VA 2006

- Forelæsninger: tirsdage 13-15, fredage 10-12 i Lille UP1
- Øvelser: 3 hold, tirsdage og fredage (½ uge forskudt)
- Hjemmeside
Linear Programming

- **Tirsdag, 14/11:** *Introduction to LP*, afsnit 29.1 og 29.2
 - Opgaver til 1. øvelsesgang: 29.1-1,-2,-3,4,-5,-6,-7,-8,-9, 29.2-1,-2,-3, BBB (hjemmeopgave, udleveres ved 1. forelæsning, afleveres den 24/11, *ej obligatorisk*)

- **Fredag, 17/11:** *SIMPLEX algorithm*, afsnit 29.3 og 29.5
 - Opgaver til 2. øvelsesgang: 29.3-2,-3,-4,-5,-6, 29.5-3,-4,-5.

- **Tirsdag, 21/11:** *Duality*, afsnit 29.4
 - Opgaver til 3. øvelsesgang: 29.4-1, 29.4-5, 29-2, VA-P2 (hjemmeopgave, udleveres ved 3. forelæsning, afleveres den 1/12, *ej obligatorisk*).
Introduction

- Linear Programming by Example
- Geometric Interpratation
- Linear Programming – Brief History
- Standard and Slack Formulations
- SIMPLEX by Example
Diet Problem (after Chvatal)

• Every day Polly needs:
 – 2000 kcal,
 – 55g protein,
 – 800mg calcium.

• She will get other stuff (e.g., iron and vitamins) by taking pills. Not that this could not be included in the model – we just want to keep it simple.

• She wants a diet that will meet the requirements while being neither expensive nor boring.
Value and Price per Serving

<table>
<thead>
<tr>
<th>Food</th>
<th>Energy (kcal)</th>
<th>Protein (g)</th>
<th>Calcium (mg)</th>
<th>Price per serving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oatmeal</td>
<td>110</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Chicken</td>
<td>205</td>
<td>32</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Eggs</td>
<td>160</td>
<td>13</td>
<td>54</td>
<td>13</td>
</tr>
<tr>
<td>Whole milk</td>
<td>160</td>
<td>8</td>
<td>285</td>
<td>9</td>
</tr>
<tr>
<td>Cherry pie</td>
<td>420</td>
<td>4</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Pork with beans</td>
<td>260</td>
<td>14</td>
<td>80</td>
<td>19</td>
</tr>
</tbody>
</table>

10 portions of pork with beans would cover her needs! And would cost only 190. But ...
Limits to What Polly Can Stomach

- Oatmeal: at most 4 servings a day.
- Chicken: at most 3 servings a day.
- Eggs: at most 2 servings a day.
- Milk: at most 8 servings a day.
- Cherry pie: at most 2 servings a day.
- Pork with beans: at most 2 servings a day.

8 servings of milk and 2 servings of cherry pie would meet her needs. Boring but she could stomach it. Especially since it would cost 112. Can she find a less expensive diet?
Variables

- X_1: number of oatmeal servings.
- X_2: number of chicken servings.
- X_3: number of eggs servings.
- X_4: number of milk servings.
- X_5: number of cherry pie servings.
- X_6: number of pork and pie servings.
Linear Constraints

\[x_1, \quad x_2, \quad x_3, \quad x_4, \quad x_5, \quad x_6 \geq 0 \]

\[\begin{align*}
 x_1 & \leq 4 \\
 x_2 & \leq 3 \\
 x_3 & \leq 2 \\
 x_4 & \leq 8 \\
 x_5 & \leq 2 \\
 x_6 & \leq 2
\end{align*} \]

\[\begin{align*}
 110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 & \geq 2000 \\
 4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 & \geq 55 \\
 2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 & \geq 800
\end{align*} \]
Linear Programming Problem

\begin{align*}
\text{min} \quad & 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6 \\
\text{s.t.} \quad & x_1 \leq 4 \\
& x_2 \leq 3 \\
& x_3 \leq 2 \\
& x_4 \leq 8 \\
& x_5 \leq 2 \\
& x_6 \leq 2 \\
& 110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \geq 2000 \\
& 4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \geq 55 \\
& 2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \geq 800 \\
& x_1, x_2, x_3, x_4, x_5, x_6 \geq 0
\end{align*}
Linear Objective Function

\[
\begin{align*}
\text{min} & \quad 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6 \\
\text{s.t.} & \quad \text{linear constraints}
\end{align*}
\]

- The value of the objective function for a particular set of values for \(x_1, x_2, x_3, x_4, x_5, x_6\) is called its **objective value**.

