JOIN INVERSE CATEGORIES AND REVERSIBLE RECURSION

NORDIC WORKSHOP ON PROGRAMMING THEORY 2015

Robin Kaarsgaard
October 21, 2015

DIKU, Department of Computer Science, University of Copenhagen
robin@di.ku.dk
http://www.di.ku.dk/~robin
WHO?

- Robin Kaarsgaard, PhD student at DIKU, Dept. of Computer Science, University of Copenhagen.

2. Reversible functional programming
 - RFUN
 - Theseus (and \(\Pi^0 \))

3. Join inverse categories and reversible recursion

4. Concluding remarks
REVERSIBLE COMPUTING: WHAT? WHY?
Reversible computing: The study of time invertible computations.

Deterministic in both forward and backward directions.

In a functional programming setting, reversible functions are injective.

Note that totality is not required, nor necessarily desirable, in order to guarantee reversibility.
• Originally motivated by the potential to reduce power consumption of computing processes, due to Landauer’s principle: Irreversibility costs energy.
• Has since seen a number of applications independent of this property; personal favorites include
 • unified parser/pretty printer specifications and
 • fast parallel discrete event simulations.
• Plays an important role in quantum computing.

REVERSIBLE FUNCTIONAL PROGRAMMING
\begin{align*}
\text{fib } n & \triangleq \text{case } n \text{ of} \\
Z & \rightarrow \langle S(Z), S(Z) \rangle \\
S(m) & \rightarrow \text{let } \langle x, y \rangle = \text{fib } m \text{ in} \\
& \quad \text{let } z = \text{plus } \langle y, x \rangle \text{ in } z \\
\text{plus } \langle x, y \rangle & \triangleq \text{case } y \text{ of} \\
Z & \rightarrow \lfloor \langle x \rangle \rfloor \\
S(u) & \rightarrow \text{let } \langle x', u' \rangle = \text{plus } \langle x, u \rangle \text{ in } \langle x', S(u') \rangle
\end{align*}

- Untyped first-order reversible functional programming language.
- Patterns are linear: All variables defined by a pattern must be used \textit{exactly once}.
- Results of all function calls must be bound in a \texttt{let}-expression.

Recursion in RFUN is based on a call stack, as in irreversible functional programming.

Recursive functions are inverted by inverting the body of the `let`, and replacing the recursive call with a call to the inverse.

Another choice, similar to that made by Janus, is to use bounded integers such that every operation is always well defined through underflows and overflows. Here is a simple 4-bit type Nat4:

```
<table>
<thead>
<tr>
<th>add1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nat4</td>
</tr>
<tr>
<td>Nat4</td>
</tr>
<tr>
<td>Nat4</td>
</tr>
<tr>
<td>Nat4</td>
</tr>
</tbody>
</table>
```


\[\text{treeUnwindf} :: f : (\text{Nat} \leftrightarrow a) \rightarrow \text{Tree} \leftrightarrow \text{Tree} \times \text{Tree} + a \]

| Node t1 t2 \leftrightarrow Left (t1, t2) |
| Leaf n \leftrightarrow Right (f n) |

- Typed first-order reversible functional programming language
- Supports parametrized maps, maps depending on other maps given at compile time.
- Patterns are linear and exhaustive, all functions are total.
- Compiles to the reversible combinator calculus \(\Pi^0 \).

Recursion in Theseus (indirectly) and Π^0 (directly) is implemented via a reversible trace operator

\[\text{trace} : a + x \leftrightarrow b + x \rightarrow a \leftrightarrow b \]

This is a trace in the categorical sense of traced monoidal categories (in fact, a \dagger-trace).

THESEUS AND Π^0: RECUSION VIA \dagger-TRACE

- Recursion in Theseus (indirectly) and Π^0 (directly) is implemented via a reversible trace operator

$$\text{trace} : a + x \leftrightarrow b + x \rightarrow a \leftrightarrow b$$

- This is a trace in the categorical sense of traced monoidal categories (in fact, a \dagger-trace).

JOIN INVERSE CATEGORIES AND REVERSIBLE RECURSION
• **Wanted:** Categorical model rich enough to capture...
 • *partial* injective functions (*RFUN* isn’t total), and
 • the two *distinct* notions of reversible recursion from *RFUN* and *Theseus*

• Starting point: Giles’ investigation of inverse categories as models of reversible functional programming.

