
Cluster Computing

Simplest Scalable Architecture

NOW – Network Of Workstations

Cluster Computing

Many types of Clusters
(form HP’s Dr. Bruce J. Walker)

• High Performance Clusters
– Beowulf; 1000 nodes; parallel programs; MPI

• Load-leveling Clusters
– Move processes around to borrow cycles (eg. Mosix)

• Web-Service Clusters
– LVS; load-level tcp connections; Web pages and applications

• Storage Clusters
– parallel filesystems; same view of data from each node

• Database Clusters
– Oracle Parallel Server;

• High Availability Clusters
– ServiceGuard, Lifekeeper, Failsafe, heartbeat, failover clusters

Cluster Computing

Many types of Clusters
(form HP’s Dr. Bruce J. Walker)

• High Performance Clusters
– Beowulf; 1000 nodes; parallel programs; MPI

• Load-leveling Clusters
– Move processes around to borrow cycles (eg. Mosix)

• Web-Service Clusters
– LVS; load-level tcp connections; Web pages and applications

• Storage Clusters
– parallel filesystems; same view of data from each node

• Database Clusters
– Oracle Parallel Server;

• High Availability Clusters
– ServiceGuard, Lifekeeper, Failsafe, heartbeat, failover clusters

NOW type
architectures

Cluster Computing NOW Approaches
• Single System View
• Shared Resources
• Virtual Machine
• Single Address Space

Cluster Computing

Shared System View

• Loadbalancing clusters
• High availability clusters
• High Performance

– High throughput

– High capability

Cluster Computing Berkeley NOW

Cluster Computing NOW Philosophies
• Commodity is cheaper
• In 1994 1 MB RAM was

– $40/MB for a PC
– $600/MB for a Cray M90

Cluster Computing NOW Philosophies
• Commodity is faster

89-9091-9232 MHz SS-1

~9192-9350MHz i860

92-9393-94150 MHz
Alpha

WS yearMPP yearCPU

Cluster Computing Network RAM
• Swapping to disk is extremely expensive

– 16-24 ms for a page swap on disk

• Network performance is much higher
– 700 us for page swap over the net

Cluster Computing Network RAM

0

100

200

300

400

500

600

1 32 64 128

Problem Size

m
in

32MB+disk
Network RAM
All RAM

Cluster Computing NOW or SuperComputer?

$5M21”+NOW protocol

$5M205”+Parallel FS

$5M2211”+ATM

$4M27374RS6000 (256)

$30M27C-90 (16)

CostTimeMachine

Cluster Computing NOW Projects
• Condor
• DIPC
• MOSIX
• GLUnix
• PVM
• MUNGI
• Amoeba

Cluster Computing

The Condor System

• Unix and NT
• Operational since 1986
• More than 1300 CPUs at UW-Madison
• Available on the web
• More than 150 clusters worldwide in

academia and industry

Cluster Computing

What is Condor?

• Condor converts collections of
distributively owned workstations and
dedicated clusters into a high-
throughput computing facility.

• Condor uses matchmaking to make
sure that everyone is happy.

Cluster Computing

What is High-Throughput
Computing?

• High-performance: CPU cycles/second under
ideal circumstances.
– “How fast can I run simulation X on this machine?”

• High-throughput: CPU cycles/day (week, month,
year?) under non-ideal circumstances.
– “How many times can I run simulation X in the next

month using all available machines?”

Cluster Computing

What is High-Throughput
Computing?

• Condor does whatever it takes to run your
jobs, even if some machines…
– Crash! (or are disconnected)

– Run out of disk space
– Don’t have your software installed

– Are frequently needed by others
– Are far away & admin’ed by someone else

Cluster Computing

A Submit Description File

Example condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = /home/wright/condor/my_job.condor
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
Arguments = -arg1 -arg2
InitialDir = /home/wright/condor/run_1
Queue

Cluster Computing

What is Matchmaking?

• Condor uses Matchmaking to make sure that
work gets done within the constraints of both
users and owners.

• Users (jobs) have constraints:
– “I need an Alpha with 256 MB RAM”

• Owners (machines) have constraints:
– “Only run jobs when I am away from my desk and

never run jobs owned by Bob.”