- If a particular set of values for \(x_1, x_2, x_3, x_4, x_5, x_6\) satisfies all constraints, it is said to be a **feasible solution** (dansk: tillad løsning). The set of all feasible solutions is called the **feasible region** (dansk: tilladt område). It can be shown to be convex.

- A feasible solution that has the maximum (or minimum) objective value is called an **optimal solution**.
General LP Problem

\[\min \sum_{j=1}^{n} c_j x_j \]
\[\text{s.t.} \quad m \text{ linear constraints} \]

- Minimization or maximization of a linear objective function with \(n \) real-valued variables.
- An optimal solution must satisfy \(m \) linear constraints (inequalities or equalities).
- Strict inequalities are not allowed.
- "programming" in "linear programming" does not refer to any code. It was chosen before computer programming was born.
Geometric Interpretation

\[\begin{align*}
\text{max} & \quad x_1 + x_2 \\
\text{s.t.} & \quad 4x_1 - x_2 \leq 8 \\
& \quad 2x_1 + x_2 \leq 10 \\
& \quad 5x_1 - 2x_2 \geq -2 \\
& \quad x_1, x_2 \geq 0
\end{align*} \]
Geometric Interpretation

\[\text{max} \quad x_1 + x_2 \]
\[\text{s.t.} \quad 4x_1 - x_2 \leq 8 \]
\[2x_1 + x_2 \leq 10 \]
\[5x_1 - 2x_2 \geq -2 \]
\[x_1, \quad x_2 \geq 0 \]
Special Cases of LP

- LP may have no feasible solution (in case of conflicting constraints).
- LP may have feasible solutions but no optimal solution (in case of unboundedness).
- LP may have more than one optimal solution.
Geometric Interpretation in \mathbb{R}^3

- 3 variables.
- Each constraint defines a half-space in \mathbb{R}^3. The set of feasible solutions is the intersection of these half-spaces. It is convex. Can be unbounded or empty.
- The set of points in which the objective function has the same value z is a plane.
- The value of the objective function increases as the plane is translated in one normal direction and it decreases as it is translated in the other normal direction.
- If the set of feasible solutions is bounded and not empty, then there is an optimal solution in an extreme vertex of the convex set of feasible solutions.
Geometric Interpretation in \mathbb{R}^d

- d variables.
- Each constraint defines a half-space in \mathbb{R}^d. The set of feasible solutions is the intersection of these half-spaces, called **simplex**. It is convex. Can be unbounded or empty.
- The set of points in which the objective function has the same value z is a **hyperplane**.
- The value of the objective function increases or decreases as the hyperplane is translated.
- If the set of feasible solutions is bounded and not empty, then there is an optimal solution in an extreme vertex of the simplex.
General Idea Behind SIMPLEX Algorithm

- SIMPLEX starts with a feasible solution corresponding to some vertex of the simplex. We will show how to find such a vertex (or decide that the feasible region is empty).
- SIMPLEX keeps "jumping" from a vertex of the simplex to a new vertex if the new vertex offers a feasible solution that is better (or at least not worse). We will show how SIMPLEX "jumps".
- When no more "jumps" are possible, we will show that SIMPLEX is in an optimal vertex (or the LP is unbounded).
History of LP

- L.V. Kantorovich pointed out in 1939 the importance of restricted classes of LPs.
- T.C. Koopmans realized in 1947 the importance of LP for the analysis of classical economic theories.
- G.B. Dantzig designed in 1947 the simplex method to solve LP for U.S. Air Force. Not a polynomial algorithm!
- Many applications followed over the years.
- In 1975 Kantorovich and Koopmans got the Nobel prize.
Applications of LP

• Scheduling problems: airline wishes to schedule its flight crews on all flights while using as few crew members as possible.

• Location problems: Locating drills to maximize the amount of oil that will be extracted under given budget constraints.

• Many network and graph problems can be formulated as LP.

• Integer programming problems.
Shortest Path as LP Problem

- **Given**: Weighted, directed graph $G = (V,E)$ with real-valued weights $w(u,v)$ on all edges $e=(u,v)$ in E, a source vertex s and a destination vertex t.

- **Find**: Shortest distance $d[t]$ from s to t.

