
Cluster Computing

Shared Memory

SMP Architectures and
Programming

Cluster Computing

Numbers game…

• It is important to understand the basic
constants we are working with in high
performance computing

• Amdahls law
– improvements obtained by increasing speed

of a component are limited by the fraction of
time spent on that component

Cluster Computing

How fast is a CPU?

• Intel 2.8-3.8 GHz
– AMD a little lower

• Intel Itanium 2.0-2.4GHz
• IBM 2.2-3.2 GHz
• IBM CELL – 3.2
• SUN 1.0-2.0 GHz

Cluster Computing

What is a typical CPI?

• Intel 0.3
– AMD a little lower

• Intel Itanium 0.18
• IBM 0.25 GHz
• IBM CELL 0.07
• SUN 0.25-0.07

Cluster Computing

How fast is memory

• Main Memory
– 30 ns

• L1 cache
– 1 ns

• L2 cache
– 3-6 ns

Cluster Computing

How fast is the memory bus

• 400-800 MHz
• 1.2-1.6 GHz in new technology

Cluster Computing

How much time to read from
memory?

• 3-6 ns to establish L2 miss
• 1.25 ns to get bus slot
• 30 ns to lookup in main memory
• 1.25 ns to get bus slot

• Total: 35.5-38.5ns

Cluster Computing

How long are pipelines?

• Intel 31
• AMD 17
• Intel Itanium 10
• IBM Power 5 16
• IBM CELL 16 and 7
• SUN Ultrasparc 9

Cluster Computing

How much time to do an
interrupt?

• 5-100 cycles at the CPU
• Easily microseconds on the chipset

Cluster Computing

How long to do a system call?

• 5 cycles to almost a microsecond

Cluster Computing

Numbers summary

• An instruction is in the order of 0.1 ns
• L1 access is as much as 10 instructions
• L2 access is as much as 60 instructions
• Memory access is as much as 385

instructions
• Interrupts are easily 10000 instructions

Cluster Computing

Why work with shared memory
parallel programming?

• Speed
• Ease of use
• CLUMPS
• Good starting point

Cluster Computing

SHMP – a quick refresh

• Shared bus
– Rather simple
– Very cheap
– Only scales to a few processors
– Maintains the standard memory view

Cluster Computing

Shared Bus

Processor Memory Bus

Interrupt Controller Communications Bus

...

Shared
Memoy

Frame Buffer

Interrupt
Controller

I/O Interface

I/O Bus

Interrupt
Controller

I/O Interface

I/O Bus

...

In
te

rr
up

t
C

on
tr

ol
le

r

M
em

or
y

B
us

C
on

tr
ol

le
r

C
ac

he
 C

on
tr

ol
le

r

C
ac

he
 M

em
or

y

CPU

In
te

rr
up

t
C

on
tr

ol
le

r

M
em

or
y

B
us

C
on

tr
ol

le
r

C
ac

he
 C

on
tr

ol
le

r

C
ac

he
 M

em
or

y

CPU

In
te

rr
up

t
C

on
tr

ol
le

r

M
em

or
y

B
us

C
on

tr
ol

le
r

C
ac

he
 C

on
tr

ol
le

r

C
ac

he
 M

em
or

y

CPU

Cluster Computing

SHMP – a quick refresh

• Crossbar switched
– Rather complex
– Quite expensive
– Can scale to tens of processors
– Needs a relaxed memory consistency

protocol

Cluster Computing

Crossbar switch

CPU
Cache
Cache

CPU
Cache
Cache

UPA Interface

Mem. Ctl.

MemoryCPU
Cache
Cache

CPU
Cache
Cache

UPA Interface

Mem. Ctl.

Memory

GigaPlane BUS

CPU
Cache
Cache

CPU
Cache
Cache

UPA Interface

Mem. Ctl.

