Project 1. Desert Road Map

Story

Wile E. Coyote need to catch that Roadrunner, thedRunner is the only eatable thing in the dessrthat simple! We

all know that a large variety of ACME equipment Ipasviously failed to help Wile so now he need & a@proach. The
first thing Wile must have to stand a chance tolcétte Roadrunner is information on the desertigeanformation, e.g.
a map that may zoom into any desired detail. Fattlipn this particular dessert may be described werg simple

mathematical function, also known as the Mandelsgit Unfortunately calculating the map is a lacgenputational

problem, and since we cannot apply any mechanicahzechniques, we must generate a new image ¢orzsom factor

of the required map. Thus to get his informaticst &nough Wile need a fast mechanism for generatimgp. To this end
we need a map generator that can utilize moredgharCPU.

Figure 1 The map of the dessert, first theinitial map and then the final zoom

Considerations on the parallel version

The parallel version of the Mandelbrot set belotogthe class of embarrassingly parallel applicaigust as the Monte
Carlo Pi program that we saw in chapter 3. In tieemf the Mandelbrot set we can calculate eactt polependently of
the others, which gives us a large degree of frmeiiothe choice of defining the grain-size for gegrallel version. The
picture is rendered by testing if the equation

f(x,y,r,8) = f(xy,r?-s*+x2rs+y)

diverges, for each point (x,y) with initial r andralues of 0. If a diversion is not found withineohundred iterations the
attempt is preempted. Each point in the renderetlingi is a color representation of the number erttons that was
needed to test for divergence.

The essential problem in designing a parallel versif the Mandelbrot set is to orchestrate the vior& well-balanced
way. Since each point (x,y) can diverge in a fexaitions or may iterate one hundred times befaddst is terminated
the task of calculating the individual points iglily unbalanced and we need to try an find a wagcbieving a work
distribution which creates an overall balanced etien. Fortunately we are not likely to have onegassor per point, so
we can expect of average the unbalance over manispti we haven processors we can distribute the work as:

e Split the map inta blocks horizontally
» Split the map inta blocks vertically

e Split the map inta grid-blocks

» Take evenyn'th row

» Take everyn'th column

e Take evenyn'th point

Choosing the correct one of the above orchestratiethods is an essential part of a successful imgri¢ation.

A minor issue is the actual graphic rendering ahepoint, this may introduce wrong results if damgoarallel without
extra synchronization and adding the synchroniratidl destroy any performance gain, this too nesthandled too but
this is not all that hard to handle.

Programming Task

Write two parallel versions of the map generatiode; you may use the sequential version as prowadeal core. Both
parallel versions should be based on a multithatiared memory model and execute on a multiprocesth physical
shared memory. One version should use a statiesiration approach, where orchestration can baetkfeither at
compile-time or initially at run-time. The otherlsiion should be based on a producer-consumer appyavhich should
define the number of workers either at compile-toneun-time.

Your report should identify the various choicestthave been made as well as individual technighas have been
applied to improve performance, and the impactagheshould be documented. The provided code craatastial map,
the overall desert map as shown in Figure 1 andl Zbems to a portion of the rim known as the héwsad valley and
returns the time taken to create all the involvedttils. Your parallel version should do the sam @ur report should
include speedup numbers for both versions and ould try to explain the results.

Real World Relevance
Embarrassingly parallel applications:

e QCD

* Monte Carlo

e Many image-processing algorithms