- Bellman-Ford algorithm: $d[t]$ is the shortest distance from s to t if and only if
 - no edge $e=(u,v)$ can be relaxed: $d[v] \leq d[u] + w(u,v)$
 - $d[s] = 0$.
Shortest Path as LP

- maximize $d[t]$

 subject to

 $d[v] \leq d[u] + w(u,v), \forall (u,v) \in E.$

 $d[s] = 0.$

- In particular, at least one of the constraints $d[t] \leq d[u] + w(u,t), (u,t) \in E$ must be tight. So we have to maximize $d[t]$

 $$\max x_t$$

 $$s.t. \quad x_v \leq x_u + w_{uv}, \forall (u,v) \in E$$

 $$x_s = 0$$
Maximum Flow

- **Given**: A directed graph $G = (V,E)$ where each edge $(u,v) \in E$ has a real-valued, nonnegative capacity $c(u,v)$, a source vertex s and a destination vertex t.

- **Find**: A maximum flow $f: V \times V \rightarrow \mathbb{R}$ from s to t
Flow

• **Given**: A directed graph $G = (V, E)$ where each edge $(u, v) \in E$ has a real-valued, nonnegative **capacity** $c(u, v)$, a **source** vertex s and a **destination** vertex t.

• A **flow** from s to t in G is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ satisfying:
 - Capacity constraints: $f(u, v) \leq c(u, v)$, $\forall u, v \in V$.
 - Skew symmetry: $f(u, v) = -f(v, u)$, $\forall u, v \in V$.
 - Flow conservation: $\sum_{v \in V} f(u, v) = 0$, $\forall u \in V \setminus \{s, t\}$

• Flow **value** $|f|$ is defined as

$$\sum_{v \in V} f(s, v)$$
Equivalent LPs

- Two maximization LPs L and L' are equivalent iff for each feasible solution x to L with the objective value z, there is a corresponding feasible solution x' to L' with the same objective value z, and vice versa.

- Similarly for two minimization LPs.

- A minimization LP L and a maximization LP L' are equivalent iff for each feasible solution x to L with the objective value z, there is a corresponding feasible solution x' to L' with the objective value $-z$.
LP in Standard Form

- Maximization of a linear function.
- n non-negative real-valued variables.
- m linear inequalities ("less than or equal to").

\[
\begin{align*}
\text{max} \quad & \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} \quad & \sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \text{for} \quad i=1,2,\ldots,m \\
& x_j \geq 0 \quad \text{for} \quad j=1,2,\ldots,n
\end{align*}
\]
Converting LP into Standard Form

\[\begin{align*}
\text{min} \quad & -2x_1 + 3x_2 \\
\text{s.t.} \quad & x_1 + x_2 = 7 \\
& x_1 - 2x_2 \leq 4 \\
& x_1 \geq 0
\end{align*} \]

- Minimization LP is converted to an equivalent maximization problem by negating the coefficients of the objective function.

\[\begin{align*}
\text{max} \quad & 2x_1 - 3x_2 \\
\text{s.t.} \quad & x_1 + x_2 = 7 \\
& x_1 - 2x_2 \leq 4 \\
& x_1 \geq 0
\end{align*} \]
Converting LP into Standard Form

\[\begin{align*}
 \text{max} & \quad 2x_1 - 3x_2 \\
 \text{s.t.} & \quad x_1 + x_2 = 7 \\
 & \quad x_1 - 2x_2 \leq 4 \\
 & \quad x_1 \geq 0
\end{align*} \]

- Every variable \(x_j \) without non-negativity constraint is replaced by two non-negative variables \(x'_j \) and \(x''_j \) and each occurrence of \(x_j \) is replaced by \(x'_j - x''_j \).

\[\begin{align*}
 \text{max} & \quad 2x_1 - 3x'_2 + 3x''_2 \\
 \text{s.t.} & \quad x_1 + x'_2 - x''_2 = 7 \\
 & \quad x_1 - 2x'_2 + 2x''_2 \leq 4 \\
 & \quad x_1, \quad x'_2, \quad x''_2 \geq 0
\end{align*} \]
Converting LP into Standard Form

$max \quad 2x_1 - 3x'_2 + 3x''_2$
$s.t. \quad x_1 + x'_2 - x''_2 = 7$
$\quad \quad \quad \quad \quad \quad x_1 - 2x'_2 + 2x''_2 \leq 4$
$\quad \quad x_1, \quad x'_2, \quad x''_2 \geq 0$

- Each equality constraint is replaced by a pair of "opposite" inequality constraints.