Memory

I/O Extension I/O Extension

Cluster Computing

SHMP – a quick refresh

• MP on a chip
– Extremely simple

– Extremely cheap
– Only very few processors per chip (read two)

– Allows the CPUs to work together more
closely

Cluster Computing

MP on a chip

CPU0 CPU1
Data

Cache

Instruction
Cache

Instruction
Cache

South
UPA

North
UPA

PCI
Graphics

Preprocessor

Memory
Controller

Cluster Computing

Intel dual Core

Cluster Computing

AMD dual core

Cluster Computing

Xenon

Cluster Computing

CELL

Cluster Computing

Ultrasparc T1

Cluster Computing

SHMP – a quick refresh

• Virtual MP on a chip
– Named Hyper-threading

– Extremely cheap – only an extra register-file
per VP and some control logic

– Virtual depth can be quite large but few
applications may take advantage of it

– Allows us much better utilization of the CPU
area

Cluster Computing

Hyperthreading

• Hardware threads shifts are activated
either on cache miss or every cycle

• Cache-miss activated yielding addresses
the idea behind HT directly

• The every-cycle approach is simple and
requires less overhead

Cluster Computing

MP on a chip

First Virtual CPU

Second Virtual CPU

INT Unit FP Unit

Cluster Computing

The MESI Protocol

• Common protocol for ensuring sequential
consistency

• States are
– Modified
– Exclusive

– Shared
– Invalid

Cluster Computing

MESI Protocol

M E S I

Cluster Computing

Processes and Threads

• Threads are often referred to as
lightweight processes

• A thread is simply a process which shares
the address space of the process it
resides in with the other threads in that
process

Cluster Computing

Processes and threads

Data

Code

Stack 0

IP=0x0420
SP=0x1200

IP=0x0422
SP=0x1400

Stack 1

Data

Code

Stack

IP=0x0400
SP=0x1200

Cluster Computing

Thread types

• User level
• Kernel level
• Mixes

Cluster Computing

Thread Packages

• POSIX Threads
• Solaris Threads
• Java Threads
• + 106 custom packages

Cluster Computing

Types of Threads

• Non-preemptive
• Preemptive
• User level
• Kernel level
• Mixed

Cluster Computing

User Level Threads

• Non-preemptive switching is fast,
Preemptive is slow

• Creating a new thread is fast as is
destroying a thread

• Unable to utilize more than one processor

Cluster Computing

Kernel Level threads

• Preemptive switching is (relatively) fast,
Non-preemptive is (relatively) slow

• Creating and destroying threads is slow
• Can utilize more than one processor

Cluster Computing

Mixed (or both)

• Best of both worlds (BOB)
– All the advantages of user-level threads

combined with MP support

• May introduce a new level of threading

Cluster Computing

Thread Packages

• Java Threads
• POSIX threads
• Solaris threads
• WIN32 threads

Cluster Computing

Java Threads

• Integrated into the language

class dummyThread extends Thread {
int id;
public dummyThread(int id){this.id=id;}
public void run(){

System.out.println(“Hello World from thread “+id);
}

}

dummyThread dt = new dummyThread(42);
dt.start();
dt.join();

Cluster Computing

POSIX Threads

• Language independent library

pthread_create(&thread, NULL, worker,(void *)job);
pthread_join(thread);

Cluster Computing

Solaris Threads

• Similar to POSIX however a thread is
called a Lightweight process (LWP)

• Introduces a new level of threading on top
of LWPs called threads

• LWP are kernel level
• Threads are user level

Cluster Computing

WIN32 Threads

• API is designed to match the rest of the
WIN32 API

• Introduces a second level of threading
called fibers

• Threads are kernel level
• Fibers are user-level – and non-

preemptive

Cluster Computing

Programming with threads

• Divide your application onto different tasks
– One task per functionality

– One task per data block

• Create the threads
• Perform the necessary control over the

threads

Cluster Computing

Thread Control

• Critical regions
• Signal/Wait
• Barriers
• Monitors

Cluster Computing

Critical regions

• Critical regions are code portions that
access data which may be accessed
concurrently by another thread

• Unfortunate notation
– The critical region is really in data

– But the guards are in code

Cluster Computing

Critical Region

do {
entry region

critical region
leave region

remainder
} while (1) ;

Cluster Computing

Mutex mechanism

• The mechanism that performs this check
is called a mutex.

• A mutex has two states, that are usually
referred to as unlocked and locked :
– unlocked mutex indicates that the critical

region is empty
– locked mutex indicates that there is some

thread inside the critical region.

