

F A C U L T Y O F S C I E N C E

U N I V E R S I T Y O F C O P E N H A G E N

PhD Thesis
Konstantinos Manikas

Analyzing, Modelling, and Designing Software Ecosystems
Towards the Danish Telemedicine Software Ecosystem

PhD dissertation
Author:
Konstantinos Manikas
Human-Center Computing
Department of Computer Science
University of Copenhagen
Denmark
Title: Analyzing, Modelling, and Designing Software Ecosystems – Towards the
Danish Telemedicine Software Ecosystem

Academic advisor: Klaus Marius Hansen

PhD evaluation committee:

Slinger Jansen
Assistant Professor
Department of Information and Computer Science
Utrecht University
Netherlands

Yvonne Dittrich
Associate Professor
Software Development Group
IT University of Copenhagen
Denmark

Finn Kensing (chairman)
Professor
Center for IT Innovation (CITI)
University of Copenhagen
Denmark

Typeset: LATEX
Cover page graphics: Apache Felix component
connections depicted in Circos (http://circos.ca/)

c© 2015, the author.

2

Abstract

As in many western countries, Denmark’s demographic changes and the organi-
zational and financial changes of the Danish healthcare are challenging the levels
of provided healthcare and point towards the establishment of telemedicine as
means of patient support, diagnosis, and treatment. However, telemedical solu-
tions, despite the benefits they provide, are faced with a number of challenges
that inhibit their adoption, development, and implementation. In this project,
we examine the approach of a software ecosystem as means of addressing these
issues. A software ecosystem can be roughly explained as the software devel-
opment and distribution by a set of actors dependent on each other and the
ecosystem. We commence on the hypothesis that the establishment of a soft-
ware ecosystem on the telemedicine services of Denmark would address these
issues and investigate how a software ecosystem can foster the development,
implementation, and use of telemedicine services.

We initially expand the theory of software ecosystems by contributing to the
definition and understanding of software ecosystems, providing means of ana-
lyzing existing and designing new ecosystems, and defining and measuring the
qualities of software ecosystems. We use these contributions to design a software
ecosystem in the telemedicine services of Denmark with (i) a common platform
that supports and promotes development from different actors, (ii) high software
interaction, (iii) strong social network of actors, (iv) robust business structures,
supporting actor involvement in the ecosystem, and (v) proper orchestration
and governance of the ecosystem to promote and support the changes and the
health of the ecosystem.

Our work contributes to Net4Care, a platform to serve as the common plat-
form in the software ecosystem under establishment. In addition, it contributes
by providing input and guidelines on the role and activity of 4S organization,
an organization to serve as an orchestrator in the ecosystem with the aim of
managing the platform, supporting actor and software interactions, and pro-
moting the ecosystem health. This thesis documents the groundwork towards
addressing the challenges faced by telemedical technologies today and establish-
ing telemedicine as a means of patient diagnosis and treatment. Furthermore,
it serves as an empirical example of designing a software ecosystem.

3

Dansk resumé

Danmark st̊ar som s̊a mange andre vestlige lande over for udfordringer i levering
af sundshedsydelser. Dette taler for etableringen af telemedicinløsninger, som
en m̊ade til at understøtte patienterne i at blive mere selvhjulpne, i diagnos-
ticering og i behandling. Telemedicinomr̊adet st̊ar dog ogs̊a over for en række
udfordringer som hindrer indførelse, udvikling og implementering. I dette pro-
jekt undersøger vi ”software-økosystemer”, som en tilgang til at addressere disse
udfordringer. Software-økosystemer best̊ar af en software-platform og indbyrdes
afhængige aktører som udvikler og distribuerer software bygget oven p̊a plat-
formen. Projektets hypotese er, at etableringen af et software-økosystem inden
for danske telemedicin vil kunne adressere en række af problemstillingerne og
projektet undersøger, hvordan et software-økosystem kan understøtte udvikling,
implementering samt brug af telemedicinydelser.

Vi analyserer eksisterende software-økosystem teori og udvider den ved at
definere begrebet ”software-økosystemer”, bidrager med teknikker til at anal-
ysere eksisterende økosystemer, teknikker til at designe nye økosystemer samt
m̊ader til at definere og m̊ale kvaliteten af software-økosystemer. Vi bruger efter-
følgende disse bidrag til at designe et software-økosystem inden for telemedici-
nomr̊adet, hvor software-økosystemet har (i) en fælles platform der understøt-
ter at forskellige aktører udvikler software ovenp̊a, (ii) en høj grad af software-
interaktion, (iii) et stærkt aktørnetværk, (iv) en robust forretningsstruktur, som
understøtter aktørernes engagement og tilknytning til økosystemet og endelig
(v) en orkestrering og styring af økosystemet, der tillader og understøtter dets
dynamik og sundhedstilstand.

Vores forskning bidrager ogs̊a til Net4Care, en platform der virker som den
fælles integrationsplatform i det software-økosystem, som vi har designet. Yder-
mere bidrager vi med input og retningslinjer for roller og aktiviteter i organisa-
tionen der nu udvikler Net4Care, 4S. 4S tjener som en ”organisator” i økosys-
temet med det form̊al at h̊andtere, styre og drive platformen, fremme aktør-
og software-interaktion samt at fremme økosystemets sundhedstilstand. Denne
afhandling dokumenterer arbejde der grundlæggende adresserer de udfordringer,
som telemedicinomr̊adet st̊ar over for i dag. Endelig tjener afhandlingen som et
empirisk eksempel p̊a et design af et software-økosystem.

4

Acknowledgments

Copenhagen, November 2014

The title of Doctor of Philosophy is an academic title appointed as acknowl-
edgment of scholarly contributions. Although this title is personal, there can be
people who support and assist one to obtain this title. In this journey I have
been of luck to associate with some exceptional people that have contributed to
my efforts to complete this project.

First of all I would like to thank Sonatype for providing the configuration
files to conduct our analysis in Paper 2. Axis and their partners for sharing
their views in Paper 4. The Capital Healthcare Region of Denmark and Judith
Lørup Rindum for providing the list of telemedicine applications used in Paper
5. The people of the Software Engineering Research Group of Lund Technical
University in Sweden for welcoming me and being good hosts. Especially Per
Runeson for his insightful comments and support and Krzysztof Wnuk for the
good collaboration and warm fellowship.

I would like to acknowledge the work of all who participated in the Net4Care
and Connect2Care projects. More specifically, I would like to thank Henrik
Bærbak Christensen for our collaboration, good times, and showing that the
answer is “42”. Furthermore, I would like to thank Morten Kyng from the
4S organization for the collaboration and support. I would like to express my
gratitude to my academic advisor Klaus Marius Hansen, for being a real mentor
and especially for being reflective, sincere, and always finding time. I would also
like to thank my colleagues in the Human-Centered Computing for creating a
nice working climate and providing nice feedback in this work.

Furthermore, there are a number of people that contributed to this work
indirectly by supporting me personally and making life easier. I would like to
thank “mormor” Jytte and “morfar” Benny for their love and support. The fam-
ily in Greece for loving me, tapping me in the back or comforting whenever I
needed it. Vaso and Nikos for their immense love, making them to go out of
their way to support me. Maria Ie, for her love, support, and being a real com-
panion in this journey making every challenge a learning point. Aenias, for his
patience, for making this journey so pleasant, and for all the put-to-bed times
that I was forced to slow down, take a deep breath and reflect on aspects of this
project.

From the bottom of my heart: Thank you. This journey might have not been
possible and it would definitely not be half as fun without your influence.

5

Contents

Abstract 3

Dansk resumé 4

I Summary 8

1 Introduction 9
1.1 Problem formulation . 11
1.2 Project time plan . 12
1.3 Method . 14

1.3.1 Validity analysis . 16
1.4 Summary . 17

2 Theory: Software ecosystems 19
2.1 Literature overview . 21

2.1.1 Publications per year . 22
2.1.2 Research result types . 22
2.1.3 Software ecosystem classification 23

2.2 Summary . 32

3 Praxis: Telemedicine ecosystem 33
3.1 Danish healthcare . 34

3.1.1 Organizational structure 34
3.1.2 Business structure - financing 35
3.1.3 Software structure - digitalization 36

3.2 The Danish telemedicine ecosystem 37
3.2.1 Current telemedicine ecosystem 38
3.2.2 Towards a Danish telemedicine software ecosystem 41

3.3 Summary . 42

4 Conclusions 43
4.1 Contributions . 43

4.1.1 Software ecosystems . 43
4.1.2 Danish telemedicine . 47

4.2 Discussion . 50
4.3 Future work . 52
4.4 Summary . 52

6

References 76

II Papers 77

1 Software ecosystems – A systematic literature review 78

2 Reviewing the Health of Software Ecosystems – A Conceptual
Framework Proposal 93

3 Towards a Network Ecology of Software Ecosystems: an Ana-
lysis of two OSGi Ecosystems 107

4 Evaluating the Governance Model of Hardware-Dependent Soft-
ware Ecosystems – A Case Study of the Axis Ecosystem 115

5 Characterizing the Danish Telemedicine Ecosystem: Making
Sense of Actor Relationships 132

6 Analysis and Design of Software Ecosystem Architectures – To-
wards the 4S Telemedicine Ecosystem 142

7

Part I

Summary

8

Chapter 1

Introduction

Healthcare in Denmark has undergone a number of changes related to the demo-
graphics of the country, organization, and funding. These changes, as explained
below, are pointing to the adoption of telemedicine, i.e. the provision of health-
care at a distance, as means of addressing the increasing demands in better
healthcare quality at lower costs. The recent demographic challenges in Den-
mark, following the trend of the western countries, affect the services of care.
The two patient groups that are in most need for constant healthcare services,
elderly and patients with chronic diseases, are growing. In 2011, one out of
six persons in Denmark was above 65 years (Francesca et al., 2011) while this
number is estimated to increase by 60% in 2044 (Danmark Statistik, 2011).
Moreover, one out of three persons in Denmark is suffering from at least one
chronic disease, while this number increases to more than half of the population
of age over 75 (Christensen et al., 2011). These numbers are challenging the
economics of a tax-funded public healthcare, considering that life expectancy of
newborns in Denmark has increased by three years since 2000 while births have
decreased by almost 20% for the same time1. Moreover healthcare services in
Denmark are expensive with costs reaching up to 11% of the country’s Gross
Domestic Product (GDP) (OECD, 2014) where 2% of GDP is used for long
term care alone in 2007 (Francesca et al., 2011).

The need for restructuring healthcare services towards the use of telemedi-
cine is also supported by the constant increase of patient-hospital distance. This
has been the case in the last 15 years where hospital administration and man-
agement departments, previously part of each hospital, have merged covering
up to whole geographical regions (Kristensen et al., 2008), following the over-
all general healthcare centralization trend with examples in England, Norway
and Sweden (Fulop et al., 2002; Magnussen et al., 2007; Ahgren, 2008). This
centralization approach was also formally established in the organization and
financing of care with the 2007 reform where specialized services and equipment
were centralized in few and bigger hospitals, while primary diagnosis and care
was decentralized and conducted to a wider extent by clinics, day hospitals or
general practitioners (GPs)(Olejaz et al., 2012; Danske Regioner, 2007).

A possible restructure towards incorporating telemedical technologies into

1The statistics are calculated from Statistics Denmark (2014) and can be seen in
http://www.diku.dk/~kmanikas/ds/lifeexpectancy/ and http://www.diku.dk/~kmanikas/

ds/birthrate/ respectively.

9

the healthcare services would also require a level of technological maturity. The
development of telemedicine systems today is supported by a set of standards
and systems both in international level, with standards like HL7, CDA, PHMR,
XDS.b (HL7, 2014, 2010; IHE, 2013), and in Danish level with systems like the
“Shared Medication Record”(FMK) (SSI, 2014a), “Danish Healthcare Data Net-
work” (SDN) (MedCom, 2014a), “Danish Healthcare Video Hub” (VDX) (Med-
Com, 2014b), “National Service Platform” (NSP)(SSI, 2014b), or sundhed.dk
(Sundhed.dk, 2014).

At the same time, the use of telemedicine technologies from patients and
clinicians has never been easier. On one side people today are highly connected
to the internet, with close to 70% of the people in Denmark between 55 and 74
years regularly accessing the internet (Rodrigues et al., 2012). While, on the
other side, the advent of the smart devices has brought us closer to a digital-
ized every-day life, where at any point we can upload pictures to social media,
read news, and chat. This digitalization of everyday life has also entered the
healthcare with the Apple AppStore counting more than 40,000 apps under the
category “health & fitness” (Apple App Store, 2013) and trends like the “Quan-
tified Self”, where people collect information about their body functions and
habits to help them, among others improve a health condition, increase sports
performance, or live healthier (Quantified Self, 2014; The Economist, 2014).

However, telemedicine in Denmark, although the accepted benefits it pro-
vides, only counts sparse solutions instead of being a countrywide established
means of patient support, diagnosis, and treatment. Telemedicine solutions in
Denmark are faced with a number of challenges that stand in the way of devel-
opment and implementation of new solutions. These challenges, as explained
below, can be summarized as the fragmentation of healthcare services, fragmen-
tation of healthcare systems, and high level of proprietary solutions.

Danish healthcare is divided into different administrative (and funding) or-
gans following, to a big extent, federal structure. This administrative structure
allows each of the administrative organs, e.g. the five healthcare regions, to
prioritize and organize, within their area of responsibility, how the services are
provided, while providing an obstacle on countrywide policies applied. This
structure is also reflected in the structure of Information Technology (IT) sys-
tems. This is demonstrated, in the regional level, by the existence of four dif-
ferent Electronic medical Records (EMRs) (Kierkegaard, 2013), while a unified
national EMR “is not likely in the near future” (Rudkjøbing et al., 2012). The
fragmentation of the healthcare organization and IT systems are obstacles in
the expansion and adoption of telemedicine systems on a wider scale. From one
side actors developing telemedicine systems might need to be introduced and
accepted from each federal separately, while from the other side, the difference
in IT systems makes the integration with new systems challenging and resource
demanding.

Moreover, IT systems in healthcare, and more specifically in telemedicine,
have the tendency of having local (and duplicate) implementations of solutions
to similar problems (Manikas and Hansen, 2013a). This tendency is also noted
in other IT initiatives in the healthcare where systems are fragmented, charac-
terized by proprietary solutions that are prone to close other systems out, not
allowing interoperability. An example is the lack of one common electronic med-
ical record mentioned above (Rudkjøbing et al., 2012). This was also pointed
out by Delloitte (2007), in their study commissioned by the state in 2007, identi-

10

fying that healthcare data is hard to be reused while underlining the importance
of potential reuse.

Issues like the above mentioned pose an obstacle to the development of new
telemedicine solutions and put a burden on the already expensive history of
healthcare project failure with GEPJ and NPI (Kierkegaard, 2013; Aanestad
and Jensen, 2011; Lund, 2013) impacting the economy of a public healthcare but
also bringing political consequences by affecting the public opinion negatively.

Different software domains have recently incorporated a method of develop-
ing and distributing software by opening up (or establishing) a common platform
(or technical infrastructure) in a way that allows different actors to contribute
on top of the platform and results in a set of products or services. The differ-
ent actors (internal or external to the platform) and the software produced are
characterized by the range of symbiotic relationships, while their survival relies,
to a wide extend, on the survival of the rest as one entity, an ecosystem. This
notion of software ecosystems, is gaining in popularity in industry and research.
It appears to be the evolution of software development outside the borders of the
traditional software company, also supported by the claim that software devel-
opment becomes challenging without the use of consortia or vendors (Sawyer,
2000; Cusumano, 2004). Furthermore, it is arguably increasing productivity,
widening the customer segments, accelerating development, allow for reuse, and
fostering innovation (Bosch, 2009, 2010a; Kakola, 2010).

1.1 Problem formulation

This thesis focuses on the elements (i.e. actors, systems, social and techni-
cal relationships, and other infrastructure) evolved in the telemedicine services
of Denmark, referred to as the Telemedicine Ecosystem, and investigates the
problems inhibiting the development, implementation and use of telemedical te-
chnologies. It is our hypothesis that the establishment of a software ecosystem
in the telemedicine ecosystem would address the challenges currently faced by
the telemedical technologies and, thus, we investigate the conditions of estab-
lishing a software ecosystem in the telemedicine ecosystem and the impact these
actions would have. Our main research question is:

Research Question (i):
“How can a software ecosystem foster the development, implementa-
tion, and use of telemedicine services?”

When we look at existing research on software ecosystems, we note that
software ecosystems are either created by a (successful) company or product
opening up the platform to external actors (Hanssen and Dyb̊a, 2012; Kilamo
et al., 2012; Bosch, 2009, 2010a) or by the establishment of an open source
project (Jergensen et al., 2011; Kazman and Chen, 2010; Lungu et al., 2010a).
In this project we investigate the necessary conditions of establishing a software
ecosystem without having a successful product or project to support it, but by
identifying the need for a software ecosystem. In order to do so, we need to
support the establishment of all the essential elements of a software ecosystem.
Therefore, we need to identify possible elements that form a software ecosystem
to analyze them. To achieve that, we focus on the following research question:

11

Task%\%Date 05
#0
6/
20
11

07
#0
8/
20
11

09
#1
0/
20
11

11
#1
2/
20
11

01
#0
2/
20
12

03
#0
4/
20
12

05
#0
6/
20
12

07
#0
8/
20
12

09
#1
0/
20
12

11
#1
2/
20
12

01
#0
2/
20
13

03
#0
4/
20
13

05
#0
6/
20
13

07
#0
8/
20
13

09
#1
0/
20
13

11
#1
2/
20
13

01
#0
2/
20
14

03
#0
4/
20
14

05
#0
6/
20
14

07
#0
8/
20
14

09
#1
0/
20
14

Net4Care
Connect2Care
4S
Paper91:9Literature9review
Paper92:9Network9ecology
Paper95:9Characterising9telem.9ecos.
Paper93:9Ecosystem9health
Paper96:9Ecosystem9architecture
Socio#technical9congruence
Paper94:9Governance
Change9of9scientific9env.
Healthcare9app9governance
Tasks9under9development
Thesis

Figure 1.1: The PhD project time plan.

Research Question (ii):
“How can the concept of “software ecosystems” be defined, and how
can software ecosystems be analyzed and modeled?”

In order to confirm or reject the initial hypothesis that software ecosystems
can help in addressing the issues faced by the telemedicine ecosystem we need
to ensure the quality of the established ecosystem. Although research question
(i) is concerned with how to build the right ecosystem for the telemedicine do-
main, the examples of unsuccessful ecosystems, such as the Symbian ecosystem
(Null, 2013) or critique on the effectiveness of the Google Play in the Android
ecosystem (Mylonas et al., 2013; Orthacker et al., 2012) underline the necessity
for assuring the quality of the ecosystem. To do so, we focus on the following
research question:

Research Question (iii):
“How can we define and measure the qualities of a software ecosys-
tem?”

1.2 Project time plan

This PhD project has been running from May 2011 until November 2014, in-
cluding six months of leave. In total is accounted for a rough estimate of 5, 000
hours including courses for 30 ECTS, a rough estimate of 850 duty hours2, and a
change of scientific environment as a visiting researcher in Lund Technical Uni-
versity of Sweden. Figure 1.1 shows the time plan of the PhD project marking
the major research activities3. This PhD project has been running as part of

2Duty hours are spent in lecturing, teaching assistant tasks, supervision of master students
and other services to the department, group, and supervisor

3In this plan activities outside the major research focus has been excluded.

12

two research projects: Net4Care and Connect2Care4. Net4Care5, as we describe
in later sections, was investigating the establishment of a software platform to
promote a software ecosystem of telemedicine services in Denmark and resulted
in the implementation of the Net4Care platform. Connect2Care6, among other,
continued the work of Net4Care by exploiting and prototyping a connected na-
tional healthcare information technology (IT) infrastructure. These projects
provided input to the 4S organization7. 4S is an organization established to
promote the development of a software ecosystem of the telemedicine services
of Denmark by managing the technological platform (Net4Care with the addi-
tion of OpenTele, explained in Paper 6) and promoting actor activity in the
ecosystem.

Main outcomes of this PhD project, apart from the contribution to the two
above-mentioned projects, are the included papers:

Paper 1: A systematic literature review of software ecosystems.

Manikas, K. and Hansen, K. M. (2013c). Software ecosystems – a sys-
tematic literature review. Journal of Systems and Software, 86(5):1294 –
1306

Paper 2: A study of software networks and use of “network ecology” theories
in two open source ecosystems.

Hansen, K. M. and Manikas, K. (2013). Towards a Network Ecology of
Software Ecosystems: an Analysis of two OSGi Ecosystems. In Proceedings
of the 25th International Conference on Software Engineering & Knowl-
edge Engineering (SEKE’2013), pages 326–331

Paper 3: Defining and measuring the health of software ecosystems.

Manikas, K. and Hansen, K. M. (2013b). Reviewing the health of software
ecosystems - a conceptual framework proposal. In Alves, C. F., Hanssen,
G. K., Bosch, J., and Jansen, S., editors, Proceedings of the 5th Interna-
tional Workshop on Software Ecosystems, Potsdam, Germany, June 11,
2013, volume 987, pages 33–44

Paper 4: Studying governance of software ecosystems.

Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., and Mu-
nir, H. (2014a). Evaluating the governance model of hardware-dependent
software ecosystems – a case study of the axis ecosystem. In Lassenius, C.
and Smolander, K., editors, Software Business. Towards Continuous Value
Delivery, volume 182 of Lecture Notes in Business Information Processing,
pages 212–226

Paper 5: Characterizing the Danish telemedicine ecosystem by studying actor
and software interactions.

Manikas, K. and Hansen, K. M. (2013a). Characterizing the danish tele-
medicine ecosystem: Making sense of actor relationships. In Proceedings

4Start date of the projects is not shown in this figure as these projects have started before
this PhD project.

5http://net4care.org/
6http://www.partnerskabetunik.dk/projekter/connect2care.aspx
74S stands for “Stiftelsen for Softwarebaserede SundhedsServices” that is in English: The

Foundation for Software-based Healthcare Services. http://4s-online.dk/

13

of the Fifth International Conference on Management of Emergent Digital
EcoSystems, MEDES ’13, pages 211–218

Paper 6: Analyzing existing ecosystems and designing new by examining the
case of the Danish telemedicine ecosystem before and after the Net4Care
and 4S contributions.

Christensen, H. B., Hansen, K. M., Kyng, M., and Manikas, K. (2014).
Analysis and design of software ecosystem architectures – towards the 4s
telemedicine ecosystem. Information and Software Technology, 56(11):1476
– 1492

Furthermore, in papers not included in this thesis, we have studied socio-
technical congruence in software ecosystems, i.e. whether there is a correlation
between the coordination of the ecosystem actors and the coordination of the
software components, published in Syeed et al. (2014) and app store governance
mechanisms for mission critical or healthcare apps, published in Manikas et al.
(2014).

1.3 Method

The overall method of the study can be characterized as a mix-method of both
qualitative and quantitative studies including literature surveys, case studies,
and experiments.

The evolution of the project is to a great extent influenced by the outcomes
of the systematic review on software ecosystems that is presented in Paper 1.
The purpose of this review is to provide a systematic overview of the research
conducted on the field. To do so we create a review protocol following the
guidelines of Kitchenham and Charters (2007). Our review protocol consists of
a set of research questions to explore, an extraction query, a list of bibliographic
searches, and a set of inclusion and exclusion criteria. The review protocol is
evaluated during the review process of the published article.

One of the observations from the literature reviews was that there were very
few empirical studies of software ecosystems. Therefore, in Paper 2 we define
methods for measuring and comparing software ecosystems. In this study, we
apply the formalizations and metrics of “network ecology” in natural ecosystems
to two software ecosystems to investigate whether it is possible to compare
similar ecosystems. This is a technology-oriented quasi-experiment under the
quantitative exploratory study category (Wohlin et al., 2012). This study is
characterized as a quasi-experiment as the assignment of the treatments to the
subjects is not random but based on the subjects themselves (Wohlin et al.,
2012; Campbell et al., 1963). We define the concept of an ecosystem “neigh-
borhood” and apply network ecology metrics to these neighborhoods. We mine
the repository of Maven build automation tool, and extract the dependencies for
two OSGi ecosystems: Apache Felix and Eclipse Equinox. In total, we extracted
155, 127 unique artifacts and 495, 020 dependencies among them from a total of
186, 922 configuration files.

Continuing in the same line of measuring the quality of an ecosystem, we
focused on the concept of “ecosystem health”. In Paper 3 we conduct a litera-
ture review on the concept of software ecosystem health and the literature that

14

inspired the literature of ecosystem health and propose a conceptual framework
for defining and measuring the health in a software ecosystem. To do so, we
extract the software ecosystem health literature from the literature review in
Paper 1 and in continuation we define the wider ecosystem health literature,
i.e. the literature that inspired the software ecosystem health, applying the
“snowballing technique” (Denscombe, 2010). We review in total 23 papers, 13
in the field of software ecosystems and 10 from the fields of business ecosystems,
natural ecosystems, and open source software.

Another concept that influences the health of the ecosystem and the ability
of the ecosystem to survive over time is the ‘governance’ of the ecosystem. In Pa-
per 4 we present a case study on software ecosystem governance. We conducted
an exploratory case study, following the case study process of Runeson et al.
(2012), to evaluate the governance model of the Axis Camera Application Plat-
form (ACAP) ecosystem, an ecosystem governed by Axis, a Swedish network
video and surveillance company. In this study, we conducted ten exploratory
interviews of practitioners knowledgeable in the ACAP ecosystem and eight in-
terviews with external developers, developing the ACAP applications as well as
discussions with the Axis employees. We compared the governance activities
of the ACAP ecosystem with the governances activities of software ecosystems
outlined by Jansen and Cusumano (2012, 2013).

Having obtained knowledge on how to define the health of an ecosystem
(Paper 3) and how to graph ecosystem activity and identify components with
important contribution to the ecosystem (Paper 2), we applied this knowledge
to the Danish telemedicine ecosystem in paper 5. We characterize the actor
and software interaction of the existing Danish telemedicine ecosystem. We do
so by conducting a qualitative case study of the actors and the applications
of the ecosystem. The purpose is to characterize the Danish ecosystem as a
whole by characterizing the network of actors and applications. Our initial
hypotheses are that the ecosystem under study has software systems that are
primarily unrelated and that the actor structure consists of isolated components.
Our study focuses on the Capital Region, one of the five healthcare regions of
Denmark, responsible for one third of the country’s population. Our dataset
contains 28 applications, 109 actors, and 182 connections.

Paper 6 analyzes the concept of “software ecosystem architecture” as a way
of modeling and analyzing existing ecosystems and designing new ones. This
is done through a mix-method study: a descriptive case study on the Danish
telemedicine ecosystem and an experiment of creating an orchestrator of a soft-
ware ecosystem for the Danish telemedicine ecosystem. Using the theory of the
software ecosystem architecture, we conduct the case study following the guide-
lines of Yin (2013), where we analyze the existing ecosystem of the telemedicine
services in Denmark and in continuation we describe the experiment of creating
4S, an organization to serve as an orchestrator in a software ecosystem for the
telemedicine services of Denmark operating on top of the Net4Care platform.

Finally, we conducted an experiment of designing, implementing, and evalu-
ating the architecture of a platform to serve as the common technological plat-
form and promote the establishment of a software ecosystem in the telemedi-
cine services of Denmark. To do so, we reviewed a number of existing applica-
tions and systems (FMK (SSI, 2014a), RRS (2009), TELEKAT (2007), VAGUS,
Teles̊ar (2006), EgenJournal (2010), Sundt Hjem) and standards (HL7 (2014),
CDA (Boone, 2011), PHMR (HL7, 2010), and XDS (IHE, 2013)), used the

15

application network in the actor-application qualitative study of Paper 5, and
interviewed a SMB in the field of telemedical application development (View-
Care, 2011). To design our platform we used a set of prioritized quality attribute
scenarios as output of a quality attribute workshop (Barbacci et al., 2003) and
applying the approach of attribute-driven design (Bass et al., 2003). The plat-
form is evaluated by a series of actors and applications explained in Paper 6.

1.3.1 Validity analysis

In this PhD project we have taken a series of steps to address the validity of
our project. By doing so, we ensure that our methodology is solid, that we have
minimized possible biases, that our results are reliable and generalizable, and
our study and results are close to being repeatable, to the extent allowed from
the circumstances. Below we discuss the validity aspects of our project.

Reliability

Reliability is an aspect of research validity that is concerned with addressing
different kinds of bias in a study (Runeson et al., 2012; Robson, 2011). One kind
of bias that is applicable to our study is the research bias in the data collection
and analysis methodologies. To address this, several of the measures we have
applied, we have developed and tested in other ecosystems. For example, we
identify influential actors in the Danish telemedicine ecosystem in Paper 5, by
applying the PageRank algorithm. This algorithm has been applied in Paper
2 where we compare it with the Keystone Index, while in Paper 5 we apply it
in parallel to the Eigenvector Centrality used in related work. Furthermore, we
made sure to publish each of our studies in peer reviewed journals or conferences
of the field.

Construct validity

Construct validity is concerned with whether the applied measures in a study are
measuring what the researchers intended (Yin, 2013; Runeson et al., 2012). This
can be translated into two questions: whether the right measures are applied
and whether the measures are applied right. To evaluate whether we apply
the right measures, the results of several of our applied measures have been
evaluated in other ecosystems, as explained in the pervious section.

To address the question on whether our measures are correct, we use a
source triangulation method (Patton, 2002; Denzin, 1978) to characterize the
telemedicine ecosystem in Paper 6: the quantitative analysis from Paper 5 in
combination with a case study consisting of interviews and publicly available
records (cf. method of Paper 6).

Internal validity

Internal validity is concerned with whether the applied measures made a differ-
ence in the study results and whether there were other not controlled factors
that influenced the results of the study (Campbell et al., 1963; Runeson et al.,
2012). Campbell et al. (1963) propose a number of variables to be controlled
for addressing internal validity. From these variables, we examine history that
applies to our studies.

16

History is described as the account of events outside the experiment occur-
ring between two studies and having an influence to the results (Campbell et al.,
1963). In our case this is applicable to the comparison of the two telemedicine
ecosystems. We initially characterize the Danish telemedicine ecosystem at the
time of the project initiation (i.e., before the Net4Care and 4S experiments) and
in continuation we analyze how ecosystem can be after our experiments. There
is a probability for threats to the internal validity of our study, if between the
two characterizations of the ecosystems external factors would affect the ecosys-
tem. An example would be a change in legislation or ecosystem governance
that would attract more actors to the ecosystem or the opposite. This threat is
minimized in our study by validating our platform with actors both internal to
the project, thus unaffected from possible changes to the telemedicine ecosystem
and external actors, already part of the ecosystem.

External validity

External validity or generalizability is the aspect of research validity that is
focusing on the extent the results of a study can be applicable to other cases
(Robson, 2011; Yin, 2013). We address possible issues to external validity by fol-
lowing an approach where we build the elements of our study’s method initially
as contributions to the field of software ecosystem and then apply it to our do-
main. An example is the definition of ecosystem health consisted, among others,
from the social networks of actor and software interaction. This definition was
first published as a conceptual framework for software ecosystem health (Paper
3) and then applied parts of it into Paper 5. Moreover, the main results of our
study in the domain of telemedicine were generalized and encapsulated in the
concept of software ecosystem architecture and published in a special issue on
software ecosystems in Paper 6. Furthermore, we have tried to provide as much
information we can on the particularities of our cases as means of assisting the
generalization of our methods and results from external researchers. Finally,
we have not, to this point, examined generalizability of our study to similar
domains, such as the telemedicine services of other countries.

1.4 Summary

Concluding the introduction, the demographic changes in Denmark and the or-
ganizational and financial changes of Danish healthcare are pointing towards
the establishment of telemedicine as means of patient support, diagnosis, and
treatment. However, telemedical solutions are faced with a number of challenges
that inhibit their adoption, development, and implementation. We investigate
means of addressing these challenges following the approach of software ecosys-
tems, roughly explained as the software development and distribution by a set
of actors dependent on each other and the ecosystem. In order to do so we con-
ducted both quantitative and qualitative studies including literature surveys,
case studies, and experiments.

This work concludes on contributions initially to the theoretical domain
where we define and explain software ecosystems, provide means of analyzing
existing and designing new ecosystems, and define and measure their quali-
ties. Based on these contributions, we design an ecosystem to be established

17

in the telemedicine ecosystem characterized by a common platform, increased
software interaction, stronger social networks of actors, robust business struc-
tures, and orchestration and governance to promote the health of the ecosystem.
Furthermore, we take the initial steps in materializing this design with the de-
sign, development, and implementation of Net4Care, a platform to serve as the
common platform in the software ecosystem. Moreover we provide input to 4S
organization, an organization to serve as an orchestrator in the ecosystem man-
aging the platform, supporting actor and software interactions, and promoting
the ecosystem health.

The rest of this part is organized as following. Chapter 2 contains the state
of the art in the field of software ecosystems and updates the literature review of
Paper 1 to reveal an increased research activity in the field and early signs of the
field maturing in the past two years. Chapter 3 characterizes the Danish teleme-
dicine ecosystem by initially analyzing the general healthcare in Denmark and
then analyzing the telemedicine ecosystem in two snapshots: first the current,
before the Net4Care and 4S influence, and second towards a software ecosystem
analyzing the influence of Net4Care and 4S. Finally, Chapter 4 concludes this
part by summarizing the contributions and explaining how they address the
research questions, discussing implications and threats to validity, and elabo-
rating on future work. Part II of this thesis contains the published articles in
the sequence they appear in this chapter.

18

Chapter 2

Theory: Software
ecosystems

In this chapter we introduce and explain in more detail the field of software
ecosystems. We do so by providing a definition and describing the main elements
of a software ecosystem. Moreover, we apply the protocol of our literature
review, explained on Paper 1, to update the literature of software ecosystems.
Comparing our results with the results of Paper 1, we note that within two years
the literature in the field has expanded significantly, while we note indications
of field maturity.

The way software is produced and distributed has been radically altered the
past years. Initially, software was developed “in-house” by a team of highly
domain-specialized engineers and either came embedded in the hardware or
distributed as a product to be installed. Slowly, software started becoming
more compartmentalized and different companies would build different exper-
tise. Thus, one could develop software by either hiring an expert to build parts
of it (outsourcing), e.g. the user interface, or buying and incorporating a ready
built product (commercial-off-the-shelf), e.g. a database. In this case, the dis-
tribution is still through the traditional product model. With the advent of
the cloud computing, one can now buy services (Software as a Service) online.
In this case the development is done in one of the ways mentioned above, but
the distribution is done by installing the software on a cloud server. A software
ecosystem challenges the ways software is developed and distributed. Software is
developed by different actors (such as companies or developers), while the owner
of the platform is not necessarily the owner of the developed products or the one
who pays for the development. Moreover, software might be distributed as a
product or a service, but it cannot stand alone without the ecosystem platform.

Software ecosystems have been gaining popularity in recent years changing
the software development and distribution. Known examples are smart phone
platforms and open source software. The advance of mobile platforms like the
platforms supporting Apple Appstore and Google Play made software products
highly commercialized, approachable, and easy to develop. The open source
software (OSS) projects like the Eclipse and Firefox are examples of software
development and management that is collaborative and outside the borders of
the traditional software company.

19

Figure 2.1: The software ecosystem keyword word cloud.

20

A software ecosystem can be defined as “the interaction of a set of actors
on top of a common technological platform that results in a number of software
solutions or services”. Moreover, “each actor is motivated by a set of interests
or business models and connected to the rest of the actors and the ecosystem
as a whole with symbiotic relationships, while, the technological platform is
structured in a way that allows the involvement and contribution of the different
actors” (Manikas and Hansen, 2013c).

In other words, a software ecosystem can be identified as any software de-
velopment and distribution, including the socio-technical environment around
it, that is characterized by the following components: (i) a platform that al-
lows development, (ii) a set of actors that are connected to the ecosystem with
symbiotic relationships, and (iii) a set of motives or business models serving
the actors. Software ecosystems can be very different, varying in any or all of
the above components. For example an ecosystem can have a platform that
is a software product itself, like the case of Microsoft Excel (Bosch, 2009) or
the Apache web server (Yu, 2011), that is bound to specific hardware, like the
hardware-dependent ecosystem of Axis (Wnuk et al., 2014a) or the embedded
open software ecosystems (Eklund and Bosch, 2014), or a framework like the
case of the Open Design Alliance (Angeren et al., 2011b; Jansen et al., 2012)
or OSGi (Jansen and Cusumano, 2012). Similarly, examples of the actor re-
lationship variability can be an ecosystem that is open to actor participation,
like several OSS projects or the Google Play ecosystem, or closed where new
actors are selected according to a set of criteria, like the Microsoft Partner Net-
work. From the business model perspective, an ecosystem could be providing
opportunities to the actors for direct benefits, like the Apple Appstore for app
developers, or provide other than monetary motivation/satisfaction like several
OSS project participants. Naturally, the different ecosystem variability aspects
mentioned here are only examples and by no mean provide an exhaustive list.

In order to provide a better overview of the literature, in the following section
we conduct a review of the literature on software ecosystems up to date. We do
so by expanding on the review of Paper 1 using the same review protocol.

2.1 Literature overview

The concept of a ‘software ecosystem’ first appeared in the book by Messer-
schmitt and Szyperski (2003). Since then the field has been growing to include
two dedicated workshops (IWSECO, 2014; WEA, 2014), a number of confer-
ences, and two special journal issues. Paper 1, gives an overview of the field of
software ecosystems from the first paper in 2007 until June, 2012 reviewing a
total of 90 papers out of a gross of 420. For the needs of this thesis, we expanded
the literature using the same systematic literature review protocol, to include
published literature up to June 2, 2014. In total, the software ecosystem litera-
ture counts 199 papers (i.e. 109 papers from June 2012 to June 2014). In this
overview we only reviewed the abstract and keywords of the resulted papers.
The purpose of the current review is to provide a condensed and up-to-date
state of the art in the research of software ecosystems. In Figure 2.1, we show
the word cloud extracted from the keywords fields of the software ecosystem
literature to provide a quick overview on what are the most common topics in
the literature. For reasons of readability we have removed the words “software”

21

Table 2.1: Papers published per year

Year Papers Count

2007 [31, 46, 57] 3

2008 [50, 53, 54] 3

2009 [9, 10, 11, 20, 25, 42, 51, 52, 56, 58] 10

2010 [1, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 33, 34,
35, 36, 37, 38, 39, 41, 43, 45, 47, 48, 49, 55, 59]

32

2011 [2, 3, 4, 5, 6, 7, 8, 26, 32, 40, 44, 87, 89, 88, 73, 72, 74, 68, 71, 69, 64,
61, 65, 70, 79, 66, 60, 67, 83, 85, 90, 84]

32

2012 [63, 80, 86, 82, 76, 77, 75, 62, 78, 81, 107, 108, 115, 116, 117, 119,
124, 128, 129, 130, 133, 134, 135, 142, 147, 149, 181, 158, 162, 163,
170, 173]

32

2013 [91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 109, 110,
112, 118, 120, 123, 125, 126, 127, 131, 137, 138, 139, 140, 141, 144,
148, 151, 153, 154, 155, 194, 195, 196, 197, 198, 199, 178, 187, 156,
157, 160, 165, 167, 169]

49

2014 [94, 102, 111, 113, 114, 121, 122, 132, 136, 143, 145, 146, 150, 152,
159, 161, 164, 166, 168, 171, 172, 174, 175, 176, 177, 179, 180, 182,
183, 184, 185, 186]

32

and “ecosystem(s)”.

2.1.1 Publications per year

An indication of the focus on a field is to measure the number of publications
per year. Table 2.1, shows the publication according to the year of publication.
We notice that the number of publications has been constantly increasing from
2007. Naturally, the year 2014 is not taken into consideration as the full number
of publications for that year is not yet available. The above indicate that the
focus on the field is increasing.

2.1.2 Research result types

Following the same method with Paper 1, we have classified each of the pa-
pers in the literature according to their research result using the Shaw (2003)
characterization of software engineering research results. Table 2.2 explains the
characterizations.

The classification of software ecosystem results is shown in Table 2.3. If
we compare the results with the ones from Paper 1, we note that there is an
increase in the percentage of the groups ‘report’ (from 44% to 49%), ’empirical
model’ (from 8% to 15%), while there is a decrease in ‘tools or notation’ (from
15% to 11%), ’qualitative or descriptive models’ (from 11% to 6%), ‘analytic
models’ (from 5% to 3%), and ‘specific solution’ (from 4% to 2%).

We can see that the majority of the literature results is ‘report’. This is
mainly because many of the papers are based on single studies that, although
interesting, are hard to generalize. An example is Wnuk et al. (2014b), where
they study the actor participation model of ACAP, the app ecosystem around
the monitoring and surveillance hardware producer, Axis. Although interesting,

22

Table 2.2: Types of research results according to Shaw (2003).

Type of Re-
sult

Examples

Procedure or
technique

New or better way to do some task, such as design, implementation,
maintenance, measurement, evaluation, selection from alternatives;
includes techniques for implementation, representation, management,
and analysis; a technique should be operational—not advice or guide-
lines, but a procedure

Qualitative
or descriptive
model

Structure or taxonomy for a problem area; architectural style, frame-
work, or design pattern; non-formal domain analysis, well-grounded
checklists, well-argued informal generalizations, guidance for integrat-
ing other results, well-organized interesting observations

Empirical
model

Empirical predictive model based on observed data

Analytic model Structural model that permits formal analysis or automatic manipu-
lation

Tool or nota-
tion

Implemented tool that embodies a technique; formal language to sup-
port a technique or model (should have a calculus, semantics, or other
basis for computing or doing inference)

Specific solu-
tion, proto-
type, answer,
or judgment

Solution to application problem that shows application of SE prin-
ciples – may be design, prototype, or full implementation; careful
analysis of a system or its development, result of a specific analysis,
evaluation, or comparison

Report Interesting observations, rules of thumb, but not sufficiently general
or systematic to rise to the level of a descriptive model.

their results are too specific to the ecosystem under study and hard to generalize
to other ecosystems. Moreover, the categories can be, to some extent, specific for
software engineering. Thus, papers not reporting software engineering results
might end up in the ‘report’ group. An example is the group ‘specific solution’,
that is described as a “solution to application problem that shows application
of SE principles” (Shaw, 2003).

A group that is not described as software engineering specific, is the ‘em-
pirical model’. Examining the increase of this group implies that more existing
ecosystems have been studied in such a way that the results can be applied to
other ecosystems. This is an early indication that the field has been maturing
these two years.

