
Cluster Computing

Remote Memory Architectures

Cluster Computing

Evolution

Shared Memory

Parallel Virtual Machine

SIMD

Remote Memory

Structured Memory

Shared Virtual Memory

Cluster Computing

Communication Models

message passing
2-sided model

P1P0
receive send

P1P0
put

remote memory access (RMA)
1-sided model

A B

P1P0
A=B

shared memory load/stores
0-sided model

A A B

A B

Cluster Computing

Communication Models

message passing
2-sided model

P1P0
receive send

P1P0
put

remote memory access (RMA)
1-sided model

A B

P1P0
A=B

shared memory load/stores
0-sided model

A A B

A B

Cluster Computing

Remote Memory

Cluster Computing

Cray T3D

• Scales to 2048 nodes each with
– Alpha 21064 150Mhz

– Up to 64MB RAM
– Interconnect

Cluster Computing

Cray T3D Node

M

M-Cntl

P

$

NIC

Cluster Computing

Cray T3D

Cluster Computing

Meiko CS-2

• Sparc-10 stations as nodes
• 50 MB/sec interconnect
• Remote memory access is performed as

DMA transfers

Cluster Computing

Meiko-CS2

Cluster Computing

Cray X1E

• 64-bit Cray X1E Multistreaming Processor
(MSP); 8 per compute module

• 4-way SMP node

Cluster Computing

Cray X1: Parallel Vector
Architecture

Cray combines several technologies in the X1
• 12.8 Gflop/s Vector processors (MSP)
• Cache (unusual on earlier vector machines)
• 4 processor nodes sharing up to 64 GB of memory
• Single System Image to 4096 Processors
• Remote put/get between nodes (faster than MPI)

At Oak Ridge National Lab 504 processor machine, 5.9 Tflop/s for Linpack
(out of 6.4 Tflop/s peak, 91%)

Cluster Computing

12.8 Gflops (64 bit)

S

VV

S

VV

S

VV

S

VV

0.5 MB
$

0.5 MB
$

0.5 MB
$

0.5 MB
$

25.6 Gflops (32 bit)

To local memory and network:

2 MB Ecache

At frequency of
400/800 MHz

51 GB/s

25-41 GB/s

25.6 GB/s
12.8 - 20.5 GB/s

custom
blocks

Cray X1 Vector Processor
• Cray X1 builds a larger “virtual vector”, called an MSP

– 4 SSPs (each a 2-pipe vector processor) make up an MSP
– Compiler will (try to) vectorize/parallelize across the MSP

Cluster Computing

P PP P

$ $ $ $

P PP P

$ $ $ $

P PP P

$ $ $ $

P PP P

$ $ $ $

M M M M M M M M M M M M M M M M

mem mem mem mem mem mem mem mem mem mem mem mem mem mem mem mem

IO IO

• Four multistream processors (MSPs), each 12.8 Gflops

• High bandwidth local shared memory (128 Direct Rambus channels)
• 32 network links and four I/O links per node

51 Gflops, 200 GB/s

Cray X1 Node

Cluster Computing

• 16 parallel networks for bandwidth
• 128 nodes for the ORNL machine

Interconnection

Network

NUMA Scalable up to 1024
Nodes

Cluster Computing

Direct Memory Access
(DMA)

• Direct Memory Access (DMA) is a capability
provided that allows data to be sent directly from
an attached device to the memory on the
computer's motherboard.

• The CPU is freed from involvement with the data
transfer, thus speeding up overall computer
operation

Cluster Computing

Remote Direct Memory
Access (RDMA)

RDMA is a concept whereby two or more
computers communicate via Direct memory
Access directly from the main memory of
one system to the main memory of another .

Cluster Computing

How Does RDMA Work

• Once the connection has been established,
RDMA enables the movement of data from one
server directly into the memory of the other
server

• RDMA supports “zero copy ,” eliminating the
need to copy data between application memory
and the data buffers in the operating system.

Cluster Computing

Advantages

• Latency is reduced and applications can transfer
messages faster.

• Applications directly issue commands to the
adapter without having to execute a Kernel call.

• RDMA reduces demand on the host CPU.

