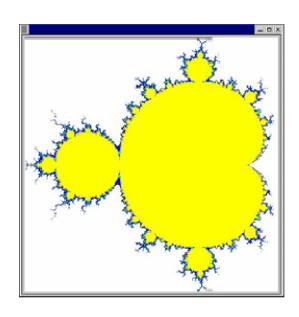
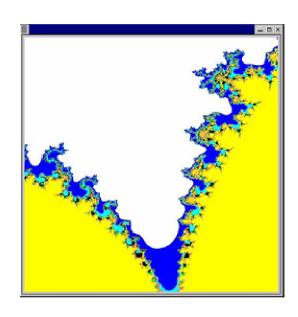
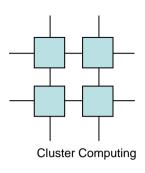

Mandatory Assignment 1

The Road Map

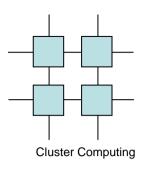


Road Map

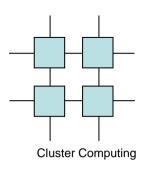

- Fractals are examples of applications of the type we call embarrassingly parallel
- A typical example of an compute intensive application with many independent subresults
- Very simple to write
- Achieves very good speedup



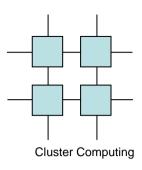
Road Map



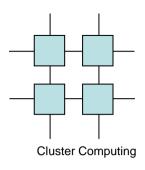
Process


$$f(x, y, r, s) = f(x, y, r^2 - s^2 + x, 2rs + y)$$

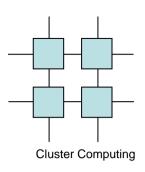
Dependencies?


Assignment

- Write two parallel versions of the sequential zooming-roadmap application
 - One with static orchestration
 - One with dynamic orchestration
- Evaluate your solution
 - Include performance graph
 - Disable graphics for this

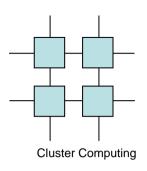

Decomposition

- Split the task into n frames
- Split the map into n blocks horizontally
- Split the map into n blocks vertically
- Split the map into n grid-blocks
- Take every nth row
- Take every nth column
- Take every *n*th point

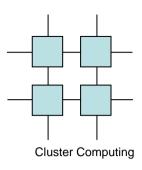


Practical issues

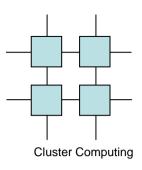
- Keep the report short
 - Analyses
 - Decomposition
 - Static and dynamic approaches
 - Performance
 - Graph
 - Hand in May 10th 9.15
 - That is **before** the lecture



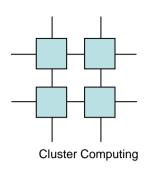
Results and Analyses


Your report card

- Important is
 - Accepted/Not Accepted
- Least important is the following number
 - It is the CPU utilization you got with the static orchestrated version – this is only used fo rthe competition
- The comments are usually very short
 - Fine report, solid report, OK report or specific short comings


A picture is worth 1000 words...

 Illustrate your decomposition with a drawing – that is much easier to communicate with the reader


Graphics is slow

 Turning graphics off during measurements makes better and more stable results

Graphs

- Speedup graphs measure CPUs vs Speedup (=improvements over sequential version)
 - Speedup graphs should raise
- Runtime graphs measures CPUs vs total runtime
 - Runtime graphs should fall
- CPU utilization graphs shows Speedup divided with CPUs
 - Utilization graphs should be straight (but tends to all)
- Use the correct notation of your graph!

Results

- Show your speedup!
 - Not just your runtime
- Speedup = t_{seq}/t_{par}
- Alternatively show CPU utilization
 - CPU utilization = Speedup/N_{CPU}