$max \quad 2x_1 - 3x'_2 + 3x''_2$
$s.t. \quad x_1 + x'_2 - x''_2 \leq 7$
$\quad \quad x_1, \quad x'_2, \quad x''_2 \geq 0$
Converting LP into Standard Form

\[
\begin{align*}
\text{max} & \quad 2x_1 - 3x'_2 + 3x''_2 \\
\text{s.t.} & \quad x_1 + x'_2 - x''_2 \leq 7 \\
& \quad x_1 + x'_2 - x''_2 \geq 7 \\
& \quad x_1 - 2x'_2 + 2x''_2 \leq 4 \\
& \quad x_1, x'_2, x''_2 \geq 0
\end{align*}
\]

- Inequalities are "turned around" by multiplying both sides by -1.

\[
\begin{align*}
\text{max} & \quad 2x_1 - 3x'_2 + 3x''_2 \\
\text{s.t.} & \quad x_1 + x'_2 - x''_2 \leq 7 \\
& \quad -x_1 - x'_2 + x''_2 \leq -7 \\
& \quad x_1 - 2x'_2 + 2x''_2 \leq 4 \\
& \quad x_1, x'_2, x''_2 \geq 0
\end{align*}
\]
Converting LP into a Standard Form

\[
\begin{align*}
\text{max} & \quad 2x_1 - 3x_2 + 3x_2' \\
\text{s.t.} & \quad x_1 + x_2' - x_2' \leq 7 \\
& \quad -x_1 - x_2' + x_2' \leq -7 \\
& \quad x_1 - 2x_2' + 2x_2' \leq 4 \\
& \quad x_1, x_2', x_2' \geq 0
\end{align*}
\]

- Renaming the variables

\[
\begin{align*}
\text{max} & \quad 2x_1 - 3x_2 + 3x_3 \\
\text{s.t.} & \quad x_1 + x_2 - x_3 \leq 7 \\
& \quad -x_1 - x_2 + x_3 \leq -7 \\
& \quad x_1 - 2x_2 + 2x_3 \leq 4 \\
& \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]
LP in Standard Form

• n variables, m constraints

$$\begin{align*}
 \text{max} & \quad \sum_{j=1}^{n} c_j x_j \\
 \text{s.t.} & \quad \sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \text{for} \quad i = 1, 2, \ldots, m \\
 & \quad x_j \geq 0 \quad \text{for} \quad j = 1, 2, \ldots, n
\end{align*}$$
Slack Variables (Overskudsværdi)

- Consider one of the constraints, for example

\[2x_1 + 3x_2 + x_3 \leq 5 \]

- For every feasible solution \(x_1, x_2, x_3 \), the value of the left-hand side is at most the value of the right-hand side.

- Often there can be a slack between these two values.

- Denote the slack by \(x_4 \).

- By requiring that \(x_4 \geq 0 \), we can replace the inequality by the equality

\[2x_1 + 3x_2 + x_3 + x_4 = 5 \]
Slack Variables

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} & \quad \sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \text{for} \quad i=1,2,\ldots,m \\
& \quad x_j \geq 0 \quad \text{for} \quad j=1,2,\ldots,n
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} & \quad \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i \quad \text{for} \quad i=1,2,\ldots,m \\
& \quad x_j \geq 0 \quad \text{for} \quad j=1,2,\ldots,n+m
\end{align*}
\]
LP in Slack Form

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} & \quad \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_i \quad \text{for} \quad i=1,2,\ldots,m \\
& \quad x_j \geq 0 \quad \text{for} \quad j=1,2,\ldots,n+m
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad z = \sum_{j=1}^{n} c_j x_j \\
\text{s.t.} & \quad x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j \quad \text{for} \quad i=1,2,\ldots,m \\
& \quad x_j \geq 0 \quad \text{for} \quad j=1,2,\ldots,n+m
\end{align*}
\]

\[
\begin{align*}
z & = 0 + \sum_{j=1}^{n} c_j x_j \\
x_{n+i} & = b_i - \sum_{j=1}^{n} a_{ij} x_j \quad \text{for} \quad i=1,2,\ldots,m
\end{align*}
\]
Standard to Slack Form - Example

\[
\begin{align*}
\text{max} & \quad 2x_1 - 3x_2 + 3x_3 \\
\text{s.t.} & \quad x_1 + x_2 - x_3 \leq 7 \\
& \quad -x_1 - x_2 + x_3 \leq -7 \\
& \quad x_1 - 2x_2 + 2x_3 \leq 4 \\
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad 2x_1 - 3x_2 + 3x_3 \\
\text{s.t.} & \quad x_1 + x_2 - x_3 + x_4 = 7 \\
& \quad -x_1 - x_2 + x_3 + x_5 = -7 \\
& \quad x_1 - 2x_2 + 2x_3 + x_6 = 4 \\
\end{align*}
\]

\[
\begin{align*}
z &= 0 + 2x_1 - 3x_2 + 3x_3 \\
x_4 &= 7 - x_1 - x_2 + x_3 \\
x_5 &= -7 + x_1 + x_2 - x_3 \\
x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
\end{align*}
\]
Basic Solutions