• Inverse categories: Special case of restriction categories, categories with partiality.

• A restriction category is a category where each \(f : A \to B \) has a restriction idempotent \(\overline{f} : A \to A \) (subject to axioms such as \(f \circ \overline{f} = f \), and others).

• Partial order enriched; for parallel morphisms \(f \) and \(g \),

\[
f \leq g \iff g \circ \overline{f} = f
\]

• Partial isomorphism: A morphism \(f : A \to B \) with a partial inverse \(f^{\dagger} : B \to A \) such that \(f^{\dagger} \circ f = \overline{f} \) and \(f \circ f^{\dagger} = \overline{f^{\dagger}} \).

• Inverse category: Restriction category with only partial isomorphisms.

An inverse category is a **join inverse category** if it has

- a *restriction zero*, specifically all zero morphisms \(0_{A,B} : A \to B\),
- a partial operation \(\bigvee\) on all **compatible** subsets of all hom-sets, satisfying
 \[
 g \leq \bigvee_{f \in F} f \text{ if } g \in F, \text{ and if } f \leq h \text{ for all } f \in F \text{ then } \bigvee_{f \in F} f \leq h
 \]
 and other axioms.
- We consider inverse categories with **joins of countable sets**.

• **Observation**: The underlying sets for all ω-chains are compatible.

• **Idea**: Given an ω-chain $\{f_i\}_{i \in \omega}$, define $\sup \{f_i\}_{i \in \omega} = \bigvee_{i \in \omega} f_i$.

• **Consequence (by Kleene’s fixed point theorem)**: Every monotone and continuous morphism scheme of the form $f : \text{Hom}_C(A, B) \to \text{Hom}_C(A, B)$ has a least fixed point $\text{fix} f : A \to B$.

 • Morphism schemes in general look a whole lot like parametrized maps à la Theseus...
• **Insight**: The family of morphism schemes defined by $\text{inv}_{A,B}(f) = f^\dagger$ is monotone, continuous, and an isomorphism with inverse $\text{inv}_{B,A}$ in each component.

• Every monotone and continuous morphism scheme of the form $f : \text{Hom}_\mathcal{C}(A, B) \to \text{Hom}_\mathcal{C}(A, B)$ has a *fixed point adjoint* $f^\dagger : \text{Hom}_\mathcal{C}(B, A) \to \text{Hom}_\mathcal{C}(B, A)$ such that $(\text{fix } f)^\dagger = \text{fix } f^\dagger$.

 • Trick: Define $f^\dagger = \text{inv}_{A,B} \circ f \circ \text{inv}_{B,A}$.

• This is precisely recursion à la RFUN!
• Unique decomposition categories (UDCs) are categories with...
 • a partial sum operator Σ on countable families of parallel morphisms, and
 • a sum-like monoidal tensor $\cdot \oplus \cdot$

both subject to certain axioms.

• **Result** (Haghverdi): Given the existence of certain sums, UDCs have a (uniform) trace.

• **Idea**: Define $\sum_{i \in I} f_i = \bigvee_{i \in I} f_i$, and get the sum-like monoidal tensor via a join-preserving *disjointness tensor* (Giles).

• **Result:** Not just a trace operator, but one satisfying the \dagger-trace condition

$$\text{Tr}^{X,Y}_{A,B}(f)^\dagger = \text{Tr}^{X,Y}_{B,A}(f^\dagger)$$

for all $f : A \oplus X \to B \oplus X$.

• Reversible recursion à la Theseus and Π^0!

CONCLUDING REMARKS
• All of the gory details!
 • A few more are in the abstract – for the rest, just ask!
• Using Adámek’s fixed point theorem, Guo’s join completion theorem, and a few lemmas, we can also show faithful embedding in algebraically ω-compact category: This models isorecursive data types à la Theseus.
• By viewing join inverse categories as CPO-categories, we get
 • fixed points of morphism schemes, modelling reversible recursion à la RFUN.

• Additionally assuming the existence of a join-preserving disjointness tensor, we get
 • a \dagger-trace operator for modelling reversible tail recursion à la Theseus and Π^0.

• Next up:
 • Use these insights to inform language design.
 • Compact closed inverse categories – relation to partiality in quantum computing?
 • Suggestions? Talk to me!
Thank you!