Cluster Computing

Mutex – how it works

A thread that wishes to access a resource checks the
mutex associated with that resource:

• If the mutex is unlocked, it means there is no thread in
the critical section:
– The thread locks the mutex and enters the critical section.
– When the thread leaves the critical section it should unlock the

mutex.

• If the mutex is locked, it means that there is another
thread in the critical section:
– the thread (that is trying to lock the mutex and enter) waits until

the mutex becomes unlocked.

Cluster Computing

Mutex states

• There are two operations defined on a
mutex (beside initializing and destroying):
– Lock : checks the state of the mutex

• locks the mutex if it is unlocked
• waits until it becomes unlocked.

– Unlock : unlocks the mutex
• allows any one waiting thread to lock the mutex

Cluster Computing

Defining and initializing a
mutex

A mutex is defined with the type
pthread_mutex_t, and it needs to be
assigned the initial value:
PTHREAD_MUTEX_INITIALIZER

pthread_mutex_t m =
PTHREAD_MUTEX_INITIALIZER ;

Cluster Computing

Lock

• A mutex is locked with the function:
pthread_mutex_lock(pthread_mutex_t
*mutex)

• This function gets a pointer to the mutex it
is trying to lock.

• The function returns when the mutex is
locked, or if an error occurred
– a locked mutex is not an error, if a mutex is

locked the function waits until it is unlocked.

Cluster Computing

Trylock

• A mutex lock attempt can be made with
the function:
pthread_mutex_trylock(pthread_mutex_t
*mutex)

• The function returns true if the mutex is
locked
– false otherwise

Cluster Computing

Unlocking a mutex

• A mutex is unlocked with the function:
pthread_mutex_unlock(pthread_mutex_t

*mutex)

Cluster Computing

Signal wait

• Used to coordinate progress between
threads

• When a thread need another thread to
progress before it can continue it will wait

• When the other thread have progressed it
will signal the other thread

• Schoolbook example is the producer
consumer model

Cluster Computing

Condition variables

• Address communications between threads that
share a mutex

• They are based upon programmer specified
conditions

Cluster Computing

Notifying threads of events

• Problem:
– Notify another thread that an event has

occurred right now (synch) !
– Thread start waiting until event happens

(regardless the past)

Cluster Computing

Notifying threads -
operations

• wait - wait until an event occurs.
• signal - notify one waiting thread that an

even has occurred.
• broadcast - notify all waiting threads that

an even has occurred.

Cluster Computing

condition-variable

The pthread library supply a tool for this kind
of synchronization.

• The three operations defined on condition-
variables are:
– wait - blocks the thread.

– signal - wakes one thread that is waiting on
the condition-variable

– broadcast - wakes all threads that are waiting
on the condition-variable

Cluster Computing

How threads wait for a
signal

• Just like mutexes every condition variable
has a list of threads that are waiting to be
signaled

• When a thread calls wait(& c) it adds itself
to the waiting list and removes itself from
the ready queue

• When signal(& c) is called one thread is
extracted from the waiting list and is
returned to the ready queue

Cluster Computing

Note

• The basic operations on conditions are:
signal and wait for the condition

• A condition variable must always be
associated with a mutex

• WHY?????

Cluster Computing

Note

• What happens when a thread signals on a
conditional variable and there is no thread
currently waiting?

• A signal is not preserved
– If one thread signals on a condition variable and no

thread is waiting at that moment, the signal "goes
away"

– When a thread waits on the same condition variable it
does not catch the previous signal, and has to wait for
a new signal

Cluster Computing

Wait syntax

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

• Atomically unlocks the mutex and waits for
the condition variable to be signaled.

• The thread execution is suspended and
does not consume any CPU time until the
condition variable is signaled.

• The mutex must be locked by the calling
thread on entrance to pthread_cond_wait

Cluster Computing

Signal syntax

int pthread_cond_signal(pthread_cond_t *cond);

• Restarts one of the threads that are
waiting on the condition variable

• If no threads are waiting nothing happens.
• If several threads are waiting on exactly

one is restarted, but it is not specified
which.

