:;

[TEXT NEEDED: Run output]

1.5 WATOR

The WAter TORus world, WATOR, is a classic discreteent simulation, and while it provides valuable
information in itself we chose to introduce it hésereasons similar to the Monte Carlo Pl exampéanely that it

is simple and easy to understand, while still beyggcal for the class of applications that it egents. Discrete
event simulations are widely used to model evengilfrom digital systems to financial forecasts,idtigs and
traffic simulations.

WATOR is the simulation of a very special worldsfiof all the planet is not a sphere as most ptawe know,
rather the planet is shaped as a doughnut, orua,terhich greatly simplifies mapping the world irdiscrete
blocks, as shown in Figure 13. As the whole surtdd&ATOR is covered with water there are only tiypes of
life, which we are interested in; fish and sharks.

23

Fish are simple organisms that move around at rapdad at some point when a fish comes of agelishawe
two children and die itself. A fish can move intoyaof its neighboring eight squares, given that ¢haare is
empty, if all eight neighboring squares are ocatififee fish remains in place. At any discrete tirtepsa fish
becomes one time-unit older, and once it has conage it will split into two fish, one of which wibo to a
neighbor cell while the other stays in the cell rehiéwas born, both new fish is age zero.

Sharks are similar simple creatures, however stalsksneed to eat fish in order to survive. At eticle-step a
shark moves to a random neighboring cell which $i@ldish, if there are no fish which neighbors shark it
moves to a random neighboring cell and increasdsuihger index, if the hunger index reaches aaiarv limit
the shark dies, when the shark eats it resetsuhgen index to zero. Similar to fish, sharks wilsame point get
old enough to breed and once this age is reackeshtrk is replaces by two new sharks, both withaagl hunger
index zero. Thus the simulation of one time-stemsis of two steps, first all fish are moved, tHensharks.

Figure 13The WATOR world, to the left is the 3-dimensioeasion and to the right is the unfolded 2-dimenalamersion

1.5.1 Sequential version

The sequential version is very simple, we havelgtthe actual simulation code here since it hamfiwence on
the problem we will investigate in the followinghigh is porting this application to run in paralial SMP
architectures.

main() {
inti;
initworld();
for(i=0; i< TIMESTEPS; i++){
movefish();
movesharks();
}
}

Example 29.Main loop for the sequential version of WATOR

The complete code can be found on the web-site.

1.5.2 Parallel Version

Turning the WATOR code parallel may be done isoiways, one may either split the fish and sharksng
the processors or parts of the torus may be spiitingst the processors, either statically where gasbessor
operates on a given portion of the torus througltioeitexecution or dynamically so that the toruseidlivided at
each iteration to attempt to balance the work betwde processors. Of the tree previous optiomrs|atter is
generally preferred. Unfortunately none of the sohs are as straightforward as they may seeneifdbult of the
parallel version should return the same resubh@s¢quential version.

Lets assume that the sequential version movedsheid sharks as they appear on the unfolded, toeugrom
the upper-left corner to the lower right. If we tete processor move the fish in the upper halfaarather move
the ones in the lower half, then the first fishtttee second processor are likely move into this e¢love them, to
which the fish on the two rows above them shoutdaly have had precedence. In other words then® iway
the processor that moves fish in the lower halfleegin moving its fish before the preceding prosessdone.

24

There are three fundamentally different approatheslving this problem, all of which are practigapplicable.
One way to handle the dependency problem is to shewexecution of the parts of the torus, as iipealipe. The
idea here is that the processor that handles ther Iportion of the torus waits until the upper mssor is done
moving its fish, before starting to move its owmile the fish are being moved in the lower part sharks are
moved in the upper, and then vise versa. This @gprbas two major disadvantages, first of all tiat®n will
not scale to hundreds of processors since theclatdure to the depth of the pipeline becomes afgignt part of
the overall execution time. However the really gigant problem with this approach is the unbalahesrkload
that comes from the fact that we must expect thealiworld to hold far fewer sharks than fish,ese@n though
the geometric division of the workspace seem inielis does by no means translate into a balanceklead.

