
Cluster Computing

Shared Memory

SMP Architectures and 
Programming
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Numbers game…

• It is important to understand the basic 
constants we are working with in high 
performance computing

• Amdahls law
– improvements obtained by increasing speed 

of a component are limited by the fraction of 
time spent on that component
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How fast is a CPU?

• Intel 2.8-3.8 GHz
– AMD a little lower

• Intel Itanium 2.0-2.4GHz
• IBM 2.2-3.2 GHz
• IBM CELL – 3.2
• SUN 1.0-2.0 GHz
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What is a typical CPI?

• Intel 0.3
– AMD a little lower

• Intel Itanium 0.18
• IBM 0.25 GHz
• IBM CELL 0.07
• SUN 0.25-0.07
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How fast is memory

• Main Memory
– 30 ns

• L1 cache
– 1 ns

• L2 cache
– 3-6 ns
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How fast is the memory bus

• 400-800 MHz
• 1.2-1.6 GHz in new technology
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How much time to read from 
memory?

• 3-6 ns to establish L2 miss
• 1.25 ns to get bus slot
• 30 ns to lookup in main memory
• 1.25 ns to get bus slot

• Total: 35.5-38.5ns
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How long are pipelines?

• Intel 31
• AMD 17
• Intel Itanium 10
• IBM Power 5 16
• IBM CELL 16 and 7
• SUN Ultrasparc 9
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How much time to do an 
interrupt?

• 5-100 cycles at the CPU
• Easily microseconds on the chipset
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How long to do a system call?

• 5 cycles to almost a microsecond
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Numbers summary

• An instruction is in the order of 0.1 ns
• L1 access is as much as 10 instructions
• L2 access is as much as 60 instructions
• Memory access is as much as 385 

instructions
• Interrupts are easily 10000 instructions
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Why work with shared memory 
parallel programming?

• Speed
• Ease of use
• CLUMPS
• Good starting point
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SHMP – a quick refresh

• Shared bus
– Rather simple
– Very cheap
– Only scales to a few processors
– Maintains the standard memory view
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SHMP – a quick refresh

• Crossbar switched 
– Rather complex
– Quite expensive
– Can scale to tens of processors
– Needs a relaxed memory consistency 

protocol
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Crossbar switch
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SHMP – a quick refresh

• MP on a chip
– Extremely simple

– Extremely cheap
– Only very few processors per chip (read two)

– Allows the CPUs to work together more 
closely
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MP on a chip
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Intel dual Core
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AMD dual core
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Xenon
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CELL
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Ultrasparc T1



Cluster Computing

SHMP – a quick refresh

• Virtual MP on a chip
– Named Hyper-threading

– Extremely cheap – only an extra register-file 
per VP and some control logic

– Virtual depth can be quite large but few 
applications may take advantage of it

– Allows us much better utilization of the CPU 
area
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Hyperthreading

• Hardware threads shifts are activated 
either on cache miss or every cycle

• Cache-miss activated yielding addresses 
the idea behind HT directly

• The every-cycle approach is simple and 
requires less overhead 
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MP on a chip

First Virtual CPU

Second Virtual CPU

INT Unit FP Unit
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The MESI Protocol

• Common protocol for ensuring sequential 
consistency

• States are
– Modified
– Exclusive

– Shared
– Invalid
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MESI Protocol

M E S I
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Processes and Threads

• Threads are often referred to as 
lightweight processes

• A thread is simply a process which shares 
the address space of the process it 
resides in with the other threads in that 
process
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Processes and threads
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Thread types

• User level
• Kernel level
• Mixes
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Thread Packages

• POSIX Threads
• Solaris Threads
• Java Threads
• + 106 custom packages 
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Types of Threads

• Non-preemptive
• Preemptive
• User level
• Kernel level
• Mixed



Cluster Computing

User Level Threads

• Non-preemptive switching is fast, 
Preemptive is slow

• Creating a new thread is fast as is 
destroying a thread

• Unable to utilize more than one processor
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Kernel Level threads

• Preemptive switching is (relatively) fast, 
Non-preemptive is (relatively) slow

• Creating and destroying threads is slow
• Can utilize more than one processor
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Mixed (or both)

• Best of both worlds (BOB)
– All the advantages of user-level threads 

combined with MP support

• May introduce a new level of threading
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Thread Packages

• Java Threads
• POSIX threads
• Solaris threads
• WIN32 threads
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Java Threads