Cluster Computing

Barriers

• Barriers are used to allow a set of threads
to ’meet up’

• Only after all threads have called the
barrier are they allowed to continue

• Pthreads no longer has a barrier call �

Cluster Computing

Monitors (C.A.R. Hoare)

• higher level construct than semaphores
• a package of grouped procedures, variables and

data
• processes call procedures within a monitor but

cannot access internal data
• can be built into programming languages
• synchronization enforced by the compiler
• only one process allowed within a monitor at one

time
• wait and signal operations on condition variables

Cluster Computing

Blocked processes go into a
Holding Area

• Possibilities for running signaled and signaling
processes
– let newly signaled process run immediately, and make signaling

process wait in holding area
– let signaling process continue in monitor, and run signaled

process when it leaves

Cluster Computing

Example

– process A entering monitor
to request permission to
access data

– receiving permission to
access data

– leaving monitor to access
data

status flags

status flags

status flags

actual

data

actual

data

actual

data

A

A

A

Cluster Computing – process A entering monitor
to release access permission
to data

– releasing access permission
to data

– leaving monitor

status flags

status flags

status flags

actual

data

actual

data

actual

data

A

A

Cluster Computing

Example

– process A entering monitor
to get permission to access to
data

– entering monitor and not
receiving permission to access
data

– having to wait in holding
area

status flags

status flags

status flags

actual

data

actual

data

actual

data

A

A

A

Cluster Computing – process B entering monitor
to release access to data

– process B releasing access
to data

– process B entering holding
area whilst process A re-enters
monitor to get access
permission to data

status flags

status flags

status flags

actual

data

actual

data

actual

data

B

B

A

A

B

status flags

A

B

A

Cluster Computing – process A is accessing data
– process B has left holding
area and left the monitor

– process A entering monitor
to release access to data

– process A releasing access
to data
– finally process A leaves
monitor

status flags

actual

data

actual

data

actual

data

A

status flags

A

status flags

A

Cluster Computing

“Monitors” in Java

• Every object of a class that has a synchronized method has a
“monitor” associated with it

• Any such method is guaranteed by the Java Virtual Machine execution
model to execute mutually exclusively from any other synchronized
methods for that object

• Access to individual objects such as arrays can also be synchronized

– also complete class definitions

• Based around use of threads

• One condition variable per monitor

– wait() releases a lock I.e.enters holding area

– notify() signals a process to be allowed to continue

– notifyAll() allows all waiting processes to continue

Cluster Computing

Example: producer/consumer
class ProCon {

private int contents;
private boolean available = false;

public synchronized int get() {
while (available==false) {

try { wait(); }
catch (InterruptedException e) { }

}
available = false;
notify();

return contents;

}

public synchronized int put(int value) {
while (available==true) {

try { wait(); }
catch (InterruptedException e) { }

contents = value;
available = true;
notify();

}
}

Cluster Computing

Java monitor implementation
of User-level semaphores
class Semaphore {

private int value;

Semaphore (int initial) { value = initial; } // constructor

synchronized public void P() {
while (value==0) {

try { wait(); }
catch (InterruptedException e) { }

}
value = value-1;

}

synchronized public void V() {
value = value+1;
notify();

}
}

• since the thread calling notify() may continue, or another thread execute, and
invalidate the condition, it is safer to retest the condition in a while loop

Cluster Computing

class BoundedSemaphore {
private int value, bound;

Semaphore (int initial, int bound) { // constructor
value = initial;
this.bound = bound;

}

synchronized public void P() {
while (value==0) {

try { wait(); }
catch (InterruptedException e) { }

}
value = value-1;
notifyAll();

}

synchronized public void V() {
while (value==bound) {

try { wait(); }
catch (InterruptedException e) { }

}
value = value+1;
notifyAll();

}
}

Cluster Computing

• Threads yield non-determinacy (and, therefore,
scheduling sensitivity) straight away ...

• No help provided to guard against race hazards ...
• Overheads too high (> 30 times ???)

• Learning curve is long …
• Scalability (both in logic and performance) ???
• Theoretical foundations ???

– (deadlock / livelock / starvation analysis ???)
– (rules / tools ???)

Java Monitors -
CONCERNS

Cluster Computing
“Wot, No Chickens!”