A fairly attractive solution in this case is thetr@h approach, e.g. stick our head in the sandigndre the
problem. While this is often an attractive solufidns rare that one can argue that it is a tit@r@ative, but in this
case it do present a usable alternative. Ignotiagotoblem is acceptable only because we basedkiement of
both fish and sharks on random numbers and we hawhance of replicating the sequence of randonmbetsn
generated by one process on two or more procassegh a way that the same random number is rettiontne
same fish or shark at the same iteration. Onehmefore argue that either we cannot make thecatioln parallel
or we can choose to argue that the nature of randambers allow us to process the movements inferelift
order than the sequential since movements are maimdd anyway. If we choose the latter argumentcivhis
quite valid in this scenario, turning the applioatparallel is almost trivial. If we divide the vikogeometrically on
the torus we need to ensure that no fish or shéhinaone iteration is moved from the beginningook partition
to the end of another and the moved once agairrvitib new partition, this is easily done by tagdine object as
moved. Alternatively we can split the work by divid the fish consequently sharks amongst the psocgesThis
way we do not risk that an object is moved twicthimi one iteration. This solution as a hidden pitiawever, if
we uncritically divide the objects amongst the psors then all processors are likely to traversst or all of the
torus surface checking neighboring cells, this wik only result in a poor cache utilization buscakaise the
chance that performance will suffer from false BlgarThus if one does choose this approach thectsbgould be
sorted before each iteration and then divided betwthe processors, in effect creating a combinadibthe
geometric and object splitting.

Since we have already argued that WATOR is tygaramany discrete event simulators it is naturadd& what to
do if movement is not random but controlled by acecausal rules, in this case the ostrich appragan’t help
us. Imagine that instead of WATOR we should sinautedffic on a road, where each car has its owiretbspeed
and we have a set of rules describing the willisgraf a driver to take an outer lane and his wgligss to leave it
again. In such a scenario we cannot simply ignoeeproblem and we will need a more complex solutiothe
problem if we wish to build a parallel version. Tieehnique, which is used for such cases, is ctitegtwarping,
and is based on the fact that the problem of #s@mil between objects, which are handled by diffepgocessors,
is not likely, e.g. it is a rare event. Becausehstallisions are rare we can accept that recovdrimm them is
relatively costly. What time-warping does is toramtuce the concept of ‘undo’ to the execution, veven an
object is moved the previous position is savethef object end up competing for the new positiotih \a@nother
object the object which looses the battle, thesrofewhich is defined by the rules of the simulatithen reverses
to its previous state and recalculates the mows,with the knowledge that the first choice in factllegal. If the
population of objects is dense such a time-warpipgrations may cascade to other objects, thusméd-tvarping
should be efficient it does require that collisi@ame rare. Time-warping is an advanced simulatsog, and we
won't pursue this technique any further in thigtex

Since the WATOR model is based on randomized dpesatind because time-warping would be outside the
scope of this text, we will base the parallel vansdf WATOR on a straightforward splitting of therk area into
blocks, with one block per processor. While thisildoresult is a very unbalanced execution the tseali the
WATOR model is that most runs will distribute theatures evenly across the torus and we can bagaaliel
version on a simple geometrical partition of therkiaad.

25

Figure 14Splitting the WATOR world into four workers

The fastest way of porting the sequential versito a threaded version is to use the fork-join rhddke simply
modify the move_fish and move_sharks functionsdudrse a portion of the torus, specified by agatameter.
We then replace the call to move_fish by a loopictvispawns a thread per processor, wait untihadieds have

terminated and continue with the move_sharks irséme fashion.

typedef struct {int from, to} job;

main(){
int blocksize=worldsize/nthreads;
job jobs[WORKERS];
pthread_t t{WORKERS];
for (i=0; i<nthreads; i++){
jobsi[i].from=i*blocksize;
jobsl[i].to=(i+1)*blocksize;

jobs[nthreads-1].to=worldsize;
initworld();
for(i=0; i<timesteps; i++){
for(j=0;j<nthreads;j++)
pthread_create(&(t[j], NULL, move_fish,(void
for(j=0;j<nthreads;j++)
pthread_join(t[j]);
for(j=0;j<nthreads;j++)
pthread_create(&(t[j], NULL, move_sharks,(voi
for(j=0;j<nthreads;j++)
pthread_join(t[j]);
}

*)(&jobsfi]));

d *)(&jobsfi]));

Example 30.Fork-join implementation of parallel WATOR

If we run this on a dual-processor machine and WRMrld
size of 1000 we get a running time of dd.dd secocaspared
to a sequential time of dd.dd seconds. (conclustmsld vs

dd)

26

typedef struct {int from, to} job;

void * worker(job *myjob){

inti;

for(i=0;i<myjob->itt; i++{
move_fish(myjob->from, i<myjob->to);
barrier();
move_sharks(myjob->from, i<myjob->to);
barrier();
return (void *)1;

}

main() {
int blocksize=worldsize/nthreads;
job jobs[WORKERS];
pthread_t t{WORKERS];

for (i=0; i<nthreads; i++){
jobsi[i].from=i*blocksize;
jobsl[i].to=(i+1)*blocksize;

jobs[nthreads-1].to=worldsize;
initworld();
for(j=0;j<nthreads;j++)
pthread_create(&(t[j], NULL, worker,(void *)(&j obs[i]));
for(j=0;j<nthreads;j++)
pthread_join(t[j]);