2.1.3 Software ecosystem classification

In Paper 1, when examining what is the role of architecture in the software
ecosystem research, we propose the concept of“software ecosystem architecture”,
by expanding the definition of software architecture and identifying three main
categories to analyze the literature: software engineering, business and manage-
ment, and software ecosystem relations. Paper 6 expands on this definition and
models the architecture of a software ecosystem using three structures, some-
what different from the categories above: software structure, business structure,
and organizational structure, where the organizational structure incorporates,
among other, the actor relationships of the ecosystem. We believe that the lat-
ter is more representative to reason for a software ecosystem, however using the

23

Table 2.3: The papers grouped according to the result types.

Result Papers %

Procedure or
Technique

[40, 41, 5, 11, 30, 53, 16, 13, 28, 18, 14, 17, 101, 107, 109, 111,
116, 119, 129, 131, 133, 134, 137, 149, 174, 177, 192]

13

Qualitative
or Descriptive
Model

[38, 39, 3, 4, 7, 21, 37, 29, 34, 74, 164, 183] 6

Empirical
Model

[45, 50, 44, 57, 55, 27, 89, 94, 98, 102, 104, 112, 115, 121, 127,
132, 140, 146, 147, 151, 157, 158, 169, 170, 179, 180, 182, 184,
193, 199]

15

Analytic Model [1, 42, 63, 72, 90, 172, 187] 3

Tool or nota-
tion

[9, 48, 58, 54, 15, 22, 47, 25, 80, 68, 69, 62, 79, 81, 100, 106,
108, 113, 135, 139, 153, 155]

11

Specific solu-
tion, proto-
type, answer,
or judgment

[49, 23, 33, 88] 2

Report [19, 43, 2, 6, 10, 8, 59, 52, 56, 51, 36, 46, 31, 20, 35, 12, 26,
32, 24, 14, 29, 33, 17, 87, 73, 86, 82, 76, 77, 71, 75, 64, 61, 65,
70, 78, 66, 67, 83, 85, 84, 91, 92, 93, 95, 96, 97, 99, 103, 105,
110, 114, 117, 118, 120, 122, 123, 124, 125, 126, 128, 130, 136,
138, 141, 142, 143, 144, 145, 148, 150, 152, 154, 156, 159, 160,
161, 162, 163, 165, 166, 167, 168, 171, 173, 175, 176, 178, 181,
185, 186, 188, 189, 190, 191, 194, 195, 196, 197, 198]

50

Table 2.4: The papers according to the software ecosystem architecture groups.

Architecture
Group

Papers Count

SE [46, 15, 22, 47, 35, 29, 17, 57, 87, 63, 68, 69, 70, 79, 66,
81, 94, 95, 97, 99, 100, 101, 105, 106, 107, 108, 109, 110,
111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 124,
125, 131, 133, 135, 136, 137, 138, 139, 140, 143, 144, 145,
146, 147, 148, 149, 152, 153, 155, 159, 160, 162, 163, 166,
168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183,
184, 187, 190, 194]

80

Business and
management

[20, 23, 37, 44, 14, 33, 12, 25, 27, 87, 88, 86, 76, 77, 71,
75, 62, 66, 60, 67, 83, 90, 91, 93, 112, 114, 116, 123, 124,
126, 127, 128, 130, 131, 132, 141, 142, 145, 151, 154, 156,
158, 160, 161, 164, 165, 166, 167, 168, 171, 174, 175, 177,
178, 179, 180, 183, 184, 185, 186, 188, 189, 191, 192, 193,
196, 197]

67

Relationships [13, 31, 21, 33, 17, 87, 73, 86, 82, 72, 76, 61, 65, 85, 84,
91, 92, 93, 96, 98, 102, 103, 104, 121, 122, 125, 129, 133,
134, 141, 150, 151, 157, 163, 172, 176, 178, 183, 184, 185,
188, 189, 190, 194, 195, 198, 199]

47

24

Table 2.5: Top 25 paper keywords according to group.

Software Engineering Business and Management Relationships

Keyword Count Keyword Count Keyword Count

architecture 42 development 25 development 15

systems 29 source 20 social 12

data 20 open 19 systems 12

computing 20 modeling 17 engineering 10

evolution 18 engineering 16 open 10

product 16 mobile 15 industry 9

model 16 computing 14 network 9

development 15 systems 13 analysis 8

lines 14 management 13 based 8

platform 13 architecture 11 data 8

mobile 13 governance 8 architecture 7

engineering 12 communities 8 modeling 7

based 11 product 8 source 7

maintenance 10 application 7 collaboration 6

management 10 network 7 communities 6

mining 10 project 7 management 6

variability 10 business 7 classification 5

packages 9 health 7 environment 5

processing 9 data 6 reuse 5

industry 8 domain 6 value 5

analysis 8 oss 6 visualization 5

code 8 value 6 aspects 4

quality 8 industry 6 computing 4

repositories 8 case 5 global 4

application 8 disease 5 knowledge 4

same classification as Paper 1 gives a consistency in the analysis of the literature.
Thus, below we expand on the literature according to the three categories of
Paper 1. The papers used to describe each group might not necessarily represent
the papers’ main focus.

Software engineering

Software plays an important role in a software ecosystem. The product of soft-
ware ecosystems is software, while ecosystems are evolved around a common
software platform. The software engineering category includes literature cover-
ing different software engineering aspects of software ecosystems. Table 2.5 lists
the 25 most common keywords taken from the ‘keywords’ field of each paper
for the three groups. From the list of keywords we have removed the two most
common words “software” and “ecosystem(s)” in all three groups. The most

25

common keywords for the group ‘software engineering’ after that is “architec-
ture”, along with the similar of “architectural” and “architectures”. The words
appear in the papers’ keyword fields as “open architecture” (Pelliccione, 2014),
“parallel architecture” (Bortolotti et al., 2013), “service oriented architecture”
(Schmerl et al., 2011; Kajan et al., 2011), and “software architecture” (Musil
et al., 2013; Gutierrez and Robbes, 2013; Christensen and Hansen, 2012; San-
tos and Werner, 2012a; Eklund and Bosch, 2014; Cataldo and Herbsleb, 2010;
Kazman et al., 2012; Scacchi and Alspaugh, 2012)1. The software architecture
of a software ecosystem should support the nature of the ecosystem (i.e. be
adapted to the needs of the specific ecosystem), follow the ecosystem manage-
ment, business rules and restrictions and allow the integration and existence of
multiple functionality in a secure and reliable manner. A modular and flexi-
ble architecture would allow integration and interoperability of the developed
software (Viljainen and Kauppinen, 2011; Bosch, 2009). An aspect of software
engineering in software ecosystems that is related to software architecture, is the
design and use of interfaces and application programmable interfaces (APIs) 2.
Interfaces allow external development on an ecosystem platform. The stability
and translucency of the platform interfaces are essential for the component in-
tegration and interaction (Cataldo and Herbsleb, 2010; Bosch, 2010a). Changes
to existing interfaces or components might create inconsistencies to dependent
components (Robbes and Lungu, 2011; Lungu et al., 2010b,a). Process-centric
approaches are not effective in managing large-scale software, instead system
architecture should be used as a coordination mechanism (Bosch and Bosch-
Sijtsema, 2010a). Constantly evolving software requires the adaptation of the
software development processes. Development should be integration-centric,
independent deployment and releases should be organized in a release group-
ing and release train fashion (Bosch and Bosch-Sijtsema, 2010b; Bosch, 2010a).
Architectural design and analysis techniques are based on a set of principles
as identifying business goals, describing architectural significant requirement,
tactics and architectural evaluation. These principles are used in defining the
software architecture of a software ecosystem (Kazman et al., 2012).

Evolution in software ecosystems is an aspect that draws the attention of
a number of papers3. Evolution is studied as the evolution of the software
ecosystem by means of requirement negotiation (Valenca, 2013) or by means of
visualizing the evolution of code in an OSS ecosystem (Pérez et al., 2012). More-
over, software evolution, i.e. how software changes over time, is also of focus,
mainly in OSS projects. Software evolution is studied by directly examining the
evolving code, studying how the interfaces and APIs evolve in an ecosystem, or
examining the evolution of software dependencies.

The intersection of software ecosystems and software product lines is the fo-

1For reasons of text readability, only a few papers with keywords “software achitectur-
(e)(es)(al)” are listed.

2Keywords of McDonnell et al. (2013); Linares-Vásquez et al. (2014); Cataldo and Herbsleb
(2010); German et al. (2013); Peniak et al. (2013); Bavota et al. (2013).

3Keywords of Pelliccione (2014); Seidl and Aßmann (2013); Seidl et al. (2013); Gutierrez
and Robbes (2013); Lopez (2013); German et al. (2013); Bavota et al. (2013); Mens et al.
(2014a); Schwarz et al. (2012); McDonnell et al. (2013); Mens et al. (2014b); Goeminne and
Mens (2010); Lungu and Lanza (2010); Scacchi (2010b); Brummermann et al. (2011); Lungu
et al. (2010a); Yu et al. (2007); Brummermann et al. (2012); Yu (2011); Scacchi and Alspaugh
(2012); Pérez et al. (2012); Neu et al. (2011).

26

cus of yet another set of research papers4. A software product line can evolve to
become a software ecosystem with the product line being the common platform
of the ecosystem. In this intersection, variability in software ecosystems and
product lines and the variability modeling and management is the focus of a
part of the literature5.

Another part of the software ecosystem literature is focusing on issues that
are appearing mainly in OSS. One of the methods used to conduct empirical
studies in this field, is mining software repositories6. OSS repositories can be
a valuable source of information as they contain or it is possible to extract
information about the technical and social perspectives of the project, such the
sources, dependencies, bugs and changes, developer communications, or mailing
lists. One feature of OSS repositories is the option to fork or copy a whole
project and start a different branch. Keivanloo et al. (2012) and Schwarz et al.
(2012) are focusing on the code cloning along repositories. A similar perspective
to cloning, the reuse of software is also studied in the literature 7. Software reuse
is a field that is not exclusive for OSS, however, the biggest amount of literature
focuses on OSS.

Integration is occupying another part of the literature. Integration ap-
pears as integration-centric approaches (Eklund and Bosch, 2012), strategies
for (software) integration (Bhowmik et al., 2014), software integration (Bosch
and Bosch-Sijtsema, 2010b; Capuruço and Capretz, 2010), integration of knowl-
edge resources (Schugerl et al., 2009), and integration of platforms (Viljainen
and Kauppinen, 2011).

Quality in software ecosystems is also on focus (Hmood et al., 2012; Hansen
and Zhang, 2014; Schugerl et al., 2009; Stefanuto et al., 2011; Jansen, 2013).
The quality of the produced software in an ecosystem and how to measure it
and assure high levels is the main focus here (Hmood et al., 2012; Schugerl et al.,
2009; Kajan et al., 2011).

Finally, the field of software engineering, having to do with requirement,
requirement engineering is also represented in the ecosystem literature (Valenca,
2013; Fricker, 2009; Schugerl et al., 2009).

Business and management

Another group of the software ecosystem literature is the business and man-
agement of software ecosystems. A software ecosystem needs to be organized
and managed in some way, whether it is driven by for-profit organization or
a non-profit community. Moreover, an essential element that makes ecosys-

4Keywords of Lettner et al. (2013); Seidl et al. (2013); Keunecke et al. (2013); Berger (2012);
Kästner et al. (2012); Santos and Werner (2012a); Schultis et al. (2013); Schmid (2013); Berger
et al. (2014); Brummermann et al. (2012)

5Keywords of Kästner et al. (2012); Seidl and Aßmann (2013); Seidl et al. (2013); Keu-
necke et al. (2013); Berger (2012); Kästner et al. (2012); Schmid (2013); Berger et al. (2014);
Brummermann et al. (2011, 2012).

6Keywords of Teixeira and Lin (2014); Goeminne et al. (2013); Keivanloo (2012); Mitropou-
los et al. (2014); Lopez (2013); Linares-Vásquez et al. (2014); Tymchuk et al. (2014); Hoving
et al. (2013); Bavota et al. (2013); Keivanloo et al. (2012); Goeminne (2014); Berger et al.
(2014); Santana and Werner (2013); Syed and Jansen (2013); Goeminne and Mens (2010);
Lungu et al. (2009); Hindle et al. (2010); Robbes and Lungu (2011).

7Keywords of Santos and Werner (2012b); Kakola (2010); Santos and Werner (2012a);
Costa et al. (2013); Santos (2014); Santos et al. (2013); Albert et al. (2013); Bhowmik et al.
(2014); Santos and Werner (2011a).

27

tems successful is the business or motivation that provides the incentive for the
actors to contribute to the ecosystem. Table 2.4 shows the papers that are fo-
cusing on this group, while Table 2.5 lists the most common keywords of this
category, again excluding the words “software” and “ecosystem(s)”. From that
table we note that the literature has more distributed keywords, and thus more
subjects of study, comparing to the software engineering group. The most com-
mon keywords is “develop-(ment)(er)”. Looking at the literature, we find that
apart from classifying the papers under software development (Santos et al.,
2012; Bhowmik et al., 2014; Schugerl et al., 2009), this keyword is also used in
a number of papers addressing issues related to development involvement and
motivation (Fagerholm and Munch, 2012; Ververs et al., 2011). Looking at the
keywords for “model-()(s)(ing)(ling)” we note that this keyword is used in sev-
eral different studies: Business models and issues related to that in the software
ecosystem context (Frantz and Corchuelo, 2012; Andresen et al., 2013; Handoyo,
2013) and how to model software ecosystems8.

Not surprisingly, the keyword “management” also appears in the top key-
words. Management appears as management of the software creation process
(software/project/development management)9 or as more general ecosystem as-
pects (partner/customer relationship/knowledge/software ecosystem asset/co-
creation management)10.

The keyword “network” appears as analyzing the software supply network
of software ecosystems (Handoyo et al., 2013a; Boucharas et al., 2009) but also
the social networks of actors (Santos et al., 2012; Scholten et al., 2012). These
are keywords that also relate to the last group of software ecosystem: Relations,
therefore underlining the overlap the two groups have.

The keyword “open” relates more to the applied domain of a study, like open
source, however, there are a number of studies that relate to the “openness” of
an ecosystem, i.e. how open the ecosystem for external actors (Anvaari and
Jansen, 2010; Jansen et al., 2012).

“Health” is a keyword that mainly refers to the concept of health of an ecosys-
tem, a central notion in defining the well functioning of an ecosystem (Jansen,
2014; Manikas and Hansen, 2013b; Lingen et al., 2013). In order to ensure that
a software ecosystem is functioning well, specific measurements need to be in-
troduced that would provide an overview of the state of the ecosystem while at
the same time raise attention for actions and allow comparison of ecosystems.
This concept has been introduced by Iansiti et al. as a way to measure the
performance of a business ecosystem. In more detail they measure the “extent
to which an ecosystem as a whole is durably growing opportunities for its mem-
bers and those who depend on it” (Iansiti and Levien, 2004a) and inspired from
biological ecosystems define the health of a (business) ecosystem as an analogy
to robustness, productivity and niche creation (Iansiti and Levien, 2004b; Ian-
siti and Richards, 2006; Iansiti and Levien, 2004c,a). These studies, although
excluded from the collected literature, are referenced by the literature elabo-
rating on software ecosystem health11. An additional study on the health of

8Keywords of Handoyo et al. (2013a); Costa et al. (2013); Santos et al. (2012); Mens et al.
(2014a); Handoyo (2013); Bosch and Bosch-Sijtsema (2014); Boucharas et al. (2009).

9Appearing in Bavota et al. (2013); Fagerholm and Munch (2012); Albert et al. (2013).
10Keywords of Nöhren et al. (2014); Schütz et al. (2013); Ingen et al. (2011); Mizushima

and Ikawa (2011); Albert et al. (2013).
11(Ingen et al., 2011; Angeren et al., 2011a; Berk et al., 2010; Kilamo et al., 2012; Jansen

28

business ecosystems that is referenced by several papers of the literature12 that
are elaborating on software ecosystem health, is the paper of den Hartigh et al.
(2006). Based on the Iasiti et al studies mentioned above, den Hartigh et al.
(2006) apply health measurement to Dutch IT business ecosystems. In the soft-
ware ecosystem field, Berk et al. (2010) base their work on business ecosystem
health to create a strategy assessment model. Manikas and Hansen (2013b) re-
view the literature of software ecosystem health and the literature for health in
other types of ecosystems and propose a conceptual framework for defining and
measuring the health in software ecosystems. Jansen (2014) proposes the “Open
Source Ecosystem Health Operationalization” a framework for operationalizing
the health of OSS ecosystems.

Finally, the ecosystem “governance” is a representative focus of this cate-
gory13. The proper governance of a software ecosystem will make proper use of
the ecosystem resources, enhance productivity in the ecosystem, support robust-
ness, and promote the ecosystem health. Baars and Jansen (2012) propose a
framework to analyze the governance of software ecosystems for individual com-
panies. The framework is consisted of five categories: explicitness of the ecosys-
tem, explicitness of the governance, responsibility, measurement and knowledge
sharing. Jansen et al. (2012) propose a model for measuring the degree of open-
ness of a software producing organization. The model lists five areas where the
organization can open up examined under three levels: strategic, tactical and op-
erational. One of these areas is governance, where different options for opening
up the governance are discussed for the three levels. Jansen (2013), based on the
two previous papers extract four classification factors for software ecosystems:
underpinning technology, (type of) coordinators, extension market and accessi-
bility (of the ecosystem). In continuation, they propose a governance model for
the prevention and improvement of the ecosystem health. In this model they
distinguish between a software (service) platform and a standard as the types
of underpinning technology and a community or private entity for each technol-
ogy. For the two separations (technologies and community/private entity), they
propose actions that address each of the Iansiti and Levien health measures:
niche creation, productivity, robustness Iansiti and Levien (2004c). Wnuk et al.
(2014a) apply the above governance model to the Axis Application Develop-
ment Partner (ADP) ecosystem, a hardware-centric ecosystem with product
distribution particularities, and conclude that although the above model is use-
ful in characterizing the governance of ADP, the model needs to be evolved to
capture particular aspects of ecosystems like ADP.

Software ecosystem relationships

An important part of software ecosystems is the involved actors of the ecosys-
tem and the relationships among them and with the ecosystem. This “social”
perspective of ecosystems affects and is affected to a big extend by the other
two groups. The ecosystem management can, for example, define how easy it
is for new actors to be involved in the ecosystem, the business models and mo-

et al., 2012, 2009a; Viljainen and Kauppinen, 2011; Mizushima and Ikawa, 2011; McGregor,
2010; Santos and Werner, 2011b; Boucharas et al., 2009)

12(Angeren et al., 2011a; Berk et al., 2010; Kilamo et al., 2012; Jansen et al., 2012, 2009a)
13Keywords of Albert et al. (2013); Baars and Jansen (2012); Wnuk et al. (2014a); Jansen

et al. (2012); Jansen and Cusumano (2012).

29

tivation can attract new actors, while the way software is produced and the
architecture both of the common platform but also the products can influence
the relationships of the actors and should reflect the ecosystem management. It
is no surprise that the most common keywords for this group, shown in Table
2.5, include words like “social”, “network”, “collaboration”, and “communities”.
The keyword “develop-(ment)(er)” is also one of the top keywords like in the
other two groups, but in this group, apart from the traditional software develop-
ment14, there is more social perspectives like distributed software development
(Teixeira and Lin, 2014) and global software development Santos and Werner
(2012a) and management or practices of software development (Scacchi, 2007a;
Goeminne, 2014).

The social focus on the literature appears as social networks or social as-
pects/perspectives (of software ecosystems)15 and it relates mainly to studying
the actor to actor or actor to ecosystem dependencies and interaction. Exam-
ining the relationships in an ecosystem as a network is also an approach that
is followed by papers in this category16 or looking at a more specific network
the software supply network (Angeren et al., 2011a; Handoyo et al., 2013a).
The collaboration in an ecosystem context is a relevant focus for this group17,
many times relating to software development. Another aspect of relationships in
software ecosystems is the community18, many times relating to an OSS project.

The following list gives an overview of the most common actors encountered
in the literature.

Orchestrator , “keystone (player, organization)”, “hub”, “shaper”, “manage-
ment (unit)”, or “platform owner” is a company, department of a company,
actor or set of actors, community or independent entity that is responsible
for the well-functioning of the software ecosystem. This unit is typically
managing the ecosystem by running the platform, creating and applying
rules, processes, business procedures, setting and monitoring quality stan-
dards and/or orchestrating the ecosystem’s actor relationships .

Niche player , “influencer”, or “component developer/builder/team” is the ac-
tor that contributes to the ecosystem by typically developing or adding
components to the platform, producing functionality that customers re-
quire. This actor is part of the ecosystem and complements the work
of the keystone by providing value to the ecosystem. Depending on the
management model of the ecosystem the niche players might influence the
decision making in the management of the software ecosystem.

External actor , “external developer (team)”, “third party developers or com-
munity”, “external parties”, “external partner”, “external entities”, “partic-
ipant”, or “external adopter” is the actor (company, person, entity) that

14Keywords of Howison and Herbsleb (2013); Santos and Werner (2012b); Spauwen and
Jansen (2013); Scacchi (2007a).

15Keywords of Cardoso et al. (2013); Santos and Werner (2012a,b); Seichter et al. (2010);
Goeminne (2014).

16Keywords of Cardoso et al. (2013); Santos and Werner (2012a,b); Angeren et al. (2014);
Seichter et al. (2010); Manikas and Hansen (2013a).

17Keywords of Howison and Herbsleb (2013); Tymchuk et al. (2014); Tchoua et al. (2013);
Cataldo and Herbsleb (2010).

18Keywords of German et al. (2013); Santos and Werner (2012a,b); Tchoua et al. (2013);
Goeminne (2014); Vasilescu et al. (2014).

30

makes use of the possibilities the ecosystem provides and thus providing
indirect value to the ecosystem. This actor is external to the ecosystem
management and usually has an activity limited to the actor’s interest.
Depending on the nature of the ecosystem, the external actor might be
developing on top of or parallel to the platform, identify bugs, promote the
ecosystem and its products or propose improvements. This type of actor
includes the role of the participant or follower in FOSS ecosystems. An
actor that is member of the ecosystem with either participation of limited
responsibility or simply observing the evolution of the software ecosystem
from the inside.

Vendor , “independent software vendor (ISV)”, “reseller” or “value-added re-
seller (VAR)” is mainly the company or business unit that makes profit
from selling the products of the ecosystem to customers, end-users or
other vendors/VARs. The products might be complete integrations, com-
ponents, selling or leasing of licenses or support agreements. A vendor
that is modifying a product by e.g. adding functionality or combining
different components together is called VAR.

Customer or “end user” is the person, company, entity that either purchases
or obtains a complete or partial product of the ecosystem or a niche player
either directly from the ecosystem/niche player or through a vendor/VAR.

An interesting perspective of software ecosystem relationships is the actor
participation model that ecosystems follow. Different ecosystems apply differ-
ent models for allowing actors to contribute to the ecosystem. These models
are many times related to the nature of the platform and to what extent it al-
lows/supports different kinds of collaboration, but mostly to the business model
behind the ecosystem. Molder et al. (2011) propose the evaluation of how open
or closed a platform and suggest a model for assessing it. Jansen et al. (2012)
also study how open an ecosystem is to new actors by making a separation
between the supply and demand of an ecosystem. They claim that a software
ecosystem can choose to open either of them or both. They explain that the
benefits of opening up the ecosystem are often not clear and a post-evaluation
of whether the ecosystem was ready for the changes will be reflected in the
ecosystem health after the changes have been applied.

Kabbedijk and Jansen (2011) mine the developer activity of the free or open
source software (FOSS) Ruby repository, identify three developer roles and con-
clude with proposals for improving the health of the ecosystem. In their paper,
Angeren et al. (2011a) analyze the choice of suppliers and supplier-vendor rela-
tionships the orchestrators make and identify four supplier strategies. Yu et al.
(2007) evaluate the collaboration of different FOSS projects in terms of symbi-
otic relationships.

From the perspective of FOSS, there are a number of papers studying the
FOSS participants in terms of motivation and collaboration of developers Scac-
chi (2010a); Mens and Goeminne (2011), what affects developer activity in a
project Ververs et al. (2011); Ingen et al. (2011); Krishna and Srinivasa (2011),
the organizational structure of participants Jergensen et al. (2011), and tools for
extracting information or visualizing participant activity Lungu et al. (2010a,
2009); Goeminne and Mens (2010); Neu et al. (2011).

31

2.2 Summary

In this chapter we introduce and explain the notion of software ecosystems.
We define software ecosystems using the definition proposed in Paper 1, which
takes into consideration the existing definitions and different groupings of soft-
ware ecosystems. Moreover, we conduct a literature overview expanding on the
literature review of Paper 1 and demonstrate that the field has increased signif-
icantly in the past two years with 109 new research papers giving a total of 199.
Furthermore we identify an early indication of the field becoming more mature
with an increase of ‘empirical models’ within the last two years. Finally, we
analyze the literature of the three main literature groups: software engineering,
business and management, and relationships.

32

Chapter 3

Praxis: Telemedicine
ecosystem

In this chapter, we define and analyze the applied domain of this project: the
Danish telemedicine ecosystem. Telemedicine services in Denmark are part of
the country’s healthcare services and thus, there is a big overlap in terms of
organization, financing, and possibly IT systems. Therefore, in order to define
and analyze the telemedicine ecosystem, we first analyze Danish healthcare.
In continuation, we analyze the telemedicine ecosystem in two ways: firstly, we
explain the“current”telemedicine ecosystem, the ecosystem before the Net4Care
and 4S influence (and thus, also this PhD project’s influence), identifying that
it is not a software ecosystem (Section 3.2.1) and secondly how the ecosystem
has changed during the project and towards becoming a software ecosystem
(Section 3.2.1).

To analyze the telemedicine ecosystem, we use the concept of software ecosys-
tem architecture, proposed in Papers 1 and 6. A software ecosystem architecture
is defined as “the set of structures needed to reason about the software ecosys-
tem, which comprise actor and software elements, relations among them, and
their properties” (Christensen et al., 2014). According to this approach, a soft-
ware ecosystem may be analyzed through three structures: the organizational,
business, and software structure.

The organizational structure contains elements related to the organization
and governance of the ecosystem or the elements forming the ecosystem (e.g.
actor and software elements). Part of the organizational structure can be the
network of actors (such as developers, orchestrators, or distributors) or software
components, the borders of the ecosystem, the social networks of actors and
software1, or the way the ecosystem is governed.

The business structure is related to the creation, delivery, and capture of
value in the ecosystem. ‘Value’, refers to the benefit an actor gets from the
ecosystem, such as monetary revenues or recognition. The business structure can
be described through the business models serving the actors in the ecosystem,
actor motivation and incentives, or revenue streams in the ecosystem.

The software structure is related to the design, development, and main-

1Social behavior of software denotes interaction between software elements, such as depen-
dencies, data sharing, and interoperability

33

tenance of applications, services, and other types of software elements in the
ecosystem. Part of the software structure is the software components or the
software platform, while a software architectural description can be used to
describe the software structure.

In the sections below, we use the concept of software ecosystem architecture
and the three structures explained above to first describe healthcare in Denmark
and then characterize the telemedicine ecosystem. We apply the structures
of software ecosystem architecture to Danish healthcare, although we do not
examine it as a software ecosystem. This is done to help understanding the
telemedicine ecosystem better since it is heavily based on general healthcare.
Thus the following chapter serves as background to the telemedicine ecosystem
analysis.

3.1 Danish healthcare

Human health, although difficult to define, is claimed possible to be assessed
by setting a number of parameters that identify a “healthy” condition or point
to an “ill” condition (Schaeffer et al., 1988). The different parts and functions
of the human body (and mind) can be interdependent to a great extent so that
a condition on one part of the body can affect other parts. The treatment of
human health, however, or rather the lack of health (i.e. disease or condition),
does not seem to fully commit to the same principle. Healthcare services are
compartmentalized into different sectors. These sectors, although they, as a
general rule, accept the co-influence of each other, are only specialized in their
own sector and tend to treat different conditions as separate instances only
affecting the specific sector. Thus, a patient with diabetes that her condition
has been affecting her nerve system and vision, should be treated separately
by a dietician, a neurosurgeon, and an ophthalmologist, while changes in her
condition observed by one specialist might not necessarily propagate to the rest.

This compartmentalization is also demonstrated by the task of the patient
“hand over”. Patients that need to be transferred across healthcare departments
or healthcare professionals, have their information and control or responsibility
handed over between health professionals. This process, although common, is
many times criticized for lack of standardization and disregard to patient safety
(Cohen and Hilligoss, 2010).

Naturally, the compartmentalization of healthcare in Denmark affects to a
big extent the organizational structure of Danish healthcare, and this is also
reflected to the business and software structures. In the following sections, we
provide an overview of the three structures in Danish healthcare.

3.1.1 Organizational structure

The healthcare system is fairly decentralized and consists of three administrative
levels: the state or government, the regions, and the municipalities. An overview
of the organizational structure and administration of the Danish healthcare can
be seen in Figure 3.1.

State level The Ministry of Health and Prevention governs the regional and
municipal organization and management of healthcare. This state-wide

34

Medical Officers

National Board of Health

Danish Medicines Agency

The National Serum Institute

The National Agency for
Patients' Rights and
Complaints

Knowledge and Research Centre
for Alternative Medicine

The Danish National Committee for
Biomedical Research Ethics

The Danish Council of Ethics

The National Board of E-health

The Danish Evaluation
Institute of Local Government

The Kennedy Centre

The regional state administrators

Ministry of Health
and prevention

Private hospitals & clinics

Pharmacies

Primary care providers

Privately owned

Disease prevention and
health promotion

Child preventive care

Nursing homes and home care

Treatment of drug and
alcohol abuse

Dental care for children and
disabled people

Social psychiatry

Rehabilitation

Municipalities

General public and
psychiatric hospitals

Prenatal Centers

Community psychiatry

Special institutions for
disabled people

Regions

Danish Healthcare

Figure 3.1: Danish healthcare organizational structure (taken from Olejaz et al.
(2012)).

administration level governs in areas including medication, vaccination,
in-vitro diagnostics, e-health, and biomedical research ethics.

Regional level There are five geographical regions each owning and running
hospitals and finance private practitioners. They are responsible for the
healthcare services provided in the region as well as the regional organi-
zation and funding.

Local level There are 98 municipalities that are locally responsible for preven-
tion, health promotion and rehabilitation. Furthermore, the local level is
also responsible for health-related services such as home care and care in
nursing homes.

From the perspective of the provided services, the Danish healthcare system
is divided into three sectors: the primary sector, that is responsible for preven-
tive healthcare and practicing diagnosis and treatment, and the secondary and
tertiary sectors that provide specialized care. The primary sector consists of
private practitioners (e.g., general practitioners (GPs), specialists, and dentists)
and municipal/local health service providers, while the secondary and tertiary
sectors are mostly concentrated in hospitals. (Danish Ministry of Health and
Prevention, 2008).

3.1.2 Business structure - financing

In the Danish welfare state, which serves as an example of the “universal model”
(Esping-Andersen, 1990), citizens have access to a number of tax-funded services
provided by the state. That is also the case with healthcare: most Danish

35

84%

14%

2%

Government expenditure
Out of pocket payments
Voluntary health insurance

Figure 3.2: Danish healthcare expenditure by sources for 2007 (take from Olejaz
et al. (2012)).

healthcare services are provided to the citizens without direct payment for the
service they receive, since healthcare is funded by tax. This excludes private
services not included in the state funding, such as the dental care and private
hospitals. These count for less than 20% of the total health expenditure (Olejaz
et al., 2012). The services included in the state funding are funded from two
different kinds of taxes related to healthcare: the municipality tax, paid to
the municipalities (that is, among others, funding the municipalities’ healthcare
activities) and the “health contribution” tax paid to the state. The regions, that
are the main healthcare provider is funded by 80% from the state and 20% from
the municipalities (Andersen and Jensen, 2010). Their funding is a combination
of block grants (86% in 2011) and activity funding (14% in 2011) (Olejaz et al.,
2012).

Figure 3.2 provides an overview of the sources for the Danish healthcare
expenditures in 2007. Government expenditure covers the biggest percentage of
healthcare expenditure, while there is a small percentage of citizen expenditure,
mainly for dental services, medication prescribed outside the hospitals, and
glasses. Citizens can obtain a voluntary health insurance to cover some of their
expenditures (Olejaz et al., 2012).

3.1.3 Software structure - digitalization

Denmark is considered one of the leading countries in health IT (Bhanoo, 2010;
The Economist, 2011). The primary healthcare sector with the general practi-
tioners (GPs) has a high level of digitalization and standardization of commu-
nication. Since 2004 all GPs use systems connected to a national network that

36

enables them to send and receive electronic clinical data to and from a number
of healthcare actors among them specialist doctors, hospitals, pharmacies and
other GPs (Protti and Johansen, 2010). In 2010, 90% of the clinical commu-
nication between primary and secondary sector was electronic (Olejaz et al.,
2012).

The secondary sector has a wider range of actors, specializations, and types
of information to be managed. There are a number of systems and applications
that support and promote the exchange of healthcare-related information, al-
though not necessarily specific to the secondary sector. Below we provide three
examples of these systems.

Sundhed.dk The portal Sundhed.dk is the “official portal for the public Dan-
ish Healthcare Services” aiming to enable “patients and healthcare profes-
sionals to find information and communicate” (Sundhed.dk, 2014). Sund-
hed.dk is managed by the ministry of health and prevention, the five re-
gions, and KL, the interest group and member authority of the Danish
municipalities.

Shared Medication Record (FMK) An online service that aims at provid-
ing citizens and healthcare professionals with access to citizen medication
and vaccination (SSI, 2014a).

Healthcare Data Network (SDN) A secure communication network ena-
bling the exchange of patient information between healthcare actors such
as hospitals, GPs, laboratories, and pharmacies. It was established in
2003 and is managed by the state-controlled information standardization
organization MedCom (MedCom, 2014a).

Although Denmark demonstrates a high level of digitalization in healthcare,
things are far from perfect. Danish healthcare IT systems are characterized by
lack of coordination (Rudkjøbing et al., 2012) and fragmentation (Kierkegaard,
2013). Healthcare IT systems in this country of roughly 5.6 million inhabitants
is divided into five administrative regions having implemented four different
electronic medical records (EMRs) (Kierkegaard, 2013), while critique on the
current management of healthcare is that “perverse financial incentives” are
“barriers to integration” (Rudkjøbing et al., 2012). This is also supported by
the expensive record on failed healthcare digitalization initiatives such as G-EPJ
and the National Patientindex (Kierkegaard, 2013; Aanestad and Jensen, 2011;
Lund, 2013).

3.2 The Danish telemedicine ecosystem

In this section, we characterize the Danish telemedicine ecosystem in relation
to the healthcare ecosystem both before the influence of Net4Care and 4S, ref-
ereed to as the “current telemedicine ecosystem”, and after the influence of the
projects and towards the establishment of a software ecosystem. We define the
Danish telemedicine ecosystem as the actors, (software and hardware) compo-
nents, services, and their relationships evolved from the telemedicine services of
Danish healthcare. Telemedicine can be defined as the “delivery of health care
services, where distance is a critical factor, by all health care professionals us-
ing information and communication technologies” (World Health Organization,

37

2010). The telemedicine, ecosystem, therefore, is an ecosystem that provides
solutions (products or services) aimed at facilitating the prevention, diagnosis,
and treatment of patients.

In the following sections, we use the three structures of software ecosys-
tem architecture and expand on the telemedicine-specific particularities of the
healthcare analysis.

3.2.1 Current telemedicine ecosystem

Organizational structure

In order to define the organizational structure of the ecosystem, we analyze the
actors of the ecosystem from two perspectives: the actor structure and actor
function. We are inspired by research on natural ecosystems where Schaeffer
et al. (1988) separate between the different ecosystem measures to measures of
structure and function. Measures of ecosystem structure measure elements that
affect the structure of the ecosystem such as the number of species that form
part of the ecosystem and the kinds of organisms, while measures of functions
focus on measures that affect the function of the ecosystem such as the activity
or production of the species.

The actor structure of the telemedicine ecosystem largely follows the actor
structure the general healthcare. Most of the organizational actors identified in
Section 3.1.1 such as the ministry, the regions, or the municipalities, are also
organizational actors in the telemedicine ecosystem. Naturally apart from the
organizational actors, the ecosystem includes actors developing and maintain-
ing technical systems and infrastructures or actors responsible of the project
management. We identify the following actor roles:

Developing actor. Actors that are involved in the ecosystem with a specific
task. Tasks such as application development, application maintenance, applica-
tion support, project management, or supply of related assets or services.

Host. Actors that are responsible for hosting telemedicine applications. This
kind of organizations typically represents the product owner and customer or
end user.

Orchestrator. Actors involved in the governing body of the ecosystem typi-
cally responsible for the technological platform(s).

If we look at the actor function in the ecosystem, we separate the actors
into keystones or dominators (Iansiti and Levien, 2004b). A keystone is an
actor that is essential to the ecosystem and potential extinction of a keystone
would have consequences for several actors or even the whole ecosystem. The
keystone supports the prosperity of the ecosystem through actions that result in
the benefit of other actors or the whole ecosystem. A dominator, on the other
hand, is similar to a keystone but has the tendency to grow in size by eliminating
surrounding species. The roles of the eliminated species in the ecosystem are
then either taken over by the dominator or disappear from the ecosystem. The
dominators are harmful for the ecosystem’s health as they reduce the ecosystem
diversity and thus affect niche creation. In Paper 5 we characterize the function
of the most influential actors of the telemedicine ecosystem and show that some
can have both keystone and dominator functions. Moreover, we observe the
tendency of having several actors involved in only one application (specialized
actors). That is a sign of high diversity in the ecosystem that supports niche

38

creation and could promote the health of the ecosystem.
Additionally, another point that affects the organizational structure of an

ecosystem is the ability of the ecosystem to introduce new actors (i.e. how open
or closed the ecosystem is to new actors). In order to analyze how open the
ecosystem is to new actors, we make a separation between the three actor roles:
developing actors, hosts, and orchestrators.

The involvement of developing actors is done, as we discuss in Section 3.2.1,
either with a call for tenders where the actor with the accepted tender is ap-
pointed for the required task, or for services with cost lower than 500, 000 Danish
crowns through direct contracting. The ecosystem is relatively closed to external
developing actors: the ecosystem allows new developing actors to be involved
but the new actors are subjected to an acceptance rate (usually one out of the
applicants) and following a procedure of submitting a tender that might prove
time and resource demanding.

The ecosystem is closed to new host organizations: there is currently a num-
ber of hospitals and municipalities that can be used as hosts in telemedical
projects. Orchestrators can decide to include other organizations as hosts if
there is a need. Moreover, in some cases, a developing organization might also
serve as an application host. In that case, the ecosystem is almost as open to
hosts of this kind as to developing organizations, but with the additional restric-
tion that the host should commit to privacy and security regulations concerning
healthcare data. Traditional hosts such as hospitals are also committed to these
regulations as this is part of the everyday work in a hospital.

The ecosystem seems to be completely closed to orchestrators with rare
exceptions. As we discuss in later sections, since the ecosystem does not have
one common technological platform, the assessment of how open the ecosystem is
to organizations of this role is not possible. Orchestrators of existing platforms
that are not specific for the ecosystem or widely used in the ecosystem (e.g.
National Service Platform and Healthcare Data Network) have been introduced
by appointment of state level organizations but these platforms are few and this
seems more like exception to rule rather than a systematic inclusion of actors.

Business structure

Using Section 3.1.2 as a background, we note that in the telemedicine ecosystem
the most common way of developing an application or system is to have a project
initiated that addresses a specific issue. In such a project, the orchestrator is
mostly represented by the region(s) or the state, the users (or part of them) by
one or several hosts and the project is developed by one or several developing
actors. The activities and actors are funded by the involved regions while the
end users (patients, clinicians) are external to the funding process.

Following these revenue streams, the telemedicine ecosystem actors demon-
strate symbiotic relationships both among themselves but also with the ecosys-
tem. The regions and the state have a specific amount of money to invest and
it is up to management (or orchestrators) to delegate the funding to the ap-
propriate projects. A project getting over budget, or a hospital investing in
implementing a premise-specific solution to a problem that is faced by other
actors can be characterized as dominator activity, since it is reserving funding
that could be used to the benefit of more actors.

At the same time all actors benefit from the well functioning and success

39

of the ecosystem as a whole. The telemedicine ecosystem might seem robust
as it is funded by the state. However, private healthcare is increasingly taking
over services from the public with the private hospital activities increasing by
2% over the total healthcare activities in the years from 2002 to 2010 and the
number of patients treated in private hospitals increasing by 134, 721 for the
same years (Sundhedsstyrelsen, 2011).

Software structure

The software structure of the telemedicine ecosystem is characterized by hun-
dreds of uncoordinated, small projects, each developing their own solution, in-
cluding infrastructure. Those solutions are most often not able to share data,
due to the lack of common infrastructure, and they most often disappear when
the resources of the project are consumed. This has resulted in more than 350
current telemedicine initiatives (MedCom, 2013) of which the minority are in
production. This is also demonstrated in Paper 5 where we graph the rela-
tionships between actor and telemedicine application for the Capital Region of
Denmark. This study reveals a set of sparsely allocated clusters with low con-
nectivity among them. Furthermore, it shows that on average one application
connects to less than one (0.72) application, while the most influential applica-
tions (according to their node degree) usually do not connect. This view of low
interoperability is also supported by the project based call for tender involve-
ment of developing actors, where different actors are involved according to their
ability to perform a task creating specialized solutions.

When examining the platform of the ecosystem, we note that Danish health-
care includes common technological platforms for secure communication, video
communication, and service-oriented computing (the “Danish Healthcare Data
Network” (SDN) (MedCom, 2014a), the “Healthcare Video Hub” (VDX) (Med-
Com, 2014b), and the “National Service Platform” (NSP) (SSI, 2014b) respec-
tively). These platforms have, however, not been built for purposes of teleme-
dicine (with patients directly involved in use), and thus, we notice the lack of
a widely used, common platform for telemedicine applications. Applications
might be using the same systems (like identifying patients through their civil
registration number) but the solutions are mainly ad hoc, which points to the
problems in the development and implementation of telemedicine applications
investigated in this thesis.

