

Interconnect Technologies for Clusters

Interconnect approaches

Cluster Computing

- WAN
 - 'infinite distance'
- LAN
 - Few kilometers
- SAN
 - Few meters
- Backplane
 - Not scalable

Physical Cluster Interconnects

- FastEther
- Gigabit EtherNet
- 10 Gigabit EtherNet
- ATM
- cLan
- Myrinet
- Memory Channel
- SCI
- Atoll
- ServerNet

Switch technologies

- Switch design
 - Fully interconnected
 - Omega
- Package handling
 - Store and forward
 - Cut-through routing (worm-hole routing)

Implications of switch technologies

- Switch design
 - Affects the constant associated with routing
- Package handling
 - Affects the overall routing latency in a major may

Store-and-fwd vs. Wormhole one step

- T(v) = Overhead + Channel + Time Routing Delay
- Cut through: $12us + \frac{128B}{100\frac{b}{us}} + 0.1us = 22.34us$
- Store 'n fw: $12us + \frac{128B}{100\frac{b}{us}} + 0.1us + \frac{128B}{100\frac{b}{us}} = 32.58us$

Store-and-fwd vs. Wormhole ten steps

- T(v) = Overhead + Channel + Time Routing Delay
- Cut through: $12us + \frac{128B}{100\frac{b}{us}} + 10 \cdot 0.1us = 23.24us$
- Store 'n fw: $12us + 10 \cdot \left(\frac{128B}{100\frac{b}{us}} + 0.1us}\right) + \frac{128B}{100\frac{b}{us}} = 125.64us$

- 100 Mbit/sec
- + Generally supported
- + Extremely cheap
- Limited bandwidth
- Not really that standard
- Not all implementations support zero-copy protocols

Gigabit EtherNet

- Ethernet is hype-only at this stage
- Bandwidth really is 1Gb/sec
- Latency is only slightly improved
 Down to 20us from 22us in 100Mb
- Current standard
 - But NICs are as different as with FE

10 Gigabit EtherNet

- Not specified yet
 - But most producers already run demonstration setup
 - Several sells 10Gb
- Target applications not really defined
 - But clusters are not the most likely customers
 - Perhaps as backbone for large clusters
- Optical interconnects only
 - Copper currently being proposed

ATM

- Used to be the holy grail in cluster computing
- Turns out to be poorly suited for clusters
 - High price
 - Tiny packages
 - Designed for throughput not reliability

cLAN

- Virtual Interface Architecture
- API standard not HW standard
- 1.2 Gbit/sec

Myrinet

- Long time 'defacto-standard'
- LAN and SAN architectures
- Switch-based
- Extremely programmable

Myrinet

- Very high bandwidth
 - -0.64Gb + 0.64 Gb in gen 1 (1994)
 - -1.28Gb + 1.28 Gb in gen 2 (1997)
 - -2.0Gb + 2.0 Gb in gen 3 (2000)
- 18 bit parallel wires
- Error-rate at 1bit per 24 hours
- Very limited physical distance

Myrinet Interface

- Hosts a fast RISC processor
 132 MHz in newest version
- Large memory onboard
 - -2,4 or 8MB in newest version
- Memory is used as both send and recieve buffers and run at CPU speed

-7.5ns in newest version

Myrinet-switch

- Worm-hole routed
 - 5 ns route time
- Process to process
 - 9us (133 MHz LANai)
 - 7us (200 MHz LANai)

Myrinet

Myrinet Prices

PCI/SAN interface

-\$995, \$1295, \$1595

- SAN Switch
 - 8 port \$3250
 - 16 port \$4825
- 10 ft. cable \$190

Memory Channel

- Digital Equipment Corporation product
- Raw performance:
 - Latency 2.9 us
 - Bandwidth 64 MB/s
- MPI performance
 - Latency 7 us
 - Bandwidth 61 MB/s

Memory Channel

Node_j Nodei Physical Addrress VA VA_0 S_0 S_1 S S_2 S-S₂ S_3 Ю R_0 R_1 R_2 R_1 R_2 R_2 VA₂ R₃ Node_k VA S_3 S_0 R_3 S_1 R_1 R_0

Memory Channel

MEMORY CHANNEL interconnect 100 MB/s 000 Link Interface PCT rx tx ctr ctr rcv dma **Bus Interface** PCI (33 MHz) B/A AlphaServer SMP Alpha Mem P - \$

SCI

- Scalable Coherent Interface
- IEEE standard
- Not widely implemented
- Coherency protocol is very complex
 - -29 stable states
 - An enourmous amount of transient states

SCI Coherency

- States
 - Home: no remote cache in the system contains a copy of the block
 - Fresh: one or more remote caches may have a read-only copy, and the copy in memory is valid.
 - Gone: another remote cache contains a writeable copy. There is no valid copy on the local node.

SCI Coherency

- State is named by two components
 - <u>ONLY</u>
 - <u>HEAD</u>
 - <u>TAIL</u>
 - <u>MID</u>
 - Dirty: modified and writable
 - Clean: unmodified (same as memory) but writable
 - Fresh:data may be read, but not written until memory is informed
 - Copy: unmodified and readable

SCI Coherency

- List construction: adding a new node (sharer) to the head of a list
- *Rollou*t: removing a node from a sharing list, which requires that a node communicate with its upstream and downstream neighbors informing them of their new neighbors so they can update their pointers
- *Purging (invalidation*): the node at the head may purge or invalidate all other nodes, thus resulting in a single-element list. Only the head node can issue a purge.

Atoll

- University research project
- Should be very fast and very cheap
- Keeps comming 'very soon now'
- I have stopped waiting

- Grid architecture
- 250 MB/sec bidirectional links
 - -9 bit
 - 250MHz clock

Atoll

msg size	n_{snd}	t_{atoll}	n_{rcv}	$T_{start}^{n+1} - T_{start}^{n}$	latency	single NI BW	acc. BW
(byte)		(μs)		(μs)	(μs)	(Mbyte/s)	(Mbyte/s)
32	3	2.9	3	2.2	5.6	10.8	43.2
256	3	4.9	6	3.9	9.9	54.2	216.8
512	4	7.3	8	6.1	13.2	70.7	282.8
1024	6	12.9	14	10.6	21.8	82.7	330.8
4096	18	39.4	32	36.8	72.6	96.6	386.4

-8--8-TTOLY0-PCI Bus 1 2 <u>JI</u> -8-4 3

Servernet-II

- Supports 64-bit, 66-MHz PCI
- Bidirectional links
 - 1.25+1.25Gbit/sec
- VIA compatible

Compaq Confidential

Servernet-II

Cluster Computing

ServerNet II Performance Summary*

Performance Test:	Measured	
8 byte delivery latency with Send/Receive poll	12 µs	
8 byte delivery latency with Send/Receive wait	32 µs	
64 byte CPU cost with Send/Receive wait	27 µs	
64 byte CPU cost with Lazy Send/Receive wait [¶]	29 µs	
64K 1-way throughput RDMA writes (1VI-4 VIs)	92-132 MB/s	
64K 1-way throughput RDMA reads (1 VI-4 VIs)	129-134 MB/s	
64K 2-way throughput RDMA (reads-writes)	181-194 MB/s	
64K RDMA throughput test CPU utilization	~0%	

* This number was measured on 33MHz, 32-bit PCI with a 500MHz CPU.

Infiniband

- New standard
 - Keeps coming any day now
- An extension of PCI-X
 - -1x = 2.5Gbps
 - -4x = 10Gbps current standard
 - -12x = 30Gbps