• Peter Welch, University of Kent
• Five Philosophers (consumers)

– Think
– Go to Canteen to get Chicken for dinner

– Repeat

• Chef (producer)
– produces four chickens at a time and delivers

to canteen

Cluster Computing
“Wot, No Chickens!”

• Philosopher 0 is greedy -- never thinks

• Other philosophers think 3 time units before
going to eat

• Chef takes 2 time units to cook four chickens
• Chef takes 3 time units to deliver chickens

– occupies canteen while delivering

• Simplified code follows -- leaves out exception
handling try-catch

Cluster Computing

class Canteen {

private int n_chickens = 0;

public synchronized int get(int id) {
while (n_chickens == 0) {

wait(); // Wot, No Chickens!
}
n_chickens--;// Those look good...one please
return 1;

}

public synchronized void put(int value) {
Thread.sleep(3000); // delivering chickens..
n_chickens += value;
notifyAll (); // Chickens ready!

} }

Cluster Computing

class Chef extends Thread {
private Canteen canteen;

public Chef (Canteen canteen) {
this.canteen = canteen;
start ();

}

public void run () {
int n_chickens;
while (true) {

sleep (2000);// Cooking...
n_chickens = 4;
canteen.put (n_chickens);

}
}

}

Cluster Computing

class Phil extends Thread {
private int id;
private Canteen canteen;

public Phil(int id, Canteen canteen) {
this.id = id;
this.canteen = canteen;
start ();

}
public void run() {

int chicken;
while (true) {

if (id > 0) {
sleep(3000); // Thinking...

}
chicken = canteen.get(id);// Gotta eat...

} // mmm...That's good
} }

Cluster Computing

class College {

public static void main (String argv[]) {

int n_philosophers = 5;
Canteen canteen = new Canteen ();
Chef chef = new Chef (canteen);
Phil[] phil = new Phil[n_philosophers];

for (int i = 0; i < n_philosophers; i++) {
phil[i] = new Phil (i, canteen);

}
}

}

Cluster Computing
“Wot, No Chickens!”

Canteen

P0
P1

P2

P3

P4

Library Waiting
Outside

Wait
Inside

Chef

Cooking

Pickup Delivery

Cluster Computing
“Wot, No Chickens!”

Canteen

P0
P1

P2

P3

P4

Library Waiting
Outside

Wait
Inside

Chef

Cooking

Pickup Delivery

P1

P2

P3

P4

Chef

P0

Cluster Computing

P0

P4

P3

P1

P2

P1

“Wot, No Chickens!”

Canteen
Library Waiting

Outside

Wait
Inside

P1

P1

P2P2
P3

P3

P4

P4

P0

Cooking

Pickup Delivery

Chef
Wot

No Chickens!

Cluster Computing

Compiler generated
multithreaded applications

• Programming with threads is not trivial
• Parallel execution opens many new

options for bugs
• Debugging is much harder
• Conclusion:

– Make the compiler take over the job of
handling the threading

Cluster Computing

Higher level tools

• High Performance Fortran (Java)
• Open MP

Cluster Computing

OpenMP

• Industrial standard parallelizing pragmas

#pragma omp parallel for
for(i=0; i<length; i++)

c[i]=a[i]+b[i];

Cluster Computing

High Performance Fortran

• HPF provides parallel pragms similar to those
found in OpenMP

• In addition the compiler tries to detect potential
parallelism in FORALL loops etc.

• Scalar data-types allow the compiler to use very
high performance parallel libraries
– A=B x C

Cluster Computing

High Performance Fortran

• HPF also provides the programmer with
methods to give hints to the compiler on
data layout

!HPF$ ALIGN A(*,BLOCK) c Divide A Vertically
!HPF$ ALIGN A(BLOCK,*) c Divide A Horizontally
!HPF$ ALIGN A(BLOCK,BLOCK) c Divide A into tiles
!HPF$ ALIGN A(*,CYCLIC) c Divide A by rows

Cluster Computing

CSP

• Communicating Sequential Processes
• Extreme multitasking
• Each process/thread has a number of

ports that are either input or output, when
data arrives at an input-port it is processed
and sent to an output-port

• Easily programmed using Occam