Not (yet) a software ecosystem

Examining the characterization of the telemedicine ecosystem, we note that
it deviates from the definition of a software ecosystem of Chapter 2. That is
mainly because the software structure, as noted in the previous section, lacks a
common technological platform while the existing platforms in the telemedicine
ecosystem are not telemedical platforms per se. This is a big part of the problem
that this PhD project is focusing on. In this thesis we focus on the telemedicine
ecosystem specifically, as it is defined in the beginning of this chapter, and do
not examine telemedicine as part of the general healthcare services, because
we identify that the domain of telemedicine has some particularities separating
it from the general healthcare domain. However, we argue for the telemedicine
ecosystem being an ecosystem since the actor structure commits to an ecosystem

40

structure as they have symbiotic relationships among them, while their survival
in the ecosystem depends on the survival of the ecosystem as a whole.

3.2.2 Towards a Danish telemedicine software ecosystem

During this PhD project the current telemedicine ecosystem was characterized,
as noted in the previous section, by the lack of a common technological platform.
This was part of the problem that the Net4Care project was focusing on. The
Net4Care project, investigated the design and development of a common plat-
form that would address three main issues in the development of telemedicine
applications: lack of integration, low buildability, and lack of reuse. The output
was the Ne4Care platform (Net4Care, 2014) that was based on the following
architectural decisions:

• Information resources primarily in the form of open source well proven and
tested tutorials on the web site http://www.net4care.org to shallow the
learning curve for developers.

• Reference implementation as open source.

• Staged testing environment, which provides a simple isolated test envi-
ronment for fast development that seamlessly can be migrated into a full
operational environment.

• Clinical standards used at the back tier for storage format (Continua Al-
liance Personal Health Monitoring Record (PHMR) (HL7, 2010) which is
a HL7 “Clinical Document Architecture” standard (Boone, 2011)) as well
as for database system (XDS.b Cross-Enterprise Document Sharing (IHE,
2013) which is a standard for clinical storage systems).

The establishment of Net4Care as a common infrastructure for the imple-
mentation of telemedicine application would change the software structure of the
ecosystem. Telemedicine applications would be developed on top of Net4Care,
thus the software dependency graph would be clustered around the platform.
Additionally, the platform would take care some of the common functionality,
like storing healthcare data, that would be normally handled by each telemedi-
cine applications separately.

The Net4Care platform would bring the telemedicine ecosystem closer to a
software ecosystem. However, in order for the telemedicine ecosystem to become
a software ecosystem, apart from changes to the software structure (with the im-
plementation of a common platform), the organizational and business structures
have to be adapted. The establishment of a common platform would require an
actor or a set of actors to manage it and serve as additional orchestrators. This
proves to be a challenging task due to the fragmentation in the organizational
structure: in order for the platform to be the common platform of the ecosystem
it should be accepted by all the existing orchestrators in the ecosystem (such
as state and regions), while it might be hard to reach a consensus between the
orchestrators on who to manage the platform. At the same time, the organiza-
tional and business structure did not provide incentives to developing actors to
use the platform unless the platform became the established common ecosystem
platform. These issues gave ground to the establishment of the 4S organization,

41

an organization that would take the role of an orchestrator responsible for the
following tasks:

• Platform management. Be responsible for managing the platform, main-
taining it in a state that would continue to provide value to the actors
and the ecosystem as a whole, and commit to reflecting the governance
applied from the rest of the ecosystem orchestrators (e.g. state, regions).

• Promote healthy ecosystem organizational characteristics. Support ecosys-
tem variability and robustness reflected from the actor and software ac-
tivity.

• Invest in community building. Support the establishment of a community
around the telemedical ecosystem including domain actors such as doctors
and medical care personnel and thus supporting the ecosystem robustness
and productivity.

3.3 Summary

In this chapter we describe the telemedicine ecosystem. We follow the ap-
proach of software ecosystem architecture and the three structures that model
a software ecosystem, proposed in Paper 6: organizational, business, and soft-
ware structure. We identify that the telemedicine ecosystem, since part of the
Danish healthcare, has a big overlap of structures with the Danish healthcare.
Therefore we initially analyze the organizational, business, and software struc-
tures of Danish healthcare that are relevant to the telemedicine ecosystem and
in continuation we analyze the telemedicine ecosystem. We do so by analyzing
the telemedicine ecosystem in two snapshots: the current ecosystem as it was
before the influence of the Net4Care project and 4S organization (and, thus,
also the influence of this PhD project) and after, towards a software ecosys-
tem. We describe the current telemedicine ecosystem as a relatively closed to
external actors ecosystem, that mainly consists of three actor roles: developing
actor, host, and orchestrator. We identify high actor diversity that could tenta-
tively indicate ecosystem robustness as a means of preserving ecosystem health.
We find that the business structures support our findings of the organizational
structure and we identify that although funded from the state and thus robust,
the ecosystem is facing an increase of private healthcare that might challenge
the ecosystem probability of survival. Furthermore, we identify that the ecosys-
tem is characterized by the lack of a common technological platform, a fact that
makes the ecosystem deviate from the definition of a software ecosystem.

When examining the influence of this project to the telemedicine ecosystem,
we identify that the Net4Care project is addressing the lack of platform and
serves as the first step towards the establishment of a software ecosystem. The
4S organization can be considered as a following step, by managing the platform
and focusing on the lack of social networks and communities in the ecosystem
in a way that would promote the health of the under establishment software
ecosystem.

42

Chapter 4

Conclusions

In this chapter we conclude on the work of this PhD project. To do so, we
summarize the contributions of this project separating them into contributions
to the theory of software ecosystems and to the domain of the telemedicine
ecosystem. We discuss aspects not analyzed and limitations of our studies,
elaborate on future work, and conclude.

4.1 Contributions

4.1.1 Software ecosystems

The field of software ecosystems is the main theoretical domain that this project
is based on. Thus, a main part of the contributions of this project is to this
domain. This is also indicated by the included papers as all of the papers con-
tribute to the field of software ecosystems. Our contributions to this field cover
several aspects of software ecosystems. From one side there are contributions to
general aspects of software ecosystem such as providing an overview, defining
the field, and proposing means to analyze or construct whole ecosystems. While
from the other side, there is focus on more specific aspects such as defining
ecosystem health, measuring the governance influence to health, graphing social
networks of actor and component interaction, and identifying important actors
or software components. Below, we explain the contributions for each of the
included papers.

Paper 1

Paper 1 is the first and only, according to our knowledge, systematic literature
review of the whole field of software ecosystems. In this study, we review the
published literature on software ecosystems up to June 2012. In total we review
90 papers out of a gross list of 420 according to our review protocol that fol-
lows the guidelines of Kitchenham and Charters (2007). This study provides an
overview of the field. It contributes to the field of software ecosystems by iden-
tifying and analyzing the different definitions of software ecosystems and the
different groupings or perspectives in the definitions, while proposing a com-
prehensive definition that includes the different aspects of software ecosystems.
Furthermore, it proposes analyzing software ecosystems by using the concept of

43

‘software ecosystem architecture’ and identifies three logical groups in software
ecosystems: software engineering, business and management, and relationships.
Finally, it identifies that almost half of the literature does not study existing
software ecosystems, while the majority of the papers studying existing soft-
ware ecosystems are examining open source ecosystems. This implies that they
are having a more technical and possibly social focus and potentially excluding
business perspectives and applying somewhat different governance approaches.

Paper 2

Paper 2 contributes to addressing the lack of empirical studies identified in
the literature review by studying two software ecosystems in Apache Maven
Repository, the repository of Maven, a build automation tool. In this study
we investigate the dependencies and interaction between the software elements
of a software ecosystem, and graph them as a network of software elements.
To analyze this social network, we take inspiration from the analysis of nat-
ural ecosystems as graphs through “network ecology” (Jordán and Scheuring,
2004) and investigate software ecosystems using metrics from network ecology.
Furthermore, we use the PageRank (Brin and Page, 1998) algorithm to study
the structure of software ecosystems. We define the concept of an ecosystem
“neighborhood” and study each of the two ecosystems according to their neigh-
borhoods. Finally, we propose the use of a “keystone index” and PageRank as
means of identifying the most influential software components in an ecosystem
and provide the means for comparing two similar ecosystems.

Paper 3

In Paper 3, we continue on the idea of measuring software ecosystems by focus-
ing on establishing measures for the quality of the ecosystem. In particular, we
focus on the concept of “health”of a software ecosystem. In this study we review
the software ecosystem health literature and, using the “snowballing technique”,
we review the literature that inspired the software ecosystem health literature.
In total, we review 23 papers from four different fields: software ecosystems,
business ecosystems, natural ecosystems, and open source software. We identify
that the majority of the software ecosystem literature (11 out of the 13 papers)
is inspired by the health of business ecosystems and more specifically the defi-
nition of Iansiti and Levien (2004a,b,c) and Iansiti and Richards (2006), who in
their turn are inspired by natural ecosystems. Moreover, we identify two main
differences between software ecosystems and business and natural ecosystems,
as they appear in our literature: the fact that the actor is not the product per se
and that there usually exists an orchestrating entity. Furthermore, as the main
contribution of this work, we propose a conceptual framework for the definition
of health in software ecosystems that consists of three components: ‘actors’,
‘software’, and ‘orchestration’. The actor influence over the ecosystem health is
by both the collective health of each actor and the influence of the actor inter-
action network. Similarly, the software influence over the ecosystem health is
by the collective health of each software element and the influence to the health
of the software network of interaction. In the case of software, however, there
is a software element that has special influence to the ecosystem health: the
common platform. The common platform is highly influential, as by definition

44

connects to all the software products, and can serve as means, but not the only,
for the orchestrator to apply orchestration acts.

Paper 4

In Paper 4 we focus on how software ecosystems are governed. We apply the
governance model proposed by Jansen and Cusumano (2012, 2013) to the Ap-
plication Development Partner (ADP) software ecosystem evolved around the
products of Axis, a network video and surveillance camera producer. Our ini-
tial contribution is to define a“hardware-dependent”ecosystem as the ecosystem
where hardware plays a dominant role in the value creation process and where
the customers purchase hardware devices with software installed on them. To
the best of our knowledge, no previous study has evaluated the governance of
a hardware-dependent software ecosystem. Our results reveal that although
the governance actions do not address the majority of the applied governance
framework of Jansen and Cusumano, the ADP ecosystem is considered by its
participants as a growing ecosystem providing opportunities for its actors. This
could be explained by the fact that Axis, as the orchestrator and the platform
owner, does not address productivity and robustness of the ecosystem, but has
a network of vendors and resellers to support it. Moreover, several of the gov-
ernance activities (e.g. communication) are achieved by non-formal means. We
contribute to the study of software ecosystem governance by identifying per-
spectives that the existing governance framework does not cover. This serves as
input to improve the framework in order to cover a wider range and different
aspects of software ecosystems and come closer to a more efficient evaluation
of the ecosystem governance in a way that would support the health of the
ecosystem.

Paper 5

Focusing more on the applied domain of this project, Paper 5 is studying a part
of the telemedicine ecosystem, the telemedicine services of the Capital region,
the biggest in terms of population of the five healthcare regions of Denmark. In
this study, we characterize part of the telemedicine ecosystem by studying the
interaction of actors and telemedicine applications (software). We are inspired
by the influence the actor and software networks have in the ecosystem health as
analyzed in the health framework from Paper 3 and use the PageRank algorithm
to measure the importance of nodes (actors and software components) applied
in Paper 2. We establish a method for this study, where we define two actor
roles specific to the ecosystem and ways of characterizing actor contributions.
To our knowledge, there is no previous study that conducted a quantitative
analysis of the actors of a non open source software ecosystem. Related work
shows social analysis of open source ecosystems but we argue that the social
networks of actors and software of proprietary ecosystems are different. Our
study revealed, by analyzing the social networks of the ecosystem, that it is
possible to deduct essential information about the ecosystem functioning that, if
addressed properly, might lead to better supporting the health of the ecosystem.

45

Paper 6

Finally, in Paper 6 we focus on how to analyze existing software ecosystems
but also how to design new ecosystems. We are inspired from Paper 1 and ex-
pand the definition of “software ecosystem architecture” as the “set of structures
needed to reason about the software ecosystem, which comprise actor and soft-
ware elements, relations among them, and their properties”. We identify three
structures as essential to reason about the software ecosystem: organizational
structures, business structures, and software structures and identify the main el-
ements and their relationships for each structure. Furthermore, we demonstrate
how this concept can be used to analyze an existing ecosystem and to design a
new ecosystem. We analyze an existing ecosystem by applying the architecture
to the Danish telemedicine ecosystem. Moreover, we design a new ecosystem
where we analyze the ecosystem under-development around the Net4Care and
OpenTele platforms and the 4S organization as an orchestrator.

Concluding theoretical contributions

Concluding our contributions to the field of software ecosystems we examine
the research questions related to the theoretical domain. To address Research
Question (ii), “How can the concept of ‘software ecosystems’ be defined, and
how can software ecosystems be analyzed and modeled?”, we take the following
steps: (a) we define software ecosystems by analyzing all the definitions in
the literature, including the different perspectives of the definitions and (b) we
propose the analysis and modeling of software ecosystems using the concept of
software ecosystem architecture, which consists of the organizational, business,
and software structures. We demonstrate the use of our concept by applying it
first to the telemedicine ecosystem and then demonstrating the steps towards
the establishment of a software ecosystem in the telemedicine ecosystem. Part
of the analysis of the organizational (and indirectly software) structure includes
the study of the (social) interaction between actors, software, and between actors
and software. This analysis is initially inspired by natural ecosystems and the
theories of network ecology and we have first applied them on the open source
ecosystems of Apache Felix and Eclipse Equinox.

In order to address Research Question (iii), “How can we define and measure
the qualities of a software ecosystem?” we take the following steps: (a) we
identify the use of the concept of ‘software ecosystem health’ in the literature
as means of describing the quality of an ecosystem. (b) We conduct a literature
analysis of the health in software ecosystems and fields that inspired the software
ecosystem health. As a result, we propose a framework for defining the health of
a software ecosystem. (c) We identify software ecosystem governance as having
influence on the ecosystem health and apply an existing governance model to a
hardware-dependent ecosystem with particularities in the orchestrator business
models. Our conclusions identify areas where the existing model could improve.
Concluding Research Question (iii), the quality of a software ecosystem can
be expressed as the health of the ecosystem, influenced by the health of each
individual actor, the actor interaction, each individual software component, the
component interaction, the common platform, and the orchestration. Moreover,
an aspect influencing orchestration and, thus the health of the ecosystem, is the
governance of the ecosystem and the extent that it promotes healthy activity.

46

This project has a number of additional contributions to the theoretical field
that is not part of the included papers. In Syeed et al. (2014) we study the
Ruby ecosystem, the open source ecosystem developed around the Ruby pro-
gramming language, to reveal possible socio-technical congruence, i.e. whether
there is a correlation between the coordination of the ecosystem actors and the
coordination of the software components. Our findings reveal that there is a
low congruence in our ecosystem while our interpretation of the findings is that
the ecosystem is too big for the actors to have intensive communication outside
their projects scope.

Moreover, in Manikas et al. (2014) we examine app store governance mech-
anisms for mission critical (our case being healthcare) apps. In this study we
study four cases of app governance in the healthcare field and propose a model
for the analysis of apps consisting of three categories: aim, impact, and revenues,
We apply our model in apps of the healthcare and wellness domain and propose
three governance mechanisms according to the assed risks the apps pose.

4.1.2 Danish telemedicine

The problem that this project is investigating is positioned in the Danish tele-
medicine, the applied domain of this thesis. The contributions in the theoretical
domain of software ecosystems also related, directly or indirectly, to the appli-
cation of software ecosystems to the Danish telemedicine. Below, we explain the
main contributions to the applied domain. Two of the included papers, Paper 5
and Paper 6, have direct contributions to the telemedicine ecosystem while we
also describe shortly the contributions of the Net4Care project and 4S initiative.

Paper 5

As explained in the previous section, in Paper 5 we characterize the Danish
telemedicine ecosystem. To do so, we explain the ecosystem by defining the
ecosystem domain and borders and analyze its main elements: the set of actors
and organizational structure of the healthcare in Denmark that is applicable
to our ecosystem, the business models and financing of the activities of the
ecosystem, and the software elements. We note that the ecosystem, at the time
of study, is characterized by the lack of a common technological platform, thus
not falling under our definition of a software ecosystem. However, we argue for
the use of software ecosystem theories in analyzing the telemedicine ecosystem
for two reasons: (i) the actor structure commits to a software ecosystem actor
structure both in terms of symbiotic relationships, business models motivating
them and having as products software and services and (ii) we identify that part
of the problems in the telemedicine ecosystem is due to the lack of a common and
widely used technologic platform. Thus, studying the telemedicine ecosystem
as a software ecosystem points to issues for improvement in the ecosystem.

We analyze the telemedicine actor and software interaction of the Capital
healthcare region of Denmark. In total we graph 28 applications, 109 actors,
and 182 connections among them. Our graph shows clusters around the tele-
medicine applications with low connectivity among the applications (0.72 per
application), while the biggest, in terms of node degree, applications of the graph
are not connected. Moreover, we noted that each actor is mainly connected to
one application (1.52). This implies specialized actors, actors with a specific

47

task in the ecosystem, and denotes a high level of variability thus promoting
the ecosystem health. Furthermore, when looking at the most influential ac-
tors we discover activity both beneficial and harmful for the ecosystem. The
organization MedCom, a non-profit, state-established and -funded organization
has the role of creating standards, project management and quality assurance
of telemedicine applications, thus providing value to the surrounding actors by
supporting and assisting their work. This activity is characterized as beneficial
(keystone) to the ecosystem. On the other hand, Hvidovre hospital, is the most
influential host actor and has among its hosted applications three applications
for which the hospital is the only host and that seem to be developed specifically
for that setting. This is characterized as harmful (dominator) activity for the
ecosystem as this actor is reserving common funds for local implementation of
a solution to a problem faced by several host actors.

Paper 6

In Paper 6 we expand on the work of Paper 5 and analyze the telemedicine
ecosystem as a whole. We do so by using the approach of the software ecosystem
architecture and investigate how to analyze existing ecosystems and design new,
as explained previously. In this study we analyze the organizational structure
of the telemedicine ecosystem by identifying the main actors of the ecosystem,
defining three actor roles specific to the ecosystem, and analyzing how open the
ecosystem is for each of the actor roles. Furthermore, we analyze the business
structure of the ecosystem by explaining the process of actor involvement to the
ecosystem and analyzing the business model of a popular telemedicine project.
Finally, we analyze the software structure by analyzing the existing systems and
identifying the main issues in the existing structure.

In continuation, we analyze the design of a software ecosystem around the
telemedicine ecosystem using again the approach of software ecosystem architec-
ture. In the software structure there will be the Net4Care platform supported
by the OpenTele, while in the organizational structure the establishment of the
4S organization will serve as an orchestrator of the ecosystem managing the
platform and enabling actor involvement. Moreover, we explain how the busi-
ness models around the telemedicine ecosystem are modified. In the following
sections, we explain the contributions of the Net4Care and 4S in more detail.

The Net4Care project

A contribution that is not strongly highlighted in the included papers, is the
Net4Care project. The Net4Care project was initiated focusing on some of the
same problems behind this PhD project: the technical challenges behind the
development and the adoption of telemedicine technologies in Denmark. More
specifically, it was focusing on three issues identified in the telemedicine sys-
tems: lack of integration, low buildability, and lack of reuse. Investigating the
approach of building a software ecosystem, we initiated by designing an infras-
tructure that would serve as a common technological platform to facilitate the
evolution of a software ecosystem. Some of our scenarios included ways of ena-
bling different actors for the ecosystem and we focused especially in enabling
small and medium businesses (SMBs) to contribute to the ecosystem under con-
struction as means of increasing ecosystem productivity, fostering innovation,

48

and enhancing the popularity of telemedical application development. The main
focus of the platform design can be summarized as (i) the option of a reference
implementation instance for easier client development, (ii) the existence of infor-
mational resources by means of “hello world” examples, how-to’s and tutorials
to shallow the learning curve of new developers, (iii) isolated test environments,
and (iv) use of existing and common clinical standards. The outcome of this
study is the Net4Care open source platform both implemented and as a ref-
erence implementation along with a set of how-to’s and documentation1. The
platform has been evaluated by a number of actors that have been exploring
and contributing to the different aspects2. The specific contribution of this
PhD in the Net4Care project is that I have been involved as a member of the
project contributing to the pre-analysis, design, development, implementation,
and evaluation of the platform.

The 4S initiative

The establishment of a technological platform, although essential, might not
necessarily be adequate for a software ecosystem to emerge. Especially in the
case of a newly established platform that is not yet widely recognized. That
is the case with Net4Care. In order for a software ecosystem to emerge in the
Danish telemedicine ecosystem, the organizational and business structures have
to be better supported to promote the emerging of a software ecosystem. That is
the aim of the 4S organization. It has as a purpose to foster a software ecosystem
in the telemedicine services of the Danish healthcare. 4S is focusing in providing
orchestrator services in the software ecosystem under development. It has taken
the task of organizing and managing the technological platform (Net4Care and
the expansion to include OpenTele) both technically but also coordinating and
supporting the network of actors developing on the platform. Moreover, it has
expanded its activity in supporting the social network of actors by (i) obtaining
commitment from interested traditional orchestrating actors (such as state, re-
gions, municipalities), (ii) involving end-user such as patients and clinicians, and
(iii) involving developing actors by supporting the accessibility of the platform
and thus, the ecosystem. Furthermore, 4S is supporting the business struc-
ture by providing value proposition and viable business models for developing
actors, orchestrators and hosting actors. This PhD has contributed to the 4S
organization both by being part of the Net4Care, the technological platform to
be orchestrated by 4S and by providing input to the 4S organization in issues
related to supporting and promoting the ecosystem health and governing the
ecosystem.

Concluding domain contributions

Concluding our contributions to the applied domain of Danish Telemedicine, we
explain to what extent we address Research Question (i), “How can a software
ecosystem foster the development, implementation, and use of telemedicine ser-
vices?”. Initially we characterized the telemedicine ecosystem and identified the
lack of a common platform and limited actor and software interaction. This con-
firms our initial hypothesis that the establishment of a software ecosystem on

1Platform and documentation available under http://net4care.org/
2More information about the evaluation on Paper 6.

49

the telemedicine ecosystem could address the challenges currently faced by the
telemedical technologies, as a software ecosystem implies a common platform
and symbiotic relationships between actors and software. Evaluating what are
the qualities of a successful ecosystem in general and for the telemedicine ecosys-
tem, we designed, developed, and implemented Net4Care to serve as a common
technological platform that would support increased integration, high buildabil-
ity, increased reuse, and thus, support (stronger) interaction of software and,
indirectly, actors. Furthermore, we provided input on how to establish 4S, an
organization that would promote the health of the telemedicine software ecosys-
tem under establishment through the proper governance, platform management,
better value proposition, and support of social interaction.

Concluding, we address Research Question (i) by identifying the need and
taking the steps towards a software ecosystem with (i) a common platform that
supports and promotes the development of different actors on top of it, (ii)
increased software interaction, (iii) stronger social network of actors, (iv) robust
business structures better supporting the actor involvement in the ecosystem,
and (v) better orchestration and governance of the ecosystem to promote and
support these changes and the health of the ecosystem.

4.2 Discussion

From this project, we note that the problems inhibiting the development of
telemedicine technologies, although examined from a rather technical aspect,
do not find solution solely in one theory or theoretical domain, but in a set of
different theories. This is nicely suited with the multidiscipline aspects of soft-
ware ecosystems that interweaves technical, organizational, social, and business
perspectives. Naturally, any changes to the healthcare services, especially in a
state-sponsored establishment of healthcare services, can have a wide impact
on the provided services possibly on a country level. This is a particularity
of the studied ecosystem, that has not been explicitly explained in the thesis:
since the telemedicine ecosystem is part of the country-wide provided healthcare
services, the public opinion and entities relating to the public opinion, such as
political parties and media, can have an indirect influence to the governance
and functioning of the ecosystem.

Moreover, the software ecosystem under development is bound to the par-
ticularities of the healthcare services of Denmark. There are several countries
that follow some of the same characteristics of healthcare, such as organizational
structure and financing models, that our software ecosystem could be adopted
or expanded to. For example, one of the main particularities of this ecosystem
is the fact that the majority of the healthcare activities are funded by the state
(with 84.5% of the total healthcare expenditure, (Olejaz et al., 2012)). There are
a number of countries that follow the same level of involvement of the state in
the provided healthcare services, such as Norway (85%) (Ringard et al., 2013),
Sweden (83%) (Anell et al., 2012), or France (79%) (Chevreul et al., 2010).
Furthermore, it might be relevant to examine the adaptation to countries with
different organizational structures and financing models. An example is the case
of Greece, that is one of the countries with the largest shares of private health
expenditure in Europe, with 39.7% of the total health expenditure (Economou,
2010). Telemedicine in Greece is suffering from some of the same problems as

50

the telemedicine ecosystem under study: a set of separate projects with lack of
continuity and not “integrated into a coherent governmental policy” (Bamidis
et al., 2006). Problems that, as we have shown in this thesis, could be addressed
with the establishment of a proper software ecosystem.

Additionally, our study is bound to a set of limitations, one of them being
the maturity of the theoretical domain. During the initiation of the project,
the theoretical domain of software ecosystems was immature, as we also noted
in Paper 1. This implied that there was low or no experience with studying
ecosystems similar to our ecosystem. It is indicative that there was no study of
mission-critical software ecosystems before the start of this project. Therefore,
many theories had to be either built from new or tested in our ecosystem set-
tings, thus, compromising the external validity of our studies. We acknowledge,
however, that during the project the field has evolved and matured, our work
being a part this evolution. This maturity is also indicated by the increase of
studies reporting empirical models within the last two years noted in Section
2.1.2.

An additional limitation of the theory is the polarization between open source
ecosystems and proprietary ecosystems. The field of software ecosystems is in-
spired by and combines characteristics of both open source and proprietary
software development and many times a software ecosystem can be character-
ized as a hybrid of the two. For example, the use of a community or network of
actors or the development of software by external actors on top of a platform
are practices found in open source projects, while the monetization of the de-
veloped products is something primarily found in closed source or proprietary
development. A widely known example of a hybrid ecosystem is the Android
ecosystem, the software ecosystem build around the smart device operating sys-
tem orchestrated by Google. The platform, Android, is offered as open source,
while the apps that are built on top of it, and distributed through the Google
Play app store, are mainly proprietary. However, results and conclusion from
studies of purely open source or proprietary software ecosystems, although ben-
eficial, might not be applicable to diametrical ecosystems. For example a study
about the developer contribution in Gnome as appeared in Goeminne et al.
(2013) is hard to apply to our telemedicine ecosystem, a hybrid, in similar lines
of the Android example, with an open source platform and possibly proprietary
products on top of it. Studies of open source software ecosystems are popular
in the research community as open source projects provide access to detailed
information, like source code, mailing lists, or bugs, as opposed to proprietary
ecosystems where much of this information is considered asset and cannot be
revealed to third parties. However, pure open source ecosystems are usually
characterized by a different business structure as the actors are not necessarily
involved in the ecosystem for monetary incentives. This affects both the soft-
ware structure and the actor relationships. Since there is no monetization of the
produced software, source code is not protected making it open and for anyone
to modify and reuse, depending on the software license. This also affects the
actor relationships as the actors tend to interact more with other actors of the
ecosystem.

This difference between open source and proprietary software ecosystems
was identified early in our project and expressed in Paper 1. It was also pointed
out as one of the contributions of Paper 5 where it was the first study, according
to our knowledge, to study the social network of actors of a non open source

51

ecosystem. In the studies of this project we focus on conducting studies to open
source ecosystems with results that would be generalized to non open source
ecosystems. An example is the use of PageRank applied in the study of Eclipse
Equinox and Apache Felix, two open source ecosystems studied in Paper 2 that
was then applied to the actors and applications of the telemedicine ecosystem
in Paper 5.

4.3 Future work

This project is the first step in demonstrating that it is possible to create an
ecosystem by identifying the need for one. In order for an ecosystem to be suc-
cessful, however, there is more required than just a common platform. Examples
like the failed Symbian ecosystem of Nokia (Null, 2013) support this argument
and underline that there is not adequate knowledge on how to successfully man-
age software ecosystems, thus making existing ecosystems hard to predict and
control and new ecosystems hard construct. For an ecosystem to survive and
remain productive over time, a proper orchestration strategy is required. Or-
chestration of a software ecosystem is the activity, i.e. use of tools, governance
and management of the elements of an ecosystem, which results in influencing
the ecosystem as a whole in a controlled manner. Future work of this project
would include investigating the properties of successful orchestration, i.e. the
orchestration that promotes the activity of an ecosystem maintaining the ecosys-
tem variable and productive over time, and evaluate the identified properties by
implementing them in the emerging ecosystem of the Danish telemedicine.

Furthermore, app stores are becoming a necessary component of several soft-
ware ecosystems, since they provide seamless integration of externally developed
applications into the common platform and a centralized and collected way of
distributing software applications. Future work thus includes the expansion of
our work published in Manikas et al. (2014) and investigate the parameters of
building an app store for the Danish telemedicine ecosystem: an app store with
high requirements on security and governance, for an ecosystem of high-risk
mission-critical software with potentially high rate of app production.

4.4 Summary

Denmark’s demographic changes and the organizational and financial changes
of the Danish healthcare are challenging the levels of provided healthcare and
point towards the establishment of telemedicine as means of patient support,
diagnosis, and treatment. However, telemedical solutions are faced with a num-
ber of challenges that inhibit their adoption, development, and implementation.
In this project, we follow the approach of a software ecosystem, that can be
roughly explained as the software development and distribution by a set of ac-
tors dependent on each other and the ecosystem as a whole, and investigate the
conditions of evolving a software ecosystem in the telemedicine services of Den-
mark. We do so by embarking on a set of quantitative and qualitative studies
including literature surveys, case studies, and experiments.

This work contributes to the theory of software ecosystems by defining the
concept and analysing the field while identifying areas of improvement. More-

52

over, we provide means of analyzing existing and designing new ecosystems, and
defining and measuring the qualities of software ecosystems. Based on these con-
tributions, we characterize the existing ecosystem in the telemedicine services
of Denmark, identifying the lack of a common platform and actor and software
interactions, findings that support our underlying hypothesis that the design of
a software ecosystem would address the challenges of telemedicine. In continu-
ation we design, implement, and evaluate Net4Care, a platform to facilitate the
evolution of a software ecosystem in the telemedicine ecosystem. Furthermore,
we provide input and guidance on how to initiate activities that would promote
the establishment of this ecosystem through the 4S organization designed to
take the role of an orchestrator in the ecosystem under development, managing
the technological platform and promoting the actor interaction.

This work makes the initial steps towards a software ecosystem in the Danish
telemedicine. An ecosystem that serves as means of arguably increasing the level
of adoption of telemedicine technologies and eventually establishing telemedicine
as state-wide method of patient diagnosis and treatment.

53

54

Appendix: Software
ecosystem literature

1. Capuruço and Capretz (2010)

2. Popp (2011)

3. Yu and Deng (2011)

4. Molder et al. (2011)

5. Santos and Werner (2011b)

6. Angeren et al. (2011b)

7. Mens and Goeminne (2011)

8. Barbosa and Alves (2011)

9. Alspaugh et al. (2009)

10. Jansen et al. (2009a)

11. Fricker (2009)

12. Campbell and Ahmed (2010)

13. Seichter et al. (2010)

14. Dhungana et al. (2010)

15. Lungu et al. (2010b)

16. Berk et al. (2010)

17. Cataldo and Herbsleb (2010)

18. Goeminne and Mens (2010)

19. Bosch (2010a)

20. Bosch (2009)

21. Kazman and Chen (2010)

22. Lungu and Lanza (2010)

23. Pettersson et al. (2010)

24. Scacchi (2010b)

25. Boucharas et al. (2009)

26. Brummermann et al. (2011)

27. Anvaari and Jansen (2010)

28. Hunink et al. (2010)

29. Santos and Werner (2010)

30. McGregor (2010)

31. Scacchi (2007a)

32. Krishna and Srinivasa (2011)

33. Alves and Pessôa (2010)

34. Briscoe (2010)

35. Fricker (2010)

36. Scacchi (2010a)

37. Hilkert et al. (2010)

38. Bosch and Bosch-Sijtsema (2010c)

39. Bosch and Bosch-Sijtsema (2010a)

40. Kazman et al. (2012)

41. Schneider et al. (2010)

42. Yu and Woodard (2009)

43. Bosch (2010b)

44. Hanssen (2011)

45. Bosch and Bosch-Sijtsema (2010b)

46. Scacchi (2007b)

47. Lungu et al. (2010a)

48. Brewer and Johnson (2010)

49. Pettersson and Gil (2010)

50. Yu et al. (2008)

51. Lungu et al. (2009)

52. An (2009)

53. Janner et al. (2008)

54. Lungu (2008)

55. Hindle et al. (2010)

56. Jansen et al. (2009b)

57. Yu et al. (2007)

58. Schugerl et al. (2009)

59. Kakola (2010)

60. Ververs et al. (2011)
55

61. Angeren et al. (2011a)

62. Scholten et al. (2012)

63. Brummermann et al. (2012)

64. Stefanuto et al. (2011)

65. Schuur et al. (2011)

66. Ingen et al. (2011)

67. Weiss (2011)

68. Robbes and Lungu (2011)

69. Schmerl et al. (2011)

70. Yu (2011)

71. Santos and Werner (2011a)

72. Idu et al. (2011)

73. Draxler et al. (2011a)

74. Jergensen et al. (2011)

75. Scacchi and Alspaugh (2012)

76. Jansen et al. (2012)

77. Kilamo et al. (2012)

78. Pettersson and Vogel (2012)

79. Kajan et al. (2011)

80. Pérez et al. (2012)

81. Neu et al. (2011)

82. Riis and Schubert (2012)

83. Mizushima and Ikawa (2011)

84. Kabbedijk and Jansen (2011)

85. Draxler and Stevens (2011)

86. Burkard et al. (2012)

87. Viljainen and Kauppinen (2011)

88. Alves et al. (2011)

89. Draxler et al. (2011b)

90. Widjaja and Buxmann (2011)

91. Handoyo et al. (2013a)

92. Cardoso et al. (2013)

93. Costa et al. (2013)

94. Lettner et al. (2014)

95. Santos and Costa (2013)

96. Musil et al. (2013)

97. Seidl and Aßmann (2013)

98. Manikas and Hansen (2013a)

99. Lettner et al. (2013)

100. Seidl et al. (2013)

101. Keunecke et al. (2013)

102. Teixeira and Lin (2014)

103. Goeminne et al. (2013)

104. Howison and Herbsleb (2013)

105. Jansen (2013)

106. Monaco et al. (2013)

107. Musil et al. (2012)

108. Keivanloo (2012)

109. Satyanarayanan (2013)

110. Taylor (2013)

111. Santos (2014)

112. Haenni et al. (2013)

113. Mitropoulos et al. (2014)

114. Monteith et al. (2014)

115. Berger (2012)

116. Frantz and Corchuelo (2012)

117. Gunter et al. (2012)

118. Gutierrez and Robbes (2013)

119. Kästner et al. (2012)

120. Lopez (2013)

56

121. Linares-Vásquez et al. (2014)

122. Tymchuk et al. (2014)

123. Hoving et al. (2013)

124. Christensen and Hansen (2012)

125. German et al. (2013)

126. Yu (2013)

127. Bavota et al. (2013)

128. Dago (2012)

129. Kouters et al. (2012)

130. Fagerholm and Munch (2012)

131. Jaramillo et al. (2013)

132. Nöhren et al. (2014)

133. Santos and Werner (2012a)

134. Santos and Werner (2012b)

135. Keivanloo et al. (2012)

136. Claes et al. (2014)

137. Peniak et al. (2013)

138. Valenca (2013)

139. Bortolotti et al. (2013)

140. Schultis et al. (2013)

141. Tchoua et al. (2013)

142. Santos et al. (2012)

143. Pelliccione (2014)

144. Schmid (2013)

145. Mens et al. (2014a)

146. Amorim et al. (2014)

147. Schwarz et al. (2012)

148. McDonnell et al. (2013)

149. Hmood et al. (2012)

150. Goeminne (2014)

151. Andresen et al. (2013)

152. Che and Perry (2014)

153. Santos et al. (2013)

154. Albert et al. (2013)

155. Sasso and Lanza (2013)

156. Handoyo (2013)

157. Handoyo et al. (2013b)

158. Baars and Jansen (2012)

159. Hansen and Zhang (2014)

160. Rausch et al. (2013)

161. Wnuk et al. (2014a)

162. Eklund and Bosch (2012)

163. Wynn (2012)

164. Fotrousi et al. (2014)

165. Jansen and Bloemendal (2013)

166. Robbins and Tanik (2014)

167. Schütz et al. (2013)

168. Mens et al. (2014b)

169. Anvaari et al. (2013)

170. Waltl et al. (2012)

171. Bhowmik et al. (2014)

172. Vasilescu et al. (2014)

173. Kourtesis et al. (2012)

174. Bosch and Bosch-Sijtsema (2014)

175. Olsson and Bosch (2014)

176. Angeren et al. (2014)

177. Jansen (2014)

178. Manikas and Hansen (2013c)

179. Berger et al. (2014)

180. Dittrich (2014)

57

181. Bosch (2012)

182. Eklund and Bosch (2014)

183. Christensen et al. (2014)

184. Axelsson et al. (2014)

185. Wnuk et al. (2014b)

186. Hyrynsalmi et al. (2014)

187. Wright et al. (2013)

188. Iyer (2012)

189. Hanssen and Dyb̊a (2012)

190. Salminen and Mikkonen (2012)

191. Popp (2012)

192. Jansen and Cusumano (2012)

193. Hyrynsalmi et al. (2012)

194. Santana and Werner (2013)

195. Syed and Jansen (2013)

196. Manikas and Hansen (2013b)

197. Lingen et al. (2013)

198. Monteith et al. (2013)

199. Spauwen and Jansen (2013)

58

References

Aanestad, M. and Jensen, T. B. (2011). Building nation-wide information infrastructures in
healthcare through modular implementation strategies. The Journal of Strategic Informa-
tion Systems, 20(2):161 – 176.

Ahgren, B. (2008). Is it better to be big?: The reconfiguration of 21st century hospitals:
Responses to a hospital merger in sweden. Health Policy, 87(1):92–99.

Albert, B., Santos, R., and Werner, C. (2013). Software ecosystems governance to enable it
architecture based on software asset management. In Digital Ecosystems and Technologies
(DEST), 2013 7th IEEE International Conference on, pages 55–60.

Alspaugh, T., Asuncion, H., and Scacchi, W. (2009). The role of software licenses in open archi-
tecture ecosystems. In First International Workshop on Software Ecosystems (IWSECO-
2009), pages 4–18. Citeseer.

Alves, A. M. and Pessôa, M. (2010). Brazilian public software: beyond sharing. In Proceedings
of the International Conference on Management of Emergent Digital EcoSystems, MEDES
’10, pages 73–80, New York, NY, USA. ACM.

Alves, A. M., Pessoa, M., and Salviano, C. F. (2011). Towards a systemic maturity model
for public software ecosystems. In O’Connor, R. V., Rout, T., McCaffery, F., and Dorling,
A., editors, Software Process Improvement and Capability Determination, volume 155 of
Communications in Computer and Information Science, pages 145–156. Springer Berlin
Heidelberg. 10.1007/978-3-642-21233-8 13.

Amorim, S. d. S., Almeida, E. S. d., and McGregor, J. D. (2014). Scalability of ecosystem
architectures. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages
49–52.

An, H. (2009). Research on software problems based on ecological angle. In Environmental
Science and Information Application Technology, 2009. ESIAT 2009. International Con-
ference on, volume 3, pages 11 –14.

Andersen, P. and Jensen, J. (2010). Healthcare reform in denmark. Scandinavian journal of
public health, 38(3):246–252.

Andresen, K., Brockmann, C., and Drager, C. (2013). A classification of ecosystems of en-
terprise system providers – an empirical analysis. In System Sciences (HICSS), 2013 46th
Hawaii International Conference on, pages 4034–4044.

Anell, A., Glenng̊ard, A. H., and Merkur, S. (2012). Sweeden. Health system review. Health
Systems in Transition, 14(5):1–159.

Angeren, J. v., Blijleven, V., and Jansen, S. (2011a). Relationship intimacy in software
ecosystems: a survey of the dutch software industry. In Proceedings of the International
Conference on Management of Emergent Digital EcoSystems, MEDES ’11, pages 68–75,
New York, NY, USA. ACM.

Angeren, J. v., Jansen, S., and Brinkkemper, S. (2014). Exploring the relationship between
partnership model participation and interfirm network structure: An analysis of the of-
fice365 ecosystem. In Lassenius, C. and Smolander, K., editors, Software Business. To-
wards Continuous Value Delivery, volume 182 of Lecture Notes in Business Information
Processing, pages 1–15. Springer International Publishing.

59

Angeren, J. v., Kabbedijk, J., and Popp, K. M. (2011b). A survey of associate models used
within large software ecosystems. In Third International Workshop on Software Ecosystems
(IWSECO-2011), pages 27–39. CEUR-WS.

Anvaari, M., Conradi, R., and Jaccheri, L. (2013). Architectural decision-making in enter-
prises: Preliminary findings from an exploratory study in norwegian electricity industry.
In Drira, K., editor, Software Architecture, volume 7957 of Lecture Notes in Computer
Science, pages 162–175. Springer Berlin Heidelberg.

Anvaari, M. and Jansen, S. (2010). Evaluating architectural openness in mobile software
platforms. In Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, ECSA ’10, pages 85–92, New York, NY, USA. ACM.

Apple App Store (2013). Health & fitness - app store downloads on itunes. https://itunes.

apple.com/us/genre/ios-health-fitness/, Accessed November 2013.

Axelsson, J., Papatheocharous, E., and Andersson, J. (2014). Characteristics of software
ecosystems for federated embedded systems: A case study. Information and Software
Technology, 56(11):1457 – 1475.

Baars, A. and Jansen, S. (2012). A framework for software ecosystem governance. In
Cusumano, M., Iyer, B., and Venkatraman, N., editors, Software Business, volume 114
of Lecture Notes in Business Information Processing, pages 168–180. Springer Berlin Hei-
delberg.

Bamidis, P. D., Stamkopoulos, T.-G., Koufogiannis, D., Dombros, N., Maglaveras, N., and
Pappas, C. (2006). Methodologies for establishing an institutional and regulatory frame-
work for telemedicine services in greece. In Proceedings of the 5th International IEEE
EMBS Special Topic Conference on Information Technology in Biomedicin, Ioannina,
Greece, 2006.