Cluster Computing

Process Checkpointing

• Condor’s Process Checkpointing
mechanism saves all the state of a process
into a checkpoint file
– Memory, CPU, I/O, etc.

• The process can then be restarted from
right where it left off

• Typically no changes to your job’s source
code needed – however, your job must be
relinked with Condor’s Standard Universe
support library

Cluster Computing

Remote System Calls

• I/O System calls trapped and sent back to
submit machine

• Allows Transparent Migration Across
Administrative Domains
– Checkpoint on machine A, restart on B

• No Source Code changes required
• Language Independent
• Opportunities for Application Steering

– Example: Condor tells customer process “how” to
open files

Cluster Computing DIPC
• DIPC

– Distributed

– Inter
– Process

– Communication

• Provides Sys V IPC in distributed
environments (including SHMEM)

Cluster Computing

MOSIX and its characteristics

• Software that can transform a Linux cluster of
x86 based workstations and servers to run
almost like an SMP

• Has the ability to distribute and redistribute the
processes among the nodes

Cluster Computing MOSIX
• Dynamic migration added to the BSD

kernel
• Uses TCP/IP for communication between

workstations
• Requires Homogeneous networks

Cluster Computing MOSIX
• All processes start their life at the users

workstation
• Migration is transparent and preemptive
• Migrated processes use local resources as

much as possible and the resources on
the home workstation otherwise

Cluster Computing

Process Migration in MOSIX

User-level

Kernel

Link
Layer

User-level

Kernel

Link
Layer

Deputy

Remote

Local

pro
cess

A local process and a migrated process

Cluster Computing MOSIX

Cluster Computing

Mosix Make

Cluster Computing GLUnix
• Global Layer Unix
• Pure user-level layer that takes over the

role of the operating system from the point
of the user

• New processes can then be placed where
there is most available memory (CPU)

Cluster Computing PVM
• Provides a virtual machine on top of

existing OS on a network
• Processes can still access the native OS

resources
• PVM supports heterogeneous

environments!

Cluster Computing PVM
• The primary concern of PVM is to provide

– Dynamic process creation

– Process management – including signals
– Communication between processes

– The machine can be handled during runtime

Cluster Computing PVM

PVM
Demon

PVM
Task

PVM
Task

PVM
Demon

PVM
Task

PVM
Task

PVM
Demon

PVM
Task

PVM
Task

PVM

Cluster Computing MUNGI
• Single Address Space Operating system
• Requires 64 bit architecture
• Designed as an object based OS
• Protection is implemented as capabilities,

to ensure scalability MUNGI uses
capability trees rather than lists

Cluster Computing Amoeba
• The computer is modeled as a network of

resources
• Processes are started where they best fit
• Protection is implemented as capability

lists
• Amoeba is centered around an efficient

broadcast mechanish

Cluster Computing

Amoeba

Cluster Computing Programming NOW
• Dynamic load balancing
• Dynamic orchestration

Cluster Computing Dynamic Load Balancing
• Base your applications on redundant

parallelism
• Rely on the OS to balance the application

over the CPUs
• Rather few applications can be

orchestrated in this way

Cluster Computing

Barnes Hut

• Galaxy simulations
are still quite
interresting

• Basic formula is:

• Naïve algorithm is
O(n2)

2
21

r

mm
G

Cluster Computing

Barnes Hut

Cluster Computing

Barnes Hut

O(n log n)

Cluster Computing

Balancing Barnes Hut

Cluster Computing Dynamic Orchestration
• Divide your application into a job-queue
• Spawn workers
• Let the workers take and execute jobs

from the queue
• Not all applications can be orchestrated in

this way
• Does not scale well – job-queue process

may become a bottleneck

Cluster Computing

Parallel integration

∫ ∫ ∫
2

1

2

1

2

1

),,(
x

x

y

y

z

z

zyxf

Cluster Computing

Parallel integration

• Split the outer integral
• Jobs = range(x1, x2, interval)
• Tasks = integral with x1 = Jobsi, x2=Jobsi+1;

for i in len(Jobs -1)
• Result = Sum(Execute(Tasks))

