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Cray T3D

• Scales to 2048 nodes each with
– Alpha 21064 150Mhz

– Up to 64MB RAM
– Interconnect
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Meiko CS-2

• Sparc-10 stations as nodes
• 50 MB/sec interconnect 
• Remote memory access is performed as 

DMA transfers
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Cray X1E

• 64-bit Cray X1E Multistreaming Processor 
(MSP); 8 per compute module

• 4-way SMP node 
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Cray X1: Parallel Vector 
Architecture

Cray combines several technologies in the X1
• 12.8 Gflop/s Vector processors (MSP)
• Cache (unusual on earlier vector machines)
• 4 processor nodes sharing up to 64 GB of memory
• Single System Image to 4096 Processors
• Remote put/get between nodes (faster than MPI)

At Oak Ridge National Lab 504 processor machine, 5.9 Tflop/s for Linpack
(out of 6.4 Tflop/s peak, 91%)
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12.8 Gflops (64 bit)
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Cray X1 Vector Processor
• Cray X1 builds a larger “virtual vector”, called an MSP

– 4 SSPs (each a 2-pipe vector processor) make up an MSP
– Compiler will (try to) vectorize/parallelize across the MSP
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• Four multistream processors (MSPs), each 12.8 Gflops

• High bandwidth local shared memory (128 Direct Rambus channels)
• 32 network links and four I/O links per node

51 Gflops, 200 GB/s

Cray X1 Node
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• 16 parallel networks for bandwidth
• 128 nodes for the ORNL machine 

Interconnection

Network

NUMA Scalable up to 1024 
Nodes
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Direct Memory Access 
(DMA)

• Direct Memory Access (DMA) is a capability 
provided that allows data to be sent directly from 
an attached device to the memory on the 
computer's motherboard. 

• The CPU is freed from involvement with the data 
transfer, thus speeding up overall computer 
operation 
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Remote Direct Memory 
Access (RDMA)

RDMA is a concept whereby two or more 
computers communicate via Direct memory 
Access directly from the main memory of 
one system to the main memory of another .



Cluster Computing

How Does RDMA Work

• Once the connection has been established, 
RDMA enables the movement of data from one 
server directly into the memory of the other 
server 

• RDMA  supports “zero copy ,” eliminating the 
need to copy data between application memory 
and the data buffers in the operating system.
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Advantages

• Latency is reduced and applications can transfer 
messages faster. 

• Applications directly issue commands to the 
adapter without having to execute a Kernel call. 

• RDMA reduces demand on the host CPU.
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Disadvantages

• Latency is quite high for small transfers 

• To avoid kernel calls a VIA adapter must be 
used
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Programming with
Remote Memory
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RMI/RPC

• Remote Method Invocation/Remote 
Procedure Call

• Does not provide direct access to remote 
memory but rather to remote code that can 
perform the remote memory access

• Widely supported
• Somewhat cumbersome to work with
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RMI/RPC
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RMI

• Setting up RMI is somewhat hard
• Once the system is initialized accessing

remote memory is transparent to local
object access
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Setting up RMI

• Write an interface for the server class
• Write an implementation of the class
• Instantiate the server object
• Announce the server object
• Let the client connect to the object
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RMI Interface

public interface MyRMIClass extends java.rmi.Remote {
public void setVal(int value) throws java.rmi.RemoteE xception;
public int getVal() throws java.rmi.RemoteException;

}
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RMI Implementaion
public class MyRMIClassImpl
extends UnicastRemoteObject implements MyRMIClass {

private int iVal;
public MyRMIClassImpl() throws RemoteException{

super(); iVal=0;
}
public synchronized void setVal(int value) throws jav a.rmi.RemoteException {

iVal=value;
}

public synchronized int getVal() throws java.rmi.Remo teException {
return iVal;

}
}
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RMI Server Object

public class StartMyRMIServer {
static public void main(String args[]) {

System.setSecurityManager(new RMISecurityManager());
try {

Registry reg = java.rmi.registry.LocateRegistry.crea teRegistry(1099);
MyRMIClassImpl MY = new MyRMIClassImpl();
Naming.rebind(”MYSERVER", MY);

} catch (Exception _) {}
}   

}
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RMI Client

class MYClient {
static public void main(String [] args){

String name="//n0/MYSERVER";
MyRMIClass MY;
try { MY = (MyRMIClass)java.rmi.Naming.lookup(name);
} catch (Exception ex) {}
try {

System.out.println(”Value is ”+MY.getVal());
MY.setVal(42);
System.out.println(”Value is ”+MY.getVal());

} catch (Exception e){}
}

}
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Pyro

• Same as RMI
– But Python

• Somewhat easier to set up and run
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Pyro

import Pyro.core
import Pyro.naming
class JokeGen(Pyro.core.ObjBase):
def joke(self, name):
return "Sorry "+name+", I don't know any jokes." 

daemon=Pyro.core.Daemon() 
ns=Pyro.naming.NameServerLocator().getNS() 
daemon.useNameServer(ns) 
uri=daemon.connect(JokeGen(),"jokegen") 
daemon.requestLoop() 
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Pyro

import Pyro.core
# finds object automatically if you're running the Name Server. 
jokes = Pyro.core.getProxyForURI("PYRONAME://jokegen") 
print jokes.joke("Irmen") 
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Extend Java Language

• JavaParty  :  University of Karlsruhe
– Provides a mechanism for parallel 

programming on distributed memory 
machines.

– Compiler generates the appropriate Java 
code plus RMI hooks.