Example 31.Parallel WATOR where the threads synchronize bettleemselves

At this point you might wonder why the flat repretsion of the torus is divided in one dimensiotypafter all
dividing the model into squares instead of stripésreduce the number of bytes that need to beqhbetween
the caches as we increase the number of proce3$mrslilemma is known as blocking vs. striping @nd not
quite as simple as it might present itself. If welsto lower the communication between the processe wish to
minimize the border area between any data-blockitantkighbors. If the WATOR world isby-n cells then the
striped version results in aborder between any job and its neighbors, whiteked version would only result

in a border area oﬂ%, wherep is the number of processors. The immediate prolieof course that we
p

requirep to be a square number if we wish to deploy thaigitforward tiling approach, ¥ is not a square
number, and most often it won't be, we can devisaoee flexible scheme of sub-division into taskscl®a non-
symmetric division results in more complex codeichvimakes it easier to introduce errors, but oftten that it is
simple enough and several applications exist, whisé this approach. The real problem is that mucthe
advantage may disappear as the number of procdssmmes harder to split into large integer factésgou have
a prime number of processors available you will epdvith the striped version we decided on earfefar more
interesting problem that may occur is that divisiéithe data into tiles may result in a large degrfalse sharing,
so to implement a tiled version we would need aceddlifferent memory layout in order to avoid falsharing.
This is a major issue in programming shared mermgsyems, but to truly understand and appreciateriigem
we will need a more thorough understanding of ti& of communication so we will postpone this peabluntil
the chapter on scalable shared memory systems.

Porting the WATOR model to a tiled approach is ésftan exercise.

1.5.3 OpenMP version

The WATOR application is fairly easily ported toeuSpenMP rather than hand-coded parallelism. Sirebasic
algorithm simply traverses the data row-by-row \&a simply tell OpenMP to paralleize the outer lobipe result
is that we maintain the main loop as it is in thguential version and modifies the move operatiosigad. It's
not that simple though, we still need to tag thgectis with the iteration flag we used in the PO$txeaded
version in order to avoid that the same objectased twice within the same iteration.

27

move_fish(){
//Local declarations here
#pragma omp parallel for
for(i=0; i<KWORLDSIZE; i++)
for(j=0;j<WORLDSIZE; j++)
/[Handle each point (i,j)

Example 32.0penMP version of WATOR, only a skeleton of maate bfit move_sharks is identical for the
shown code

If you consider the execution of the OpenMP versienfork-join paradigm is quite obvious, for edehnation the
application will call move_fish and then fork inparallel workers which update each their portionhef matrix,
the workers then join before calling move_shark&tvin turn results in a fork-join step.

1.6 Exercises

1)

2)

3)

4)

5)

6)

7

8)

Threads exist in three basic types, kernel levady level and mixed threads. The kernel handlasekégvel
threads and user-level threads are handled atstrelevel, while the mixed version uses both. Wanatthe
pros and cons of each solution from a supercomppinspective?

False sharing is a problem that exist at variousl$ein cluster computing, and as this chapterriest, also

in the simplest SMP node. To verify this, writenaadl test program where two threads each sum ujliarm
numbers. Ensure that in one version the targeaivi@s are on the same cache line and on anothearth®n
different cache lines. HINTS: You do not have erfoagntrol over memory in Java to ensure the placéme
of variables, so if you cannot provoke the expectsalts use C. Also any fair compiler will use=gister for
the destination variable so you must somehow erthatedata is in fact written and read from memeagh
time. Many compilers will find out if a result i®wer used and optimise the whole functionality away

This chapter has described how the processor-memayis likely to become a bottleneck is the system
identify:

a) Cases where this may happen

b) Approaches to avoiding this problem in software

¢) Approaches to avoiding this using hardware

d) Identify other potential bottlenecks that may exista SMP system. Outline how they may be

avoided (if possible).

The finale static Monte Carlo Pl example still uaes/nchronized increase of the shared counten, tteeigh
this is only done once. Why is this necessary ang i& it even more dangerous to forget the syndhation
in this case?

The examples in this chapter came to the surprisimglusion that the correct parallel version waggy
faster than the straightforward, but faulty, vemsidlthough the difference is small it is never tless
consistent every time we run the codes. Since Wwotker threads need to perform one synchronizedtoron
call, why is this version faster then the incornemtsion? And how could we make the faulty vergjoras fast
as the correct one?

Why is the dynamic orchestrating approach preferatthen the hardware needs to be shared with other
applications?

Experiment with the dynamic version of the Pl codbat happens as the job-size increases? And when i
decreases?