• Integrated into the language

class dummyThread extends Thread {
int id;
public dummyThread(int id){this.id=id;}
public void run(){

System.out.println(“Hello World from thread “+id);
}

}

dummyThread dt = new dummyThread(42);
dt.start();
dt.join();
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POSIX Threads

• Language independent library

pthread_create(&thread, NULL, worker,(void *)job);
pthread_join(thread);
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Solaris Threads

• Similar to POSIX however a thread is 
called a Lightweight process (LWP)

• Introduces a new level of threading on top 
of LWPs called threads

• LWP are kernel level
• Threads are user level
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WIN32 Threads

• API is designed to match the rest of the 
WIN32 API

• Introduces a second level of threading 
called fibers

• Threads are kernel level 
• Fibers are user-level – and non-

preemptive
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Programming with threads

• Divide your application onto different tasks
– One task per functionality

– One task per data block

• Create the threads
• Perform the necessary control over the 

threads
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Thread Control

• Critical regions
• Signal/Wait
• Barriers
• Monitors
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Critical regions

• Critical regions are code portions that 
access data which may be accessed 
concurrently by another thread

• Unfortunate notation
– The critical region is really in data

– But the guards are in code
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Critical Region

do {
entry region

critical region
leave region

remainder
} while (1) ;
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Mutex mechanism

• The mechanism that performs this check 
is called a mutex.

• A mutex has two states, that are usually 
referred to as unlocked and locked :
– unlocked mutex indicates that the critical 

region is empty
– locked mutex indicates that there is some 

thread inside the critical region. 
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Mutex – how it works

A thread that wishes to access a resource checks the 
mutex associated with that resource:

• If the mutex is unlocked, it means there is no thread in 
the critical section:
– The thread locks the mutex and enters the critical section. 
– When the thread leaves the critical section it should unlock the

mutex. 

• If the mutex is locked, it means that there is another 
thread in the critical section: 
– the thread (that is trying to lock the mutex and enter) waits until 

the mutex becomes unlocked. 
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Mutex states

• There are two operations defined on a 
mutex (beside initializing and destroying):
– Lock : checks the state of the mutex

• locks the mutex if it is unlocked
• waits until it becomes unlocked. 

– Unlock : unlocks the mutex
• allows any one waiting thread to lock the mutex
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Defining and initializing a 
mutex

A mutex is defined with the type 
pthread_mutex_t, and it needs to be 
assigned the initial value: 
PTHREAD_MUTEX_INITIALIZER

pthread_mutex_t m = 
PTHREAD_MUTEX_INITIALIZER ;
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Lock

• A mutex is locked with the function: 
pthread_mutex_lock(pthread_mutex_t
*mutex)

• This function gets a pointer to the mutex it 
is trying to lock. 

• The function returns when the mutex is 
locked, or if an error occurred 
– a locked mutex is not an error, if a mutex is 

locked the function waits until it is unlocked.
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Trylock

• A mutex lock attempt can be made with 
the function: 
pthread_mutex_trylock(pthread_mutex_t
*mutex)

• The function returns true if the mutex is 
locked
– false otherwise
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Unlocking a mutex

• A mutex is unlocked with the function:
pthread_mutex_unlock(pthread_mutex_t

*mutex) 
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Signal wait

• Used to coordinate progress between 
threads

• When a thread need another thread to 
progress before it can continue it will wait

• When the other thread have progressed it 
will signal the other thread

• Schoolbook example is the producer 
consumer model
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Condition variables

• Address communications between threads that 
share a mutex

• They are based upon programmer specified 
conditions
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Notifying threads of events 

• Problem:
– Notify another thread that an event has 

occurred right now (synch)  !
– Thread start waiting until event happens 

(regardless the past)
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Notifying threads -
operations

• wait - wait until an event occurs. 
• signal - notify one waiting thread that an 

even has occurred. 
• broadcast - notify all waiting threads that 

an even has occurred. 
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condition-variable

The pthread library supply a tool for this kind 
of synchronization.

• The three operations defined on condition-
variables are: 
– wait - blocks the thread. 