Cluster Computing

Disadvantages

• Latency is quite high for small transfers

• To avoid kernel calls a VIA adapter must be
used

Cluster Computing

DMA RDMA

Cluster Computing

Programming with
Remote Memory

Cluster Computing

RMI/RPC

• Remote Method Invocation/Remote
Procedure Call

• Does not provide direct access to remote
memory but rather to remote code that can
perform the remote memory access

• Widely supported
• Somewhat cumbersome to work with

Cluster Computing

RMI/RPC

Client Server

Request

Reply

Cluster Computing

RMI

• Setting up RMI is somewhat hard
• Once the system is initialized accessing

remote memory is transparent to local
object access

Cluster Computing

Setting up RMI

• Write an interface for the server class
• Write an implementation of the class
• Instantiate the server object
• Announce the server object
• Let the client connect to the object

Cluster Computing

RMI Interface

public interface MyRMIClass extends java.rmi.Remote {
public void setVal(int value) throws java.rmi.RemoteE xception;
public int getVal() throws java.rmi.RemoteException;

}

Cluster Computing

RMI Implementaion
public class MyRMIClassImpl
extends UnicastRemoteObject implements MyRMIClass {

private int iVal;
public MyRMIClassImpl() throws RemoteException{

super(); iVal=0;
}
public synchronized void setVal(int value) throws jav a.rmi.RemoteException {

iVal=value;
}

public synchronized int getVal() throws java.rmi.Remo teException {
return iVal;

}
}

Cluster Computing

RMI Server Object

public class StartMyRMIServer {
static public void main(String args[]) {

System.setSecurityManager(new RMISecurityManager());
try {

Registry reg = java.rmi.registry.LocateRegistry.crea teRegistry(1099);
MyRMIClassImpl MY = new MyRMIClassImpl();
Naming.rebind(”MYSERVER", MY);

} catch (Exception _) {}
}

}

Cluster Computing

RMI Client

class MYClient {
static public void main(String [] args){

String name="//n0/MYSERVER";
MyRMIClass MY;
try { MY = (MyRMIClass)java.rmi.Naming.lookup(name);
} catch (Exception ex) {}
try {

System.out.println(”Value is ”+MY.getVal());
MY.setVal(42);
System.out.println(”Value is ”+MY.getVal());

} catch (Exception e){}
}

}

Cluster Computing

Pyro

• Same as RMI
– But Python

• Somewhat easier to set up and run

Cluster Computing

Pyro

import Pyro.core
import Pyro.naming
class JokeGen(Pyro.core.ObjBase):
def joke(self, name):
return "Sorry "+name+", I don't know any jokes."

daemon=Pyro.core.Daemon()
ns=Pyro.naming.NameServerLocator().getNS()
daemon.useNameServer(ns)
uri=daemon.connect(JokeGen(),"jokegen")
daemon.requestLoop()

Cluster Computing

Pyro

import Pyro.core
finds object automatically if you're running the Name Server.
jokes = Pyro.core.getProxyForURI("PYRONAME://jokegen")
print jokes.joke("Irmen")

Cluster Computing

Extend Java Language

• JavaParty : University of Karlsruhe
– Provides a mechanism for parallel

programming on distributed memory
machines.

– Compiler generates the appropriate Java
code plus RMI hooks.

– The remote keywords is used to identify which
objects can be called remotely.

Cluster Computing

JavaParty Hello
package examples ;

public remote class HelloJP {

public void hello() {
System.out.println(“Hello JavaParty!”) ;

}

public static void main(String [] args) {

for(int n = 0 ; n < 10 ; n++) {
// Create a remote method on some node
HelloJP world = new HelloJP() ;

// Remotely invoke a method
world.hello() ;

}
}

}

Cluster Computing

RMI Example

1
7

12
3
4

1
3
4

7
12

1
3
4
7

12

Cluster Computing

Global Arrays

• Originally designed to emulate remote
memory on other architectures – but is
extremely popular with actual remote
memory architectures

Cluster Computing

Global address space &
One-sided communication

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

collection of address spaces
of processes in a parallel job
(address, pid)

message passing

P1P0
receive send

But not

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Communication model

Cluster Computing

Global Arrays Data Model

Cluster Computing

Comparison to other models

 Shared
memory

Message
passing

Global Arrays

Data view shared distributed distributed or shared

Access to data simplest
(a=b)

hard
(send-receive)

simple
(ga_put/get)

Data locality
information

obscure explicit easily available
(ga_disitribution/

ga_locate)
Scalable
performance

limited very good very good

Cluster Computing

Structure of GA

Cluster Computing GA functionality and Interface
• Collective operations
• One sided operations
• Synchronization
• Utility operations
• Library interfaces