Barbacci, M. R., Ellison, R., Lattanze, A. J., Stafford, J. A., Weinstock, C. B., and Wood,
W. G. (2003). Quality Attribute Workshops (QAWs). Software Engineering Institute,
Carnegie Mellon University, third edition.

Barbosa, O. and Alves, C. (2011). A systematic mapping study on software ecosystems.
In Third International Workshop on Software Ecosystems (IWSECO-2011), pages 15–26.
CEUR-WS.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice. Addison-
Wesley, Boston, MA, USA, second edition.

Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S. (2013). The evolution
of project inter-dependencies in a software ecosystem: The case of apache. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on, pages 280–289.

Berger, T. (2012). Variability modeling in the wild. In Proceedings of the 16th International
Software Product Line Conference - Volume 2, SPLC ’12, pages 233–241, New York, NY,
USA. ACM.

Berger, T., Pfeiffer, R.-H., Tartler, R., Dienst, S., Czarnecki, K., W ↪asowski, A., and She, S.
(2014). Variability mechanisms in software ecosystems. Information and Software Tech-
nology, 56(11):1520 – 1535.

Berk, I. v. d., Jansen, S., and Luinenburg, L. (2010). Software ecosystems: a software ecosys-
tem strategy assessment model. In Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, ECSA ’10, pages 127–134, New York, NY,
USA. ACM.

Bhanoo, S. N. (2010). Denmark leads the way in digital care. The New York Times.

Bhowmik, T., Alves, V., and Niu, N. (2014). An exploratory case study on exploiting aspect
orientation in mobile game porting. In Bouabana-Tebibel, T. and Rubin, S. H., editors,
Integration of Reusable Systems, volume 263 of Advances in Intelligent Systems and Com-
puting, pages 241–261. Springer International Publishing.

60

Boone, K. W. (2011). The CDA Book. Springer.

Bortolotti, D., Pinto, C., Marongiu, A., Ruggiero, M., and Benini, L. (2013). Virtualsoc: A
full-system simulation environment for massively parallel heterogeneous system-on-chip. In
Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013
IEEE 27th International, pages 2182–2187.

Bosch, J. (2009). From software product lines to software ecosystems. In Proceedings of the
13th International Software Product Line Conference, SPLC ’09, pages 111–119, Pitts-
burgh, PA, USA. Carnegie Mellon University.

Bosch, J. (2010a). Architecture challenges for software ecosystems. In Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, ECSA ’10,
pages 93–95, New York, NY, USA. ACM.

Bosch, J. (2010b). Architecture in the age of compositionality. In Babar, M. and Gorton, I.,
editors, Software Architecture, volume 6285 of Lecture Notes in Computer Science, pages
1–4. Springer Berlin / Heidelberg. 10.1007/978-3-642-15114-9 1.

Bosch, J. (2012). Software ecosystems: Taking software development beyond the boundaries
of the organization. Journal of Systems and Software, 85(7):1453 – 1454.

Bosch, J. and Bosch-Sijtsema, P. (2010a). Coordination between global agile teams: From

process to architecture. In Ŝmite, D., Moe, N. B., and Agerfalk, P. J., editors, Agility Across
Time and Space, pages 217–233. Springer Berlin Heidelberg. 10.1007/978-3-642-12442-6 15.

Bosch, J. and Bosch-Sijtsema, P. (2010b). From integration to composition: On the impact
of software product lines, global development and ecosystems. Journal of Systems and
Software, 83(1):67 – 76.

Bosch, J. and Bosch-Sijtsema, P. (2014). Esao: A holistic ecosystem-driven analysis model. In
Lassenius, C. and Smolander, K., editors, Software Business. Towards Continuous Value
Delivery, volume 182 of Lecture Notes in Business Information Processing, pages 179–193.
Springer International Publishing.

Bosch, J. and Bosch-Sijtsema, P. M. (2010c). Softwares product lines, global development
and ecosystems: Collaboration in software engineering. In Mistŕık, I., van der Hoek, A.,
Grundy, J., and Whitehead, J., editors, Collaborative Software Engineering, pages 77–92.
Springer Berlin Heidelberg. 10.1007/978-3-642-10294-3 4.

Boucharas, V., Jansen, S., and Brinkkemper, S. (2009). Formalizing software ecosystem
modeling. In Proceedings of the 1st international workshop on Open component ecosystems,
IWOCE ’09, pages 41–50, New York, NY, USA. ACM.

Brewer, R. and Johnson, P. (2010). Wattdepot: An open source software ecosystem for
enterprise-scale energy data collection, storage, analysis, and visualization. In Smart Grid
Communications (SmartGridComm), 2010 First IEEE International Conference on, pages
91 –95.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7):107–117.

Briscoe, G. (2010). Complex adaptive digital ecosystems. In Proceedings of the International
Conference on Management of Emergent Digital EcoSystems, MEDES ’10, pages 39–46,
New York, NY, USA. ACM.

Brummermann, H., Keunecke, M., and Schmid, K. (2011). Variability issues in the evolution
of information system ecosystems. In Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, VaMoS ’11, pages 159–164, New York, NY, USA.
ACM.

Brummermann, H., Keunecke, M., and Schmid, K. (2012). Formalizing distributed evolution
of variability in information system ecosystems. In Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’12, pages 11–19,
New York, NY, USA. ACM.

61

Burkard, C., Widjaja, T., and Buxmann, P. (2012). Software ecosystems. Business & Infor-
mation Systems Engineering, 4:41–44. 10.1007/s12599-011-0199-8.

Campbell, D. T., Stanley, J. C., and Gage, N. L. (1963). Experimental and quasi-experimental
designs for research. Houghton Mifflin Boston.

Campbell, P. R. J. and Ahmed, F. (2010). A three-dimensional view of software ecosystems.
In Proceedings of the Fourth European Conference on Software Architecture: Companion
Volume, ECSA ’10, pages 81–84, New York, NY, USA. ACM.

Capuruço, R. A. C. and Capretz, L. F. (2010). Integrating recommender information in
social ecosystems decisions. In Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ECSA ’10, pages 143–150, New York, NY, USA. ACM.

Cardoso, Jr., J. L., Barbin, S. E., Andres, F., and Filho, O. S. S. (2013). The public software
ecosystem: Exploratory survey. In Proceedings of the Fifth International Conference on
Management of Emergent Digital EcoSystems, MEDES ’13, pages 289–296, New York, NY,
USA. ACM.

Cataldo, M. and Herbsleb, J. D. (2010). Architecting in software ecosystems: interface translu-
cence as an enabler for scalable collaboration. In Proceedings of the Fourth European Con-
ference on Software Architecture: Companion Volume, ECSA ’10, pages 65–72, New York,
NY, USA. ACM.

Che, M. and Perry, D. E. (2014). Architectural design decisions in open software development:
A transition to software ecosystems. In Software Engineering Conference (ASWEC), 2014
23rd Australian, pages 58–61.

Chevreul, K., Durand-Zaleski, I., Bahrami, S., Hernández-Quevedo, C., and Mladovsky, P.
(2010). France. Health system review. Health Systems in Transition, 12(6):1–291.

Christensen, A. I., Davidsen, M., Ekholm, O., Hansen, S. E., Holst, M., and Jue, K. (2011).
Den nationale sundhedsprofil 2010 – hvordan har du det? Sundhedsstyrelsen.

Christensen, H. and Hansen, K. (2012). Net4care: Towards a mission-critical software ecosys-
tem. In Software Architecture (WICSA) and European Conference on Software Architec-
ture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, pages 224–228.

Christensen, H. B., Hansen, K. M., Kyng, M., and Manikas, K. (2014). Analysis and design
of software ecosystem architectures – towards the 4s telemedicine ecosystem. Information
and Software Technology, 56(11):1476 – 1492.

Claes, M., Mens, T., and Grosjean, P. (2014). On the maintainability of cran packages.
In Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week - IEEE Conference on, pages 308–312.

Cohen, M. D. and Hilligoss, P. B. (2010). The published literature on handoffs in hospitals:
deficiencies identified in an extensive review. Quality and Safety in Health Care.

Costa, G., Silva, F., Santos, R., Werner, C., and Oliveira, T. (2013). From applications to
a software ecosystem platform: An exploratory study. In Proceedings of the Fifth Inter-
national Conference on Management of Emergent Digital EcoSystems, MEDES ’13, pages
9–16, New York, NY, USA. ACM.

Cusumano, M. A. (2004). The business of software: What every manager, programmer, and
entrepreneur must know to thrive and survive in good times and bad. Free Press.

Dago, G. (2012). Creating an software ecosystem in order to preserve the first argentine
computer language and compiler: A case study on computing archaeology. In Informatica
(CLEI), 2012 XXXVIII Conferencia Latinoamericana En, pages 1–9.

Danish Ministry of Health and Prevention (2008). Health care in denmark.

Danmark Statistik (2011). NYT fra Danmarks Statistik – Befolkningsfremskrivninger 2011-
2050. http://www.dst.dk/nytudg/14607. Accessed July 2014.

62

Danske Regioner (2007). Investeringer i fremtidens sundhedsvæsen.

Delloitte (2007). Bestyrelsen for den nationale epj-organisation, strategiske udviklingsveje for
epj.

den Hartigh, E., Tol, M., and Visscher, W. (2006). The health measurement of a business
ecosystem. In Proceedings of the European Network on Chaos and Complexity Research
and Management Practice Meeting, page 0.

Denscombe, M. (2010). The good research guide – for small-scale social research projects.
Open University Press, second edition.

Denzin, N. (1978). The Research Act: A Theoretical Introduction to Sociological Methods.
McGraw-Hill.

Dhungana, D., Groher, I., Schludermann, E., and Biffl, S. (2010). Software ecosystems vs.
natural ecosystems: learning from the ingenious mind of nature. In Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, ECSA ’10,
pages 96–102, New York, NY, USA. ACM.

Dittrich, Y. (2014). Software engineering beyond the project – sustaining software ecosystems.
Information and Software Technology, 56(11):1436 – 1456.

Draxler, S., Jung, A., Boden, A., and Stevens, G. (2011a). Workplace warriors: identifying
team practices of appropriation in software ecosystems. In Proceedings of the 4th Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering, CHASE
’11, pages 57–60, New York, NY, USA. ACM.

Draxler, S., Jung, A., and Stevens, G. (2011b). Managing software portfolios: A comparative
study. In Costabile, M., Dittrich, Y., Fischer, G., and Piccinno, A., editors, End-User
Development, volume 6654 of Lecture Notes in Computer Science, pages 337–342. Springer
Berlin / Heidelberg. 10.1007/978-3-642-21530-8 36.

Draxler, S. and Stevens, G. (2011). Supporting the collaborative appropriation of an
open software ecosystem. Computer Supported Cooperative Work (CSCW), 20:403–448.
10.1007/s10606-011-9148-9.

Economou, C. (2010). Greece. Health system review. Health Systems in Transition, 12(7):1–
180.

EgenJournal (2010). CITH Co-constructing IT and Healthcare. http://www.cith.dk/.

Eklund, U. and Bosch, J. (2012). Introducing software ecosystems for mass-produced embed-
ded systems. In Cusumano, M., Iyer, B., and Venkatraman, N., editors, Software Business,
volume 114 of Lecture Notes in Business Information Processing, pages 248–254. Springer
Berlin Heidelberg.

Eklund, U. and Bosch, J. (2014). Architecture for embedded open software ecosystems. Jour-
nal of Systems and Software, 92(0):128 – 142.

Esping-Andersen, G. (1990). The three worlds of welfare capitalism, volume 6. Polity press
Cambridge.

Fagerholm, F. and Munch, J. (2012). Developer experience: Concept and definition. In
Software and System Process (ICSSP), 2012 International Conference on, pages 73–77.

Fotrousi, F., Fricker, S., Fiedler, M., and Le-Gall, F. (2014). Kpis for software ecosystems: A
systematic mapping study. In Lassenius, C. and Smolander, K., editors, Software Business.
Towards Continuous Value Delivery, volume 182 of Lecture Notes in Business Information
Processing, pages 194–211. Springer International Publishing.

Francesca, C., Ana, L.-N., Jérôme, M., and Frits, T. (2011). OECD Health Policy Studies Help
Wanted? Providing and Paying for Long-Term Care, volume 2011. OECD Publishing.

Frantz, R. Z. and Corchuelo, R. (2012). A software development kit to implement integration
solutions. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 1647–1652, New York, NY, USA. ACM.

63

Fricker, S. (2009). Specification and analysis of requirements negotiation strategy in software
ecosystems. In First International Workshop on Software Ecosystems (IWSECO-2009),
pages 19–33. Citeseer.

Fricker, S. (2010). Requirements value chains: Stakeholder management and requirements
engineering in software ecosystems. In Wieringa, R. and Persson, A., editors, Requirements
Engineering: Foundation for Software Quality, volume 6182 of Lecture Notes in Computer
Science, pages 60–66. Springer Berlin / Heidelberg. 10.1007/978-3-642-14192-8 7.

Fulop, N., Protopsaltis, G., Hutchings, A., King, A., Allen, P., Normand, C., and Walters,
R. (2002). Process and impact of mergers of NHS trusts: multicentre case study and
management cost analysis. BMJ, 325(7358):246.

German, D., Adams, B., and Hassan, A. (2013). The evolution of the r software ecosystem.
In Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on,
pages 243–252.

Goeminne, M. (2014). Understanding the evolution of socio-technical aspects in open source
ecosystems. In Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week - IEEE Conference on, pages 473–476.

Goeminne, M., Claes, M., and Mens, T. (2013). A historical dataset for the gnome ecosystem.
In Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13,
pages 225–228, Piscataway, NJ, USA. IEEE Press.

Goeminne, M. and Mens, T. (2010). A framework for analysing and visualising open source
software ecosystems. In Proceedings of the Joint ERCIM Workshop on Software Evolu-
tion (EVOL) and International Workshop on Principles of Software Evolution (IWPSE),
IWPSE-EVOL ’10, pages 42–47, New York, NY, USA. ACM.

Gunter, D., Cholia, S., Jain, A., Kocher, M., Persson, K., Ramakrishnan, L., Ong, S. P.,
and Ceder, G. (2012). Community accessible datastore of high-throughput calculations:
Experiences from the materials project. In High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:, pages 1244–1251.

Gutierrez, C. and Robbes, R. (2013). Weon: Towards a software ecosystem ontology. In
Proceedings of the 2013 International Workshop on Ecosystem Architectures, WEA 2013,
pages 16–20, New York, NY, USA. ACM.

Haenni, N., Lungu, M., Schwarz, N., and Nierstrasz, O. (2013). Categorizing developer infor-
mation needs in software ecosystems. In Proceedings of the 2013 International Workshop
on Ecosystem Architectures, WEA 2013, pages 1–5, New York, NY, USA. ACM.

Handoyo, E. (2013). Software ecosystem modeling. In Herzwurm, G. and Margaria, T.,
editors, Software Business. From Physical Products to Software Services and Solutions,
volume 150 of Lecture Notes in Business Information Processing, pages 227–228. Springer
Berlin Heidelberg.

Handoyo, E., Jansen, S., and Brinkkemper, S. (2013a). Software ecosystem modeling: The
value chains. In Proceedings of the Fifth International Conference on Management of
Emergent Digital EcoSystems, MEDES ’13, pages 17–24, New York, NY, USA. ACM.

Handoyo, E., Jansen, S., and Brinkkemper, S. (2013b). Software ecosystem roles classification.
In Herzwurm, G. and Margaria, T., editors, Software Business. From Physical Products
to Software Services and Solutions, volume 150 of Lecture Notes in Business Information
Processing, pages 212–216. Springer Berlin Heidelberg.

Hansen, K. and Zhang, W. (2014). Towards structure-based quality awareness in software
ecosystem use. In Lomuscio, A., Nepal, S., Patrizi, F., Benatallah, B., and Brandić, I.,
editors, Service-Oriented Computing - ICSOC 2013 Workshops, volume 8377 of Lecture
Notes in Computer Science, pages 469–479. Springer International Publishing.

Hansen, K. M. and Manikas, K. (2013). Towards a Network Ecology of Software Ecosystems:
an Analysis of two OSGi Ecosystems. In Proceedings of the 25th International Conference
on Software Engineering & Knowledge Engineering (SEKE’2013), pages 326–331.

64

Hanssen, G. K. (2011). A longitudinal case study of an emerging software ecosystem: Impli-
cations for practice and theory. Journal of Systems and Software, 85(7):1455 – 1466.

Hanssen, G. K. and Dyb̊a, T. (2012). Theoretical foundations of software ecosystems. In
Jansen, S., Bosch, J., and Alves, C., editors, Proceedings of the Forth International Work-
shop on Software Ecosystems, Cambridge, MA, USA, June 18th, 2012, volume 879, pages
6–17. CEUR-WS.org.

Hilkert, D., Wolf, C. M., Benlian, A., and Hess, T. (2010). The ”as-a-service”-paradigm
and its implications for the software industry – insights from a comparative case study
in crm software ecosystems. In Aalst, W., Mylopoulos, J., Sadeh, N. M., Shaw, M. J.,
Szyperski, C., Tyrvainen, P., Jansen, S., and Cusumano, M. A., editors, Software Business,
volume 51 of Lecture Notes in Business Information Processing, pages 125–137. Springer
Berlin Heidelberg. 10.1007/978-3-642-13633-7 11.

Hindle, A., Herraiz, I., Shihab, E., and Jiang, Z. M. (2010). Mining challenge 2010: Freebsd,
gnome desktop and debian/ubuntu. In Mining Software Repositories (MSR), 2010 7th
IEEE Working Conference on, pages 82 –85.

HL7 (2010). Implementation Guide for CDA Release 2.0 Personal Healthcare Monitoring
Report (PHMR) (International Realm) Draft Standard for Trial Use Release 1.1.

HL7 (2014). Hl7: Health level seven international. http://www.hl7.org. Accessed April 2014.

Hmood, A., Keivanloo, I., and Rilling, J. (2012). Se-equam - an evolvable quality meta-
model. In Computer Software and Applications Conference Workshops (COMPSACW),
2012 IEEE 36th Annual, pages 334–339.

Hoving, R., Slot, G., and Jansen, S. (2013). Python: Characteristics identification of a free
open source software ecosystem. In Digital Ecosystems and Technologies (DEST), 2013
7th IEEE International Conference on, pages 13–18.

Howison, J. and Herbsleb, J. D. (2013). Incentives and integration in scientific software
production. In Proceedings of the 2013 Conference on Computer Supported Cooperative
Work, CSCW ’13, pages 459–470, New York, NY, USA. ACM.

Hunink, I., van Erk, R., Jansen, S., and Brinkkemper, S. (2010). Industry taxonomy engineer-
ing: the case of the european software ecosystem. In Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, ECSA ’10, pages 111–118, New
York, NY, USA. ACM.

Hyrynsalmi, S., Mäkilä, T., Järvi, A., Suominen, A., Seppänen, M., and Knuutila, T. (2012).
App store, marketplace, play! an analysis of multi-homing in mobile software ecosystems.
In Jansen, S., Bosch, J., and Alves, C., editors, Proceedings of the Forth International
Workshop on Software Ecosystems, Cambridge, MA, USA, June 18th, 2012, volume 879,
pages 59 – 72. CEUR-WS.org.

Hyrynsalmi, S., Seppänen, M., and Suominen, A. (2014). Sources of value in application
ecosystems. Journal of Systems and Software, 96(0):61 – 72.

Iansiti, M. and Levien, R. (2004a). The keystone advantage: what the new dynamics of
business ecosystems mean for strategy, innovation, and sustainability. Harvard Business
Press.

Iansiti, M. and Levien, R. (2004b). Keystones and dominators: Framing operating and tech-
nology strategy in a business ecosystem. Harvard Business School, Boston.

Iansiti, M. and Levien, R. (2004c). Strategy as ecology. Harvard Business Review, 82(3):68–81.

Iansiti, M. and Richards, G. L. (2006). The information technology ecosystem: Structure,
health, and performance. Antitrust Bull., 51:77.

Idu, A., van de Zande, T., and Jansen, S. (2011). Multi-homing in the apple ecosystem: why
and how developers target multiple apple app stores. In Proceedings of the International
Conference on Management of Emergent Digital EcoSystems, MEDES ’11, pages 122–128,
New York, NY, USA. ACM.

65

IHE (2013). IT Infrastructure Technical Framework. Volume 1 (ITI TF-1). Integration Profiles.
Revision 9.0.

Ingen, K. v., van Ommen, J., and Jansen, S. (2011). Improving activity in communities of
practice through software release management. In Proceedings of the International Con-
ference on Management of Emergent Digital EcoSystems, MEDES ’11, pages 94–98, New
York, NY, USA. ACM.

IWSECO (2014). IWSECO | International Workshop on Software Ecosystems. http:

//iwseco.org/ Accessed August, 2014.

Iyer, B. (2012). Invited paper: Ecosysnetworks: A method for visualizing software ecosystems.
In Jansen, S., Bosch, J., and Alves, C., editors, Proceedings of the Forth International
Workshop on Software Ecosystems, Cambridge, MA, USA, June 18th, 2012, volume 879,
pages 1–5. CEUR-WS.org.

Janner, T., Schroth, C., and Schmid, B. (2008). Modelling service systems for collaborative
innovation in the enterprise software industry - the st. gallen media reference model applied.
In Services Computing, 2008. SCC ’08. IEEE International Conference on, volume 2, pages
145 –152.

Jansen, S. (2013). How quality attributes of software platform architectures influence software
ecosystems. In Proceedings of the 2013 International Workshop on Ecosystem Architec-
tures, WEA 2013, pages 6–10, New York, NY, USA. ACM.

Jansen, S. (2014). Measuring the health of open source software ecosystems: Beyond the
scope of project health. Information and Software Technology, 56(11):1508 – 1519.

Jansen, S. and Bloemendal, E. (2013). Defining app stores: The role of curated marketplaces
in software ecosystems. In Herzwurm, G. and Margaria, T., editors, Software Business.
From Physical Products to Software Services and Solutions, volume 150 of Lecture Notes
in Business Information Processing, pages 195–206. Springer Berlin Heidelberg.

Jansen, S., Brinkkemper, S., and Finkelstein, A. (2009a). Business network management as a
survival strategy: A tale of two software ecosystems. In First International Workshop on
Software Ecosystems (IWSECO-2009), pages 34–48. Citeseer.

Jansen, S., Brinkkemper, S., Souer, J., and Luinenburg, L. (2012). Shades of gray: Opening
up a software producing organization with the open software enterprise model. Journal of
Systems and Software, 85(7):1495 – 1510.

Jansen, S. and Cusumano, M. (2012). Defining software ecosystems: A survey of software
platforms and business network governance. In Jansen, S., Bosch, J., and Alves, C., editors,
Proceedings of the Forth International Workshop on Software Ecosystems, Cambridge, MA,
USA, June 18th, 2012, volume 879, pages 40 – 58. CEUR-WS.org.

Jansen, S. and Cusumano, M. (2013). Software ecosystems – analyzing and managing busi-
ness networks in the software industry. In Jansen, S., Brinkkemper, S., and Cusumano,
M., editors, Software Ecosystems – Analyzing and Managing Business Networks in the
Software Industry, chapter Defining Software Ecosystems: A Survey of Software Platforms
and Business Network Governance, pages 13–28. Edward Elgar, Cheltenham, UK.

Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009b). A sense of community: A research
agenda for software ecosystems. In Software Engineering - Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference on, pages 187 –190.

Jaramillo, D., Newhook, R., and Smart, R. (2013). Cross-platform, secure message delivery
for mobile devices. In Southeastcon, 2013 Proceedings of IEEE, pages 1–5.

Jergensen, C., Sarma, A., and Wagstrom, P. (2011). The onion patch: migration in open
source ecosystems. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, ESEC/FSE ’11, pages 70–80,
New York, NY, USA. ACM.

Jordán, F. and Scheuring, I. (2004). Network ecology: topological constraints on ecosystem
dynamics. Physics of Life Reviews, 1(3):139–172.

66

Kabbedijk, J. and Jansen, S. (2011). Steering insight: An exploration of the ruby software
ecosystem. In Regnell, B., Weerd, I., Troyer, O., Aalst, W., Mylopoulos, J., Rosemann, M.,
Shaw, M. J., and Szyperski, C., editors, Software Business, volume 80 of Lecture Notes in
Business Information Processing, pages 44–55. Springer Berlin Heidelberg. 10.1007/978-3-
642-21544-5 5.

Kajan, E., Lazic, L., and Maamar, Z. (2011). Software engineering framework for digital
service-oriented ecosystem. In Telecommunications Forum (TELFOR), 2011 19th, pages
1320 –1323.

Kakola, T. (2010). Standards initiatives for software product line engineering and management
within the international organization for standardization. In System Sciences (HICSS),
2010 43rd Hawaii International Conference on, pages 1 –10.

Kästner, C., Ostermann, K., and Erdweg, S. (2012). A variability-aware module system.
In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’12, pages 773–792, New York, NY, USA.
ACM.

Kazman, R. and Chen, H.-M. (2010). The metropolis model and its implications for the
engineering of software ecosystems. In Proceedings of the FSE/SDP workshop on Future
of software engineering research, FoSER ’10, pages 187–190, New York, NY, USA. ACM.

Kazman, R., Gagliardi, M., and Wood, W. (2012). Scaling up software architecture analysis.
Journal of Systems and Software, 85(7):1511 – 1519.

Keivanloo, I. (2012). Online sharing and integration of results from mining software reposito-
ries. In Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 1644–1646, Piscataway, NJ, USA. IEEE Press.

Keivanloo, I., Forbes, C., Hmood, A., Erfani, M., Neal, C., Peristerakis, G., and Rilling,
J. (2012). A linked data platform for mining software repositories. In Mining Software
Repositories (MSR), 2012 9th IEEE Working Conference on, pages 32–35.

Keunecke, M., Brummermann, H., and Schmid, K. (2013). The feature pack approach: Sys-
tematically managing implementations in software ecosystems. In Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems, VaMoS
’14, pages 20:1–20:7, New York, NY, USA. ACM.

Kierkegaard, P. (2013). ehealth in denmark: A case study. Journal of medical systems,
37(6):1–10.

Kilamo, T., Hammouda, I., Mikkonen, T., and Aaltonen, T. (2012). From proprietary to open
source–growing an open source ecosystem. Journal of Systems and Software, 85(7):1467 –
1478.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature
reviews in software engineering. Engineering, 2(EBSE 2007-001).

Kourtesis, D., Bratanis, K., Bibikas, D., and Paraskakis, I. (2012). Software co-development
in the era of cloud application platforms and ecosystems: The case of cast. In Camarinha-
Matos, L., Xu, L., and Afsarmanesh, H., editors, Collaborative Networks in the Internet of
Services, volume 380 of IFIP Advances in Information and Communication Technology,
pages 196–204. Springer Berlin Heidelberg.

Kouters, E., Vasilescu, B., Serebrenik, A., and van den Brand, M. (2012). Who’s who in gnome:
Using lsa to merge software repository identities. In Software Maintenance (ICSM), 2012
28th IEEE International Conference on, pages 592–595.

Krishna, R. P. M. and Srinivasa, K. G. (2011). Analysis of projects and volunteer participation
in large scale free and open source software ecosystem. SIGSOFT Softw. Eng. Notes, 36:1–
5.

Kristensen, T., Olsen, K. R., Kilsmark, J., and Pedersen, K. M. (2008). Economies of scale
and optimal size of hospitals: Empirical results for danish public hospitals. Workingpaper,
Syddansk Universitet.

67

Lettner, D., Angerer, F., Prähofer, H., and Grünbacher, P. (2014). A case study on software
ecosystem characteristics in industrial automation software. In Proceedings of the 2014
International Conference on Software and System Process, ICSSP 2014, pages 40–49, New
York, NY, USA. ACM.

Lettner, D., Petruzelka, M., Rabiser, R., Angerer, F., Prähofer, H., and Grünbacher, P. (2013).
Custom-developed vs. model-based configuration tools: Experiences from an industrial
automation ecosystem. In Proceedings of the 17th International Software Product Line
Conference Co-located Workshops, SPLC ’13 Workshops, pages 52–58, New York, NY,
USA. ACM.

Linares-Vásquez, M., Bavota, G., Di Penta, M., Oliveto, R., and Poshyvanyk, D. (2014).
How do api changes trigger stack overflow discussions? a study on the android sdk. In
Proceedings of the 22Nd International Conference on Program Comprehension, ICPC 2014,
pages 83–94, New York, NY, USA. ACM.

Lingen, S. v., Palomba, A., and Lucassen, G. (2013). On the software ecosystem health of
open source content management systems. In Alves, C. F., Hanssen, G. K., Bosch, J., and
Jansen, S., editors, Proceedings of the 5th International Workshop on Software Ecosystems,
Potsdam, Germany, June 11, 2013, volume 987, pages 45–56. CEUR-WS.org.

Lopez, N. (2013). Using topic models to understand the evolution of a software ecosystem.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 723–726, New York, NY, USA. ACM.

Lund, S. R. (2013). Staten ramt af ny it-fadæse - kommunen. http://kommunen.dk/Artikel/
?id=2997. Accessed June 2014.

Lungu, M. (2008). Towards reverse engineering software ecosystems. In Software Maintenance,
2008. ICSM 2008. IEEE International Conference on, pages 428 –431.

Lungu, M. and Lanza, M. (2010). The small project observatory: a tool for reverse engineering
software ecosystems. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10, pages 289–292, New York, NY, USA. ACM.

Lungu, M., Lanza, M., Gı̂rba, T., and Robbes, R. (2010a). The small project observatory:
Visualizing software ecosystems. Science of Computer Programming, 75(4):264 – 275. Ex-
perimental Software and Toolkits (EST 3): A special issue of the Workshop on Academic
Software Development Tools and Techniques (WASDeTT 2008).

Lungu, M., Malnati, J., and Lanza, M. (2009). Visualizing gnome with the small project
observatory. In Mining Software Repositories, 2009. MSR ’09. 6th IEEE International
Working Conference on, pages 103 –106.

Lungu, M., Robbes, R., and Lanza, M. (2010b). Recovering inter-project dependencies in soft-
ware ecosystems. In Proceedings of the IEEE/ACM international conference on Automated
software engineering, ASE ’10, pages 309–312, New York, NY, USA. ACM.

Magnussen, J., Hagen, T. P., and Kaarboe, O. M. (2007). Centralized or decentralized? a
case study of norwegian hospital reform. Social science & medicine, 64(10):2129–2137.

Manikas, K. and Hansen, K. M. (2013a). Characterizing the danish telemedicine ecosystem:
Making sense of actor relationships. In Proceedings of the Fifth International Conference
on Management of Emergent Digital EcoSystems, MEDES ’13, pages 211–218.

Manikas, K. and Hansen, K. M. (2013b). Reviewing the health of software ecosystems - a
conceptual framework proposal. In Alves, C. F., Hanssen, G. K., Bosch, J., and Jansen, S.,
editors, Proceedings of the 5th International Workshop on Software Ecosystems, Potsdam,
Germany, June 11, 2013, volume 987, pages 33–44.

Manikas, K. and Hansen, K. M. (2013c). Software ecosystems – a systematic literature review.
Journal of Systems and Software, 86(5):1294 – 1306.

Manikas, K., Hansen, K. M., and Kyng, M. (2014). Governance mechanisms for healthcare
apps. In Proceedings of the 2014 European Conference on Software Architecture Workshops,
ECSAW ’14, pages 10:1–10:6, New York, NY, USA. ACM.

68

McDonnell, T., Ray, B., and Kim, M. (2013). An empirical study of api stability and adoption
in the android ecosystem. In Software Maintenance (ICSM), 2013 29th IEEE International
Conference on, pages 70–79.

McGregor, J. D. (2010). A method for analyzing software product line ecosystems. In Pro-
ceedings of the Fourth European Conference on Software Architecture: Companion Volume,
ECSA ’10, pages 73–80, New York, NY, USA. ACM.

MedCom (2013). Overview of danish telemedical initiatives. https://medcom.medware.dk/

telemedicine_projects. Accessed December 2013.

MedCom (2014a). Sundhedsdatanettet (SDN). http://www.medcom.dk/wm110002. Accessed
July 2014.

MedCom (2014b). Videokonference (VDX). http://www.medcom.dk/wm110004. Accessed July
2014.

Mens, T., Claes, M., and Grosjean, P. (2014a). Ecos: Ecological studies of open source
software ecosystems. In Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on, pages 403–406.

Mens, T., Claes, M., Grosjean, P., and Serebrenik, A. (2014b). Studying evolving software
ecosystems based on ecological models. In Mens, T., Serebrenik, A., and Cleve, A., editors,
Evolving Software Systems, pages 297–326. Springer Berlin Heidelberg.

Mens, T. and Goeminne, M. (2011). Analysing the evolution of social aspects of open source
software ecosystems. In Third International Workshop on Software Ecosystems (IWSECO-
2011), pages 1–14. CEUR-WS.

Messerschmitt, D. and Szyperski, C. (2003). Software ecosystem: understanding an indis-
pensable technology and industry. MIT Press Books, 1.

Mitropoulos, D., Karakoidas, V., Louridas, P., Gousios, G., and Spinellis, D. (2014). The bug
catalog of the maven ecosystem. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 372–375, New York, NY, USA. ACM.

Mizushima, K. and Ikawa, Y. (2011). A structure of co-creation in an open source software
ecosystem: A case study of the eclipse community. In Technology Management in the
Energy Smart World (PICMET), 2011 Proceedings of PICMET ’11:, pages 1 –8.

Molder, J., van Lier, B., and Jansen, S. (2011). Clopenness of systems: The interwoven nature
of ecosystems. In Third International Workshop on Software Ecosystems (IWSECO-2011),
pages 52–64. CEUR-WS.

Monaco, M., Michel, O., and Keller, E. (2013). Applying operating system principles to
sdn controller design. In Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks, HotNets-XII, pages 2:1–2:7, New York, NY, USA. ACM.

Monteith, J. Y., McGregor, J. D., and Ingram, J. E. (2013). Hadoop and its evolving ecosys-
tem. In Alves, C. F., Hanssen, G. K., Bosch, J., and Jansen, S., editors, Proceedings of the
5th International Workshop on Software Ecosystems, Potsdam, Germany, June 11, 2013,
volume 987, pages 57–68. CEUR-WS.org.

Monteith, J. Y., McGregor, J. D., and Ingram, J. E. (2014). Proposed metrics on ecosystem
health. In Proceedings of the 2014 ACM International Workshop on Software-defined
Ecosystems, BigSystem ’14, pages 33–36, New York, NY, USA. ACM.

Musil, J., Musil, A., and Biffl, S. (2013). Elements of software ecosystem early-stage design
for collective intelligence systems. In Proceedings of the 2013 International Workshop on
Ecosystem Architectures, WEA 2013, pages 21–25, New York, NY, USA. ACM.

Musil, J., Musil, A., Winkler, D., and Biffl, S. (2012). A first account on stigmergic information
systems and their impact on platform development. In Proceedings of the WICSA/ECSA
2012 Companion Volume, WICSA/ECSA ’12, pages 69–73, New York, NY, USA. ACM.

69

Mylonas, A., Kastania, A., and Gritzalis, D. (2013). Delegate the smartphone user? security
awareness in smartphone platforms. Computers & Security, 34:47–66.

Net4Care (2014). Net4care - the net4care ecosystem platform. http://net4care.org/ Ac-
cessed August, 2014.

Neu, S., Lanza, M., Hattori, L., and D’Ambros, M. (2011). Telling stories about gnome with
complicity. In Visualizing Software for Understanding and Analysis (VISSOFT), 2011 6th
IEEE International Workshop on, pages 1 –8.

Null, C. (2013). The end of symbian: Nokia ships last hand-
set with the mobile os. http://www.pcworld.com/article/2042071/

the-end-of-symbian-nokia-ships-last-handset-with-the-mobile-os.html. Accessed
September 2014.

Nöhren, M., Heinzl, A., and Kude, T. (2014). Structural and behavioral fit in software sourcing
alignment. In System Sciences (HICSS), 2014 47th Hawaii International Conference on,
pages 3949–3958.

OECD (2014). Health policies and data – OECD Health Statistics 2014. http://www.oecd.

org/els/health-systems/health-data.htm. Accessed Jully 2014.

Olejaz, M., Nielsen, A. J., Rudkjøbing, A., Birk, H. O., Krasnik, A., and Hernández-Quevedo,
C. (2012). Denmark. Health system review. Health Systems in Transition, 14(2):1–192.

Olsson, H. and Bosch, J. (2014). Ecosystem-driven software development: A case study on
the emerging challenges in inter-organizational r&d. In Lassenius, C. and Smolander, K.,
editors, Software Business. Towards Continuous Value Delivery, volume 182 of Lecture
Notes in Business Information Processing, pages 16–26. Springer International Publishing.

Orthacker, C., Teufl, P., Kraxberger, S., Lackner, G., Gissing, M., Marsalek, A., Leibetseder,
J., and Prevenhueber, O. (2012). Android security permissions – can we trust them? In
Prasad, R., Farkas, K., Schmidt, A., Lioy, A., Russello, G., and Luccio, F., editors, Security
and Privacy in Mobile Information and Communication Systems, volume 94 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 40–51. Springer Berlin Heidelberg.

Patton, M. Q. (2002). Qualitative research and evaluation methods. SAGE Publications, inc.

Pelliccione, P. (2014). Open architectures and software evolution: The case of software ecosys-
tems. In Software Engineering Conference (ASWEC), 2014 23rd Australian, pages 66–69.

Peniak, M., Morse, A., and Cangelosi, A. (2013). Aquila 2.0 software architecture for cognitive
robotics. In Development and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third
Joint International Conference on, pages 1–6.

Pérez, J., Deshayes, R., Goeminne, M., and Mens, T. (2012). Seconda: Software ecosys-
tem analysis dashboard. In Software Maintenance and Reengineering (CSMR), 2012 16th
European Conference on, pages 527 –530.

Pettersson, O. and Gil, D. (2010). On the issue of reusability and adaptability in m-learning
systems. In Wireless, Mobile and Ubiquitous Technologies in Education (WMUTE), 2010
6th IEEE International Conference on, pages 161 –165.

Pettersson, O., Svensson, M., Gil, D., Andersson, J., and Milrad, M. (2010). On the role
of software process modeling in software ecosystem design. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume, ECSA ’10, pages
103–110, New York, NY, USA. ACM.

Pettersson, O. and Vogel, B. (2012). Reusability and interoperability in mobile learning: A
study of current practices. In Wireless, Mobile and Ubiquitous Technology in Education
(WMUTE), 2012 IEEE Seventh International Conference on, pages 306 –310.

Popp, K. M. (2011). Hybrid revenue models of software companies and their relationship
to hybrid business models. In Third International Workshop on Software Ecosystems
(IWSECO-2011), pages 77–88. CEUR-WS.

70

Popp, K. M. (2012). Leveraging open source licenses and open source communities in hybrid
commercial open source business models. In Jansen, S., Bosch, J., and Alves, C., editors,
Proceedings of the Forth International Workshop on Software Ecosystems, Cambridge,
MA, USA, June 18th, 2012, volume 879, pages 33 – 40. CEUR-WS.org.

Protti, D. and Johansen, I. (2010). Widespread adoption of information technology in primary
care physician offices in denmark: a case study. Issue brief (Commonwealth Fund), 80:1–14.

Quantified Self (2014). Quantified self – self knowledge through numbers. http://

quantifiedself.com/, Accessed July 2014.

Rausch, A., Bartelt, C., Herold, S., Klus, H., and Niebuhr, D. (2013). From software systems
to complex software ecosystems: Model- and constraint-based engineering of ecosystems.
In Münch, J. and Schmid, K., editors, Perspectives on the Future of Software Engineering,
pages 61–80. Springer Berlin Heidelberg.

Riis, P. and Schubert, P. (2012). Upgrading to a new version of an erp system: A multilevel
analysis of influencing factors in a software ecosystem. In System Science (HICSS), 2012
45th Hawaii International Conference on, pages 4709 –4718.

Ringard, Å., Sagan, A., Saunes, I. S., and Lindahl, A. K. (2013). Norway. Health system
review. Health Systems in Transition, 15(8):1–162.

Robbes, R. and Lungu, M. (2011). A study of ripple effects in software ecosystems (nier track).
In Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11,
pages 904–907, New York, NY, USA. ACM.

Robbins, D. and Tanik, M. (2014). Cyber-physical ecosystems: App-centric software ecosys-
tems in cyber-physical environments. In Suh, S. C., Tanik, U. J., Carbone, J. N., and
Eroglu, A., editors, Applied Cyber-Physical Systems, pages 141–147. Springer New York.

Robson, C. (2011). Real world research. Wiley, third edition.

Rodrigues, R., Huber, M., and Lamura, G., editors (2012). Facts and Figures on Healthy
Ageing and Long-term Care – Europe and North America. European Centre for Social
Welfare Policy and Research.

RRS (2009). Remote rehabilitation support. http://www.caretechinnovation.dk/en/

projects/rrs.htm.

Rudkjøbing, A., Olejaz, M., Birk, H. O., Nielsen, A. J., Hernández-Quevedo, C., and Krasnik,
A. (2012). Integrated care: a danish perspective. BMJ, 345(2012):4451–4451.

Runeson, P., Höst, M., Rainer, A., and Regnell, B. (2012). Case Study Research in Software
Engineering – Guidelines and Examples. Wiley.

Salminen, A. and Mikkonen, T. (2012). Mashups - software ecosystems for the web era.
In Jansen, S., Bosch, J., and Alves, C., editors, Proceedings of the Forth International
Workshop on Software Ecosystems, Cambridge, MA, USA, June 18th, 2012, volume 879,
pages 18 – 32. CEUR-WS.org.

Santana, F. W. and Werner, C. M. L. (2013). Towards the analysis of software projects
dependencies: An exploratory visual study of software ecosystems. In Alves, C. F., Hanssen,
G. K., Bosch, J., and Jansen, S., editors, Proceedings of the 5th International Workshop
on Software Ecosystems, Potsdam, Germany, June 11, 2013, volume 987, pages 7–18.
CEUR-WS.org.

Santos, E. and Costa, L. F. (2013). Brazil and south africa collaboration for public software:
Building the south africa public software ecosystem. In Proceedings of the Fifth Interna-
tional Conference on Management of Emergent Digital EcoSystems, MEDES ’13, pages
314–319, New York, NY, USA. ACM.

Santos, P. R., Tostes, R. L., and Werner, L. C. (2013). A brechó-ecosys extension to support
negotiation in the software ecosystems context. In Information Reuse and Integration
(IRI), 2013 IEEE 14th International Conference on, pages 578–585.