– signal - wakes one thread that is waiting on 
the condition-variable 

– broadcast - wakes all threads that are waiting 
on the condition-variable 
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How threads wait for a 
signal 

• Just like mutexes every condition variable 
has a list of threads that are waiting to be 
signaled

• When a thread calls wait(& c) it adds itself 
to the waiting list and removes itself from 
the ready queue

• When signal(& c) is called one thread is 
extracted from the waiting list and is 
returned to the ready queue
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Note

• The basic operations on conditions are: 
signal and wait for the condition

• A condition variable must always be 
associated with a mutex

• WHY?????
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Note

• What happens when a thread signals on a 
conditional variable and there is no thread 
currently waiting? 

• A signal is not preserved
– If one thread signals on a condition variable and no 

thread is waiting at that moment, the signal "goes 
away" 

– When a thread waits on the same condition variable it 
does not catch the previous signal, and has to wait for 
a new signal
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Wait syntax

int pthread_cond_wait(pthread_cond_t *cond, 
pthread_mutex_t *mutex);

• Atomically unlocks the mutex and waits for 
the condition variable to be signaled. 

• The thread execution is suspended and 
does not consume any CPU time until the 
condition variable is signaled. 

• The mutex must be locked by the calling 
thread on entrance to pthread_cond_wait
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Signal syntax

int pthread_cond_signal(pthread_cond_t *cond);

• Restarts one of the threads that are  
waiting  on the  condition  variable

• If no threads are waiting nothing happens.
• If several threads are waiting on exactly  

one is restarted, but it is not specified 
which.
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Barriers

• Barriers are used to allow a set of threads 
to ’meet up’

• Only after all threads have called the 
barrier are they allowed to continue

• Pthreads no longer has a barrier call �
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Monitors (C.A.R. Hoare)

• higher level construct than semaphores
• a package of grouped procedures, variables and 

data
• processes call procedures within a monitor but 

cannot access internal data
• can be built into programming languages
• synchronization enforced by the compiler
• only one process allowed within a monitor at one 

time
• wait and signal operations on condition variables
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Blocked processes go into a 
Holding Area

• Possibilities for running signaled and signaling 
processes
– let newly signaled process run immediately, and make signaling 

process wait in holding area
– let signaling process continue in monitor, and run signaled 

process when it leaves
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Example

– process A entering monitor 
to request permission to 
access data

– receiving permission to 
access data

– leaving monitor to access 
data

status flags

status flags

status flags

actual

data

actual

data

actual

data

A

A

A



Cluster Computing – process A entering monitor 
to release access permission 
to data

– releasing access permission 
to data

– leaving monitor

status flags

status flags

status flags

actual

data

actual

data

actual

data

A

A
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Example

– process A entering monitor 
to get permission to access to 
data

– entering monitor and not 
receiving permission to access 
data

– having to wait in holding 
area

status flags

status flags

status flags

actual

data

actual

data

actual

data

A

A

A



Cluster Computing – process B entering monitor 
to release access to data

– process B releasing access 
to data

– process B entering holding 
area whilst process A re-enters 
monitor to get access 
permission to data

status flags

status flags

status flags

actual

data

actual

data

actual

data

B

B

A

A

B

status flags

A

B

A



Cluster Computing – process A is accessing data 
– process B has left holding 
area and left the monitor

– process A entering monitor 
to release access to data

– process A releasing access 
to data
– finally process A leaves 
monitor

status flags

actual

data

actual

data

actual

data

A

status flags

A

status flags

A
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“Monitors” in Java

• Every object of a class that has a synchronized method has a 
“monitor” associated with it

• Any such method is guaranteed by the Java Virtual Machine execution 
model to execute mutually exclusively from any other synchronized 
methods for that object

• Access to individual objects such as arrays can also be synchronized

– also complete class definitions

• Based around use of threads

• One condition variable per monitor

– wait() releases a lock I.e.enters holding area

– notify() signals a process to be allowed to continue

– notifyAll() allows all waiting processes to continue
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Example: producer/consumer 
class ProCon {

private int contents;
private boolean available = false;

public synchronized int get() {
while (available==false) {

try { wait(); }
catch (InterruptedException e) { }

}
available = false;
notify();

return contents;

}

public synchronized int put(int value) {
while (available==true) {

try { wait(); }
catch (InterruptedException e) { }

contents = value;
available = true;
notify();

}
}
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Java monitor implementation 
of User-level semaphores
class Semaphore {

private int value;

Semaphore (int initial) { value = initial; } // constructor

synchronized public void P() {
while (value==0) {

try { wait(); }
catch (InterruptedException e) { }

}
value = value-1;

}

synchronized public void V() {
value = value+1;
notify();

}
}

• since the thread calling notify() may continue, or another thread execute, and 
invalidate the condition, it is safer to retest the condition in a while loop
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class BoundedSemaphore {
private int value, bound;

Semaphore (int initial, int bound) { // constructor
value = initial;
this.bound = bound;

}

synchronized public void P() {
while (value==0) {

try { wait(); }
catch (InterruptedException e) { }

}
value = value-1;
notifyAll();

}

synchronized public void V() {
while (value==bound) {

try { wait(); }
catch (InterruptedException e) { }

}
value = value+1;
notifyAll();

}
}



Cluster Computing

• Threads yield non-determinacy (and, therefore, 
scheduling sensitivity) straight away ...