- Any solution of LP in the standard form yields a solution of LP in the corresponding slack form (with the same objective value) and vice versa.
- Setting right-hand side variables of the slack form to 0 yields a basic solution.
- Left-hand side variables are called basic. Right-hand side variables are called nonbasic.
- The basic variables are said to constitute a basis.
- Note that a basic solution does not need to be feasible.
SIMPLEX - Example

- LP problem in standard form:

\[
\begin{align*}
 \text{max} & \quad 3x_1 + x_2 + 2x_3 \\
 \text{s.t.} & \quad x_1 + x_2 + 3x_3 \leq 30 \\
 & \quad 2x_1 + 2x_2 + 5x_3 \leq 24 \\
 & \quad 4x_1 + x_2 + 2x_3 \leq 36 \\
 & \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]
SIMPLEX – Example Continued

- LP in slack form:

\[
\begin{align*}
 z &= 0 + 3x_1 + x_2 + 2x_3 \\
 x_4 &= 30 - x_1 - x_2 - 3x_3 \\
 x_5 &= 24 - 2x_1 - 2x_2 - 5x_3 \\
 x_6 &= 36 - 4x_1 - x_2 - 2x_3
\end{align*}
\]

- Set all **nonbasic** variables (right-hand side) to 0.
- Compute values of **basic** variables: \(x_4=30, x_5=24, x_6=36\).
- Compute the objective value \(z (= 0)\).
- This gives the feasible basic solution \((0,0,0,30,24,36)\).
- It is feasible; not always the case – we were lucky.
SIMPLEX: 1. Pivoting

- Can x_1 be increased without violating feasibility?

 \[
 z = 0 + 3x_1 + x_2 + 2x_3 \\
 x_4 = 30 - x_1 - x_2 - 3x_3 \\
 x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \\
 x_6 = 36 - 4x_1 - x_2 - 2x_3
 \]

- If x_1 is increased to 1, then $x_4=29$, $x_5=22$, $x_6=32$ while $z=3$. $(1,0,0,29,22,32)$ is a feasible solution.

- If x_1 is increased to 2, then $x_4=28$, $x_5=20$, $x_6=28$ while $z=6$. $(2,0,0,28,20,28)$ is a feasible solution.

- If x_1 is increased to 3, then $x_4=27$, $x_5=18$, $x_6=24$ while $z=9$. $(3,0,0,27,18,24)$ is a feasible solution.
SIMPLEX: 1. Pivoting

- Can x_1 be increased without violating feasibility? By how much?

 $z = 0 + 3x_1 + x_2 + 2x_3$
 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

- If x_1 is increased beyond 30 then x_4 becomes negative.
- If x_1 is increased beyond 12 then x_5 becomes negative.
- If x_1 is increased beyond 9 then x_6 becomes negative.
- Constraint defining x_6 is binding.
SIMPLEX: 1. Pivoting

- So x_1 can be increased to 9 without losing feasibility. The feasible solution is $(9,0,0,21,6,0)$.

- We will now rewrite the slack form to an equivalent slack form with x_1, x_4, x_5 as basic variables and with $(9,0,0,21,6,0)$ being its feasible basic solution.

- This rewriting is called **pivoting**.

- Binding constraint defining x_6 is rewritten so that it has x_1 on its left-hand side.

- All occurrences of x_1 in other constraints and in the objective function are replaced by the right-hand side of the binding constraint.
SIMPLEX: 1. Pivoting

\[
\begin{align*}
 \text{New basic variables: } x_1 &= 9, \quad x_4 = 21, \quad x_5 = 6 \\
 \text{New objective value } z &= 27
\end{align*}
\]
SIMPLEX: 2. Pivoting

- Can x_3 be increased without violating feasibility? By how much?