71

Santos, R. and Werner, C. (2012a). Reuseecos: An approach to support global software
development through software ecosystems. In Global Software Engineering Workshops
(ICGSEW), 2012 IEEE Seventh International Conference on, pages 60–65.

Santos, R. and Werner, C. (2012b). Treating social dimension in software ecosystems through
reuseecos approach. In Digital Ecosystems Technologies (DEST), 2012 6th IEEE Interna-
tional Conference on, pages 1–6.

Santos, R., Werner, C., Barbosa, O., and Alves, C. (2012). Software ecosystems: Trends and
impacts on software engineering. In Software Engineering (SBES), 2012 26th Brazilian
Symposium on, pages 206–210.

Santos, R. P. (2014). Reuseseem: An approach to support the definition, modeling, and
analysis of software ecosystems. In Companion Proceedings of the 36th International Con-
ference on Software Engineering, ICSE Companion 2014, pages 650–653, New York, NY,
USA. ACM.

Santos, R. P. and Werner, C. (2011a). Treating business dimension in software ecosystems. In
Proceedings of the International Conference on Management of Emergent Digital EcoSys-
tems, MEDES ’11, pages 197–201, New York, NY, USA. ACM.

Santos, R. P. and Werner, C. M. L. (2010). Revisiting the concept of components in software
engineering from a software ecosystem perspective. In Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, ECSA ’10, pages 135–142, New
York, NY, USA. ACM.

Santos, R. P. and Werner, C. M. L. (2011b). A proposal for software ecosystem engineering.
In Third International Workshop on Software Ecosystems (IWSECO-2011), pages 40–51.
CEUR-WS.

Sasso, T. and Lanza, M. (2013). A closer look at bugs. In Software Visualization (VISSOFT),
2013 First IEEE Working Conference on, pages 1–4.

Satyanarayanan, M. (2013). Cloudlets: At the leading edge of cloud-mobile convergence.
In Proceedings of the 9th International ACM Sigsoft Conference on Quality of Software
Architectures, QoSA ’13, pages 1–2, New York, NY, USA. ACM.

Sawyer, S. (2000). Packaged software: implications of the differences from custom approaches
to software development. European Journal of Information Systems, 9(1):47–58.

Scacchi, W. (2007a). Free/open source software development: recent research results and
emerging opportunities. In The 6th Joint Meeting on European software engineering con-
ference and the ACM SIGSOFT symposium on the foundations of software engineering:
companion papers, ESEC-FSE companion ’07, pages 459–468, New York, NY, USA. ACM.

Scacchi, W. (2007b). Free/open source software development: Recent research results and
methods. In Zelkowitz, M. V., editor, Architectural Issues, volume 69 of Advances in
Computers, pages 243 – 295. Elsevier.

Scacchi, W. (2010a). Collaboration practices and affordances in free/open source software
development. In Mistŕık, I., van der Hoek, A., Grundy, J., and Whitehead, J., editors, Col-
laborative Software Engineering, pages 307–327. Springer Berlin Heidelberg. 10.1007/978-
3-642-10294-3 15.

Scacchi, W. (2010b). The future of research in free/open source software development. In
Proceedings of the FSE/SDP workshop on Future of software engineering research, FoSER
’10, pages 315–320, New York, NY, USA. ACM.

Scacchi, W. and Alspaugh, T. A. (2012). Understanding the role of licenses and evolution
in open architecture software ecosystems. Journal of Systems and Software, 85(7):1479 –
1494.

Schaeffer, D. J., Herricks, E. E., and Kerster, H. W. (1988). Ecosystem health: I. measuring
ecosystem health. Environmental Management, 12(4):445–455.

72

Schmerl, B., Garlan, D., Dwivedi, V., Bigrigg, M. W., and Carley, K. M. (2011). Sorascs: a
case study in soa-based platform design for socio-cultural analysis. In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11, pages 643–652, New
York, NY, USA. ACM.

Schmid, K. (2013). Variability support for variability-rich software ecosystems. In Product
Line Approaches in Software Engineering (PLEASE), 2013 4th International Workshop
on, pages 5–8.

Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., and Aguirre, L. (2010).
Feedback in context: Supporting the evolution of it-ecosystems. In Ali Babar, M., Vieri-
maa, M., and Oivo, M., editors, Product-Focused Software Process Improvement, volume
6156 of Lecture Notes in Computer Science, pages 191–205. Springer Berlin / Heidelberg.
10.1007/978-3-642-13792-1 16.

Scholten, U., Fischer, R., and Zirpins, C. (2012). The dynamic network notation: harnessing
network effects in paas-ecosystems. In Proceedings of the Fourth Annual Workshop on
Simplifying Complex Networks for Practitioners, SIMPLEX ’12, pages 25–30, New York,
NY, USA. ACM.

Schugerl, P., Rilling, J., Witte, R., and Charland, P. (2009). A quality perspective of soft-
ware evolvability using semantic analysis. In Semantic Computing, 2009. ICSC ’09. IEEE
International Conference on, pages 420 –427.

Schultis, K.-B., Elsner, C., and Lohmann, D. (2013). Moving towards industrial software
ecosystems: Are our software architectures fit for the future? In Product Line Approaches
in Software Engineering (PLEASE), 2013 4th International Workshop on, pages 9–12.

Schuur, H. v. d., Jansen, S., and Brinkkemper, S. (2011). The power of propagation: on the
role of software operation knowledge within software ecosystems. In Proceedings of the
International Conference on Management of Emergent Digital EcoSystems, MEDES ’11,
pages 76–84, New York, NY, USA. ACM.

Schwarz, N., Lungu, M., and Robbes, R. (2012). On how often code is cloned across repos-
itories. In Software Engineering (ICSE), 2012 34th International Conference on, pages
1289–1292.

Schütz, S., Kude, T., and Popp, K. (2013). The impact of software-as-a-service on software
ecosystems. In Herzwurm, G. and Margaria, T., editors, Software Business. From Physical
Products to Software Services and Solutions, volume 150 of Lecture Notes in Business
Information Processing, pages 130–140. Springer Berlin Heidelberg.

Seichter, D., Dhungana, D., Pleuss, A., and Hauptmann, B. (2010). Knowledge management
in software ecosystems: software artefacts as first-class citizens. In Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume, ECSA ’10,
pages 119–126, New York, NY, USA. ACM.

Seidl, C. and Aßmann, U. (2013). Towards modeling and analyzing variability in evolving
software ecosystems. In Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS ’13, pages 3:1–3:8, New York, NY, USA.
ACM.

Seidl, C., Schaefer, I., and Aßmann, U. (2013). Capturing variability in space and time with
hyper feature models. In Proceedings of the Eighth International Workshop on Variability
Modelling of Software-Intensive Systems, VaMoS ’14, pages 6:1–6:8, New York, NY, USA.
ACM.

Shaw, M. (2003). Writing good software engineering research papers. Mini-tutorial for Proc
ICSE” 03.

Spauwen, R. and Jansen, S. (2013). Towards the roles and motives of open source software
developers. In Alves, C. F., Hanssen, G. K., Bosch, J., and Jansen, S., editors, Proceedings
of the 5th International Workshop on Software Ecosystems, Potsdam, Germany, June 11,
2013, volume 987, pages 69–80. CEUR-WS.org.

73

SSI (2014a). Fælles medicinkort - statens serum institut. http://www.ssi.dk/fmk. Accessed
August 2014.

SSI (2014b). National Serviceplatform (NSP). http://www.ssi.dk/NSP. Accessed July 2014.

Statistics Denmark (2014). Statbank denmark. http://www.statbank.dk/statbank5a, Ac-
cessed July 2014.

Stefanuto, G., Spiess, M., Alves, A. M., and Castro, P. F. D. (2011). Quality in software
digital ecosystems the users perceptions. In Proceedings of the International Conference
on Management of Emergent Digital EcoSystems, MEDES ’11, pages 85–88, New York,
NY, USA. ACM.

Sundhed.dk (2014). Den offentlige sundhedsportal. https://www.sundhed.dk/. Accessed Au-
gust 2014.

Sundhedsstyrelsen (2011). Aktivitet p̊a private sygehuse 2006-2010. Sundhedsdokumentation.

Syed, S. and Jansen, S. (2013). On clusters in open source ecosystems. In Alves, C. F., Hanssen,
G. K., Bosch, J., and Jansen, S., editors, Proceedings of the 5th International Workshop
on Software Ecosystems, Potsdam, Germany, June 11, 2013, volume 987, pages 19–32.
CEUR-WS.org.

Syeed, M. M., Hansen, K. M., Hammouda, I., and Manikas, K. (2014). Socio-technical con-
gruence in the ruby ecosystem. In Proceedings of the 10th International Symposium on
Open Collaboration OpenSym.

Taylor, R. N. (2013). The role of architectural styles in successful software ecosystems. In
Proceedings of the 17th International Software Product Line Conference, SPLC ’13, pages
2–4, New York, NY, USA. ACM.

Tchoua, R., Choi, J., Klasky, S., Liu, Q., Logan, J., Moreland, K., Mu, J., Parashar, M.,
Podhorszki, N., Pugmire, D., and Wolf, M. (2013). Adios visualization schema: A first
step towards improving interdisciplinary collaboration in high performance computing. In
eScience (eScience), 2013 IEEE 9th International Conference on, pages 27–34.

Teixeira, J. and Lin, T. (2014). Collaboration in the open-source arena: The webkit case. In
Proceedings of the 52Nd ACM Conference on Computers and People Research, SIGSIM-
CPR ’14, pages 121–129, New York, NY, USA. ACM.

TELEKAT (2007). TELEKAT: Telehomecare, chronic patients and the integrated healthcare
system. http://www.telekat.eu/.

Teles̊ar (2006). Telemedicinsk s̊arvurdering. http://www.pleje.net.

The Economist (2011). Future-proofing western europe’s healthcare – a study of five countries.
The Economist Intelligence Unit.

The Economist (2014). The quantified self: Counting every moment. http://www.economist.
com/node/21548493, Accessed July 2014.

Tymchuk, Y., Mocci, A., and Lanza, M. (2014). Collaboration in open-source projects: Myth
or reality? In Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, MSR 2014, pages 304–307, New York, NY, USA. ACM.

Valenca, G. (2013). Requirements negotiation model: A social oriented approach for software
ecosystems evolution. In Requirements Engineering Conference (RE), 2013 21st IEEE
International, pages 393–396.

Vasilescu, B., Serebrenik, A., Goeminne, M., and Mens, T. (2014). On the variation and
specialisation of workload—a case study of the gnome ecosystem community. Empirical
Software Engineering, 19(4):955–1008.

Ververs, E., van Bommel, R., and Jansen, S. (2011). Influences on developer participation in
the debian software ecosystem. In Proceedings of the International Conference on Man-
agement of Emergent Digital EcoSystems, MEDES ’11, pages 89–93, New York, NY, USA.
ACM.

74

ViewCare (2011). Viewcare. http://www.viewcare.com/.

Viljainen, M. and Kauppinen, M. (2011). Software ecosystems: A set of management practices
for platform integrators in the telecom industry. In Regnell, B., Weerd, I., Troyer, O., Aalst,
W., Mylopoulos, J., Rosemann, M., Shaw, M. J., and Szyperski, C., editors, Software
Business, volume 80 of Lecture Notes in Business Information Processing, pages 32–43.
Springer Berlin Heidelberg. 10.1007/978-3-642-21544-5 4.

Waltl, J., Henkel, J., and Baldwin, C. (2012). Ip modularity in software ecosystems: How
sugarcrm’s ip and business model shape its product architecture. In Cusumano, M., Iyer, B.,
and Venkatraman, N., editors, Software Business, volume 114 of Lecture Notes in Business
Information Processing, pages 94–106. Springer Berlin Heidelberg.

WEA (2014). WEA - Workshop Ecosystem Architectures | 2nd International Workshop on
Software Ecosystem Architectures (WEA 2014). http://wea.github.io/ Accessed August,
2014.

Weiss, M. (2011). Economics of collectives. In Proceedings of the 15th International Software
Product Line Conference, Volume 2, SPLC ’11, pages 39:1–39:8, New York, NY, USA.
ACM.

Widjaja, T. and Buxmann, P. (2011). Compatibility of software platforms. In Heinzl, A., Bux-
mann, P., Wendt, O., and Weitzel, T., editors, Theory-Guided Modeling and Empiricism
in Information Systems Research, pages 15–41. Physica-Verlag HD. 10.1007/978-3-7908-
2781-1 2.

Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., and Munir, H. (2014a). Evalu-
ating the governance model of hardware-dependent software ecosystems – a case study of
the axis ecosystem. In Lassenius, C. and Smolander, K., editors, Software Business. To-
wards Continuous Value Delivery, volume 182 of Lecture Notes in Business Information
Processing, pages 212–226.

Wnuk, K., Runeson, P., Lantz, M., and Weijden, O. (2014b). Bridges and barriers to hardware-
dependent software ecosystem participation – a case study. Information and Software
Technology, 56(11):1493 – 1507.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer.

World Health Organization (2010). Telemedicine. opportunities and developments in member
states. Global Observatory for eHealth series – Volume 2.

Wright, J. L., McQueen, M., and Wellman, L. (2013). Analyses of two end-user software
vulnerability exposure metrics (extended version). Information Security Technical Report,
17(4):173 – 184. Special Issue: {ARES} 2012 7th International Conference on Availability,
Reliability and Security.

Wynn, Donald, J. (2012). The evolving structure and function of commercial open source
software ecosystems. In Cusumano, M., Iyer, B., and Venkatraman, N., editors, Software
Business, volume 114 of Lecture Notes in Business Information Processing, pages 285–290.
Springer Berlin Heidelberg.

Yin, R. K. (2013). Case study research: Design and methods. SAGE, fifth edition.

Yu, E. and Deng, S. (2011). Understanding software ecosystems: A strategic modeling ap-
proach. In Third International Workshop on Software Ecosystems (IWSECO-2011), pages
65–76. CEUR-WS.

Yu, L. (2011). Coevolution of information ecosystems: a study of the statistical relations
among the growth rates of hardware, system software, and application software. SIGSOFT
Softw. Eng. Notes, 36(6):1–5.

Yu, L. (2013). The market-driven software ecosystem. IT Professional, 15(5):46–50.

Yu, L., Ramaswamy, S., and Bush, J. (2007). Software evolvability: An ecosystem point of
view. In Software Evolvability, 2007 Third International IEEE Workshop on, pages 75 –80.

75

Yu, L., Ramaswamy, S., and Bush, J. (2008). Symbiosis and software evolvability. IT Profes-
sional, 10(4):56 –62.

Yu, S. and Woodard, C. (2009). Innovation in the programmable web: Characterizing the
mashup ecosystem. In Feuerlicht, G. and Lamersdorf, W., editors, Service-Oriented Com-
puting – ICSOC 2008 Workshops, volume 5472 of Lecture Notes in Computer Science,
pages 136–147. Springer Berlin / Heidelberg. 10.1007/978-3-642-01247-1 13.

76

Part II

Papers

77

Paper 1

Software ecosystems – A
systematic literature review

Manikas, K. and Hansen, K. M. (2013c). Software ecosystems – a systematic
literature review. Journal of Systems and Software, 86(5):1294 – 1306

78

The Journal of Systems and Software 86 (2013) 1294– 1306

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Software ecosystems – A systematic literature review

Konstantinos Manikas ∗, Klaus Marius Hansen
Department of Computer Science (DIKU), University of Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 28 March 2012
Received in revised form 8 December 2012
Accepted 8 December 2012
Available online 20 December 2012

Keywords:
Software ecosystems
Software ecosystem
Systematic literature review

a b s t r a c t

A software ecosystem is the interaction of a set of actors on top of a common technological platform
that results in a number of software solutions or services. Arguably, software ecosystems are gaining
importance with the advent of, e.g., the Google Android, Apache, and Salesforce.com ecosystems. How-
ever, there exists no systematic overview of the research done on software ecosystems from a software
engineering perspective. We performed a systematic literature review of software ecosystem research,
analyzing 90 papers on the subject taken from a gross collection of 420. Our main conclusions are that
while research on software ecosystems is increasing (a) there is little consensus on what constitutes a
software ecosystem, (b) few analytical models of software ecosystems exist, and (c) little research is done
in the context of real-world ecosystems. This work provides an overview of the field, while identifying
areas for future research.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It has recently been suggested that software ecosystems (SECOs)
are an effective way to construct large software systems on top of a
software platform by composing components developed by actors
both internal and external (Bosch, 2009; te Molder et al., 2011). In
this setting, software engineering is spread outside the traditional
borders of software companies to a group of companies, private
persons, or other legal entities.

This differs from traditional outsourcing techniques in that the
initiating actor does not necessarily own the software produced
by contributing actors and does not hire the contributing actors.
All actors, however, coexist in an interdependent way, an example
being the iOS ecosystem in which Apple provides review of and
a platform for selling applications in return for a yearly fee and
30% of revenues of application sale.1 This is a parallel to natural
ecosystems where the different members of the ecosystems (e.g.,
the plants, animals, or insects) are part of a food network where
the existence of one species depends on the rest.

In addition to iOS, Google’s Android ecosystem is a prominent
example of a (smartphone) software ecosystem. Such ecosystems
are arguably gaining importance commercially: it is, e.g., estimated
that in 2012, more smartphones than personal computers will be
sold.2

∗ Corresponding author. Tel: +45 23839917.
E-mail addresses: kmanikas@diku.dk (K. Manikas), klausmh@diku.dk

(K.M. Hansen).
1 http://developer.apple.com/programs/ios/distribute.html.
2 http://www.slideshare.net/CMSummit/ms-internet-trends060710final.

While software ecosystems are thus arguably gaining impor-
tance, research in software ecosystems is in its infancy, starting
in 2005 with Messerschmitt and Szyperski (2005) and now with a
dedicated workshop in its third year.3 Our own literature search
(see Section 3) revealed a gross list of 420 published papers
on software ecosystems. However, until now there has been no
systematic literature review (SLR) of the research literature on soft-
ware ecosystems, leading to potential issues in identifying research
gaps and contributions.

In the context of this, we have conducted a systematic litera-
ture review in the field of software ecosystems using the approach
of Kitchenham and Charters (2007). As such, the purpose of this lit-
erature review is to provide an overview of the research reported in
the field and identify possible issues that existing literature is not
addressing adequately. This work is intended to function as a snap-
shot of the research in the field by (i) identifying and analyzing the
different definitions of SECOs, (ii) analyzing the growth in research
reported per year, (iii) classifying the research by type of result, (iv)
defining and analyzing the software architecture and structure of
SECOs, and (v) analyzing to which extent research is connected to
SECO industry.

1.1. Article structure

The rest of this article is organized as following: in Section 2 we
specify the review protocol, in Section 3 we document the extrac-
tion of the literature, in Section 4 we analyze the literature and
answer the research questions, in Section 5 we list possible threats

3 http://www.softwareecosystems.org/workshop/.

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.12.026

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

to the validity of this work and identify areas not covered from the
literature and in Section 6 we conclude.

2. Review protocol

The applied review protocol is based on the guidelines of
Kitchenham and Charters (2007). The establishment of the review
protocol is necessary to ensure that the literature review is system-
atic and to minimize researcher bias. As such, the literature review
is focused on a set of research questions that serve the aim of this
work and derive from the reasons that initiated this review. The
review protocol is organized in a way that the research questions
define the main areas this study is focusing on. Section 2.2 defines
the paper literature extraction strategy including the list of resource
libraries, the search query and inclusion/exclusion criteria.

2.1. Research questions

The purpose of this systematic literature review is to provide
an overview of the research reported in the field of SECO. In this
overview, we intent to address the following research questions:

RQ 1: How is the term ‘software ecosystem’ defined?
In order to be able to analyze the field of SECOs, we should

first define the SECO as object of study. Thus, the first objec-
tive of this work is to provide an overview of how the
research community defines the term ‘software ecosystem’.
We achieve that by looking into the SECO definitions in the
literature and comparing them. This will create an under-
standing of what the research community means by the term
SECO.

RQ 2: What is the research output per year in the SECO field?
By grouping the literature per publication year we are able

to identify possible trends in the research invested in the field
of SECOs. An increase in the number of publications per year,
for example, would imply the increase in importance of the
field while a decrease in the number of publications might
have as a possible reason the research in the field reaching
a dead end. Analyzing the trends might give an idea of how
the importance of the field of SECOs is changing with time.

RQ 3: What is the type of result that software ecosystem research
reports?

After having defined the term SECO, a question that we
want to address is what kind of research this field reports.
Therefore, it is of interest to classify the papers according
to the contribution they make. From a software engineering
perspective, Shaw’s classification of research results (Shaw,
2003) has been chosen. The classification contains the fol-
lowing categories:

Procedure or technique: This category includes papers that
are providing a concrete and implementable way to solve a
SECO problem. The solutions should be in the form of a proce-
dure or technique that can be applied and not general rules of
thumb or reported experiences. For example, Kazman et al.
(2012) analyze a series of traditional software design and
software architecture principles and methods in the perspec-
tive of the SECOs (or software-intensive ecosystems as they
are called in the paper). This results in some new or adapted
methods for the software design and architecture of these
software-intensive ecosystems.
Qualitative or descriptive model: Papers using models
based on qualitative analysis of data or well argumentation
of existing cases. Papers in this category provide an analyti-
cal or descriptive model for the problem area. As an example
the analysis of two different kinds of SECO: the “as-a-service”

and “on-premise” software ecosystems that derived from a
comparative study of two existing SECOs presented in Hilkert
et al. (2010).
Empirical model: This category includes papers that use
models derived from the quantitative data collection of the
problem area. A paper of this category studies empirical data
and concludes some analysis or predicting model. For exam-
ple, Yu et al. (2008) extract information from open source
systems to assess the evolvability of software.
Analytic model: Papers using models based on automatic
or mathematical manipulation for solving a specific prob-
lem. For example the paper of Capuruç o and Capretz (2010)
that propose a prediction of recommendations and interac-
tion between the members of a social ecosystem based on a
mathematical analysis of the member relationships.
Tool or notation: A tool or notation created or implemented
applying some method or technique. For example, a tool
for recovering components and their relationships in free or
open source projects, proposed by Lungu (2008)
Specific solution, prototype, answer, or judgment: Papers
documenting a complete solution, evaluation of a theory or
comparison of different theories based on a software engi-
neering problem. The result is addressing a specific problem.
An example would be Pettersson and Gil (2010) who address
reusability and adaptability issues in mobile learning sys-
tems
Report: Papers documenting knowledge and experience
obtained, rules of thumb or checklists but not systematic
enough to be a descriptive model. For example, the analy-
sis of the hybrid business and revenue models that software
companies can have (Popp, 2011).

RQ 4: What is the role of architecture in software ecosystem research?
For single systems, software architecture is seen as impor-

tant in determining the quality of a system being built (Bass
et al., 2003; Hansen et al., 2011). In relation to this, we
analyze the extent to which SECO literature stresses soft-
ware architecture. We evaluate the literature in whether it
is documenting any considerations towards SECO software
architecture. In doing so, our concept of software architec-
ture is in line with Bass et al. (2003):

“The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software elements, the externally visible prop-
erties of those elements, and the relationships among
them.”

We here extend the definition to concern software ecosys-
tems, i.e., we define ‘software ecosystem architecture’ as the
structure or structures of the software ecosystem in terms
of elements, the properties of these elements, and the rela-
tionships among these elements. The SECO elements can be
systems, system components, and actors. Relationships then
include software architecture-related relationships as well
as actor-related relationships such the relationship between
two actors.

RQ 5: How is the connection between research and industry in the
area of software ecosystems?

It is of interest to know how close industry and research
are in the field of software ecosystems. Research benefits
from realism of problems when connected to the industry
while industry arguably may become more innovative and
efficient when connected to research. In the case of SECOs
research results are more valid when they are concerning
existing SECOs, while studies of problems in existing SECO
can help the industry improve.

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

We investigate how connected the research world is with
the industry by examining how much of the literature has
focused on real-world SECOs. We accept that a paper has
focus on a real-world SECO when it either presents an exist-
ing SECO as an object of study or uses the data from the study
of one to support a claim or result. For example, this could be
a paper that is deducting information of the external actors
of an ecosystem by studying the relationships between the
actors of one or more existing SECOs. However, we do not
include papers that merely mention a SECO, e.g., in order to
support their definition of SECOs, and that thus present no
study of the SECO.

2.2. Defining the literature body

The strategy for collecting the relevant literature is twofold: (i) a
keyword search in a list of scientific libraries and (ii) the collection
of the papers from the SECO workshop series.

With respect to (i), the scientific libraries included in the search
are:

1. The ACM Digital Library4

2. IEEE Explore5

3. Springer Verlags’ digital library, SpingerLink6

4. ScienceDirect.7 An online collection of published scientific
research operated by the publisher Elsevier.

5. Thomson Reuters’ Web of Science.8 An online academic citation
index.

The literature extraction consists of two separate keyword
searches with the search terms “software ecosystem” and “software
ecosystems” in the libraries above. The search query is intention-
ally kept simple so we can extract the maximum number of papers
containing the terms. We specifically define SECO(s) as the keyword
to underline the differentiation of the field of software ecosystem
from different ecosystems like business, digital or social. The bor-
ders of the SECO field can be sometimes vaguely defined especially
when overlapping with other kinds of ecosystems. For example
some SECOs in the literature can also fit in a digital ecosystem
definition and there are several studies on business ecosystems
that produce software. The purpose of this work, however, is to
study software ecosystems and any possible intersections with
other ecosystems should be studied from the SECO point of view.
Therefore, this study does not include studies on other kinds of
ecosystems.

With respect to (ii), we include the papers from the International
Workshops on Software Ecosystems (IWSECO).

The selected literature body collected from both (i) and (ii)
should commit to a set of inclusion criteria:

• The literature should address software ecosystems as an area
of research, either main or secondary. Therefore, the keywords
“software ecosystem(s)” should exist as a whole and continuously
in at least one of the fields: title, keywords or abstract. Addition-
ally, possible composites of the keywords should be examined,
e.g., software-intensive ecosystems.

• Be research papers, i.e., being published in a scientific peer
reviewed venue.

• Be written in English.

4 http://dl.acm.org/.
5 http://ieeexplore.ieee.org.
6 http://www.springerlink.com/.
7 http://www.sciencedirect.com/.
8 http://apps.webofknowledge.com/.

• Have a document body that is more than one page long.

Consequently, the literature does not contain books, extended
abstracts, presentations, presentation notes, keynotes or papers
written in other language than english.

The literature body is the results of the following steps:

1. Collecting all the literature. The literature collection is the com-
bination of the scientific library search and the IWSECO papers.
The library search, at this point includes a search of the keywords
in the whole text body in order to include the maximum amount
of papers.

2. Applying inclusion/exclusion criteria. The literature collection
resulting from the previous step are searched for the keywords
in the fields title, abstract, keywords.

3. Verifying rejected papers. The rejected literature from the pre-
vious step is searched for only the terms “ecosystem(s)” and
“software” in the fields title, abstract, keywords and evalu-
ated if they are related literature. This would avoid rejecting
papers with different combinations of the keywords, for example
“software-intensive ecosystems”.

4. Verifying included papers. The included literature that resulted
from the two previous steps is verified manually by reading the
abstract and conclusion. In this step, we make sure that the
papers included in the review provide results that are directly
or indirectly related to the field of SECO.

3. Collecting the literature body

To obtain the literature body of our review, we apply the sys-
tematic literature review (SLR) protocol described in Section 2 with
the extraction date of June 11, 2012. The four steps for defining
the literature body described in Section 2.2 can be seen in Table 1.
The literature collection starts with 420 papers extracted from the
libraries. All the IWSECO papers are included in this collection. After
applying the inclusion/exclusion criteria, we reject 297 paper. Out
of the 297 rejected, we apply step 3 and included six papers with key
words ”open ecosystems”, ”software-intensive ecosystems”, ”ERP
ecosystems”, ”information ecosystem”, ”source code ecosystems”,
”Eclipse ecosystem”. In step 4 we went through 129 papers (123
from step 2 plus 6 from step 3) and find 90 papers relevant. We
contribute the high number of rejected papers in step 2 to two
reasons: (i) some libraries would search in the whole paper text
body and thus retrieve papers mentioning SECO but not reporting
research on that field and (ii) Science Direct does not recognize the
quotation marks in “software ecosystem” or “software ecosystems”
so it retrieves results that the words are not adjacent to each other
but in different locations in the texts, therefore there were many
papers not related to software engineering. We also note that from
the six papers selected in step 3, only one (Kazman et al., 2012) is
part of the included papers.

During the data extraction process, we read the papers found
relevant and extracted interesting information and information
needed to address the research questions. The information extrac-
tion is in the form of descriptive text enclosed by identifying labels
for automated sorting. In continuation, a set of custom scripts
export the requested information.

Table 1
The steps and included papers to define the literature body.

Step Nr of papers

1. Collecting the literature 420
2. Applying inclusion/exclusion criteria 123
3. Verifying rejected papers (included) 6
4. Verifying included papers 90

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

4. Analysis

In this section we analyze the literature and the results of the
review. The section is organized according to the research questions
in Section 2.1.

4.1. Defining SECO

During this literature review, we obtained an overview of the
general field referred to as software ecosystems. One of our initial
aims was to define the term SECO by summarizing the definitions in
the literature. Looking into the literature, our first remark is that we
found a large number of papers (40 out of the total of 90) that did
not define the term SECO. This is, either because the authors are
basing their work on previous research (own or not) that would
provide the background and definition or because the main focus
of the paper is not in the general field of SECO. For example, Bosch
(2010a) is not providing any definition, but he is referring back to
his own work (Bosch, 2009) where he provides a definition and
more detailed analysis of the field. On the other hand, Popp (2011)
defines the business and revenue models for SECOs. In his paper, he
is providing definitions for the business and revenue models that
is the main focus, instead of a definition of a SECO. This, however,
does not make it of less value to the research field of SECOs.

Taking the papers that provide a definition, we notice that few
of them are defining the SECO with their own words. Two of these
papers are also citing more definitions from the literature along
with their own. The rest of the papers, are defining the field by
using one or more definitions from the existing literature. When we
analyzed the definitions, we found that we can group the quoted
definitions in four groups according to the source of the definition:

Messerschmitt and Szyperski (2005) is the oldest definition of
SECO in the found literature referring to the book on SECO pub-
lished in 2005.

“Traditionally, a software ecosystem refers to a collection of
software products that have some given degree of symbiotic
relationships.” (Messerschmitt and Szyperski, 2005)

Jansen et al. (2009b) mainly refer to the following definition:

“We define a software ecosystem as a set of businesses func-
tioning as a unit and interacting with a shared market for
software and services, together with the relationships among
them. These relationships are frequently under-pinned by
a common technological platform or market and operate
through the exchange of information, resources and artifacts.”
(Jansen et al., 2009b)

Bosch (2009) and Bosch and Bosch-Sijtsema (2010b,c) provide two
definitions in their papers. The papers quoting his definitions are
taking one of the following:

“ A software ecosystem consists of the set of software solu-
tions that enable, support and automate the activities and
transactions by the actors in the associated social or business

ecosystem and the organizations that provide these solutions.”
(Bosch, 2009)
“A software ecosystem consists of a software platform, a set of
internal and external developers and a community of domain
experts in service to a community of users that compose rel-
evant solution elements to satisfy their needs.” (Bosch and
Bosch-Sijtsema, 2010b,c)

Lungu et al. (2010a) are presenting a different definition of the
SECOs that is adopted by a number of papers:

“A software ecosystem is a collection of software projects
which are developed and evolve together in the same envi-
ronment.” (Lungu et al., 2010a)

In Table 2 we show the different groupings and the papers
belonging to each group. The in the column Papers refer to the
literature body listed in Appendix A.

Not surprisingly, if we look at the definitions we can see that
they have two things in common: they concern software in some
form (software systems, products, services, or a software platform)
and they are all including some kind of relationships either “symbi-
otic”, “common evolution”, “business” or “technical”. If we look at
what perspective the authors have in the definitions, we note that
Messerschmitt and Lungu et al. have a pure technical perspective by
talking about software and its symbiosis/co-existence, while Bosch
et al. and Jansen et al. include, apart from the technical, a social
and business perspective to their definition and the symbiosis is
not only on the technical level. Taking the two wider-perspective
definitions of Bosch et al. and Jansen, which are referenced by the
majority of the papers that provide a definition for SECO (65%), we
can identify three main elements in their definitions:

Common Software The software appears either as a “common
technological platform” (Jansen et al., 2009b), “software
solutions” (Bosch, 2009) or “software platform” (Bosch
and Bosch-Sijtsema, 2010b,c)

Business This is expressed as either “a set of business” (Jansen
et al., 2009b), “business ecosystem” (Bosch, 2009), a
“community of users that have needs to be satisfied”
(Bosch and Bosch-Sijtsema, 2010b,c). In this element, the
term “Business” is implying a wider sense than the profit
or revenue models. This element also includes possible
benefits other than financial revenues, e.g., the benefits
an actor would get from the involvement in an free or
open source project.

Connecting Relationships “a set of businesses (. . .) together with
the relationships among them ” (Jansen et al., 2009b),
“actors in the associated social ecosystem” (Bosch, 2009),
“community of domain experts” and “community of
users” (Bosch and Bosch-Sijtsema, 2010b,c)

Combining the definitions above with the three elements iden-
tified, we define a software ecosystem as the interaction of a set of
actors on top of a common technological platform that results in a
number of software solutions or services. Each actor is motivated

Table 2
The papers belonging to each group of SECO definition.

Definition Papers Total

Not available [19, 1, 45, 39, 43, 2, 5, 6, 9, 11, 48, 49, 59, 52, 51, 54, 42, 53, 36, 46, 31, 22, 21, 35, 33,
26, 55, 32, 24, 63, 82, 74, 75, 69, 62, 64, 70, 78, 67, 83]

40

Jansen et al. [3, 4, 10, 16, 13, 28, 37, 44, 14, 29, 12, 6, 27, 87, 86, 72, 76, 71, 61, 65, 66, 60, 90, 84] 24
Bosch et al. [40, 41, 10, 13, 20, 23, 44, 14, 17, 12, 89, 77, 79] 13
Own [38, 8, 30, 58, 56, 47, 12, 34, 73] 9
Lungu et al. [7, 15, 18, 80, 68, 81] 6
Messerschmitt et al. [40, 50, 37, 57, 85] 5

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

Table 3
Papers published per year.

Year Papers Total

2007 [31, 46, 57] 3
2008 [50, 53, 54] 3
2009 [9, 10, 11, 20, 6, 42, 51, 52, 56, 58] 10
2010 [1, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23,24, 27, 28, 29, 30, 33,34, 35, 36, 37, 38, 39,41, 43, 45, 47, 48, 49,55, 59] 32
2011 [2, 3, 4, 5, 6, 7, 8, 26,32, 40, 44, 87, 89, 88,73, 72, 74, 68, 71, 69,64, 61, 65, 70, 79, 66,60, 67, 83, 85, 90, 84] 32
2012 [63, 80, 86, 82, 76, 77,75, 62, 78, 81] 10

by a set of interests or business models and connected to the rest of
the actors and the ecosystem as a whole with symbiotic relation-
ships, while, the technological platform is structured in a way that
allows the involvement and contribution of the different actors. In
other words, the SECO provides possibilities for the actors to bene-
fit from their participation in the ecosystem. The types of benefits
might vary depending on the actor and the nature of the ecosystem.
In a commercial ecosystem the actors might gain direct revenues,
e.g., developers making apps for iPhone and selling them in the
App Store, while in a non-commercial ecosystem the actors might
participate for non-monetary benefits (fame, knowledge, ideology
and so on), e.g., the developers contributing to Apache. Addition-
ally, the actors’ relationships to the ecosystem as a whole are of
mutual interest (mutualism): the actors’ benefits increase by the
thriving of the ecosystem and the ecosystem benefits by increased
actor activity. The relationships among the actos in a SECO, on the
other hand, are characterized by the wider spectrum of symbiotic
relationships. Depending on the actors and their activity, two actors
might have mutual benefits (mutualism), be in direct competition
(competition/antagonism), be unaffected (neutralism) or one being
unaffected while the other is benefiting (amensalism) or harmed
(parasitism) by their relationship.

When looking at the rest of the papers, we note that there
is a number of papers that assist in the conceptualization of
the field in a wider sense than just providing the definition of
SECOs. These papers are used as a conceptual base of succee-
ding work. In this concept, Bosch (2009) proposes a taxonomy
where he divides SECOs in three categories: operating system-
centric, application-centric and end-user programming software
ecosystems. In continuation he discusses the steps needed for
the transition to a SECO and implications this transition might
have. Jansen et al. (2009a), apart from providing the definition
for SECO seen above, propose three scopes to study SECOs that
are also explained briefly in Boucharas et al. (2009): an external
view on ecosystems that studies the SECOs themselves and the
markets around them, an internal view of a SECO that is focus-
ing on software supply networks and their relationships, and an
organization-centric perspective that studies the actors and their
relationships. Campbell and Ahmed (2010) propose a view of SECO
consisted of three dimensions: business, architectural and social.
Dhungana et al. (2010) make a comparison of the SECO with biolog-
ical ecosystems from the perspective of resource management and

biodiversity and underline the importance of diversity, monitoring
of health and supporting social interaction for the field of SECO.dos
Santos and Werner (2011b) collect the concepts appearing in the
papers from IWSECO 2009 to 2010 and organize them in three
views: SECO architecture, SECO strategies and tactics and SECO
social networks. Finally, Barbosa and Alves (2011) conduct a sys-
tematic mapping in the field of SECO and categorize the research
in eight fields unfolded around open source software, ecosystem
modeling, and business issues.

4.2. Yearly activity

Another point of study in this work, is the analysis of the year
of publication. We order the papers according to their publication
year as can be seen in Table 3. The literature on SECO starts in 2007
(although (Messerschmitt and Szyperski, 2005) dates back to 2005,
it was excluded from this study for being a book and not a research
paper). The first two years – 2007 and 2008 – provide an equally
low number of papers. However, an increase appears in 2009 and
continues to 2010 with 2010 and 2011 having the same amount of
papers.

The increase of papers gives us a clear sign that the field of SECO
is gaining in importance among the published research. This is
also underlined with the establishment of a workshop dedicated
to SECOs, the International Workshop on Software Ecosystems
(IWSECO), in 2009. While this does not give insight into software
ecosystems in themselves, it stresses the potential significance of
the concept.

4.3. Research results

As noted in research question in Section 2.1, it is of interest to
examine what kind of results the papers are reporting. We have
classified the papers in the categories listed in research question
in Section 2.1 and can be seen in Table 4. As it can be seen from
the table, the majority of the papers fall under the Report cate-
gory. This means that these papers have as contribution knowledge
and experience obtained, rules of thumb or checklists or interest-
ing observations but they are not systematic enough, nor generic
enough to be applied to different domains or too abstract to provide
a concrete contribution. An example of a paper falling under this
category is the paper by Dhungana et al. (2010) that compares

Table 4
The papers grouped according to the result groups.

Result Papers % of total

Report [19, 43, 2, 6, 10, 8, 59, 52, 56, 51, 36, 46, 31,20, 35, 12, 26, 32, 24,14, 29, 33, 17, 87,
73,86, 82, 76, 77, 71, 75,64, 61, 65, 70, 78, 66,67, 83, 85, 84]

44

Tool or notation [9, 48, 58, 54, 15, 22,47, 6, 80, 68, 69, 62, 79,81] 15
Procedure or technique [40, 41, 5, 11, 30, 53, 16, 13, 28, 18, 14,17] 13
Qualitative or descriptive model [38, 39, 3, 4, 7, 21, 37, 29, 34, 74] 11
Empirical model [45, 50, 44, 57, 55, 27, 89] 8
Analytic model [1, 42, 63, 72, 90] 5
Specific solution [49, 23, 33, 88] 4

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

Table 5
The papers according to the SECO Architecture groups.

SECO architecture group Papers % of total

SECO SE [40, 19, 45, 38, 39, 43, 11, 49, 58, 36, 46, 15, 22, 47, 35, 29, 17, 57, 87, 63, 68, 69, 70, 79, 66, 81] 35
SECO business and management [2, 4, 5, 10, 58, 56, 16, 20, 23, 37, 44, 14, 33, 12, 6, 27, 87, 88, 86, 76, 77, 71, 75, 62, 66, 60, 67, 83, 90] 39
SECO relationships [3, 4, 6, 30, 13, 31, 21, 33, 17, 87, 73, 86, 82, 72, 76, 61, 65, 85, 84] 26

SECOs to the natural ecosystem and reports observations and a
research agenda. This paper does not report any concrete method
of some kind and the data used is not systematic enough for the
paper to be included in the qualitative model.

Looking at the distribution, we note that the category with the
most papers after Report is Tool or Notation. The papers of this cat-
egory are implementing tools or notations that are mostly using
data from FOSS SECOs. This, as we will discuss more in Section 4.5,
is related to the fact that FOSS SECOs provide access to a lot of tech-
nical data, e.g., commit history or bug reports that are not easy to
access in proprietary SECOs. The third category, Procedure or Tech-
nique, includes papers that report an implementable technique to
solve a specific task. For example the paper by Fricker (2009), that
proposes a technique for requirement management in SECOs.

When examining the percentage of papers that fall under each
category, we can make the following observations. The field of
SECOs is a new research field, with the first papers appearing in
2007. This implies that there is an amount of research resources
spent in defining the field and its limits, for example the papers ana-
lyzed in Section 4.1. In addition, as it is shown in Section 4.5, there
is a relatively small amount of research spent in examining SECOs
in the industry. These two reasons result in the Report category
having a bigger percentage to all the other categories. Additionally,
we recognize that the field of SECO is wide and can have multi-
ple research perspectives, such as software engineering (SE), social
networks or technical management. In connections to this, there
have been several papers focusing on some specific aspect of the
field providing specific and implementable techniques. This poten-
tially explains the high percentage in the Tool or Notation and
Procedure or Technique categories.

4.4. SECO architecture

To address RQ in Section 2.1, we separated and analyzed the
papers that are addressing the SECO architecture as defined in the
research question. During the analysis of the papers, we could iden-
tify three logical groups of SECO architecture papers. Table 5 shows
the distribution of the papers according to their main research
focus. Below we elaborate on the three SECO architectural groups
describing them in more detail. Papers used in the description of a
group might not represent their main research focus.

