
Cluster Computing

Simplest Scalable Architecture

NOW – Network Of Workstations



Cluster Computing

Many types of Clusters
(form HP’s Dr. Bruce J. Walker)

• High Performance Clusters
– Beowulf; 1000 nodes; parallel programs; MPI

• Load-leveling Clusters
– Move processes around to borrow cycles (eg. Mosix)

• Web-Service Clusters
– LVS; load-level tcp connections; Web pages and applications

• Storage Clusters
– parallel filesystems; same view of data from each node

• Database Clusters
– Oracle Parallel Server;

• High Availability Clusters
– ServiceGuard, Lifekeeper, Failsafe, heartbeat,  failover clusters 
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Cluster Computing NOW Approaches
• Single System View
• Shared Resources
• Virtual Machine
• Single Address Space



Cluster Computing

Shared System View

• Loadbalancing clusters
• High availability clusters
• High Performance 

– High throughput

– High capability



Cluster Computing Berkeley NOW



Cluster Computing NOW Philosophies
• Commodity is cheaper
• In 1994 1 MB RAM was 

– $40/MB for a PC
– $600/MB  for a Cray M90
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Cluster Computing Network RAM
• Swapping to disk is extremely expensive

– 16-24 ms for a page swap on disk

• Network performance is much higher
– 700 us for  page swap over the net



Cluster Computing Network RAM
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Cluster Computing NOW or SuperComputer?

$5M21”+NOW protocol

$5M205”+Parallel FS

$5M2211”+ATM

$4M27374RS6000 (256)

$30M27C-90 (16)

CostTimeMachine



Cluster Computing NOW Projects
• Condor
• DIPC
• MOSIX
• GLUnix
• PVM
• MUNGI
• Amoeba



Cluster Computing

The Condor System

• Unix and NT
• Operational since 1986
• More than 1300 CPUs at UW-Madison
• Available on the web
• More than 150 clusters worldwide in 

academia and industry



Cluster Computing

What is Condor?

• Condor converts collections of 
distributively owned workstations and 
dedicated clusters into a high-
throughput computing facility.

• Condor uses matchmaking to make 
sure that everyone is happy.



Cluster Computing

What is High-Throughput 
Computing?

• High-performance: CPU cycles/second under 
ideal circumstances.
– “How fast can I run simulation X on this machine?”

• High-throughput: CPU cycles/day (week, month, 
year?) under non-ideal circumstances.
– “How many times can I run simulation X in the next 

month using all available machines?”



Cluster Computing

What is High-Throughput 
Computing?

• Condor does whatever it takes to run your 
jobs, even if some machines…
– Crash! (or are disconnected)

– Run out of disk space
– Don’t have your software installed 

– Are frequently needed by others
– Are far away & admin’ed by someone else



Cluster Computing

A Submit Description File

# Example condor_submit input file
# (Lines beginning with # are comments)
# NOTE: the words on the left side are not
#       case sensitive, but filenames are!
Universe   = vanilla
Executable = /home/wright/condor/my_job.condor
Input      = my_job.stdin
Output     = my_job.stdout
Error      = my_job.stderr
Arguments  = -arg1 -arg2
InitialDir = /home/wright/condor/run_1
Queue



Cluster Computing

What is Matchmaking?

• Condor uses Matchmaking to make sure that 
work gets done within the constraints of both 
users and owners.

• Users (jobs) have constraints:
– “I need an Alpha with 256 MB RAM”

• Owners (machines) have constraints:
– “Only run jobs when I am away from my desk and 

never run jobs owned by Bob.”



Cluster Computing

Process Checkpointing

• Condor’s Process Checkpointing
mechanism saves all the state of a process 
into a checkpoint file
– Memory, CPU, I/O, etc.

• The process can then be restarted from 
right where it left off

• Typically no changes to your job’s source 
code needed – however, your job must be 
relinked with Condor’s Standard Universe 
support library



Cluster Computing

Remote System Calls

• I/O System calls trapped and sent back to 
submit machine

• Allows Transparent Migration Across 
Administrative Domains
– Checkpoint on machine A, restart on B

• No Source Code changes required
• Language Independent
• Opportunities for Application Steering

– Example: Condor tells customer process “how” to 
open files



Cluster Computing DIPC
• DIPC

– Distributed

– Inter
– Process

– Communication

• Provides Sys V IPC in distributed 
environments (including SHMEM)



Cluster Computing

MOSIX and its characteristics

• Software that can transform a Linux cluster of 
x86 based workstations and servers to run 
almost like an SMP

• Has the ability to distribute and redistribute the 
processes among the nodes



Cluster Computing MOSIX
• Dynamic migration added to the BSD 

kernel
• Uses TCP/IP for communication between 

workstations
• Requires Homogeneous networks



Cluster Computing MOSIX
• All processes start their life at the users 

workstation
• Migration is transparent and preemptive
• Migrated processes use local resources as 

much as possible and the resources on 
the home workstation otherwise



Cluster Computing

Process Migration in MOSIX
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Cluster Computing MOSIX



Cluster Computing

Mosix Make



Cluster Computing GLUnix
• Global Layer Unix
• Pure user-level layer that takes over the 

role of the operating system from the point 
of the user

• New processes can then be placed where 
there is most available memory (CPU)



Cluster Computing PVM
• Provides a virtual machine on top of 

existing OS on a network
• Processes can still access the native OS 

resources
• PVM supports heterogeneous 

environments!



Cluster Computing PVM
• The primary concern of PVM is to provide

– Dynamic process creation

– Process management – including signals
– Communication between processes

– The machine can be handled during runtime



Cluster Computing PVM
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Cluster Computing MUNGI
• Single Address Space Operating system
• Requires 64 bit architecture
• Designed as an object based OS
• Protection is implemented as capabilities, 

to ensure scalability MUNGI uses 
capability trees rather than lists



Cluster Computing Amoeba
• The computer is modeled as a network of 

resources
• Processes are started where they best fit 
• Protection is implemented as capability

lists
• Amoeba is centered around an efficient

broadcast mechanish



Cluster Computing

Amoeba



Cluster Computing Programming NOW
• Dynamic load balancing
• Dynamic orchestration



Cluster Computing Dynamic Load Balancing
• Base your applications on redundant 

parallelism
• Rely on the OS to balance the application 

over the CPUs
• Rather few applications can be 

orchestrated in this way



Cluster Computing

Barnes Hut

• Galaxy simulations 
are still quite
interresting

• Basic formula is:

• Naïve algorithm is 
O(n2)
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Cluster Computing

Barnes Hut
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Barnes Hut

O(n log n)



Cluster Computing

Balancing Barnes Hut



Cluster Computing Dynamic Orchestration
• Divide your application into a job-queue
• Spawn workers
• Let the workers take and execute jobs 

from the queue
• Not all applications can be orchestrated in 

this way
• Does not scale well – job-queue process 

may become a bottleneck



Cluster Computing

Parallel integration
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Cluster Computing

Parallel integration

• Split the outer integral
• Jobs = range(x1, x2, interval)
• Tasks = integral with x1 = Jobsi, x2=Jobsi+1; 

for i in len(Jobs -1)
• Result = Sum(Execute(Tasks))