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$
$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$
$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$
$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

- If x_3 is increased beyond $42/5$ then $x_4 < 0$.
- If x_3 is increased beyond $3/2$ then $x_5 < 0$.
- If x_3 is increased beyond $9/2$ then $x_1 < 0$.
- Constraint defining x_5 is binding.
SIMPLEX: 2. Pivoting

\[z = 27 + \frac{x_2}{4} + \frac{1}{2} \left(\frac{3}{2} - \frac{3x_2}{8} + \frac{x_6}{8} - \frac{x_5}{4} \right) - \frac{3x_6}{4} \]

\[x_4 = 21 - \frac{3x_2}{4} - \frac{5}{2} \left(\frac{3}{2} - \frac{3x_2}{8} + \frac{x_6}{8} - \frac{x_5}{4} \right) + \frac{x_6}{4} \]

\[x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \]

\[x_1 = 9 - \frac{x_2}{4} - \frac{1}{2} \left(\frac{3}{2} - \frac{3x_2}{8} + \frac{x_6}{8} - \frac{x_5}{4} \right) - \frac{x_6}{4} \]

\[z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16} \]

\[x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16} \]

\[x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \]

\[x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16} \]

New basic variables: \(x_1 = \frac{33}{4}, \ x_3 = \frac{3}{2}, \ x_4 = \frac{69}{4} \)
New objective value \(z = 27.75 \)

New feasible basic solution: (\(\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0 \))
SIMPLEX: 3. Pivoting

- Can x_2 be increased without violating feasibility? By how much?

\[
\begin{align*}
z & = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16} \\
x_4 & = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16} \\
x_3 & = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \\
x_1 & = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}
\end{align*}
\]

- If x_2 is increased then x_4 also increases.

- If x_2 is increased beyond 4 then $x_3 < 0$.

- If x_2 is increased beyond 132 then $x_1 < 0$.

- Constraint defining x_3 is binding.
SIMPLEX: 3. Pivoting

\[
\begin{align*}
z &= 111/4 + \frac{1}{16} (4 - 8x_3/3 - 2x_5/3 + x_6/3) - x_5/8 - 11x_6/16 \\
x_4 &= 69/4 + \frac{1}{16} (4 - 8x_3/3 - 2x_5/3 + x_6/3) + 5x_5/8 - x_6/16 \\
x_2 &= 4 - \frac{1}{16} (4 - 8x_3/3 - 2x_5/3 + x_6/3) - 2x_5/3 + x_6/3 \\
x_1 &= 33/4 - \frac{1}{16} (4 - 8x_3/3 - 2x_5/3 + x_6/3) + x_5/8 - 5x_6/16
\end{align*}
\]

\[
\begin{align*}
z &= 28 - x_3/6 - x_5/6 - 2x_6/3 \\
x_4 &= 18 - x_3/2 + x_5/2 + 0x_6 \\
x_2 &= 4 - 8x_3/3 - 2x_5/3 + x_6/3 \\
x_1 &= 8 + x_3/6 + x_5/6 - x_6/3
\end{align*}
\]

New basic variables: \(x_1 = 8, \ x_2 = 4, \ x_4 = 18\)

New objective value \(z = 28\)

New feasible basic solution: \((8, 4, 0, 18, 0, 0)\) is optimal
Pivoting in General

- **PIVOT(M, B, A, b, c, v, l, e)**

 - Compute the coefficients of the bounding constraint so that the **entering** basic variable x_e is expressed as a linear combination of the other variables.

 $$b_e = b_l / a_{le} \quad a_{ej} = a_{lj} / a_{le}, \quad \forall j \in N \setminus e \quad a_{el} = 1 / a_{le}$$

 - Compute the coefficients of the remaining constraints and the objective function (by substituting x_e by the right-hand side of the rewritten binding equation).

 $$b_i = b_i - a_{ie} b_e, \quad \forall i \in B \setminus l \quad a_{ij} = a_{ij} - a_{ie} a_{ej}, \quad \forall j \in N \setminus e \quad a_{il} = -a_{ie} a_{el}$$

 $$v = v + c_e b_e \quad c_j = c_j - c_e a_{ej}, \quad \forall j \in N \setminus e \quad c_l = -c_e a_{el}$$

 - Compute new sets of basic and nonbasic variables (remove x_e from N and add it to B, remove x_i from B and add it to N).
SIMPLEX – Open Issues

- How to decide that LP is feasible?
- What to do if the initial basic solution is infeasible?
- How to decide that LP is unbounded?
- How to select entering and leaving variables?
- Does SIMPLEX terminate?
- Does it terminate with an optimal solution?