4.4.1. SECO software engineering
Software ecosystems, having as a product one or several

software systems have problems that belongs to the software engi-
neering field. A part of the SECO literature is focusing on SE either
by using SE practices directly or by adapting existing SE practices to
the SECO context. This category consists of papers focusing on more
technical issues related directly or indirectly to the technological
platform of a SECO. It contains 26 papers, i.e., 35% of the literature
focusing on SECO architecture aspects.

One important aspect of this category is software architecture.
The software architecture of a SECO should support the nature of
the ecosystem (i.e., be adapted to the needs of the specific SECO),
follow the SECO management, business rules and restrictions and
allow the integration and existence of multiple functionality in

a secure and reliable manner. A modular and flexible architec-
ture would allow integration and interoperability of the developed
software (Viljainen and Kauppinen, 2011; Bosch, 2009). Interfaces
allow external development on a SECO platform. The stability
and translucency of the platform interfaces are essential for the
component integration and interaction (Cataldo and Herbsleb,
2010; Bosch, 2010a). Changes to existing interfaces or components
might create inconsistencies to dependent components (Robbes
and Lungu, 2011; Lungu et al., 2010a,b). Process-centric approaches
are not effective in managing large scale software, instead system
architecture should be used as a coordination mechanism (Bosch
and Bosch-Sijtsema, 2010a). Constantly evolving software requires
the adaptation of the software development processes. Develop-
ment should be integration-centric, independent deployment and
releases should be organized in a release grouping and release train
fashion (Bosch and Bosch-Sijtsema, 2010b; Bosch, 2010a). Architec-
tural design and analysis techniques are based on a set of principles
as identifying business goals, describing architectural significan
requirement, tactics and architectural evaluation. These principles
are used in defining the software architecture of a SECO (Kazman
et al., 2012).

Apart from software architecture, in the wider SE related sub-
jects, requirement elicitation appears as an interesting challenge
in the SECO concept as the stakeholders are multiple and distant
from the central ecosystem management. The use of “requirement
value chain” is proposed to propagate requirements (Fricker, 2009,
2010).

4.4.2. SECO business and management
This category contains papers focusing on the business, organi-

zational and management aspects of SECOs. Independently of how
each SECO is organized, there is an organizational and management
entity that is responsible for monitoring, operational and decision
making part of the SECO whether it being a proprietary company,
an open source community or a hybrid of the two. This category
is sub-divided into two groups: organizational & management and
business.

The organizational and management group includes papers that
are focusing on the organizational actions in a SECO. These actions
are initiated from decisions, rules and processes or controlling
mechanisms. The main activities of this group are summarized in:
monitoring the SECO, evaluating and decision making, and taking
actions.

In order to ensure that a SECO is functioning well, specific mea-
surements need to be introduced that would provide an overview
of the state of the SECO while at the same time raise attention
for actions and allow comparison of SECOs. The literature is refer-
ring to the concept of the health of a software ecosystem (van
Ingen et al., 2011; van Angeren et al., 2011; van den Berk et al.,
2010; dos Santos and Werner, 2011a,b; Kilamo et al., 2012; Jansen
et al., 2012, 2009a; Viljainen and Kauppinen, 2011; Mizushima and
Ikawa, 2011; McGregor, 2010; Dhungana et al., 2010; Boucharas
et al., 2009). This concept has been introduced by Iansiti et al. as a
way to measure the performance of a business ecosystem (BECO).
In more detail they measure the “extent to which an ecosystem as
a whole is durably growing opportunities for its members and those

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

who depend on it” (Iansiti and Levien, 2004a) and inspired from
biological ecosystems define the health of a (business) ecosys-
tem as an analogy to robustness, productivity and niche creation
(Iansiti and Levien, 2004b,a). These studies, although excluded from
the collected literature, are referenced by the majority of the lit-
erature elaborating on SECO health (van Ingen et al., 2011; van
Angeren et al., 2011; van den Berk et al., 2010; Kilamo et al.,
2012; Jansen et al., 2012, 2009a; Viljainen and Kauppinen, 2011;
Mizushima and Ikawa, 2011; McGregor, 2010; dos Santos and
Werner, 2011b; Boucharas et al., 2009). An additional study on the
health of business ecosystems that is referenced by several papers
of the literature (van Angeren et al., 2011; van den Berk et al., 2010;
Kilamo et al., 2012; Jansen et al., 2012, 2009a) that are elaborating
on SECO health, is the paper of den Hartigh et al. (2006) that, based
on the Iasiti et al studies mentioned above, applies health mea-
surement to Dutch IT business ecosystems. In the SECO field, van
den Berk et al. (2010) base their work on BECO health to create a
strategy assessment model.

The proper evaluation of SECO measurements, such as health,
supports and encourages correcting or improving actions in the
SECO. This requires a management entity that would have the
power and possibility to apply changes both in the technical but
also in the organizational aspects of the SECO. To our knowledge
there is no study in the SECO literature on the different man-
agement entities and the decision making mechanisms applied
to drive the SECO. This might be because of high variability in
management models or the disclosure of information in propri-
etary SECOs. It would be possible to study the decision making
mechanisms of a FOSS project where changes are applied, e.g.,
based on online member voting, but it is challenging to study
how a proprietary SECO canalizes information from the peripheral
actors, evaluates this information and decides on actions based on
that.

After monitoring the SECO and concluding in a set of decisions, a
next step is to execute these decisions. One of the ways of applying
actions that appears in the literature is communication. A clear view
on the direction that the ecosystem would evolve and the commu-
nication of this view to the ecosystem actors and involved parties
is underlined as a necessity (Bosch, 2009; Viljainen and Kauppinen,
2011). Creating roadmaps, visions or long-term strategic planning of
the ecosystem allows the actors to plan, in their turn, their activity
in the ecosystem and align their business models with the SECO
roadmaps (Kakola, 2010; Bosch, 2009; Hanssen, 2011; Viljainen
and Kauppinen, 2011; Jansen et al., 2012; van den Berk et al.,
2010). At the same time the ecosystem can set the requirement of
the SECO actors to commit to the published roadmaps (Bosch and
Bosch-Sijtsema, 2010b,c). From a more practical perspective, the
ecosystem orchestrators can organize the component composition
by providing a long-term plan of organized releases in a release
management or release trains that the actors can coordinate with
(Bosch and Bosch-Sijtsema, 2010b,c; Fricker, 2010; Jansen et al.,
2012; van den Berk et al., 2010; van der Schuur et al., 2011; Bosch,
2009). Bosch and Bosch-Sijtsema (2010c) analyzed the concept of
release grouping where different groups of components are released
in different times allowing less coordination and communication
overhead. Kilamo et al. (2012) introduce the release readiness assess-
ment where proprietary software is assessed on its ability to be
released as open source/ open ecosystem.

An important part of the SECO business and management cat-
egory is related to the business perspective of the ecosystem. As
explained in the definition analysis, the business perspective is
important as without a solid business and business model serving
the SECO and its actors, the SECO might lose its actors to competi-
tive businesses or ecosystems and risk extinction. It is essential to
underline that the business and business model as mentioned here
do not necessarily imply monetary benefits. The business model

that would serve the SECO actors, as mentioned in the definition,
might imply value in other forms, for example fame or experience
in the case of a FOSS SECO actor. The same applies to the SECO itself.
A SECO might include other benefits than revenues in its business
model. An example would be advantage over competitors or “vis-
ibility within the market” (van Angeren et al., 2011). This implies
that the traditional software company business models where the
revenues are a result of software license selling cannot be fully
applied in the ecosystem concept. Popp (2011) provides an anal-
ysis of business models that are applied in three ecosystems and
makes a separation between the business models and the revenue
models of a SECO. He underlines the importance of revenue mod-
els and states that “revenue models (. . .) often containing one or more
non-monetary compensations, can be a source of competitive advan-
tage” (Popp, 2011). Burkard et al. (2012) refer to revenue models
from two perspectives: actors or niche players provide their prod-
ucts for a fee and the SECO orchestrator or hub requires a fee from
the actors. This fee can be base either on fixed or variable price
models.

Although, selling software licenses might not be a main rev-
enue venue for a SECO, the issue of software licenses is still of
interest in the SECOs. SECOs collect code developed by different
developers or companies with different policies and many times
even in an combination of proprietary and open source. Addressing
or avoiding possible intellectual property right (IPR) or licens-
ing violations would ease the software integration, allow possible
reuse that might lead to more niche creation, clarify possible busi-
ness models and avoid legal complications that demand heavy
resources. Licensing and IPR issues appear in a number of papers
(Alspaugh et al., 2009; Jansen et al., 2012, 2009b; Mizushima and
Ikawa, 2011; te Molder et al., 2011; Kilamo et al., 2012; Scacchi
and Alspaugh, 2012) in the literature. In relation to this, Alspaugh
et al. (2009) and Scacchi and Alspaugh (2012) discuss the issue of
software licensing in open architecture systems, recognize changes
in licenses on different versions of the same component or in the
evolution of a software system and propose a structure for mod-
eling software licenses. Mizushima and Ikawa (2011) analyze the
IP management process of Eclipse called the “Eclipse Legal Pro-
cess” and state that this process was a reason for vendors to join
Eclipse. Anvaari and Jansen (2010) analyze the mobile software
platforms and evaluate their level of openness taking into con-
sideration also their licensing policies. Finally, Popp (2011) names
three roles in the intellectual property (IP) business utilization: the
IP distributors that sell IPR from the inventors or usage rights to
the customers, the IP lessors that “rents” IPs or products of IP (e.g.,
software) for a specific time and the IP brokers that matches the
needs of an IP requestor to an IP owner. For example an IP bro-
ker might facilitate a startup software company to find software
vendors.

4.4.3. SECO relationships
An open technological platform in combination with a set of

management processes and business models, cannot create a SECO
without the social aspect. A community, social network or a set of
actors weaved around a platform and sets of rules communicat-
ing and interacting both among themselves and with the platform
is essential. Because of the existence of this interaction, the soft-
ware architecture of the platform has to be designed with different
considerations than a proprietary platform. The management pro-
cess, business models and IPR issues become more complicated
while at the same time the evolution of the system is faster and
towards several directions while the SECO gains privileged posi-
tion in the market. There are several actors that might be part of
a SECO. The following list gives an overview of the most common
actors encountered in the literature.

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

Orchestrator 9, “keystone (player, organization)”, 10 “hub”,11

“shaper”,12 “management (unit)”,13 or “platform
owner”14 is a company, department of a company,
actor or set of actors, community or independent entity
that is responsible for the well-functioning of the SECO.
This unit is typically managing the SECO by running the
platform, creating and applying rules, processes, business
procedures, setting and monitoring quality standards
and/or orchestrating the SECO actor relationships.

Niche player 15“influencer”,16 or “component
developer/builder/team”,17 is the SECO actor that
contributes to the SECO by typically developing or adding
components to the platform, producing functionality
that customers require. This actor is part of the SECO
and complements the work of the keystone by providing
value to the ecosystem. Depending on the management
model of the ecosystem the niche players might influence
the decision making in the management of the SECO.

External actor 18“external developer (team)”,19 “third party
developers/community”,20 “external parties”,21 “exter-
nal partner”,22 “external entities”,23 “participant”,24 or
“external adopter”,25 is the actor (company, person,
entity) that makes use of the possibilities the ecosys-
tem provides and thus providing indirect value to the
ecosystem. This actor is external to the SECO manage-
ment and usually has an activity limited to the actor’s
interest. Depending on the nature of the ecosystem, the
external actor might be developing on top of or parallel to
the SECO platform, identify bugs, promote the SECO and
its products or propose improvements. This type of actor
includes the role of the participant or follower in FOSS
SECOs. An actor that is member of the SECO with either
participation of limited responsibility or simply observing
the evolution of the SECO from the inside.

9 Used in: van Angeren et al. (2011, 2011), Jansen et al. (2009b,a), Hilkert et al.
(2010), Idu et al. (2011), van der Schuur et al. (2011).

10 Used in: van Angeren et al. (2011), Burkard et al. (2012), Campbell and Ahmed
(2010), Hanssen (2011), Jansen et al. (2009a, 2012), Kabbedijk and Jansen (2011),
McGregor (2010), Pettersson et al. (2010), Riis and Schubert (2012), Viljainen and
Kauppinen (2011), Idu et al. (2011), dos Santos and Werner (2011a,b), te Molder
et al. (2011), van den Berk et al. (2010), van Ingen et al. (2011), van der Schuur et al.
(2011).

11 Used in: dos Santos and Werner (2011a,b), Burkard et al. (2012), Hilkert et al.
(2010), Riis and Schubert (2012), van den Berk et al. (2010).

12 Used in: Jansen et al. (2009a), Viljainen and Kauppinen (2011), van der Schuur
et al. (2011)

13 Used in: Campbell and Ahmed (2010).
14 Used in: van Angeren et al. (2011).
15 Used in: Jansen et al. (2009a), Viljainen and Kauppinen (2011, 2011), dos Santos

and Werner (2011a,b), Burkard et al. (2012), Yu and Deng (2011), Kabbedijk and
Jansen (2011), Riis and Schubert (2012), te Molder et al. (2011), van den Berk et al.
(2010), van Ingen et al. (2011), van der Schuur et al. (2011).

16 Used in: dos Santos and Werner (2011a,b), van den Berk et al. (2010).
17 Used in: Jansen et al. (2009a, 2012), Viljainen and Kauppinen (2011, 2011), Bosch

and Bosch-Sijtsema (2010c), Bosch (2009).
18 Used in: Pettersson and Gil (2010), Hansen et al. (2011), Pettersson et al. (2010).
19 Used in: Bosch (2010a, 2009, 2010b), Pettersson et al. (2010), dos Santos

and Werner (2011a,b), Bosch and Bosch-Sijtsema (2010b,c,a), Jansen et al. (2012),
Draxler and Stevens (2011), Kilamo et al. (2012), Viljainen and Kauppinen (2011),
Scacchi and Alspaugh (2012), van Ingen et al. (2011), Weiss (2011).

20 Used in: Anvaari and Jansen (2010), Bosch and Bosch-Sijtsema (2010b,c), Bosch
(2009, 2010b), Campbell and Ahmed (2010), Dhungana et al. (2010), Hanssen (2011),
Jansen et al. (2009a, 2012), Mizushima and Ikawa (2011), Seichter et al. (2010),
Viljainen and Kauppinen (2011).

21 Used in: Bosch and Bosch-Sijtsema (2010b,c).
22 Used in: Bosch (2010b), Draxler and Stevens (2011).
23 Used in: Campbell and Ahmed (2010).
24 Used in: Jansen et al. (2009a).
25 Used in: Viljainen and Kauppinen (2011).

Vendor “independent software vendor (ISV)”,26, “reseller” or
“value-added reseller (VAR)”,27 is mainly the company
or business unit that makes profit from selling the
products of the SECO to customers, end-users or other
vendors/VARs. The products might be complete integra-
tions, components, selling or leasing of licenses or support
agreements. A vendor that is modifying the SECO prod-
uct by, e.g., adding functionality or combining different
components together is called VAR.

Customer or “end user” is the person, company, entity that either
purchases or obtains a complete or partial product of the
SECO or a niche player either directly from the SECO/niche
player or through a vendor/VAR.

A different characterization of the social network of a SECO
appears in (Jansen et al., 2012; Scacchi and Alspaugh, 2012) where
they characterize the SECO niche as a software supply network of
producers, integrators and customers.

An interesting perspective of SECO relationships is the actor
participation model that SECOs follow. Different ecosystems apply
different models for allowing actors to contribute to the ecosystem.
These models are many times related to the nature of the platform
and to what extent it allows/supports different kinds of collabora-
tion, but mostly to the business model behind the ecosystem. To
explain this better, we take the actor participation model of three
ecosystems as an example: a traditional FOSS project that is often
open to any participant willing to join, the Eclipse ecosystem where
developers can join freely but have to go through the Eclipse Legal
Process every time they commit code (Mizushima and Ikawa, 2011)
and the the Open Design Alliance (ODA) where actors have to pay an
annual fee to be part of the ecosystem (van Angeren et al., 2011). The
openness or closeness of a SECO describes how easy it is for an actor
to participate in an ecosystem. The measurement of the openness
of a SECO is an interesting perspective that affects the social net-
work of an ecosystem. As already mentioned, the level of openness
depends on parameters outside of the SECO social network per-
spective, however, it is analyzed as part of this perspective since it
affects heavily the social networks. te Molder et al. (2011) claim that
the openness and closeness of a platform is not binary, but there
are many different levels. In their paper they introduce the concept
of “clopeness” and propose a model for assessing the clopeness of
a SECO. Jansen et al. (2012) state that the complicity of opening
or closing the SECO as “multi-facet and cannot be judged without
extensive study”. They also explain that the benefits of opening
up the ecosystem are often not clear, while a post-evaluation of
whether the ecosystem was ready for the changes will be reflected
in the SECO health after the changes have been applied. Finally they
make a separation between the supply and demand of a SECO and
mention that a SECO can choose to open either of them or both.

In the software supply network, Riis and Schubert (2012) ana-
lyze how the relationships evolve in an ERP SECO when the SECO
vendor (orchestrator) is pushing an upgrade to a newer version. It
is notable that the relations can be push-oriented, i.e., the orches-
trator pushes a new version to the ISVs and VARs and eventually
the customer, but also pull-oriented, i.e., the customer requests
an older version from the ISVs/VARs end eventually the orches-
trator. Jansen et al. (2012) referring to Popp (2010) numbers three
distribution channels: (i) direct through VAR, (ii) indirect through

26 Used in: Jansen et al. (2009b,a, 2012), Bosch (2009), Boucharas et al. (2009),
Draxler and Stevens (2011), Hilkert et al. (2010), Hunink et al. (2010), Riis and
Schubert (2012), te Molder et al. (2011), van den Berk et al. (2010), Viljainen and
Kauppinen (2011), Scacchi and Alspaugh (2012), Janner et al. (2008).

27 Used in: Riis and Schubert (2012), Jansen et al. (2012, 2009b,a), Janner et al.
(2008), Boucharas et al. (2009), Hanssen (2011), Popp (2011).

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

Table 6
The papers using existing SECOs.

SECO type Papers % of total

Proprietary [45, 41, 2, 4, 10, 30, 54, 53, 16, 37, 44, 33, 6, 26, 87, 63, 82, 72, 62, 65] 22
FOSS [6, 7, 48, 51, 50, 42, 31, 18, 57, 27, 89, 88, 73, 80, 76, 74, 68, 77, 75, 64, 70, 66, 60, 67, 83, 81, 85, 84] 31
No SECO [40, 19, 1, 38, 39, 43, 3, 5, 9, 11, 8, 49, 59, 58, 52, 56, 13, 36, 46, 20, 23, 15, 22, 47, 21, 28, 35, 14, 29, 17,

12, 34, 55, 32, 24, 86, 71, 69, 61, 78, 79, 90]
47

service organization and (iii) direct to customer. Yu et al. (2008), Yu
(2011) adopt the natural ecology types of symbiotic relationships to
software symbiosis: mutualism, where both systems benefit from
their relations, commensalism, where one system benefits from
the relations while the other is unaffected, parasitism, where one
system benefits and the other is harmed, amensalism, where one
system is harmed and the other unaffected, competition, where
both systems are harmed and neutralism where both systems are
unaffected. Although, the symbiotic relations were described in the
software symbiosis context rather than the social network, in our
perspective, they could also be used to reflect SECO social network
relations.

When looking into the niche player relationships, Kazman and
Chen (2010) proposes the Metropolis model for the relationships
between the actors in a SECO where it is consisted of the kernel
that is responsible for platform and fundamental functionality, the
periphery that is consisted of the prosumers building on top of
the kernel’s platform, and the masses that are the end-users. This
can be parallelized to the “onion model” (Jergensen et al., 2011;
Kilamo et al., 2012) appearing in FOSS projects, where the member
involvement is similar to the layers of an onion: a member starts
from the external layers having tasks with low responsibility, e.g.,
translation, and slowly moves to the inner layers gaining responsi-
bilities. In another study of the developer behavior, Kabbedijk and
Jansen (2011) studied the interaction of developers within the Ruby
Github SECO and noted three different roles: the “lone wolf” that
works mainly alone and produces big part of the system used by
the rest of the users, the “networker” that is connected to several
other developers and the “one day flies” that have created only one
popular component without significant activity afterwards.

Communication among the different roles is also of interest. van
der Schuur et al. (2011) study how knowledge is transferred within
the different roles of a SECO while Fricker (2010) proposes the prop-
agation of information in terms of requirements from the end-users
or customers to the ecosystem with the requirement value chains.

4.5. Connection with industry

From the research questions that are mentioned in the begin-
ning of this article, question 2.1 is investigating the use of
real-world SECOs in the research. The purpose is to give a view
on how close the connection of the research is to the industry.
From the data collection process, we have compiled a list with all
the papers that are using an existing SECO in their research as an
object of study. Analyzing this list, we end up with the results that
can be seen in Table 6. Going through the results, we notice that
the slight majority of the papers (53%) is using an existing SECO
in their research. The existing ecosystems are appearing in mainly
two ways: (i) one or more SECOs are studied and the paper pub-
lishes study results, conclusions, interesting remarks as it is the
case with Hanssen (2011) that describe the transition of a tra-
ditional waterfall-based software company to a SECO and (ii) a
theory, framework, taxonomy or tool is developed based on lit-
erature, hypothesis or experience and then applied to one or more
existing ecosystems to prove it, as it is the case in te Molder et al.
(2011) where the Clopennes Assessment model is applied to an
anonymized SECO to support the theory. In both of the cases,

we argue that the use of existing ecosystems as objects of study
increases the ‘external’ validity of the results.

Table 6 is separating the papers that study existing ecosystems
in papers studying proprietary and free or open source software
(FOSS) ecosystems. We separate the two kinds of ecosystems as
they have significant differences. In a strict proprietary ecosystem,
the source code and other artifacts produced are protected, as they
are the products that would yield revenues to the ecosystem, while
new actors would probably have to be certified in some way so
they would be allowed to participate in the ecosystem. In a tradi-
tional FOSS ecosystem, the actors do not necessarily participate to
obtain direct revenues from their activity in the ecosystem, while
it is often much easier for an actor to participate in a FOSS than
a proprietary SECO, since FOSS SECOs typically do no require any
verification of new actors. Naturally, this simplistic way of sepa-
rating proprietary and FOSS SECOs is only used to underline the
differences of the two kinds of ecosystems. A majority of the SECOs
would probably be categorized as a hybrid, combining elements
from the two kinds. However, in the literature we note that papers
studying FOSS SECOs are mostly concerned with problems of tech-
nical or social nature, while the papers studying proprietary SECOs
include business and strategic problems. This is only natural, since
FOSS projects allow the mining and processing of several details
(like source code, commit logs, etc.) but they do not necessarily
have a clear business model for the whole SECO or the participat-
ing actors (or at least it does not apear so in the literature). This
underlines the importance of the research focusing on FOSS SECOs
to include business and strategic perspectives. On the other hand,
papers in the proprietary SECO group can get information about
SECO strategies and positioning in the market, but it is harder to
get access to proprietary information like source code, developer
commits and so on.

Table 7 lists the existing SECOs used in the literature. The lit-
erature is studying 43 SECOs in total, out of which, 30 are studied
in only one paper each. We note that out of the 12 SECOs stud-
ied in more than one paper (in this count we do not include
the “Anonymized/not named” category), only two (GX Software
and SAP) do not belong to the FOSS group and Eclipse being
the most studied SECO (appearing in seven papers). Additionally,
18 out of the 43 studied SECOs are of proprietary nature. We
explained this, by the additional challenge posed in gaining access
to information in a proprietary SECOs in contradiction to a FOSS
where data are usually accessed by mining a publicly available
repository.

5. Discussion

The purpose of this study is to provide an overview of the field
of software ecosystems by reviewing and analyzing the published
literature. This work has been done based on the review protocol
explained in Section 2.

In this work we did not include any evaluation of the quality of
the relevant literature. The only consideration relating to the qual-
ity of a paper is the number of papers within the literature citing
this paper, if any. It could be argued that a possible assessment of
the quality of the literature could be undertaken to set focus on the
gravity each paper should have in the analysis sections, e.g., 4.4.

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

Table 7
The SECOs appearing in the literature.

SECO name Papers

Eclipse, Eclipse Foundation 6, 89, 73, 76, 67, 83, 85
GNOME 7, 51, 80, 74
Open Design Alliance 6, 76, 10, 16
Anonymized/not named 65, 82, 45
Brazilian Public Software (BPS) 88, 64, 33
Linux, Linux Kernel 50, 57, 70
Android 27, 66
GX Software 76, 10
Evince 7, 18
FOSS 42, 31
FreeBSD 50, 57
iPhone/iPad App Store 27, 72
SAP 53, 2
Apache Web Server 70
Artop 67
Brasero 7
CAS Software AG 37
CSoft 44
CubicEyes 6
Debian 60
Google Chrome 75
Google
Gurux 2
Firefox 77
HIS GmbH 75
HISinOne 63
Mac App Store 26
Microsoft 72
Nokia Siemens Networks 2
Nautilus 87
Pharo 81
Ruby 68
S. Chand Edutech 84
SOOPS BV 62
Squeak 54
Symbian 68
TFN 200 67
UniImprove 41
Unity 30 75
US Department of Defense 30
WattDepot 48
WinMob 27
World of Worcraft 89

Apart from addressing the research questions and providing an
overview in the field, we also identified several areas that are not
covered in the literature body.

As already noted, the field of software ecosystems is not the only
field inspired by the natural ecosystems. There has been significant
amount of work done in other ecosystems like the business, social
or natural ecosystems themselves. The SECO literature does not
appear to examine work done in other ecosystems apart from a
number of papers mentioned in Section 4. Possible intersections or
parallelizations of the fields would allow the use of theories from
the other fields or different perspectives in SECO problems.

An important ingredient of the success of an ecosystem is
diversity. The differentiation of actors would allow niche creation.
Statements similar to this have appeared several times in the liter-
ature. However, no concrete studies have been provided to prove
a statement of this kind. Technical, organizational, business and
social variability in harmonic symbiosis settings could bring more
stability and possibly contribute to a healthier ecosystem.

The concept of health of an ecosystem, as explained in Section
4, section has been introduced to SECO from the business ecosys-
tem theory. Measuring the health of an ecosystem would provide
large benefits for the SECO industry and research. The health would
provide indications on the future of the ecosystem and give possi-
ble feedback on applied changes in the ecosystem. However, apart

from referring to SECO health, very few studies elaborate, analyze
or measure the health of a software ecosystem.

The intellectual property rights and licensing issues are a focus
point of a small part of the literature. Finding effective ways to
address issues of this kind is of more importance than the atten-
tion it has been receiving in the literature. Issues of this kind are
of importance both to the organizational perspectives of a SECO –
how to organize the development in the ecosystem– but also in the
business – how to develop the proper business/revenue models.

Quality assurance (QA) is a field that has also not been efficiently
addressed in the literature. The adoption of traditional QA meth-
ods might not necessarily work in a SECO, because of the separation
of platform and actors. Possibly, the proper QA strategies depend
on the orchestration of the ecosystem and solutions might be spe-
cific to each SECO, however, there is a need for SECO specific QA
strategies.

Finally, a field that has not been covered in the literature, is
the organization of and decision making in SECOs. We recognize
the high differentiation in the management models existing SECOs
apply that would probably give reasons to why this field is not
addressed in the literature. However, we argue that studies on that
aspect of SECOs would assist, providing a more complete picture of
the field.

6. Conclusion

Software ecosystems is an area that has been gaining in popu-
larity the last five years. The software industry is moving towards
software ecosystems, with platforms like Google Android and Apple
iOS increasing in popularity, while research has increasing inter-
est in the field, with the fourth year of a dedicated workshop
(IWSECO 2012). This article is documenting a systematic literature
review held on the field of software ecosystems. The purpose of
this work was to provide an overview of the field and identify pos-
sible research issues or areas not covered. We found and analyzed
90 relevant papers from a gross total of 420 extracted from a list
of scientific libraries. Based on this, we provided an overview of
the definition of SECOs as it is defined in the literature including
finding patterns in the different definitions provided and list the
common main items that consist a SECO. We reported an increase
in the research from 2007 to today. Additionally, we classified the
research papers according to the result they reported and identified
a lack in analytical models and an excess in report papers. More-
over, we defined “SECO architecture” and identified and analyzed
the three main components that is consisted of: SECO Software
Engineering, SECO Business and Management and SECO Relations.
Finally, we examined the intersection of research and industry and
found that half of the papers relate to the industry while at the same
time most of them are focusing on FOSS SECOs. In conclusion, we
identify the field of software ecosystems as a new field of growing
importance and potential both in research and industry.

Acknowledgements

The authors would like to thank the anonymous reviewers for
their comments that greatly improved the quality of this paper.

This work has been partially funded by the Net4Care project
within Caretech Innovation (http://www.caretechinnovation.dk/
projekter/net4care/).

Appendix A. Literature body

1. Capuruç o and Capretz (2010)
2. Popp (2011)
3. Yu and Deng (2011)

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

4. te Molder et al. (2011)
5. dos Santos and Werner (2011b)
6. van Angeren et al. (2011)
7. Mens and Goeminne (2011)
8. Barbosa and Alves (2011)
9. Alspaugh et al. (2009)

10. Jansen et al. (2009a)
11. Fricker (2009)
12. Campbell and Ahmed (2010)
13. Seichter et al. (2010)
14. Dhungana et al. (2010)
15. Lungu et al. (2010b)
16. van den Berk et al. (2010)
17. Cataldo and Herbsleb (2010)
18. Goeminne and Mens (2010)
19. Bosch (2010a)
19. Bosch (2009)
21. Kazman and Chen (2010)
22. Lungu and Lanza (2010)
23. Pettersson et al. (2010)
24. Scacchi (2010b)
25. Boucharas et al. (2009)
26. Brummermann et al. (2011)
27. Anvaari and Jansen (2010)
28. Hunink et al. (2010)
29. dos Santos and Werner (2010)
30. McGregor (2010)
31. Scacchi (2007a)
32. Krishna and Srinivasa (2011)
33. Alves and Pessôa (2010)
34. Briscoe (2010)
35. Fricker (2010)
36. Scacchi (2010a)
37. Hilkert et al. (2010)
38. Bosch and Bosch-Sijtsema (2010c)
39. Bosch and Bosch-Sijtsema (2010a)
40. Kazman et al. (2012)
41. Schneider et al. (2010)
42. Yu and Woodard (2009)
43. Bosch (2010b)
44. Hanssen (2011)
45. Bosch and Bosch-Sijtsema (2010b)
46. Scacchi (2007b)
47. Lungu et al. (2010a)
48. Brewer and Johnson (2010)
49. Pettersson and Gil (2010)
50. Yu et al. (2008)
51. Lungu et al. (2009)
52. An (2009)
53. Janner et al. (2008)
54. Lungu (2008)
55. Hindle et al. (2010)
56. Jansen et al. (2009b)
57. Yu et al. (2007)
58. Schugerl et al. (2009)
59. Kakola (2010)
60. Ververs et al. (2011)
61. van Angeren et al. (2011)
62. Scholten et al. (2012)
63. Brummermann et al. (2012)
64. Stefanuto et al. (2011)
65. van der Schuur et al. (2011)
66. van Ingen et al. (2011)
67. Weiss (2011)
68. Robbes and Lungu (2011)

69. Schmerl et al. (2011)
70. Yu (2011)
71. dos Santos and Werner (2011a)
72. Idu et al. (2011)
73. Draxler et al. (2011a)
74. Jergensen et al. (2011)
75. Scacchi and Alspaugh (2012)
76. Jansen et al. (2012)
77. Kilamo et al. (2012)
78. Pettersson and Vogel (2012)
79. Kajan et al. (2011)
80. Pérez et al. (2012)
81. Neu et al. (2011)
82. Riis and Schubert (2012)
83. Mizushima and Ikawa (2011)
84. Kabbedijk and Jansen (2011)
85. Draxler and Stevens (2011)
86. Burkard et al. (2012)
87. Viljainen and Kauppinen (2011)
88. Alves et al. (2011)
89. Draxler et al. (2011b)
90. Widjaja and Buxmann (2011)

References

Alspaugh, T., Asuncion, H., Scacchi, W., 2009. The role of software licenses in open
architecture ecosystems. In: First International Workshop on Software Ecosys-
tems (IWSECO-2009), Citeseer, pp. 4–18.

Alves, A.M., Pessôa, M., 2010. Brazilian public software: beyond sharing. In: in:
Proceedings of the International Conference on Management of Emergent Digital
EcoSystems, ACM, New York, NY, USA, pp. 73–80.

Alves, A.M., Pessoa, M., Salviano, C.F., 2011. Towards a systemic maturity model
for public software ecosystems. In: O’Connor, R.V., Rout, T., McCaffery, F., Dor-
ling, A. (Eds.), Software Process Improvement and Capability Determination,
vol. 155 of Communications in Computer and Information Science. Springer,
Berlin/Heidelberg, pp. 145–156, 10.1007/978-3-642-21233-8 13.

An, H., 2009. Research on software problems based on ecological angle. In: Inter-
national Conference on Environmental Science and Information Application
Technology 2009 (ESIAT 2009), pp. 11–14.

van Angeren, J., Blijleven, V., Jansen, S., 2011. Relationship intimacy in software
ecosystems: a survey of the dutch software industry. In: Proceedings of the
International Conference on Management of Emergent Digital EcoSystems, ACM,
New York, NY, USA, pp. 68–75.

van Angeren, J., Kabbedijk, J., Popp, K.M., 2011. A survey of associate models used
within large software ecosystems. In: Third International Workshop on Software
Ecosystems (IWSECO-2011), CEUR-WS, pp. 27–39.

Anvaari, M., Jansen, S., 2010. Evaluating architectural openness in mobile soft-
ware platforms. In: Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ACM, New York, NY, USA, pp. 85–92.

Barbosa, O., Alves, C., 2011. A systematic mapping study on software ecosystems. In:
Third International Workshop on Software Ecosystems (IWSECO-2011), CEUR-
WS, pp. 15–26.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston.

van den Berk, I., Jansen, S., Luinenburg, L., 2010. Software ecosystems: a software
ecosystem strategy assessment model. In: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, ACM, New York, NY,
USA, pp. 127–134.

Bosch, J., 2009. From software product lines to software ecosystems. In: Proceedings
of the 13th International Software Product Line Conference, Carnegie Mellon
University, Pittsburgh, PA, USA, pp. 111–119.

Bosch, J., 2010a. Architecture challenges for software ecosystems. In: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
ACM, New York, NY, USA, pp. 93–95.

Bosch, J., 2010b. Architecture in the age of compositionality. In: Babar, M., Gor-
ton, I. (Eds.), Software Architecture, volume 6285 of Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, pp. 1–4, http://dx.doi.org/10.1007/978-3-
642-15114-9 1

Bosch, J., Bosch-Sijtsema, P., 2010a. Coordination between global agile teams:
from process to architecture. In: Smite, D., Moe, N.B., Agerfalk, P.J. (Eds.),
Agility Across Time and Space. Springer, Berlin/Heidelberg, pp. 217–233,
http://dx.doi.org/10.1007/978-3-642-12442-6 15

Bosch, J., Bosch-Sijtsema, P., 2010b. From integration to composition. On the impact
of software product lines global development and ecosystems. Journal of Sys-
tems and Software 83, 67–76, SI: Top Scholars.

Bosch, J., Bosch-Sijtsema, P.M., 2010c. Softwares product lines, global development
and ecosystems: Collaboration in software engineering. In: Mistrik, I., van der
Hoek, A., Grundy, J., Whitehead, J. (Eds.), Collaborative Software Engineering.

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

Springer, Berlin/Heidelberg, pp. 77–92, http://dx.doi.org/10.1007/978-3-642-
10294-3 4

Boucharas, V., Jansen, S., Brinkkemper, S., 2009. Formalizing software ecosystem
modeling. In: in: Proceedings of the 1st International Workshop on Open Com-
ponent Ecosystems, ACM, New York, NY, USA, pp. 41–50.

Brewer, R., Johnson, P., 2010. Wattdepot: an open source software ecosystem for
enterprise-scale energy data collection storage analysis and visualization. In:
in: First IEEE International Conference on Smart Grid Communications (Smart-
GridComm), pp. 91–95.

Briscoe, G., 2010. Complex adaptive digital ecosystems. In: Proceedings of the Inter-
national Conference on Management of Emergent Digital EcoSystems, ACM, New
York, NY, USA, pp. 39–46.

Brummermann, H., Keunecke, M., Schmid, K., 2011. Variability issues in the evolu-
tion of information system ecosystems. In: Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems, ACM, New York, NY, USA,
pp. 159–164.

Brummermann, H., Keunecke, M., Schmid, K., 2012. Formalizing distributed evolu-
tion of variability in information system ecosystems. In: Proceedings of the Sixth
International Workshop on Variability Modeling of Software-Intensive Systems,
ACM, New York, NY, USA, pp. 11–19.

Burkard, C., Widjaja, T., Buxmann, P., 2012. Software ecosystems. Business
and Information Systems Engineering 4, 41–44, http://dx.doi.org/10.1007/
s12599-011-0199-8.

Campbell, P.R.J., Ahmed, F., 2010. A three-dimensional view of software
ecosystems. In: in: Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, ACM, New York, NY, USA,
pp. 81–84.

Capuruç o, R.A.C., Capretz, L.F., 2010. Integrating recommender information in social
ecosystems decisions. In: in: Proceedings of the Fourth European Conference
on Software Architecture: Companion Volume, ACM, New York, NY, USA, pp.
143–150.

Cataldo, M., Herbsleb, J.D., 2010. Architecting in software ecosystems: interface
translucence as an enabler for scalable collaboration. In: in: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
ACM, New York, NY, USA, pp. 65–72.

Dhungana, D., Groher, I., Schludermann, E., Biffl, S., 2010. Software ecosystems
vs natural ecosystems learning from the ingenious mind of nature. In: in:
Proceedings of the Fourth European Conference on Software Architecture: Com-
panion Volume, ACM, New York, NY, USA, pp. 96–102.

Draxler, S., Jung, A., Boden, A., Stevens, G., 2011a. Workplace warriors: identifying
team practices of appropriation in software ecosystems. In: in: Proceedings of
the 4th International Workshop on Cooperative and Human Aspects of Software
Engineering, ACM, New York, NY, USA, pp. 57–60.

Draxler, S., Jung, A., Stevens, G., 2011b. Managing software portfolios: a com-
parative study. In: Costabile, M., Dittrich, Y., Fischer, G., Piccinno, A. (Eds.),
End-User Development, vol. 6654 of Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg, pp. 337–342, http://dx.doi.org/10.1007/978-3-642-
21530-8 36

Draxler, S., Stevens, G., 2011. Supporting the collaborative appropriation of an
open software ecosystem. Computer Supported Cooperative Work (CSCW) 20,
403–448, http://dx.doi.org/10.1007/s10606-011-9148-9

Fricker, S., 2009. Specification and analysis of requirements negotiation strategy in
software ecosystems. In: in: First International Workshop on Software Ecosys-
tems (IWSECO-2009), Citeseer, pp. 19–33.

Fricker, S., 2010. Requirements value chains: stakeholder management and require-
ments engineering in software ecosystems. In: Wieringa, R., Persson, A. (Eds.),
Requirements Engineering: Foundation for Software Quality, vol. 6182 of
Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp. 60–66,
http://dx.doi.org/10.1007/978-3-642-14192-8 7

Goeminne, M., Mens, T., 2010. A framework for analysing and visualising open source
software ecosystems. In: in: Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), ACM, New York, NY, USA, pp. 42–47.

Hansen, K.M., Jonasson, K., Neukirchen, H., 2011. Controversy corner. An empirical
study of software architectures’ effect on product quality. Journal of Systems
and Software 84, 1233–1243.

Hanssen, G.K., 2011. A longitudinal case study of an emerging software ecosys-
tem: Implications for practice and theory. Journal of Systems and Software,
http://dx.doi.org/10.1016/j.jss.2011.04.020

den Hartigh, E., Tol, M., Visscher, W., 2006. The health measurement of a business
ecosystem. In: in: Proceedings of the European Network on Chaos and Complex-
ity Research and Management Practice Meeting.

Hilkert, D., Wolf, C.M., Benlian, A., Hess, T., 2010. The “as-a-service”-paradigm and
its implications for the software industry – insights from a comparative case
study in crm software ecosystems. In: Aalst, W., Mylopoulos, J., Sadeh, N.M.,
Shaw, M.J., Szyperski, C., Tyrvainen, P., Jansen, S., Cusumano, M.A. (Eds.), Soft-
ware Business, vol. 51 of Lecture Notes in Business Information Processing.
Springer, Berlin/Heidelberg, pp. 125–137, http://dx.doi.org/10.1007/978-3-642-
13633-7 11

Hindle, A., Herraiz, I., Shihab, E., Jiang, Z.M., 2010. Mining challenge 2010: Freebsd
gnome desktop and debian/ubuntu. In: in: 7th IEEE Working Conference on
Mining Software Repositories (MSR), pp. 82–85.

Hunink, I., van Erk, R., Jansen, S., Brinkkemper, S., 2010. Industry taxonomy engi-
neering: the case of the european software ecosystem. In: in: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
ACM, New York, NY, USA, pp. 111–118.

Iansiti, M., Levien, R., 2004a. The Keystone Advantage: What the New Dynamics of
Business Ecosystems Mean for Strategy Innovation and Sustainability. Harvard
Business Press, Boston.

Iansiti, M., Levien, R., 2004b. Strategy as ecology. Harvard Business Review 82,
68–81.

Idu, A., van de Zande, T., Jansen, S., 2011. Multi-homing in the apple ecosystem:
why and how developers target multiple apple app stores. In: in: Proceedings of
the International Conference on Management of Emergent Digital EcoSystems,
ACM, New York, NY, USA, pp. 122–128.

van Ingen, K., van Ommen, J., Jansen, S., 2011. Improving activity in communities
of practice through software release management. In: in: Proceedings of the
International Conference on Management of Emergent Digital EcoSystems, ACM,
New York, NY, USA, pp. 94–98.

Janner, T., Schroth, C., Schmid, B., 2008. Modelling service systems for collaborative
innovation in the enterprise software industry – the st. gallen media reference
model applied. In: in: IEEE International Conference on Services Computing 2008
(SCC’08), pp. 145–152.

Jansen, S., Brinkkemper, S., Finkelstein, A., 2009a. Business network management as
a survival strategy: a tale of two software ecosystems. In: in: First International
Workshop on Software Ecosystems (IWSECO-2009), Citeseer, pp. 34–48.

Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L., 2012. Shades of gray: opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85, 1495–1510, Software Ecosystems.

Jansen, S., Finkelstein, A., Brinkkemper, S., 2009b. A sense of community: A
research agenda for software ecosystems. In: in: 31st International Conference
on Software Engineering – Companion Volume, 2009. ICSE-Companion 2009,
pp. 187–190.

Jergensen, C., Sarma, A., Wagstrom, P., 2011. The onion patch: migration in open
source ecosystems. In: in: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,
ACM, New York, NY, USA, pp. 70–80.

Kabbedijk, J., Jansen, S., 2011. Steering insight: An exploration of the ruby soft-
ware ecosystem. In: Regnell, B., Weerd, I., Troyer, O., Aalst, W., Mylopoulos, J.,
Rosemann, M., Shaw, M.J., Szyperski, C. (Eds.), Software Business, vol. 80 of Lec-
ture Notes in Business Information Processing. Springer, Berlin/Heidelberg, pp.
44–55, http://dx.doi.org/10.1007/978-3-642-21544-5 5

Kajan, E., Lazic, L., Maamar, Z., 2011. Software engineering framework for digital
service-oriented ecosystem. In: in: 19th Telecommunications Forum (TELFOR),
pp. 1320–1323.

Kakola, T., 2010. Standards initiatives for software product line engineering and
management within the international organization for standardization. In:
in: 43rd Hawaii International Conference on System Sciences (HICSS), 2010,
pp. 1–10.

Kazman, R., Chen, H.M., 2010. The metropolis model and its implications for the
engineering of software ecosystems. In: in: Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research, ACM, New York, NY, USA, pp.
187–190.

Kazman, R., Gagliardi, M., Wood, W., 2012. Scaling up software architecture analysis.
Journal of Systems and Software 85, 1511–1519, Software Ecosystems.

Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T., 2012. From proprietary to open
source-growing an open source ecosystem. Journal of Systems and Software 85,
1467–1478.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic literature
reviews in software engineering. Engineering 2.

Krishna, R.P.M., Srinivasa, K.G., 2011. Analysis of projects and volunteer participa-
tion in large scale free and open source software ecosystem. SIGSOFT Software
Engineering Notes 36, 1–5.

Lungu, M., 2008. Towards reverse engineering software ecosystems. In:
in: IEEE International Conference on Software Maintenance, ICSM 2008,
pp. 428–431.

Lungu, M., Lanza, M., 2010. The small project observatory: a tool for reverse engineer-
ing software ecosystems. In: in: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ACM, New York, NY, USA, pp.
289–292.

Lungu, M., Lanza, M., Gîrba, T., Robbes, R., 2010a. The small project observatory: visu-
alizing software ecosystems. Science of Computer Programming 75, 264–275,
Experimental Software and Toolkits (EST 3): A special issue of the Work-
shop on Academic Software Development Tools and Techniques (WASDeTT
2008).

Lungu, M., Malnati, J., Lanza, M., 2009. Visualizing gnome with the small project
observatory. In: in: Proceedings of the 6th IEEE International Working Confer-
ence on Mining Software Repositories, 2009 (MSR’09), pp. 103–106.

Lungu, M., Robbes, R., Lanza, M., 2010b. Recovering inter-project dependencies in
software ecosystems. In: in: Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering, ACM, New York, NY, USA, pp.
309–312.

McGregor, J.D., 2010. A method for analyzing software product line ecosystems. In:
in: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, ACM, New York, NY, USA, pp. 73–80.

Mens, T., Goeminne, M., 2011. Analysing the evolution of social aspects of open
source software ecosystems. In: in: Third International Workshop on Software
Ecosystems (IWSECO-2011), CEUR-WS, pp. 1–14.

Messerschmitt, D., Szyperski, C., 2005. Software Ecosystem: Understanding An Indis-
pensable Technology and Industry. MIT Press Books 1, London, England.

Mizushima, K., Ikawa, Y., 2011. A structure of co-creation in an open source software
ecosystem: a case study of the eclipse community. In: in: 2011 Proceedings of

K. Manikas, K.M. Hansen / The Journal of Systems and Software 86 (2013) 1294– 1306

PICMET’11, Technology Management in the Energy Smart World (PICMET), pp.
1–8.

te Molder, J., van Lier, B., Jansen, S., 2011. Clopenness of systems: The interwo-
ven nature of ecosystems. In: in: Third International Workshop on Software
Ecosystems (IWSECO-2011), CEUR-WS, pp. 52–64.

Neu, S., Lanza, M., Hattori, L., D’Ambros, M., 2011. Telling stories about gnome with
complicity. In: in: 2011 6th IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), pp. 1–8.

Pettersson, O., Gil, D., 2010. On the issue of reusability and adaptability in m-learning
systems. In: in: 2010 6th IEEE International Conference on Wireless, Mobile and
Ubiquitous Technologies in Education (WMUTE), pp. 161–165.

Pettersson, O., Svensson, M., Gil, D., Andersson, J., Milrad, M., 2010. On the role of
software process modeling in software ecosystem design. In: in: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
ACM, New York, NY, USA, pp. 103–110.

Pettersson, O., Vogel, B., 2012. Reusability and interoperability in mobile learning:
a study of current practices. In: in: 2012 IEEE Seventh International Confer-
ence onWireless, Mobile and Ubiquitous Technology in Education (WMUTE),
pp. 306–310.

Pérez, J., Deshayes, R., Goeminne, M., Mens, T., 2012. Seconda: software ecosystem
analysis dashboard. In: in: 16th European Conference on Software Maintenance
and Reengineering (CSMR), pp. 527–530.

Popp, K., 2010. Goals of software vendors for partner ecosystems – a practitioner’s
view. Software Business, 181–186.

Popp, K.M., 2011. Hybrid revenue models of software companies and their rela-
tionship to hybrid business models. In: in: Third International Workshop on
Software Ecosystems (IWSECO-2011), CEUR-WS, pp. 77–88.

Riis, P., Schubert, P., 2012. Upgrading to a new version of an erp system: a
multilevel analysis of influencing factors in a software ecosystem. In: in:
45th Hawaii International Conference on System Science (HICSS), pp. 4709–
4718.

Robbes, R., Lungu, M., 2011. A study of ripple effects in software ecosystems (nier
track). In: in: Proceedings of the 33rd International Conference on Software
Engineering, ACM, New York, NY, USA, pp. 904–907.

dos Santos, R.P., Werner, C., 2011a. Treating business dimension in soft-
ware ecosystems. In: in: Proceedings of the International Conference on
Management of Emergent Digital EcoSystems, ACM, New York, NY, USA,
pp. 197–201.

dos Santos, R.P., Werner, C.M.L., 2010. Revisiting the concept of components in soft-
ware engineering from a software ecosystem perspective. In: in: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume,
ACM, New York, NY, USA, pp. 135–142.

dos Santos, R.P., Werner, C.M.L., 2011b. A proposal for software ecosystem
engineering. In: in: Third International Workshop on Software Ecosystems
(IWSECO-2011), CEUR-WS, pp. 40–51.

Scacchi, W., 2007a. Free/open source software development: recent research results
and emerging opportunities. In: in: The 6th Joint Meeting on European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering: Companion Papers, ACM, New York, NY, USA, pp.
459–468.

Scacchi, W., 2007b. Free/open source software development: recent research results
and methods. In: Zelkowitz, M.V. (Ed.), Architectural Issues, Elsevier, vol. 69 of
Advances in Computers. , pp. 243–295.

Scacchi, W., 2010a. Collaboration practices and affordances in free/open source
software development. In: Mistrík, I., van der Hoek, A., Grundy, J., Whitehead,
J. (Eds.), Collaborative Software Engineering. Springer, Berlin/Heidelberg, pp.
307–327, http://dx.doi.org/10.1007/978-3-642-10294-3 15

Scacchi, W., 2010b. The future of research in free/open source software development.
In: in: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, ACM, New York, NY, USA, pp. 315–320.

Scacchi, W., Alspaugh, T.A., 2012. Understanding the role of licenses and evolution
in open architecture software ecosystems. Journal of Systems and Software 85,
1479–1494.

Schmerl, B., Garlan, D., Dwivedi, V., Bigrigg, M.W., Carley, K.M., 2011. Sorascs: a case
study in soa-based platform design for socio-cultural analysis. In: Proceedings
of the 33rd International Conference on Software Engineering, ACM, New York,
NY, USA, pp. 643–652.

Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., Aguirre, L., 2010.
Feedback in context: supporting the evolution of it-ecosystems. In: Ali Babar, M.,
Vierimaa, M., Oivo, M. (Eds.), Product-Focused Software Process Improvement,
vol. 6156 of Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp.
191–205, 10.1007/978-3-642-13792-1 16.

Scholten, U., Fischer, R., Zirpins, C., 2012. The dynamic network notation: harness-
ing network effects in paas-ecosystems. In: Proceedings of the Fourth Annual
Workshop on Simplifying Complex Networks for Practitioners, ACM, New York,
NY, USA, pp. 25–30.

Schugerl, P., Rilling, J., Witte, R., Charland, P., 2009. A quality perspective of soft-
ware evolvability using semantic analysis. In: IEEE International Conference on
Semantic Computing, ICSC’09, pp. 420–427.

van der Schuur, H., Jansen, S., Brinkkemper, S., 2011. The power of propagation:
on the role of software operation knowledge within software ecosystems. In:
Proceedings of the International Conference on Management of Emergent Digital
EcoSystems, ACM, New York, NY, USA, pp. 76–84.

Seichter, D., Dhungana, D., Pleuss, A., Hauptmann, B., 2010. Knowledge management
in software ecosystems: software artefacts as first-class citizens. In: Proceedings
of the Fourth European Conference on Software Architecture: Companion Vol-
ume, ACM, New York, NY, USA, pp. 119–126.

Shaw, M., 2003. Writing good software engineering research papers. In: Mini-
tutorial for Proc ICSE”03.

Stefanuto, G., Spiess, M., Alves, A.M., Castro, P.F.D., 2011. Quality in software digital
ecosystems the users perceptions. In: Proceedings of the International Confer-
ence on Management of Emergent Digital EcoSystems, ACM, New York, NY, USA,
pp. 85–88.

Ververs, E., van Bommel, R., Jansen, S., 2011. Influences on developer participation in
the debian software ecosystem. In: Proceedings of the International Conference
on Management of Emergent Digital EcoSystems, ACM, New York, NY, USA, pp.
89–93.

Viljainen, M., Kauppinen, M., 2011. Software ecosystems: a set of management prac-
tices for platform integrators in the telecom industry. In: Regnell, B., Weerd, I.,
Troyer, O., Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C. (Eds.),
Software Business, vol. 80 of Lecture Notes in Business Information Processing.
Springer, Berlin/Heidelberg, pp. 32–43, 10.1007/978-3-642-21544-5 4.

Weiss, M., 2011. Economics of collectives. In: Proceedings of the 15th Interna-
tional Software Product Line Conference, vol. 2, ACM, New York, NY, USA, pp.
39:1–39:8.

Widjaja, T., Buxmann, P., 2011. Compatibility of software platforms. In: Heinzl, A.,
Buxmann, P., Wendt, O., Niche Weitzel, T. (Eds.), Theory-Guided Modeling and
Empiricism in Information Systems Research. Physica-Verlag HD, Berlin Heidel-
berg, Germany, pp. 15–41, http://dx.doi.org/10.1007/978-3-7908-2781-1 2

Yu, E., Deng, S., 2011. Understanding software ecosystems: A strategic modeling
approach. In: Third International Workshop on Software Ecosystems (IWSECO-
2011), CEUR-WS, pp. 65–76.

Yu, L., 2011. Coevolution of information ecosystems: a study of the statistical rela-
tions among the growth rates of hardware, system software, and application
software. SIGSOFT Software Engineering Notes 36, 1–5.

Yu, L., Ramaswamy, S., Bush, J., 2007. Software evolvability: an ecosystem point of
view. In: in: Third International IEEE Workshop on Software Evolvability, pp.
75–80.

Yu, L., Ramaswamy, S., Bush, J., 2008. Symbiosis and software evolvability. IT Pro-
fessional 10, 56–62.

Yu, S., Woodard, C., 2009. Innovation in the programmable web: charac-
terizing the mashup ecosystem. In: Feuerlicht, G., Lamersdorf, W. (Eds.),
Service-Oriented Computing – ICSOC 2008 Workshops, vol. 5472 of Lec-
ture Notes in Computer Science. Springer, Berlin/Heidelberg, pp. 136–147,
http://dx.doi.org/10.1007/978-3-642-01247-1 13.

Konstantinos Manikas is a PhD scholar at the Department of Computer Science
of Copenhagen University. His main research areas are software architecture and
software ecosystems with interest in telemedicince and healthcare IT.

Klaus Marius Hansen is a professor of Software Development at the University of
Copenhagen. He received a Ph.D. degree in Computer Science from Aarhus University
in 2002 and his research focuses on software technology and use in particular in
relation to pervasive and dependable computing.

Paper 2

Reviewing the Health of
Software Ecosystems – A
Conceptual Framework
Proposal

Manikas, K. and Hansen, K. M. (2013b). Reviewing the health of software
ecosystems - a conceptual framework proposal. In Alves, C. F., Hanssen, G. K.,
Bosch, J., and Jansen, S., editors, Proceedings of the 5th International Workshop
on Software Ecosystems, Potsdam, Germany, June 11, 2013, volume 987, pages
33–44

93

Reviewing the Health of Software Ecosystems –
A Conceptual Framework Proposal

Konstantinos Manikas and Klaus Marius Hansen

Department of Computer Science (DIKU)
University of Copenhagen

Njalsgade 128
2300 Copenhagen S

Denmark
{kmanikas,klausmh}@diku.dk

Abstract. The health of a software ecosystem is an indication of how
well the ecosystem is functioning. The measurement of health can point
to issues that need to be addressed in the ecosystem and areas for the
ecosystem to improve. However, the software ecosystem field lacks an
applicable way to measure and evaluate health. In this work, we review
the literature related to the concept of software ecosystem health and
the literature that inspired the software ecosystem health literature (a
total of 23 papers) and (i) identify that the main source of inspiration
is the health of business ecosystems while also influenced by theories
from natural ecosystems and open source, (ii) identify two areas where
software ecosystems di↵er from business and natural ecosystems, and (iii)
propose a conceptual framework for defining and measuring the health
of software ecosystems.

Key words: software ecosystems, ecosystem health, software ecosystem
health framework, software ecosystem health measurement

1 Introduction

The notion of software ecosystems (SECOs) is gaining popularity as a means of
expanding development, better positioning in the market, or increasing revenues.
There is a number of definitions of SECOs in the literature [1, 2, 3, 4]. In this
work we define a software ecosystem as “the interaction of a set of actors on top
of a common technological platform that results in a number of software solutions
or services. Each actor is motivated by a set of interests or business models and
connected to the rest of the actors and the ecosystem as a whole with symbiotic
relationships, while, the technological platform is structured in a way that allows
the involvement and contribution of the di↵erent actors” [5]. Today, software
ecosystems come with a wide variability of characteristics: platform structure,
actor participation, ecosystem orchestration, and revenue models, to name a
few. This makes the establishment of methods for measuring and evaluating the
activity of the ecosystem challenging. The SECO literature refers to the concept
of “health” of an ecosystem as a way to monitor ecosystem activity, identify and

2 K. Manikas & K.M. Hansen

predict areas for improvement, and evaluate changes in the ecosystem. However,
the measurement of the SECO health is not yet fully achieved.

We tentatively define the health of a software ecosystem as the ability of the
ecosystem to endure and remain variable and productive over time. In this work,
we aim to get closer to SECO health measurement by reviewing the literature
that is elaborating on SECO health. In doing so, we identify that the SECO
health literature is borrowing definitions and measurement of health from other
fields and expand our literature review focus to include additional ecosystem
health fields (explained in section 2). We review the wider ecosystem health
literature body and report the health definitions and measurements (section
3). We identify two main di↵erences between SECOs and business and natural
ecosystems and, based on previous work, we propose a conceptual framework for
defining and measuring the health of SECOs (section 4). Finally, in section 5 we
discuss threats to validity and future work and conclude in section 6.

2 Defining the Health Literature Body

The method used for defining the literature body consisted of the following steps:

(i) Defining the SECO health literature. To define the literature related to the
SECO health, we used as input the papers identified in our recent system-
atic literature review [5]. In [5], we identified a number of papers referring
to the concept of ecosystem health. The papers have a wide variability on
the level of detail they provide on the ecosystem health ranging from mere
reference to the concept (e.g., [6, 7, 8]) to papers in which health forms
part of the main focus (e.g., [9, 10]).

(ii) Defining wider ecosystem health literature. While examining the SECO
health literature, we noticed that the definition and analysis of health is
borrowed from other types of ecosystems not covered by the SECO health
literature . Using the “snowballing technique” [11], we followed the ref-
erences of the SECO health literature and evaluated whether these are
related to the health of an ecosystem 1. The criteria for accepting a paper
in the literature was that it would (a) define the health or sustainability of
an ecosystem or (b) elaborate on ways of measuring health.

Table 1 shows the literature body and the papers that are referenced by each
document. The SECO health literature that resulted from step (i) is the first
row while the literature from step (ii) are the remaining. We have organized the
papers into categories according to their field: software ecosystems (SECOs),
business ecosystems (BECOs)2, natural ecosystems, and open source software
(OSS). The main purpose of listing the categories is to show the fields that

1 We also followed references of the selected references that appeared relevant, result-
ing in a number of papers ([12, 13])

2 Paper [27] is defining the field of “IT ecosystems”, though, as a BECO with IT
products.

Reviewing SECO Health 3

Type Paper Source

SECO

[14, 10, 15, 9,
16, 17, 7, 18,
8, 19, 20, 21,
6]

Health literature from [5]

BECO

[22] [14, 9, 21, 10, 15, 23, 24]
[25] [14, 7, 10, 16, 6, 23]
[23] [14, 10, 9, 16, 18]
[26] [18, 8, 23]
[27] [20]
[24] [9]

Natural ecosystems
[28] [9]
[12] [28]
[13] [28]

OSS [29] [19]

Total: 23

Table 1. List of the documents in the health literature and the documents referring
to them.

influenced SECO health. In this work, we have not looked at the health definition
and measurement in the other fields outside the references of the SECO health
literature and, thus, do not claim that these papers are representative of each
field.

3 Ecosystem Health

Following the separation of ecosystem fields in Table 1, we list and discuss the
papers per ecosystem that have influenced the SECO health literature.

3.1 Natural Ecosystems

The field of (natural) ecosystems inspired the rest of the ecosystem fields exam-
ined here (BECO and SECO) and it is the field where the concept of ecosystem
health was initially formulated. Costanza [12], defines a healthy ecosystem as
“being ‘stable and sustainable’; maintaining its organization and autonomy over
time and its resilience to stress”. In addition, Rapport et al. [28], referring to
a collection of papers in the literature, define three indicators for health of an
ecosystem: Vigor that indicates how active or productive an ecosystem is, Or-
ganization that indicates the variability of species, and Resilience that indicates
the ability of the ecosystem to “maintain structure and function in the presence
of stress”. The characterization of an ecosystem in terms of structure and func-
tion is also discussed by Schae↵er et al. in [13]. They parallelize ecosystem health

4 K. Manikas & K.M. Hansen

with human health and define it as the “absence of disease”. They identify struc-
ture as “numbers of kinds of organisms, biomass etc.” and function as “activity,
production, decomposition etc.”. These are seen as measures used to define the
ecosystem health. Furthermore, Schae↵er et al., referring to the literature, list
four ways that structure and function may be connected: (a) tightly connected,
where neither can change without the change of the other, (b) structure changes
does not a↵ect function, (c) function changes do not a↵ect structure, and, (d)
structure and function appear unconnected.

3.2 Business Ecosystems

BECO health is the area that has inspired most of the SECO health literature.
In the BECO literature, the concept of health is mainly defined as the ability
of a BECO to provide “durably growing opportunities for its members and for
those who depend on it” [26]3. Iansiti and Levien [25, 26, 22] and Iansiti and
Richards [27] define the health of a business ecosystem using three measures:

Productivity. Inspired by natural ecosystems’ ability to create energy from in-
put sources (e.g., sunlight or mineral nutrients), BECO productivity is the
ability of an ecosystem to “convert raw materials of innovation into low-
ered costs and new products and functions” [26]. Productivity in BECOs
can be measured by means of (a) total factor productivity, (b) productivity
improvement over time, and (c) delivery of innovations, the ability of the
ecosystem to adapt and deliver to its members new technologies, ideas, or
process.

Robustness. The ability of the ecosystem to sustain shocks, perturbations, and
disruptions. Robustness is measured in terms of (a) survival rates, the sur-
vival of actors over time, (b) persistence of ecosystem structure, the extent
to which actor relationships are kept unchanged, (c) predictability, the ex-
tent to which even if shocks alter the relationships of actors, a main core of
the ecosystem remains solid, (d) limited obsolescence, whether the ecosys-
tem has a limited invested technology or components that becomes obsolete
after a shock, and (e) continuity of use experience and use cases, the extent
to which products gradually evolve in response to new technologies rather
than changing abruptly.

Niche Creation or Innovation. The ability of the ecosystem to increase mean-
ingful actor diversity over time. Niche creation is measured in terms of (i)
growth in company variety and (ii) growth in product and technical variety
(value creation) that measures the increase in value the growth brings.

Iansiti and Levien and Iansiti and Richards also propose three ecosystem
actor roles, inspired by natural ecosystems, that a↵ect the health of a BECO:

Keystone. Is an actor that normally occupies or creates highly connected hubs
of actors and promotes the health of the ecosystem by providing value to

3 Similar definitions appear in [22, 27]

Reviewing SECO Health 5

the surrounding actors. Keystones promote the health of the ecosystem by
increasing the variability, provide value to the connected actors and thus
increase productivity, and increase robustness by protecting connected actors
from external shocks.

Dominators. Are the actors that control the “value capture and value creation”
[22] of the ecosystem. They tend to expand by taking over the functions of
other actors thus eventually eliminating the actors. Dominators are harmful
for the health of an ecosystem as they reduce diversity

Niche (players or firms). Usually form the main volume of the ecosystem actors
drawing value from the keystones. A niche player aims to separate from the
other niche players by developing special functions.

Typically, a keystone provides value to a number of actors that can be either
niche players trying to develop or dominators trying to dominate the functions
of the surrounding actors. The roles of the BECO actors are also examined
by Iyer and Lee [24]. They classify the actors in an ecosystem in (a) hubs, (b)
brokers that connect two sets of actors, and, (c) bridges that are essential for the
connectedness of the ecosystem. A hub can demonstrate keystone, dominator,
or niche player characteristics.

Hartigh et al. [23] use the work of Iansiti and Levien and Iansiti and Richards
(referred to as “Iansiti” hereafter) to measure the health of the Dutch IT indus-
try. They define BECO health using two long-term parameters: the financial
well-being and strength of the network and break down the health in two com-
ponents: partner health and network health. Partner health evaluates the health
of each individual actor of the ecosystem. A healthy ecosystem is composed of
productive actors contributing to the productivity of the ecosystem while unpro-
ductive actors will have di�culty surviving. The survival of the actors is analo-
gous to the Iansiti robustness measure. Network health is measured in terms of
actor connectivity. Highly connected actors contribute to the robustness of the
ecosystem as the actors are not easily a↵ected by external shocks. In addition,
a healthy ecosystem contains clusters of di↵erent nature, thus increasing the
possibility of niche creation.

3.3 OSS

Wahyudin et al. [29] study the concept of health in OSS projects. They define
the health of an OSS project as “survivability”, the ability of the project to
survive throughout time. An OSS project is healthy and survives if the software
produced by the project is used by a number of users and maintained by a
number of developers. They identify three measures that a↵ect the health of an
open source project:

The developer community liveliness. The project should attract new developers
and keep the existing by boosting their motivation. Wahyudin et al. break
down an OSS developer’s motivation in intellectual stimulation, skill en-
hancement, and access to source code and user needs.

6 K. Manikas & K.M. Hansen

The user community liveliness. The users of OSS software play an active role in
the evolution of the project by reporting bugs and requesting new features. A
large, active user community indicates that the software produced is usable
and of good quality.

The product quality. A product that is competitive with commercial products
in use and quality will attract users and developers, increase the activity in
the project, and therefore enhance survivability.

3.4 Software Ecosystems

In the field of SECO, Berk et al. [9] propose SECO-SAM, a model for the as-
sessment of a SECO strategy based on SECO health. In their model, they make
an analogy between the health of an ecosystem and human health and propose
that SECO health is influenced by the biology of the ecosystem, the lifestyle, the
environment, and the intervention of healthcare organizations while they mea-
sure the SECO health adopting the Iansiti productivity, robustness, and niche
creation (PRN) measures. Jansen et al. [10] elaborate on a three-level model of
SECOs, published in [7], consisting of the organization scope level, SECO level,
and software supply network level. They define SECO health as a characteristic
of the software supply network level using the Iansiti PRN measures. Addition-
ally, they propose the application of the Hartigh et al. [23] measures for defining
the health at the SECO level. Angeren et al. [14] show that SECO robustness
of the Iansiti PRN measures is an important factor for vendors that choose to
depend on a SECO.

In OSS, McGregor [20] translates the Iansiti PRN measures to measures
that can be applied to open source projects, while Kilamo et al. [18] propose a
framework for going from a proprietary to a Free/Libre/Open Source Software
(FLOSS) SECO. One of the framework activities is setting up a “community
watchdog” that assesses the community, the software, and “how well the ob-
jectives of the company are met”. The watchdog indirectly assesses the health
while they provide a number of measures to be applied in FLOSS SECOs.

Looking at the SECO health literature, we note that the main source of
inspiration is BECO health when trying to define and measure SECO health or
health-related parameters (e.g., keystone-dominator strategies) with 11 out of
the 13 papers referring to at least one of the Iansiti authored papers [22, 25,
26, 27]. Although the health of a BECO is very similar to the SECO health, we
identify a number of di↵erences between the two. In the next section, we explain
the di↵erences and build on top of the existing literature to define a framework
for SECO health.

4 A SECO Health Proposal

When analyzing the health of SECOs, we identify that similarly to BECOs and
natural ecosystems, the set of actors, their activity and the network they form

Reviewing SECO Health 7

is an indication of the level of prosperity and sustainability of the ecosystem.
However, one main di↵erence of SECOs from BECOs and natural ecosystems
is in the nature of the products of the actors and, eventually, of the whole
ecosystem. The BECO approach explained in the previous section is aligned with
the natural ecosystem approach of actors and products, where the products of the
ecosystem (i.e. energy) are represented by the actors (i.e., species) by enclosing
energy in the energy flow between the species. In other words, a herbivorous
species eats a plant and is eaten by a carnivorous species. This herbivorous
species is both an actor and a product in the ecosystem and changes in the health
of this species (e.g., number decrease) a↵ects the energy enclosed (product) by
this species and, thus, the carnivorous species.

In SECOs, the actors are di↵erentiated from the products. The main product
of the actors is software, either as a common software/technological platform, as
software components, or services based on software components. The symbiosis of
this software can influence the health of a SECO. The influence that the software
components have on the SECO health is independent of the actor health. An
example would be an actor that creates a software component that enhances
the component interoperability and increases the use of the platform and thus
contributing to the SECO health. At the same time, this actor might not have a
successful revenue model for this software component and end up loosing a big
part of the invested e↵ort. The actor will have a negative influence on the SECO
health because of low productivity and possibly robustness, while the software
component will have a positive influence.

One additional di↵erence of SECOs to BECO/natural ecosystems is that in
SECOs there is an entity organizing and managing the ecosystem, the orchestra-
tor. The orchestrator, whether a for-profit organization or an OSS community,
is typically managing the ecosystem by running the platform and creating rules
and processes for actors and software. The orchestration of the SECO thus has
a significant e↵ect on the health of the ecosystem.

The proposed SECO health framework can be seen in Figure 1. We depict
three main components that a↵ect the SECO health: (i) the actors, (ii) the
software and (iii) the orchestration. In (i), we separate between the individual
health of an actor and the health of the network of actors and similarly in (ii)
between the individual component health, the ecosystem platform health and
the software network health.

4.1 Individual Actor Health

The health of the individual actors influences the overall health of the ecosys-
tem. The actor health can be measured in similar terms to a BECO actor. The
actor’s productivity and robustness influence the ecosystem. The active partici-
pation and engagement of actors brings value to the ecosystem, while the actor’s
robustness increases the probability that the actor exists and remains involved
in the ecosystem activity in the future. If the SECO is a proprietary ecosystem
or consists of for-profit organisations, the partner health measures of Hartigh et
al. [23] can be directly applied. If in the OSS domain, the actor health can be

8 K. Manikas & K.M. Hansen

Individual
Actor
Health

Actor
Network
Health

Actors

Software
Component

Health

Platform
Health

Software
Network
Health

Software
Orchestration

SECO Health

Fig. 1. The SECO health framework breakdown.

assessed in a way similar to Wahyudin et al [29]: measuring the actor activity in
the ecosystem (commits, mailing list activity etc.). In that case, an indication of
actor robustness is the active participation in the ecosystem over a long period
of time. An actor being an active participant in the ecosystem for a long period
of time has lower probability of dropping out of the ecosystem than an actor
that recently started contributing to the ecosystem.

4.2 Actor Network Health

The network of actors and their interaction plays an important role in the SECO
health. The PRN measurements are applicable here, so is the network health
perspective of Hartigh et al. [23]. Additionally, the individual actor health may
be weighted according to the role of the actor in the network. A keystone with
low productivity or robustness will have greater e↵ect in the ecosystem than a
niche player with low productivity or robustness.

4.3 Software Component Health

The health of a software component can be measured in terms of, among others,
(i) reliability, (ii) availability, (iii) modifiability and prevention of ripple e↵ects,
and (iv) interoperability, the ability to interact with, to the extent applicable,
the platform and other components. In SECOs, the software components are, in
most cases, also the products of the ecosystem. The health of such a software
component is also influenced by the relative demand and product quality, e.g.,
how popular is the product and how it is performing in comparison to possible
alternatives. This demand is also a↵ected by whether the product is internal, i.e.,
products intended for use mainly by the ecosystem actors, e.g., the technological
platform or external, i.e., products consumed externally to the ecosystem.

Reviewing SECO Health 9

4.4 Platform Health

The health characterization of the software components above can be applied
to the technological platform of a SECO, since it is a software component itself.
However, the technological platform, might have an additional role: depending on
how the SECO is organized and managed, the platform reflects possible orches-
tration actions (rules, processes, or management decisions). The measurement
of the platform health should not reflect how the orchestration a↵ects the SECO
health (as this is reflected in the orchestration influence on SECO health seen
below), but the e↵ectiveness of applying the orchestration actions.

4.5 Software Network Health

The software components are connected and interacting with other components
in the ecosystem forming the software network. Graph measures such as con-
nectivity and clustering coe�cient show to what extent the components interact
[30]. Additionally, the categorization of the activity of hubs into keystone and
dominator indicate the level of healthy interaction. Analogous to the Iansiti
descriptions in the previous section, an example of keystone activity can be a
component that provides interfaces to parts of its functionality for the neighbor-
ing components to consume, while in a dominator activity the component would
intent to take over functionality of the neighboring components.

4.6 Orchestration Influence to Health

The orchestrator can monitor the health of the ecosystem and take measures to
promote ecosystem health if necessary. This requires that the orchestrator has a
good overview of the ecosystem and is consulting e↵ective measurements (e.g.,
ecosystem health). Additionally, the orchestrator can act by creating/refining
rules and processes for the actors, communicating plans to the actors (e.g.,
by road-mapping), organizing the ecosystem development through, e.g., release
management, making changes to the platform and other software components,
changing the revenue model for internal products, and controlling the actor pop-
ulation and motivation by modifying the model by which the actors participate
in the ecosystem. The orchestration of a SECO, i.e., the actions of the orches-
trator, possibly based on monitoring and evaluation, influences SECO health.

4.7 Other Influences on SECO Health

Additionally, there might also be influences on the SECO health that are ex-
ternal to the ecosystem. This kind of influences are referred to as “(external)
perturbation” in the literature [28, 22, 26, 27] and are disturbances that are
outside the control of the ecosystem actors. Influences of this kind might be the
establishment or rise of a competitive ecosystem or a radical technological or
legal change.

10 K. Manikas & K.M. Hansen

5 Threats to Validity and Future Work

The wider ecosystem health literature used in this study was identified through
the references in the SECO health literature as our focus was literature that
influenced the SECO health literature. As already mentioned, the literature on
each field (apart from SECO) is not necessarily the representative or most influ-
ential work in the field. Identification of the most influential work and possible
literature mapping of the health in each of the fields (BECO, natural ecosystem,
OSS/FLOSS) might bring perspectives into the SECO health that have been
overlooked. Additionally, we speculate that the influence of the di↵erence fields
to the SECO health is not necessary reflected in the number of papers appear-
ing in this work. Natural ecosystem have had a greater impact on SECO health
concepts, but most of it is indirect through the health of BECOs.

Moreover, the proposed conceptual framework, at this point, does not go into
detail on the di↵erent kinds of actors. An expansion of the model would further
analyze on the nature of the actors, e.g., developing companies, resellers, value-
adding-resellers, and possibly include their influence on health. Additionally,
although the model included products, it did not include customers or end-users.
The influence of entities of this kind could be discussed in future work.

6 Conclusion

In this paper, we analyzed the concept of software ecosystem (SECO) health.
In order to define SECO health and its measurement, we examined the SECO
health literature, a literature body of 13 papers touching upon the concept of
SECO health. We identified that the health research is mainly inspired by three
fields: business ecosystems (BECO), natural ecosystems, and open source soft-
ware, with BECO being the main source of inspiration in 11 out of the 13 SECO
health papers. We reviewed the wider ecosystem health literature, consisting of
23 papers, explained how they define and measure the health of an ecosystem and
concluded with two contributions: (i) We identify two di↵erences between the
SECO and business and natural ecosystems: (a) they perceive products in the
ecosystem di↵erently. BECOs and natural ecosystems perceive actors as a prod-
uct per se, while in SECOs an actor produces software components or services.
(b) SECOs have an orchestrator entity managing the ecosystem, something that
does not appear in the BECO/natural ecosystem literature. (ii) We propose a
logical framework for defining and measuring the SECO health consisting of the
health of (a) each individual actor, (b) network of actors, (c) each individual
software component, (d) platform, (e) software network, and (f) orchestrator.
The purpose of this study is to create a discussion on the particularities of
SECO health and bring the community closer to a measurable way of defining
the health of software ecosystems.

Reviewing SECO Health 11

Acknowledgements

This work has been partially funded by the Connect2Care project4.

References

1. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: Software Engineering - Companion Volume,
2009. ICSE-Companion 2009. 31st International Conference on. (may 2009) 187
–190

2. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems
and Software 83(1) (2010) 67 – 76

3. Messerschmitt, D., Szyperski, C.: Software ecosystem: understanding an indispens-
able technology and industry. MIT Press Books 1 (2003)

4. Lungu, M., Lanza, M., Gı̂rba, T., Robbes, R.: The small project observatory:
Visualizing software ecosystems. Science of Computer Programming 75(4) (2010)
264 – 275 Experimental Software and Toolkits (EST 3): A special issue of the
Workshop on Academic Software Development Tools and Techniques (WASDeTT
2008).

5. Manikas, K., Hansen, K.M.: Software ecosystems – A systematic literature review.
Journal of Systems and Software 86(5) (2013) 1294 – 1306

6. Mizushima, K., Ikawa, Y.: A structure of co-creation in an open source software
ecosystem: A case study of the eclipse community. In: Technology Management in
the Energy Smart World (PICMET), 2011 Proceedings of PICMET ’11:. (august
2011) 1 –8

7. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem model-
ing. In: Proceedings of the 1st international workshop on Open component ecosys-
tems. IWOCE ’09, New York, NY, USA, ACM (2009) 41–50

8. Viljainen, M., Kauppinen, M.: Software ecosystems: A set of management practices
for platform integrators in the telecom industry. In Regnell, B., Weerd, I., Troyer,
O., Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C., eds.:
Software Business. Volume 80 of Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg (2011) 32–43 10.1007/978-3-642-21544-5 4.

9. van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: a software
ecosystem strategy assessment model. In: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume. ECSA ’10, New York,
NY, USA, ACM (2010) 127–134

10. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as
a survival strategy: A tale of two software ecosystems. In: First International
Workshop on Software Ecosystems (IWSECO-2009), Citeseer (2009) 34–48

11. Denscombe, M.: The good research guide. Open University Press (2010)
12. Costanza, R.: Toward an operational definition of ecosystem health. Ecosystem

health: New goals for environmental management (1992) 239–256
13. Schae↵er, D.J., Herricks, E.E., Kerster, H.W.: Ecosystem health: I. measuring

ecosystem health. Environmental Management 12(4) (1988) 445–455

4 http://www.partnerskabetunik.dk/projekter/connect2care.aspx

12 K. Manikas & K.M. Hansen

14. van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in software ecosys-
tems: a survey of the dutch software industry. In: Proceedings of the International
Conference on Management of Emergent Digital EcoSystems. MEDES ’11, New
York, NY, USA, ACM (2011) 68–75

15. dos Santos, R.P., Werner, C.M.L.: A proposal for software ecosystem engineer-
ing. In: Third International Workshop on Software Ecosystems (IWSECO-2011),
CEUR-WS (2011) 40–51

16. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7) (2012) 1495 – 1510

17. dos Santos, R.P., Werner, C.: Treating business dimension in software ecosystems.
In: Proceedings of the International Conference on Management of Emergent Dig-
ital EcoSystems. MEDES ’11, New York, NY, USA, ACM (2011) 197–201

18. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open
source-”growing an open source ecosystem”. Journal of Systems and Software
85(7) (2012) 1467 – 1478

19. Dhungana, D., Groher, I., Schludermann, E., Bi✏, S.: Software ecosystems vs.
natural ecosystems: learning from the ingenious mind of nature. In: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume.
ECSA ’10, New York, NY, USA, ACM (2010) 96–102

20. McGregor, J.D.: A method for analyzing software product line ecosystems. In: Pro-
ceedings of the Fourth European Conference on Software Architecture: Companion
Volume. ECSA ’10, New York, NY, USA, ACM (2010) 73–80

21. van Ingen, K., van Ommen, J., Jansen, S.: Improving activity in communities of
practice through software release management. In: Proceedings of the International
Conference on Management of Emergent Digital EcoSystems. MEDES ’11, New
York, NY, USA, ACM (2011) 94–98

22. Iansiti, M., Levien, R.: The keystone advantage: what the new dynamics of business
ecosystems mean for strategy, innovation, and sustainability. Harvard Business
Press (2004)

23. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business
ecosystem. In: Proceedings of the European Network on Chaos and Complexity
Research and Management Practice Meeting. (2006)

24. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a small world ecosystem: Some
lessons from the software sector. California Management Review 48(3) (2006)
28–47

25. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Review 82(3) (2004)
68–81

26. Iansiti, M., Levien, R.: Keystones and dominators: Framing operating and tech-
nology strategy in a business ecosystem. Harvard Business School, Boston (2004)

27. Iansiti, M., Richards, G.L.: The information technology ecosystem: Structure,
health, and performance. Antitrust Bull. 51 (2006) 77

28. Rapport, D., Costanza, R., McMichael, A.: Assessing ecosystem health. Trends in
Ecology & Evolution 13(10) (1998) 397–402

29. Wahyudin, D., Mustofa, K., Schatten, A., Bi✏, S., Tjoa, A.M.: Monitoring the
health status of open source web-engineering projects. International Journal of
Web Information Systems 3(1/2) (2007) 116–139

30. Hansen, K.M., Manikas, K.: Towards a Network Ecology of Software Ecosystems:
an Analysis of two OSGi Ecosystems. In: Proceedings of the 25th International
Conference on Software Engineering & Knowledge Engineering (SEKE’2013).
(2013)

Paper 3

Towards a Network Ecology
of Software Ecosystems: an
Analysis of two OSGi
Ecosystems

Hansen, K. M. and Manikas, K. (2013). Towards a Network Ecology of Software
Ecosystems: an Analysis of two OSGi Ecosystems. In Proceedings of the 25th
International Conference on Software Engineering & Knowledge Engineering
(SEKE’2013), pages 326–331

107

Towards a Network Ecology of Software
Ecosystems: an Analysis of two OSGi Ecosystems

Klaus Marius Hansen and Konstantinos Manikas
University of Copenhagen

Department of Computer Science (DIKU)
Copenhagen, Denmark

{klausmh,kmanikas}@diku.dk

Abstract—“Software ecosystems” are gaining importance in
commercial software development; the iPhone iOS and Sales-
force.com ecosystems are examples of this. In contrast to tra-
ditional forms of software reuse, such as common platforms or
product lines, software ecosystems have a heterogeneous set of
actors sharing and collaborating over one or more technological
platforms and business model(s) that serve the actors. However,
little research has investigated the properties of actual software
ecosystems.

In this paper, we present an exploratory study of software
ecosystems using the formalizations and metrics of the “network
ecology” approach to the analysis of natural ecosystems. In doing
so, we mine the Maven central Java repository and analyze two
OSGi ecosystems: Apache Felix and Eclipse Equinox. In par-
ticular, we define the concept of an ecosystem “neighborhood”,
apply network ecology metrics to these neighborhoods (including
a keystone index that identifies the importance of elements in the
ecosystem), and compare the ecosystems.

Index Terms—software ecosystems; dependency structure; de-
pendency graphs; network ecology

I. INTRODUCTION

Software ecosystems (SECOs) arguably present an effective
way of constructing large software systems on top of a
software platform by composing components developed by
actors internal and external to the organization developing the
platform [1]. In this setting, software engineering also takes
place outside the traditional borders of software companies to
a group of companies, private persons, or other legal entities.

This differs from traditional outsourcing techniques in that
the organization developing the platform does not necessarily
own the software produced by contributing actors and does not
hire the contributing actors. All actors, however, coexist in an
interdependent way, an example being the iOS ecosystem in
which Apple provides a platform for applications and review
of applications in return for a yearly fee and 30% of revenues
of application sale1. This is a parallel to the natural ecosystems
where the different members of the ecosystems (e.g., the
plants, animals, or insects) are part of a food chain where
the existence of one species depends on the rest.