• No help provided to guard against race hazards ...
• Overheads too high (> 30 times ??? )

• Learning curve is long …
• Scalability (both in logic and performance) ???
• Theoretical foundations ???

– (deadlock / livelock / starvation analysis ??? ) 
– (rules / tools ??? )

Java Monitors -
CONCERNS
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“Wot, No Chickens!”

• Peter Welch, University of Kent
• Five Philosophers  (consumers)

– Think
– Go to Canteen to get Chicken for dinner

– Repeat

• Chef  (producer)
– produces four chickens at a time and delivers 

to canteen
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“Wot, No Chickens!”

• Philosopher 0 is greedy -- never thinks

• Other philosophers think 3 time units before 
going to eat

• Chef takes 2 time units to cook four chickens
• Chef takes 3 time units to deliver chickens

– occupies canteen while delivering

• Simplified code follows -- leaves out exception 
handling try-catch
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class Canteen {

private int n_chickens = 0;

public synchronized int get(int id) {
while (n_chickens == 0) {

wait(); // Wot, No Chickens!
}
n_chickens--;// Those look good...one please
return 1;

}

public synchronized void put(int value) {
Thread.sleep(3000); // delivering chickens..
n_chickens += value;
notifyAll (); // Chickens ready!

} }
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class Chef extends Thread { 
private Canteen canteen; 

public Chef (Canteen canteen) {
this.canteen = canteen;
start ();

}

public void run () {
int n_chickens;
while (true) {

sleep (2000);//  Cooking...
n_chickens = 4;
canteen.put (n_chickens);

}
}

}
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class Phil extends Thread {
private int id;
private Canteen canteen;

public Phil(int id, Canteen canteen) {
this.id = id;
this.canteen = canteen;
start ();

}
public void run() {

int chicken;
while (true) {

if (id > 0) {
sleep(3000);            // Thinking...

}
chicken = canteen.get(id);// Gotta eat...

} // mmm...That's good
} }



Cluster Computing

class College {

public static void main (String argv[]) {

int n_philosophers = 5;
Canteen canteen = new Canteen ();
Chef chef = new Chef (canteen);
Phil[] phil = new Phil[n_philosophers];

for (int i = 0; i < n_philosophers; i++) {
phil[i] = new Phil (i, canteen);

}
}

}
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“Wot, No Chickens!”
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“Wot, No Chickens!”
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Compiler generated 
multithreaded applications

• Programming with threads is not trivial
• Parallel execution opens many new 

options for bugs
• Debugging is much harder
• Conclusion:

– Make the compiler take over the job of 
handling the threading
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Higher level tools

• High Performance Fortran (Java)
• Open MP
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OpenMP

• Industrial standard parallelizing pragmas

#pragma omp parallel for
for(i=0; i<length; i++)

c[i]=a[i]+b[i];



Cluster Computing

High Performance Fortran

• HPF provides parallel pragms similar to those 
found in OpenMP

• In addition the compiler tries to detect potential 
parallelism in FORALL loops etc.

• Scalar data-types allow the compiler to use very 
high performance parallel libraries
– A=B x C    
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High Performance Fortran

• HPF also provides the programmer with 
methods to give hints to the compiler on 
data layout

!HPF$ ALIGN A(*,BLOCK) c Divide A Vertically
!HPF$ ALIGN A(BLOCK,*) c Divide A Horizontally
!HPF$ ALIGN A(BLOCK,BLOCK) c Divide A into tiles
!HPF$ ALIGN A(*,CYCLIC) c Divide A by rows
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CSP

• Communicating Sequential Processes
• Extreme multitasking
• Each process/thread has a number of 

ports that are either input or output, when 
data arrives at an input-port it is processed 
and sent to an output-port

• Easily programmed using Occam