Cluster Computing

Global Arrays

• Models global memory as user defined
arrays

• Local portions of the array can be
accessed as native speed

• Access to remote memory is transparent
• Designed with a focus on computational

chemistry

Cluster Computing

Global Arrays

• Synchronous Operations
– Create an array

– Create an array, from an existing array
– Destroy an array

– Synchronize all processes

Cluster Computing

Global Arrays

• Asynchronous Operations
– Fetch

– Store
– Gather and scatter array elements

– Atomic read and increment of an array
element

Cluster Computing

Global Arrays

• BLAS Operations
– vector operations (dot-product or scale)

– matrix operations (e.g., symmetrize)
– matrix multiplication

Cluster Computing

GA Interface

• Collective Operations
– GA_Initialize, GA_Terminate, GA_Create, GA_Destroy

• One sided operations
– NGA_Put, NGA_Get

• Remote Atomic operations
– NGA_Acc, NGA_Read_Inc

• Synchronisation operations
– GA_Fence, GA_Sync

• Utility Operations
– NGA_Locate, NGA_Distribution

• Library Interfaces
– GA_Solve, GA_Lu_Solve

Cluster Computing

Example: Matrix Multiply

local buffers on the
processor

global arrays
representing
matrices

•

•

=

=

ga_getga_acc

dgemm

Cluster Computing

normal global array
global array with ghost cells

Ghost Cells

• Operations
NGA_Create_ghosts - creates array with ghosts cells

GA_Update_ghosts - updates with data from adjacent processors

NGA_Access_ghosts - provides access to “local” ghost cell elements

• Embedded Synchronization - controlled by the user
• Multi-protocol implementation to match platform characteristics

• e.g., MPI+shared memory on the IBM SP, SHMEM on the Cray T3E

Cluster Computing

BSP

• Bulk Synchronous Parallelism
• Stop ’n Go model similar to OpenMP
• Based on remote memory access

– Remote memory need not be supported by
the hardware

Cluster Computing

BSP Superstep

Barrier Synchronization

Processors

Cluster Computing

BSP Operations

• Initialization
– bsp_init
– bsp_start
– bsp_end
– bsp_sync

• Misc
– bsp_pid
– bsp_nprocs
– bsp_time

Cluster Computing

BSP Operations

• DRMA
– bsp_pushregister
– bsp_popregister
– bsp_put
– bsp_get

• High Performance
– bsp_hpput
– bsp_hpget

Cluster Computing

BSP Operations

• BSMP
– Bsp_set_tag_size

– Bsp_send
– Bsp_get_tag

– Bsp_move

• High Performance
– Msb_hpmove

Cluster Computing

BSP Example

2
33

3
31

5
29

7
23

11
19

13
17

Cluster Computing

BSP Sieve
void bsp_sieve() {

int i, candidate, prime;
bsp_pushregister(&candidate,sizeof(int));
bsp_sync();

prime=candidate=-1;
for(i=2; i<100; i++){

if(bsp_pid()==0)candidate=i;
else if(prime==-1)prime==candidate;
if(candidate%prime==0)candidate=-1;
bsp_put(bsp_pid()+1,&candidate,&candidate,0,sizeof(int));
bsp_sync();

}
}

Cluster Computing

MPI-2 and other RMA
models

Cray SHMEM
(IBM LAPI, GM, Elan, IBA similar)

Process 0 Process 1

shmem_put

data transfer

synchronization

MPI-2 1-Sided “active target”

Process 0 Process 1

MPI_Win_Post

MPI_Win_Start

MPI_Put

MPI_Win_Complete

MPI_Win_Wait

MPI-2 1-Sided “passive target”

Process 0 Process 1

MPI_Win_Lock

MPI_Put

MPI_Win_Unlock

(Note: lock and put can be combined in

networks that support active

messages like IBM LAPI or

sophisticated, user programmable

adapters like Quadrics)

•MPI-2 1-sided is more synchronous than native RMA protocols
•Other RMA models decouple synchronization from data transfer

Cluster Computing

Data Movement

• These are two ends of the spectrum
– Consider commodity hpc networks (Myrinet, IBA)

• MPI tries to “register” user buffers with NIC on the fly
– after handshaking between sender and receiver are zero-copy
– NIC does handle MPI tag matching and queue management

• RMA model is more favorable than MPI on these networks
– once the user registers communication buffer
– Put/get operations handled by DMA engines on the NIC
– No need to involve remote CPU

M
NIC

CPU

network

NIC

CPU

M
A B

copy-based, high CPU involvement e.g., IBM SP

M

NIC

CPU

network

NIC

CPU

M
A B

zero-copy, low CPU involvement e.g., Quadrics