Experiment with the fast static version of the Rignpam, what happens if you run other jobs on thehime?

28

9) The fast static version of the Pl program usestbread per CPU and while these threads are att&/entin
thread is waiting. In the section on Java Threadgs techniques were mentioned, the one where the mai
thread sleeps and another one where the main tlreates one less thread than there are CPUs and th
performs the last task itself. Take the fast stagision of the Pl code and transform it so thatrttain thread
also participates in the work! How much work woytou say that this was? Did you see any performance
difference?

10) This chapter claims that race-conditions are dangebecause they are the kind of error that isisdile in
every execution but only occur under special caomit Write a Monte Carlo simulator that simulajiest
this. The user should be able to specify or vagyrihmber of threads and the percentage of theeboaiution
time a thread spends in the critical region. Howynaxecutions do we need to see the wrong restiittwb
threads and 10% time spent in the critical regldnthreads and 1%, 32 threads and 0.001%?

11) Write a virtual Geiger-counter where a user setsasameters the amount of radioactive materialghatild
be tested (in number of atoms) and the probakititit a given atom will fall. The virtual Geiger-auaar
should then use a Monte-Carlo simulator to illusttae development in radioactivity.

12) The parallel version of the WATOR example is impbeted using striping. Port the code to use tilivggad.
Do you get any performance improvement? Why (not)?

13) Small project. The purpose of this exercise is to implement asgpnplified protein folding simulation.
Real protein folds are quite complex and requirehmasight and considers a large number of paras)dte
this super-simplified example we will use proteiriss much simpler nature. Our proteins consistriy éwo
types of acids, Hs and Ps. The Ps are neutraliampdysexist in the protein, the Hs are hydrophadmic! thus
likes to have other Hs as neighbors. We know thgiv@n protein consist of a sequence of Hs ancds®$0
build a protein fold all we have to do is

a) Take the acid as a start

b) Go to a random position relative to the currentrthoSouth, West, East, Up or Down so that the
protein does not cross its own path

¢) Place the next acid of the remaining acids at tve position
d) If there are more acids left to place go to b)
e) Calculate the strength of the fold as the numbeeajhbourhood relations between Hs

f) If the resulting fold is stronger than the bestwndold then replace the old with the new

A large number of proteins must be tested beforehawe a good suggestion to an efficient foldingaof
protein, consider for yourself the number of pemtiohs needed to exhaustively search all folds mfotein
consisting of 1000 acids.

This project is an example of the derivation of Mo8arlo simulations called random-walks, but ttay W is
simulated is different than the Pl example sinaghgzarallel task now simulates its own protein aimaply
competes with other threads to get the best retbigt,kind of parallelism is often called parametesting,
even though in this example we generate the paeasnas random numbers. This project will be readsih a
later chapter.

14) Large project. The Pl example is a well known but rather worthlesample of Monte Carlo simulations and
while there are many actual uses for Monte Carlthaus most of these require some level of undedsign
of the physics, chemistry, biology or other sciendgyou know of an experiment that may be sinaedaising
Monte Carlo methods choose to implement this, atiserhere is an actual experiment will require somoee
programming than the previous examples, but shbeldunderstandable without intricate knowledge of
glaciology. We have all seen beautiful icicles dgrihe winter and know how they seem as individtuaize
and shape, but how are they formed?

29

A Monte Carlo Simulation can model this fairly sijmp/NVe let the icicle start as one frozen drop afer, and
at random let more drops of water drip down theléciA given drop of water has an initial speed and
initial temperature. The more time a drop is intachwith the icicle the closer its temperaturd gt to the
temperature of the icicle, if a drop reach&s @ will freeze and become part of the icicle. W drop is still
liquid it will go down the icicle, the colder it the slower it will go, due to higher viscosity.dtop of water
will usually take the direct route down the iciclgwever it may at (seemingly — but not really)d@m

choose to go another direction, i.e. left and downight and down, if a drop encounters an obstackp a
previous drop which have frozen, the drop will hawego ‘out’ rather than down, which will improviet

probability that the drop instead changes dirediiom more direct path downwards.

Write a multi-threaded icicle maker using thesepdinrules you can vary the different parameteiisjac
temperature, average and spread of drop frequéaroperature and speed, and the probabilities dsarithe
the path taken by a drop.

The resulting icicles can be visualized with graphif you know how, or simply as weight and heighthe
icicle.

1.7 Further reading
Threads Programming:

OpenM P:
HPF:

[1] High Performance Fortran; history, overview andrentr developments, Harvey Richardson, Thinking Nteeh
Corporation, 1996.

SMP architectures:
[2] MultiProcessor Specification Version 1.4, Intel, W97
A paper on Alpha, SGI or SUN SMP

30