– The remote keywords is used to identify which 
objects can be called remotely.
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JavaParty Hello
package examples ;

public remote class HelloJP {

public void hello() {
System.out.println(“Hello JavaParty!”) ;

}

public static void main(String [] args) {

for(int n = 0 ; n < 10 ; n++) {
// Create a remote method on some node
HelloJP world = new HelloJP() ;

// Remotely invoke a method
world.hello() ;

}
}

}
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RMI Example
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Global Arrays

• Originally designed to emulate remote 
memory on other architectures – but is 
extremely popular with actual remote 
memory architectures
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Global address space &
One-sided communication 

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

collection of address spaces
of processes in a parallel job
(address, pid) 

message passing

P1P0
receive send

But not

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Communication model
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Global Arrays Data Model
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Comparison to other models

 Shared  
memory 

Message  
passing 

Global Arrays  

Data view shared distributed distributed or shared 

Access to data simplest 
(a=b) 

hard 
(send-receive) 

simple 
(ga_put/get) 

Data locality 
information 

obscure explicit easily available 
(ga_disitribution/ 

ga_locate) 
Scalable 
performance 

limited very good very good 
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Structure of GA



Cluster Computing GA functionality and Interface 
• Collective operations
• One sided operations
• Synchronization
• Utility operations
• Library interfaces
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Global Arrays

• Models global memory as user defined 
arrays

• Local portions of the array can be 
accessed as native speed

• Access to remote memory is transparent
• Designed with a focus on computational 

chemistry
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Global Arrays

• Synchronous Operations
– Create an array

– Create an array, from an existing array
– Destroy an array

– Synchronize all processes
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Global Arrays

• Asynchronous Operations
– Fetch

– Store
– Gather and scatter array elements

– Atomic read and increment of an array 
element
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Global Arrays

• BLAS Operations
– vector operations (dot-product or scale)

– matrix operations (e.g., symmetrize)
– matrix multiplication
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GA Interface

• Collective Operations
– GA_Initialize, GA_Terminate, GA_Create, GA_Destroy

• One sided operations
– NGA_Put, NGA_Get

• Remote Atomic operations
– NGA_Acc, NGA_Read_Inc

• Synchronisation operations
– GA_Fence, GA_Sync

• Utility Operations
– NGA_Locate, NGA_Distribution

• Library Interfaces
– GA_Solve, GA_Lu_Solve
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Example: Matrix Multiply

local buffers on the 
processor

global arrays 
representing 
matrices

•

•

=

=

ga_getga_acc

dgemm
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normal global array
global array with ghost cells

Ghost Cells

• Operations
NGA_Create_ghosts - creates array with ghosts cells

GA_Update_ghosts - updates with data from adjacent processors

NGA_Access_ghosts - provides access to “local” ghost cell elements

• Embedded Synchronization - controlled by the user
• Multi-protocol implementation to match platform characteristics

• e.g., MPI+shared memory on the IBM SP, SHMEM on the Cray T3E 
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BSP

• Bulk Synchronous Parallelism
• Stop ’n Go model similar to OpenMP
• Based on remote memory access

– Remote memory need not be supported by 
the hardware
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BSP Superstep

Barrier Synchronization

Processors
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BSP Operations

• Initialization
– bsp_init
– bsp_start
– bsp_end
– bsp_sync

• Misc
– bsp_pid
– bsp_nprocs
– bsp_time
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BSP Operations

• DRMA
– bsp_pushregister
– bsp_popregister
– bsp_put
– bsp_get

• High Performance
– bsp_hpput
– bsp_hpget
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BSP Operations

• BSMP
– Bsp_set_tag_size

– Bsp_send
– Bsp_get_tag

– Bsp_move

• High Performance
– Msb_hpmove



Cluster Computing

BSP Example
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BSP Sieve
void bsp_sieve() {

int i, candidate, prime;
bsp_pushregister(&candidate,sizeof(int));
bsp_sync();

prime=candidate=-1;
for(i=2; i<100; i++){

if(bsp_pid()==0)candidate=i;
else if(prime==-1)prime==candidate;
if(candidate%prime==0)candidate=-1;
bsp_put(bsp_pid()+1,&candidate,&candidate,0,sizeof( int));
bsp_sync();

}
}
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MPI-2 and other RMA 
models

Cray SHMEM
(IBM LAPI, GM, Elan, IBA similar)

Process 0                       Process 1

shmem_put

data transfer

synchronization

MPI-2 1-Sided “active target”

Process 0                              Process 1

MPI_Win_Post

MPI_Win_Start

MPI_Put

MPI_Win_Complete

MPI_Win_Wait

MPI-2 1-Sided “passive target”

Process 0                           Process 1

MPI_Win_Lock

MPI_Put

MPI_Win_Unlock

(Note: lock and put can be combined in

networks that support active

messages like IBM LAPI or

sophisticated, user programmable

adapters like Quadrics)

•MPI-2 1-sided is more synchronous than native RMA protocols
•Other RMA models decouple synchronization from data transfer 
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Data Movement

• These are two ends of the spectrum
– Consider commodity hpc networks (Myrinet, IBA) 

• MPI tries to “register” user buffers with NIC on the fly
– after handshaking between sender and receiver are zero-copy
– NIC does  handle MPI tag matching and queue management

• RMA model is more favorable than MPI on these networks
– once the user registers communication buffer 
– Put/get operations handled by DMA engines on the NIC
– No need to involve remote CPU

M
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CPU

M
A B

copy-based, high CPU involvement e.g., IBM SP

M
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CPU

network

NIC
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zero-copy, low CPU involvement e.g., Quadrics