While examples of successful software ecosystems exist,
little empirical research in real software ecosystems exists [2].
In this paper, we study the software ecosystem created around
Apache Maven2, a build automation tool. A characteristic of

1http://developer.apple.com/programs/ios/distribute.html
2http://maven.apache.org/

Maven is that it automatically downloads project dependencies
from online repositories. One of the main repositories that
Maven consults is the Maven central repository3, Maven
Central, from which we have obtained the repository artifacts’
metadata. In particular, we investigate the subset of Maven
central that relates to these Apache Felix and Eclipse Equinox
OSGi software ecosystems [3].

In the analysis of the ecosystems, we take inspiration
from the analysis of natural ecosystems as graphs through
“network ecology” [4]. In particular, we investigate software
ecosystems using metrics from network ecology. Furthermore,
we apply the PageRank [5] algorithm to the structure of
software ecosystems.

Our research in this paper is exploratory; the underlying
research questions being:
• How can metrics and formalizations of the “network

ecology” approach to natural ecosystem analysis provide
insight into the structure of software ecosystems?

• How can we analyze and compare different software
ecosystems that may be subsets of a wider software
ecosystem?

While we do not answer the questions fully, this paper provides
initial insight into the answers.

II. BACKGROUND

A. Apache Maven

Apache Maven [6] is a project management tool, primar-
ily used for Java projects. A central concept in Maven is
the “Project Object Model” (POM) that models a project
among others allows Maven to build, package, upload to a
remote repository, and generate web pages. The main uses
of POMs are thus i) to enable building projects and ii) to
enable resolution of dependencies in projects. POM files define
artifacts (i.e., the software components of a project), versions
of artifacts, and groups containing artifacts.

Maven Central4 is a web service that collects artifacts
(e.g., JAR files) and their description in form of POMs. We
consider Maven Central as a software ecosystem (referenced
to as the Maven ecosystem) with Apache Maven as the
common technological platform. Because of the explicitness

3http://search.maven.org
4http://search.maven.org/

of the dependencies, the Maven ecosystem allows the study of
artifacts as a graph. In this paper, we study two ecosystems that
are subsets of the Maven ecosystem: Apache Felix and Eclipse
Equinox. Both ecosystems, as much as their artifacts, form
part of the Maven ecosystem with potential interdependencies.
In order to study each of the two software ecosystems, it is
necessary to define their size and borders. For this reason we
define and calculate the software ecosystem neighborhood for
each sub-ecosystem.

Given the artifacts in the groups of the OSGi frameworks
(“org.apache.felix” and “org.eclipse.equinox”), we follow their
dependencies and find artifacts that depend on these artifacts
to calculate an ecosystem neighborhood of increasing depth,
where for each depth level we add the artifacts depending on
artifacts already added or that artifacts already added depend
on.

We calculate the neighborhood, Ad = NEIGHBORHOOD(S,
d), of a set of artifacts, S, at distance d as follows based on
a seed, S := {s1, s2, ..., sn}, and distance, d:

1) A0 := S
2) Ai+1 := Ai∪{a | ∃b ∈ Ai : a depends on b}∪{b | ∃a ∈

Ai : a depends on b}
Concretely, we calculated NEIGHBORHOOD(F , i),
where F is the set of artifacts in the Apache Felix
group (org.apache.felix), i = 0, 1, ... and
NEIGHBORHOOD(E, i), where E is the set of artifacts
in the Eclipse Equinox group (org.eclipse.equinox) ,
i = 0, 1,

B. Network ecology

A common theme in ecology of natural ecosystems is a
focus on interactions and relationships among living individu-
als, between predator and prey. “Network ecology” [4], models
food webs as networks or graphs of species and interactions.
The networks are often directed to indicate, e.g., energy flow
between individuals (e.g., from prey to predator) and are
sometimes weighted. Figure 1 shows a simplified example of
a food web with one predator (A) and two prey (B and C).
Network ecology applies both classical graph/network metrics
(e.g., connectance) and novel metrics to food networks (e.g.,
keystone index); see Section III.

Of particular interest in ecosystems are keystone species
that have a large effect on their environment compared to the
number of members of the species in the environment. In the
example, species A may be a keystone since it has effect on
both B and C.

Fig. 1. Simple food web example

In our application of network ecology to the study of
software ecosystems, we draw a parallel between species in a
natural ecosystem and actors and software artifacts in software
ecosystems. Species prey on other species and in this way
energy flows from prey to predator. Actors produce software
artifacts and software artifacts consume other software artifacts
via usage dependencies. And just as the co-existence of species
in a natural ecosystem determines the health of the natural
ecosystem, the co-existence of actors and software artifacts
in a software ecosystem determins the health of the software
ecosystem. We thus apply energy flow analysis of natural
ecosystems to dependency analysis in software ecosystems.
In this our study, we analyzed software ecosystem actors only
in terms of their technical products, i.e., the software artifacts,
and thus our study is of software dependencies.

In our case, the species relationships from network ecology
are usage dependencies among software artifacts and, thus,
at runtime, control and data may flow from depender to de-
pendee. Furthermore, our networks are always directed (in the
direction of dependencies) and without weight (or equivalently
with equal weight).

III. CHARACTERIZING NETWORK ECOLOGIES

In this section, we present the characteristics of network
ecologies that we apply in our software ecosystem analysis.
We divide the characteristics into global characteristics that
we calculate for a complete network (Section III-A), and
local characteristics that we calculate for individual nodes.
Furthermore, we apply a page rank algorithm (Section III-C)
to the network to compare to network ecology characteristics.

A. Global network characteristics

Traditional graph metrics (e.g., number of nodes and edges)
can be applied to networks of ecologies. In particular, we
consider connectance, C = L

N ·(N−1) , where L is the number
of relationships in the network, dependencies in our case, and
N is the number of nodes in the network, artifacts in our
case. Connectance measures the proportion of all potential
relationships that are present in the network. Since our network
is directed and has no self-relationships, the maximum number
of relationships is N · (N − 1).

Applying the connectance metric to the Felix and Equinox
ecosystems would provide a view on the connected the whole
ecosystem is. This, apart from assisting in describing the
ecosystem, can measure similarity of the ecosystems as far
as connectance goes.

B. Local network characteristics

One of the basic properties of a node is the number
of connections this node has to its neighboring nodes, the
connection degree of the node. The connection degree D of a
node i is Di = Din+Dout where Din is the number or nodes
depending on node i and Dout the number of nodes that node
i depends on. The degree of a node is an elementary property
that shows how much a node is interacting with its neighboring
nodes. Similarly, if we take into consideration the dependency

direction, the orientation of a node is D′i = Din−Dout. This
metric may be used to measure the interaction a node has with
its neighboring nodes in directed graphs. If an artifact has a
negative orientation, the number of artifacts that it depends is
larger than the number of artifacts that depends on it.

The clustering coefficient gives further insight into how
nodes connect in the graph. The clustering coefficient of a
node shows how close this node is to becoming a complete
graph with its neighbors. The clustering coefficient of a node
i is as follows:

CCi =
Li

Ni · (Ni − 1)

where Li is the number of links between the neighboring
nodes Ni of node i. The global clustering coefficient for the
whole graph is calculated from the clustering coefficient of
each node:

C̄ =
1

n

n∑

i=1

Ci

We use the clustering coefficient calculation in our study to
analyze the dependencies of the artifacts in each ecosystem.
Additionally, we use the calculation to of compare the two
ecosystems.

Jordán et al. introduced a reliability-theoretic approach to
characterizing keystone indices [7]. They base their keystone
index on the concept of a bottom-up keystone index and a
top-down keystone index. The bottom-up keystone index of a
species i, Kb(i), is a measure of secondary extinctions because
of bottom-up effects if the species i is removed. Here, “bottom-
up effects” refer to effects going from prey to predator if the
species is removed.

The bottom-up index is defined as:

Kb(i) =
∑

j∈P (i)

1

mi(j)
· (1 + Kb(j))

where P (i) are the direct predators of i, mi(j) the number
of direct prey of P (i), and Kb(j) is the bottom-up keystone
index for j. The top-down index, Kt(i) is calculated by
reversing the species relationships and calculating an index
similar to above. Finally, the keystone index is calculated as:

K(i) = Kb(i) + Kt(i)

Naturally, if species i have no direct predators, their bottom-
up keystone index Kb(i) is zero and the keystone index is
calculated only by the top-down approach. For the simple
example in Figure 1, the keystones indices are K(A) = 2
and K(B) = K(C) = 0.5.

We adapt the keystone index in the study of the two
software ecosystems where instead of a network of preys and
predators we have an artifact dependency graph. In this case,
the keystone index indicates the importance of an artifact, i.e.
what effect the removal of that artifact would have to the
software ecosystem.

C. PageRank
The PageRank algorithm [5] calculates the weight of a web

page pi by summing the weights of each page pointing to pi
normalized by the number of links pointing out of that page
and adjusted by a dumping factor constant d. PageRank can
be explained using the behavior of a hypothetical web surfer
who either i) chooses to follow a link at random from a web
page with probability d, or, ii) at random chooses any page to
go to with probability 1−d. The PageRank of a web page pi,
P (pi) is then the probability of being on that web page that
this iterative procedure converges to. The PageRank has the
following property:

P (pi) =
(1− d)

N
+ d ·

(
P (p1)

C(p1)
+ ... +

P (pn)

C(pn)

)

where p1 to pn are the pages pointing at page pi, C(pi) the
number of links going out of page pi and N the total number
of pages.

Apart from ranking webpages, PageRank, can be applied
to rank nodes in directed graphs. In this study we apply
PageRank to estimate weights of the artifacts in the studied
ecosystems, with the page links implying artifact dependency.
In that sense, an artifact with high PageRank would either have
a high number of artifacts or artifacts with high PageRanks
depending on it. Such an artifact, will arguably have a large
effect on the ecosystem compared with the total number
of artifacts. In doing so, we follow an approach close to
Bhattacharya et al. [8] who define a “NodeRank” for graph-
based representations of software based on PageRank.

Our hypothesis is, that the artifacts with high PageRank
would also be “keystone species” in the software ecosystem.
For the PageRank ranking of both Apache Felix and Eclipse
Equinox software ecosystems, we used a fixed damping factor,
d, of 0.85.

IV. DATA GATHERING AND PROCESSING

We processed the set of 286,922 POM XML files of Maven
Central as of 2012-01-24. In the processing, we identified
an artifact by group id and artifact id, i.e., we disregarded
version numbers of artifacts for reasons of scalability. For each
POM file, we output the group id and artifact id and for each
dependency declared, we output the relationship between the
processed artifact and its dependency.

In total, we extracted 155,127 unique artifacts in 5,676
groups and 495,020 unique dependencies among these arti-
facts. A number of POM files (36) were empty or contained
errors and a number of dependencies (93,455) were not found
in the repository.

For the complete set of artifacts and dependencies, we cal-
culated the neighborhoods of the groups org.apache.felix and
org.equinox.felix. Table I shows this together with summary
statistics of the neighborhoods.

V. RESULTS

In the following, we present the results of applying the
metrics of Section III to the neighborhoods of Felix and
Equinox. Table I shows the global metrics.

Felix Equinox
Distance # artifacts # dependencies connectance # artifacts # dependencies connectance

0 25 29 0.048333 19 7 0.020468
1 110 138 0.011510 80 69 0.010918
2 7772 8036 0.000133 635 679 0.001687
3 13638 25414 0.000137 9481 10037 0.000112
4 15629 28222 0.000116 14625 25082 0.000117
5 15923 28649 0.000113 15797 26778 0.000107
6 15983 28725 0.000112 15967 26983 0.000106
7 15984 28726 0.000112 15992 27008 0.000106
8 15984 28726 0.000112 15992 27008 0.000106

TABLE I
SUMMARY STATISTICS OF CALCULATED NEIGHBORHOODS

Analyzing the neighborhoods for both ecosystems, we no-
tice that the number of artifacts and dependencies remain the
same for distances greater than seven. This implies that the
minimum distance of any two indirectly connected artifacts
in the Felix or Equinox ecosystems is not more than seven.
Therefore, the neighborhood distance of seven is the border
of both ecosystems within the whole Maven ecosystem.

A. Network ecology metrics

In the figure 2, we show a log-log histogram for Felix for
connection degree D < 100, which is the majority of the
artifacts (for Felix 15,956 out of 15,984 and Equinox 15,965
out of 15,992). For the Felix degree distribution, the maximum
count appears in degree 1 with 7,950 artifacts while the highest
degree is 3932 with count of 1 artifact. The artifacts with
degrees 1, 2 and 3 account for 80% of the total number of
artifacts. For the Equinox group, degree 1 has the maximum
count of artifacts, 8,235, while the highest degree is 3,519.
Similarly, degrees 1, 2 and 3 account for 82% of the total
artifacts. In both groups, the artifact with the highest degree
is junit. The degree for the artifacts of Felix has an average of
3.59 and a standard deviation of 1,097.74, while Equinox has
an average of 3.38 and a standard deviation of 904.63. From
the degree distributions, we can verify the similarity in the
dependency relations noted for the connectance results of the
high distance neighborhoods, with Felix having slightly more
dependencies.

Tables II and III display the artifact that have top orientation
rankings for Felix and Equinox. In both groups, the top orien-
tation ranking is almost identical (the order for “testing” and
“maven-plugin-api” changes) for the top connection degrees.
Taking into consideration that the average orientation in both
groups is zero, the orientation metrics reveal a tendency in the
high ranked connection degree artifacts to have close to zero
dependencies to other artifacts, i.e. equally high orientation.
This supports the idea of certain artifacts being the center of
a cluster or the ecosystem with all the rest of the artifacts
depending on them. This enhances the interest of studying the
keystone and PageRank metrics.

The clustering coefficient analysis shows that there is a low
number of nodes that had a non-zero clustering coefficient (20
out of the 15,984 artifacts for Felix and 4 artifacts from the
total 15,992 for Equinox). Out of the 20 non-zero clustering

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9
Connection degree distribution for Felix(log−log)

Log connection degree

Lo
g

co
un

t

Fig. 2. Connection degree distribution for Felix (log-log;D < 100)

org.apache.felix
Group id artifact id degree orientation
junit junit 3932 3930
javax.servlet servlet-api 770 770
org.slf4j slf4j-api 489 489
org.easymock easymock 368 368
org.mockito mockito-all 320 320
commons-io commons-io 305 305
org.scala-lang scala-library 235 235
stax stax-api 234 234
xerces xercesImpl 202 198
org.apache.maven maven-plugin-api 196 196
org.testng testng 198 190

TABLE II
TOP NODES ACCORDING TO THEIR CONNECTION DEGREE AND

ORIENTATION FOR ORG.APACHE.FELIX

coefficients for Felix, only 4 artifacts do not belong to the Felix
group, while all 4 of the resulting artifacts for Equinox belong
to the Equinox group. We may interpret this as Felix having
a higher level of reciprocity and thus, according to [9], being
a more open software ecosystem than Equinox. However, the
findings are not adequate to fully support this statement. Table
IV shows the top clustering coefficient artifacts for the Felix
group and Table V shows the same for the Equinox group
. The global clustering coefficient is 0.0002047 for Felix and

org.eclipse.equinox
Group id artifact id degree orientation
junit junit 3519 3517
javax.servlet servlet-api 646 646
log4j log4j 568 558
org.slf4j slf4j-api 364 364
org.easymock easymock 354 354
commons-logging commons-logging 335 331
org.eclipse.core runtime 272 268
org.scala-lang scala-library 263 263
stax stax-api 262 262
commons-lang commons-lang 231 231

TABLE III
TOP NODES ACCORDING TO THEIR CONNECTION DEGREE AND

ORIENTATION FOR ORG.ECLIPSE.EQUINOX

0.0000377 for Equinox.
The fact that both ecosystems have little clustering is in

accordance with the numbers from the previous section where
the majority of the artifacts (80% for Felix, 82% for Equinox)
had a sum of 3 or less incoming and outgoing dependencies.

org.apache.felix
Group id artifact id CC
org.apache.felix org.apache.felix.ipojo.handler.white.board.pattern 0.5
org.apache.felix org.apache.felix.ipojo.handler.extender.pattern 0.5
org.apache.felix org.apache.felix.ipojo.handler.extender 0.5
org.apache.felix org.apache.felix.ipojo.arch 0.5
org.apache.felix org.apache.felix.ipojo.handler.temporal 0.25
org.apache.felix org.apache.felix.ipojo.composite 0.25
org.apache.felix org.apache.felix.ipojo.handler.whiteboard 0.167
org.apache.felix org.apache.felix.scr.generator 0.119
org.apache.felix org.apache.felix.ipojo.manipulator 0.119
org.apache.felix org.apache.felix.ipojo.arch.gogo 0.1

TABLE IV
TOP CLUSTERING COEFFICIENTS FOR ORG.APACHE.FELIX

org.eclipse.equinox
Group id artifact id CC
org.eclipse.equinox preferences 0.5
org.eclipse.equinox app 0.0833
org.eclipse.equinox registry 0.01818
org.eclipse.equinox common 0.00215

TABLE V
TOP CLUSTERING COEFFICIENTS FOR ORG.ECLIPSE.EQUINOX

Table VI and Table VII show the top 10 keystone indices
(cf. Section III-A). For both Eclipse and Equinox, JUnit and
Hamcrest (upon which JUnit depends) are outliers. For Felix,
3,931 artifacts depend on JUnit (6 on Hamcrest) and for
Equinox, 3,518 artifacts depend on JUnit (and 6 on Hamcrest).
Further down the list, and of interest, Eclipse-related artifacts
appear for both Felix and Equinox, indicating that these are
important in both ecosystems.

Scatter plotting of the keystone indices on a log-log scale
(not shown), indicates visually that the keystone indices follow
a power law distribution.

org.apache.felix
Group id artifact id K
org.hamcrest hamcrest-core 4285.85
junit junit 4262.06
javax.servlet servlet-api 662.97
org.slf4j slf4j-api 483.07
xml-apis xml-apis 396.62
org.easymock easymock 317.17
commons-io commons-io 288.47
org.eclipse.equinox common 264.29
org.testng testng 245.33
org.eclipse.core runtime 227.88

TABLE VI
TOP KEYSTONE INDICES FOR ORG.APACHE.FELIX

org.eclipse.equinox
Group id artifact id K
org.hamcrest hamcrest-core 4085.94
junit junit 4057.05
javax.servlet servlet-api 616.57
log4j log4j 445.58
org.slf4j slf4j-api 430.02
org.easymock easymock 336.70
org.eclipse.core runtime 305.49
org.eclipse.equinox common 273.20
commons-logging commons-logging 259.43
xml-apis xml-apis 251.65

TABLE VII
TOP KEYSTONE INDICES FOR ORG.ECLIPSE.EQUINOX

B. PageRank

Table VIII and Table IX show the top 10 PageRanks (cf.
Section III-C). The Jaccard index (i.e., the size of the set
intersection divided by size of the set union) of the sets of the
top 10 artifacts for Eclipse Equinox with respect to keystone
index and pagerank is high, 0.67, meaning that the sets are
similar. For Apache Felix the Jaccard index is even higher,
0,82.

org.apache.felix
Group id Artifact id PageRank
junit junit 0.0904794430569
org.hamcrest hamcrest-core 0.0773937500317
javax.servlet servlet-api 0.0143641067466
org.slf4j slf4j-api 0.0103344297076
xml-apis xml-apis 0.00711548141087
org.easymock easymock 0.00684332751987
commons-io commons-io 0.00616812512782
org.testng testng 0.00598292281005
org.mockito mockito-all 0.00474775877824
org.eclipse.core runtime 0.00460514855267

TABLE VIII
TOP PAGERANKS FOR ORG.APACHE.FELIX

VI. FUTURE AND RELATED WORK

Researchers have previously analysed networks and graphs
in the context of software engineering, in particular on social
networks [10]. One problem in this context has been incom-
plete data, something that we circumvent by obtaining a full
copy of the Maven Central POMs.

org.eclipse.equinox
Group id Artifact id PageRank
junit junit 0.0862679466078
org.hamcrest hamcrest-core 0.0739051502318
javax.servlet servlet-api 0.0132943226829
log4j log4j 0.00996111702211
org.slf4j slf4j-api 0.00894363970498
org.easymock easymock 0.00735198854011
org.eclipse.core runtime 0.00676022114354
commons-logging commons-logging 0.00574973950937
org.testng testng 0.00536452952305
commons-io commons-io 0.00486674036983

TABLE IX
TOP PAGERANKS FOR ORG.ECLIPSE.EQUINOX

We recently completed a systematic literature review of
research of software ecosystems [2] in which we categorized
research output according to the taxonomy of Shaw [11]
and found little research on empirical models of software
ecosystems. Yu et al. [12] studied symbiosis in software
ecosystem as a parallel to symbiosis in natural ecosystems, but
no research to our knowledge applied concepts from network
ecology to software ecosystems.

Future work includes the analysis of all of the Maven POM
data as a network rather than looking at subsets such as Apache
Felix and Eclipse Equinox. Similarly to adding additional ar-
tifacts in the analysis, an analysis that takes versions and time
series into account should also be performed. We made the
simplifying assumption of abstracting away version numbers
for reasons of scalability of the analysis which may impact
the validity of our results. Further, a goal of our research is to
find measures of health for software ecosystems, something for
which the identification of keystones is only one step towards.
In the future, we will also evaluate the use of social network
analysis to analyze the artifact dependencies.

Additionally, in this paper, we compared the finding from
a keystone index algorithm to the PageRank ranking using
a damping factor d of 0.85 for the PageRank algorithm.
Different values of the damping factor could enhance the
precision of the results.

Another interesting extension is to consider series and
dynamics of Maven POM data over time. In particular, Jordán
and Scheuring [4] also consider dynamics in their work on
network ecology. Extending the network ecology analysis to
other ecosystems such as the Eclipse Equinox ecosystem with
source code or other open source repositories [13] would also
be of interest.

VII. SUMMARY

In this paper, we presented an exploratory study of the
Apache Felix and Eclipse Equinox software ecosystems. The
Maven central repository stores artifacts belonging to the
ecosystems and we extracted descriptions and dependencies
based on Project Object Model (POM) files. In total, we
analyzed 286,922 POM files, extracting 155,127 artifacts with
495,020 dependencies for further analysis. We defined the
neighborhoods for both Felix and Equinox identifying the

neighborhood distance of seven as the fix point of both
software ecosystems in the Maven ecosystem in terms of
number of artifacts included.

For these neighborhoods of Felix and Equinox, we applied
concepts from “network ecology” that examines natural eco-
systems as networks of prey and predators. We calculated the
clustering coefficient for each artifact and the global clustering
coefficient for each neighborhoods and concluded that both
of the neighborhoods exhibit little clustering. We furthermore
defined and calculated a keystone index for the neighborhoods
and demonstrated that this index appears to follow a power law
distribution. Furthermore, we compared the keystone index
to the PageRank algorithm and found that for high-ranked
artifacts, there was a large overlap according to a Jaccard
index.

We have thus tentatively pointed to the use of the keystone
index as a way to identify keystone artifacts in a software
ecosystem, artifacts that are of particular importance in the
health of the ecosystem. Furthermore, by comparing the Felix
and Equinox ecosystems, we demonstrated that it is possible
to compare two software ecosystems in terms of size and
dependency characteristics.

ACKNOWLEDGMENTS

This work was funded by the Net4Care project. We thank
Sonatype for providing access to Maven Central POMs.

REFERENCES

[1] J. Bosch, “From software product lines to software ecosystems,” in
Proceedings of the 13th International Software Product Line Conference,
ser. SPLC ’09. Pittsburgh, PA, USA: Carnegie Mellon University, 2009,
pp. 111–119.

[2] K. Manikas and K. M. Hansen, “Software ecosystems – a systematic
literature review,” Journal of Systems and Software, 2013, in press.

[3] The OSGi Alliance, “OSGi service platform core specification, release
5,” http://www.osgi.org/Specifications, June 2012.

[4] F. Jordán and I. Scheuring, “Network ecology: topological constraints
on ecosystem dynamics,” Physics of Life Reviews, vol. 1, no. 3, pp.
139–172, 2004.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[6] T. O’Brien, M. Moser, J. Casey, B. Fox, J. V. Zyl, E. Redmond, and
L. Shatzer, Maven: The Complete Reference. Sonatype, 2011. [Online].
Available: http://www.sonatype.com/books/mvnref-book/reference/

[7] F. Jordán, A. Takács-Sánta, and I. Molnár, “A reliability theoretical quest
for keystones,” Oikos, pp. 453–462, 1999.

[8] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in ICSE
2012. IEEE Press, Jun. 2012, pp. 419–429. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337273

[9] J. te Molder, B. van Lier, and S. Jansen, “Clopenness of systems: The
interwoven nature of ecosystems,” in Third International Workshop on
Software Ecosystems (IWSECO-2011). CEUR-WS, 2011, pp. 52–64.

[10] R. Nia, C. Bird, P. Devanbu, and V. Filkov, “Validity of network analyses
in open source projects,” in Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on. IEEE, 2010, pp. 201–209.

[11] M. Shaw, “Writing good software engineering research papers,” Mini-
tutorial for Proc ICSE” 03, 2003.

[12] L. Yu, S. Ramaswamy, and J. Bush, “Symbiosis and software evolvabil-
ity,” IT Professional, vol. 10, no. 4, pp. 56 –62, july-aug. 2008.

[13] G. Robles, J. Gonzalez-Barahona, M. Michlmayr, and J. Amor, “Mining
large software compilations over time: another perspective of software
evolution,” in Proceedings of the 2006 international workshop on Mining
software repositories. ACM, 2006, pp. 3–9.

Paper 4

Evaluating the Governance
Model of
Hardware-Dependent
Software Ecosystems – A
Case Study of the Axis
Ecosystem

Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O., and Munir, H.
(2014a). Evaluating the governance model of hardware-dependent software
ecosystems – a case study of the axis ecosystem. In Lassenius, C. and Smolan-
der, K., editors, Software Business. Towards Continuous Value Delivery, volume
182 of Lecture Notes in Business Information Processing, pages 212–226

115

Evaluating the Governance Model of
Hardware-Dependent Software Ecosystems –

A Case Study of the Axis Ecosystem

Krzysztof Wnuk1, Konstantinos Manikas2, Per Runeson1, Matilda Lantz1,
Oskar Weijden1 and Hussan Munir1

1 Department of Computer Science
Lund University, Sweden
http://serg.cs.lth.se

{Krzysztof.Wnuk,Per.Runeson,Hussan.Munir}@cs.lth.se

{oskar.weijden,matilda.lantz.lth}@gmail.com
2 Department of Computer Science (DIKU)

University of Copenhagen, Denmark
http://di.ku.dk/

kmanikas@di.ku.dk

Abstract. Ecosystem governance becomes gradually more relevant for
a set of companies or actors characterized by symbiotic relations evolved
on the top of a technological platform, i.e. a software ecosystem. In this
study, we focus on the governance of a hardware-dependent software
ecosystem. More specifically, we evaluate the governance model applied
by Axis, a network video and surveillance camera producer, that is the
platform owner and orchestrator of the Application Development Partner
(ADP) software ecosystem. We conduct an exploratory case study col-
lecting data from observations and interviews and apply the governance
model for prevention and improvement of the software ecosystem health
proposed by Jansen and Cusumano. Our results reveal that although
the governance actions do not address the majority of their governance
model, the ADP ecosystem is considered a growing ecosystem provid-
ing opportunities for its actors. This can be explained by the fact that
Axis, as the orchestrator and the platform owner, does not address the
productivity and robustness of the ecosystem adequately, but has a net-
work of vendors and resellers to support it and some of the governance
activities (e.g. communication) are achieved by non-formal means. The
current governance model does not take into consideration.

Key words: software ecosystems, governance model, hardware-dependent
ecosystem

1 Introduction

Nowadays, the software development effort is rarely constrained to a single com-
pany investing into developers, technology, marketing and sales activities [1, 2].
Forming alliances, participating and benefiting from the capabilities offered by

2 Wnuk et al.

a software ecosystem, or using open source software, are just a few examples of
the development strategies that gain importance in software business. These new
forms of collaboration via the “sense of community” [3] come at the expense of
decreased control and resulting increase of challenges associated with long term
planning. Further, the trade-off between being in control and opening up to
ecosystem participants range from technical interface issues to business strate-
gies [4]. Software companies that want to be successful in this context need to
learn to open up their platforms and interact with other actors on the ecosystem
level, while at the same time ensuring that the strategic goals are fulfilled. These
companies need to become orchestrators that mainly determine the growth of
their ecosystems [2] and govern them.

Several authors have studied software development governance [3, 5, 6]
and proposed different governance techniques, e.g. incremental commitment
model [7], decision right automation [8], and transaction cost model [9]. Gover-
nance in agile software development was also extensively studied [9, 10, 11, 12,
13, 14]. In the field of software ecosystems, the governance of an ecosystem is ar-
gued to have an impact on the overall health of the ecosystem [1, 4, 15], i.e. “the
extent to which an ecosystem as a whole is durably growing opportunities for its
members and those who depend on it” [16]. Jansen and Cusumano [1, 2] have de-
veloped a governance model aiming at preserving or improving the health of an
ecosystem. The model addresses governance strategies according to the three ar-
eas of ecosystem health, inspired by Iansiti and Levien [16]: productivity, robust-
ness and niche creation. To the best of our knowledge, no study has reported the
results from evaluating this governance model on a hardware-dependent software
ecosystem, where hardware plays a dominant role in the value creation process
and where the customers purchase hardware devices with software installed on
them. Software, in this case, is an enabler for functionality and the main driver
for extendability, but without underlying hardware it provides little value to the
customers.

In this paper, we assess the governance activities performed by Axis, a net-
work video and surveillance camera producer, the orchestrator and the platform
owner of the Application Development Partner (ADP) software ecosystem by
investigating the following research question:

What governance activities are performed by Axis as a platform orches-
trator?

We conducted an exploratory case study collecting data from a series of ob-
servations and interviews and applying the above mentioned model of Jansen
and Cusumano to assess the governance of Axis in the ADP ecosystem. Our
results show that although Axis meets only part of the model aspects, it is con-
sidered from the surrounding actors as a valid ecosystem to participate. Finally,
our case study shows that some of the aspects in the model should be expanded
to include wider perspectives of governance.

The rest of this paper is structured as follows: Section 2 presents background
and related work. Section 3 presents the details about the case company and

Governance Model for a Hardware-Dependent Software Ecosystem 3

Section 4 describes the methodology. The results are presented and discussed in
Section 5 and the paper is concluded in Section 6.

2 Background and related work

Developing strategies for effective software ecosystems governance and orches-
tration was outlined on the agenda for software ecosystems research by Jansen et
al. [3]. Several authors have studied software development governance. Chulani
et al. [5] outlined definitions and suggested managing value, developing flexibility
and controlling risk and change as the main concerns of software development
governance, while Bannerman [6] studied software development governance from
meta-management perspective. Several approaches for software development
governance were suggested, e.g. based on incremental commitment model [7],
using decision rights automation [8], linking long-term business with release plan-
ning [9], and using the transaction cost approach [17]. Quite a few articles explore
software development governance in agile development [9, 10, 11, 12, 13, 14], yet
they do not focus on large-scale hardware-dependent contexts. Only one study
explored a context of similar size compared to our case company [11]. From
the software ecosystem perspective, Baars and Jansen proposed a framework
for software ecosystem governance [15], Jansen et al. [4] examined the ecosystem
governance from the perspective of the openness of an ecosystem and Jansen and
Cusumano [1, 2] build on the top of the two previous studies above to create
a governance model for the prevention and improvement of software ecosystem
health.

Software ecosystem health is closely related to ecosystem governance: the
proper governance decisions can increase the ecosystem health while, ecosystem
governance can be evaluated by the effect it has on the health of the ecosys-
tem. Related work contains a number of studies about the health of software
ecosystems [18, 19, 20, 21].

3 Case description

Axis is the market leader within network video and surveillance cameras [22].
The company is based in Lund, Sweden, but has offices in 41 countries, partners
in more than 179 countries and has 1400 employees [23]. Today Axis’ profits are
mainly related to sales of camera units, utilizing the two-tier business model with
indirect sales. Several different actors such as distributors, system integrators and
technology vendors are required to provide complete solutions to end customers.
As the amount of software in the video surveillance cameras continues to increase
and gains more importance, Axis sees the potential in exploring and developing
their hardware-dependent software ecosystem.

The Application Development Partner (ADP) is one of the three partner
programs at Axis, together with the Application Development Service (ADS)
and the Gold Application Development Partner (Gold ADP) programs. The

4 Wnuk et al.

Software Ecosystem Governance and Participation

 36

5.3 Classification of the Software Ecosystem Surrounding ACAP

The following section consists of a presentation and classification of the software
ecosystem surrounding ACAP in accordance with the theory presented in
section 4.4: base technology, accessibility, extension market and network effects.
The SECO is also visualized in Figure 4 below.

Figure 4 the software ecosystem surrounding ACAP

5.3.1 Base Technology of the ACAP SECO – an Application-Centric SECO

The	 software	 ecosystem	 in	 focus	 throughout	 this	 master’s	 thesis	 is based on

AXIS camera application platform (ACAP) which is an open application platform

that enables development of third party applications. These applications can be

downloaded	 and	 installed	 on	 Axis’	 cameras	 and	 video	 encoders.	 The	 platform	
was launched in September 2009. It was created to extend the functionality of

the camera and meet specific end-user needs (Axis Communications AB, 2009).

ACAP was originally only installed on some	 of	 Axis’	 products	 but	 are	 now

available on the	 majority	 of	 Axis’	 different product lines. In order to enable and

facilitate development towards the platform Axis also provides:

 An API with focus on communication with ACAP and external software.

 A Software Development Kit (SDK) for development of embedded

applications. The SDK contains building environments and scripts, a

Fig. 1. The software ecosystem surrounding the ACAP, also published in [27]

access to the program is rather easy but in order to advance on to higher levels
actively engaged with Axis, companies have to prove that their solutions generate
a certain amount of camera sales [22].

The ACAP (Axis Camera Application Platform) ecosystem is based on an
open application platform that enables development of third party applica-
tions to meet evolving end user needs [24]. Thus, the ecosystem resembles an
application-dependent ecosystem based on a successful platform i.e. the platform
offers customer value without third party applications [25, 2]. Furthermore, the
ACAP ecosystem can be considered as screened but free [26]. Axis controls the
list of extensions available in the ACAP ecosystem but is not handling any sales,
neither offering any joint way of purchasing the ACAP applications. Customers
of the ACAP applications are redirected to the websites of the companies de-
veloping the ACAP applications in order to download or purchase them. This
flow of sales is included in red in Figure 1. Optionally, Axis can offer a licensing
system which could also be seen as a part of the extension market. As the main
source of revenue for Axis remains camera sales, we consider this ecosystem as
hardware-dependent.

Axis is the platform leader which has the biggest influence on the decision
about the ecosystem, see Figure 1. The main group of external actors constitute
the Video Management System (VMS) developers who develop external prod-

Governance Model for a Hardware-Dependent Software Ecosystem 5

ucts, running on servers or similar, and most of them receive image output or
control cameras. Both small local and large global system integrators and re-
sellers are among the actors and they could be classified as vendor since they
generate profit on selling products produced by the ecosystem. Distributors are
also among the actors of this ecosystem but they mostly incorporate software
into cameras before selling them [28]. End customers indirectly influence the
evolution of the ecosystem via their requirements and needs.

Why Axis? Axis was selected as a case company due to the following rea-
sons: (1) it is a large company that operates globally, (2) it develops embedded
systems and provides a case of a hardware-dependent software ecosystem, (3) it
does not have any direct sales of the products to the end customers, and (4) the
end customers do not get directly involved in the development or strategic deci-
sions about the ecosystem and (5) Axis was the market leader also without an
ecosystem, which differs from, for example, Android case where Google created
the Android ecosystem to enter and become a significant player in the mobile
phones market.

4 Research Methodology

As the case company is relatively new in software ecosystems, an exploratory
case study method was considered suitable [29]. The main focus of the case study
was to understand bridges and barriers in joining the ACAP ecosystem and to
investigate the governance model activities. The results regarding the identified
motivating and hindering factors are reported in a separate report [27] while this
paper focuses on the governance activities.

The study followed the case study process proposed by Runeson et al. [29].
During the pre-study phase, the company specific literature and related work
were studied. Next, ten exploratory interviews among practitioners knowledge-
able in the ACAP ecosystem were conducted. The following respondents were
interviewed during the pre-study: Global Partner Managers, Product Manager
Solutions & Integration Programs, Manager Partner Marketing, Global ADP
engineer, Director of System & Services, Senior Engineer for Video Hosting Sys-
tems, Business Development Managers, Product Manager API & Components
and ADP program manager.

In the next phase, we conducted eight interviews with external developers
developing the ACAP applications as well as formal and informal discussions
with the Axis employees. Four companies involved in the interviews have an
existing ACAP application while the two other companies are not participating
in the ACAP ecosystem. Among the participating companies that have ACAP
applications, two are quite small with up to 20 employees and two are signif-
icantly larger with over 100 employees. These companies offer video analytics
solutions based on the ACAP platform. The interviews were transcribed, coded
and analyzed by two authors, supervised by more senior authors. Similar state-
ments were put together and abstracted into meta-statements that formed the
results statements. The results regarding the ecosystem participation improved

6 Wnuk et al.

the understanding of the governance activities, including some underlying rea-
sons for performing them. In addition to the above mentioned external partners,
20 practitioners were involved in gathering the data about governance model in
both formal meetings and informal discussions. The information gathered during
these meetings was systematically stored and analyzed with the similar approach
than the interview data. Interesting facts were put together into meta-level facts
and compared with the descriptions of the governance activities. The resulting
mapping of the performed and not performed activities was presented to the
practitioners for validation. By identifying connections and correlations between
governance activities, the contextual factors and the identified bridges and bar-
riers to participate, we created an understanding of how governance affect the
participation in the ACAP ecosystem.

4.1 Validity analysis

Construct validity refers to possible imperfect operational measures used as a
representation of the studied phenomena [29]. There is a risk that the inter-
view questions were not interpreted in the same way by the researchers and
the interviewees. To mitigate this threat, we piloted the interview questions
on three employees at Axis and two researchers in two iterations. During the
interview transcription, potential out of context quotations were discussed and
resolved. The list of evaluated governance activities is based on previous work [2]
and therefore their suitability as operational measures is confirmed. Finally, the
results of the study were presented and discussed with the participants at a
workshop.

Internal validity deals with potential confounding factors that may affect
studied causal relations [29]. Due to exploratory nature of this study, causal
relationships were not considered as the main focus of the study. Therefore,
although members of a software ecosystem are often described as closely affecting
each other in complex networks [25], the impact of this threat on the validity of
the results is minimal.

Reliability refers to the potential biases in the collected data and the analysis
methods used by the researchers [29]. We used the governance activity model
published earlier, without changing any of the activities. Moreover, we created
the interview instrument guided by the existing model and made sure that all rel-
evant aspects were covered in all interviews. However, due to the semi-structured
nature of the performed interviews, there are some small differences between the
depth of the covered aspects among the interviewees.

External validity discusses the transferability of the findings outside the in-
vestigated case. Like for any single case study, threats to external validity remain
the main issue in our case. We attempted to mitigate these threats by providing
extensive characterization of the studied context [29], including the characteri-
zation of the studied ecosystem in order to ease later comparing. Moreover, the
studied governance activities are published [1, 2] and by using them we allow
other cases to be directly comparable with our results. Finally, we would like to
stress the exploratory nature of this study.

Governance Model for a Hardware-Dependent Software Ecosystem 7

5 Governance Activities Performed by Axis

The evaluated governance model for ”ecosystem health preservation and im-
provement” [1, 2] focuses on niche creation, robustness and productivity. The
model distinguishes between the software (service) platform and the standard
ecosystems, and focuses on the activities that the platform leader should perform
in order to improve her position in the software ecosystem. In our case, Axis is
the main owner of the software platform which means that the ecosystem is
privately owned.

The activities outlined by Jansen et al. [1, 2] were compared to Axis’ cur-
rent activities and the results are presented in the subsections that follow. Each
activity is marked as [YES], [NO] or [PARTIALLY] depending on to what
degree the activity is performed.

5.1 Activities Connected to Niche Creation

Expand applicability [YES] The purpose of the ACAP is to expand the appli-
cability of Axis’ cameras to increase sales. Axis is expanding the applicability of
the platform by providing access to new features and by releasing more powerful
cameras created for new environments. The expansion of applicability should
increase the variety of ecosystem participants. This, in turn, may contribute
to creating many diverse niches which could allow the ecosystem participants
to specialize in their areas, create new products that attract customers to the
platform that otherwise would not have been reached [1, 2] and avoid head-
on competition [30]. However, as the participants are active within the same
industry and provide similar types of applications, the expansion possibilities
are limited, causing entry barriers for one of the two studied companies that
currently do not develop ACAP applications.

Make strategy explicit [NO] None of the interviewees received explicit infor-
mation about the ACAP strategy and only some respondents stated that they
implicitly received this information during discussions and collaboration with
employees at Axis. Axis has no explicit strategy for ACAP but has transparent
relationships with developers. The possible interpretation could be that transpar-
ent relationships are enough to ensure niche players about their future position
within the ecosystem [1] and create trust among participants towards the plat-
form leader’s intention and commitment. This approach seems to be efficient for
relatively small number of ecosystems players just like in our context.

We have not identified any trust issues among the ACAP developers partici-
pating in the study. One possible explanation could be that all these developers
had, prior to joining the ecosystem, a relationship with Axis and described it
as good and transparent, indicating increased trust. Also, several companies
received the information about Axis’ strategy implicitly through contact with
Axis personnel. Therefore, it seems that a healthy relationship and transparent
communication decreases the need for an explicitly communicated strategy.

Create API [YES] Axis has created a collection of API:s connected to the
ACAP that reduced compatibility issues, increased the degree of control [1] and

8 Wnuk et al.

increased the productivity of niche players [19]. Therefore, creating an API was
described as one of the benefits and reasons to develop toward the ACAP [27].
The need for an API was fostered by: (1) base technology: several product lines,
(2) actors: fragmented customers, and (3) competitors: not offering an internal
standard similar to the ACAP.

Co-development [NO] Axis does not perform any co-development, i.e. joint
development projects with other companies. The lack of co-development has not
had any identified effects on this ecosystem. This result could suggest that co-
development does not attract niche players in this kind of software ecosystem,
which contradicts with the previous studies [1, 2]. Another possible interpreta-
tion could be that niche players have knowledge about both the domain and the
platform and thus do not need co-development. This contradicts with the view-
point of Hanssen [31]. Finally, the need for obtaining synergies that can drive
innovation, reduce costs and development time [32] may not be that strong in
our context.

Develop complementary platforms [NO] Axis has no plans to develop com-
plementary platform, thus we consider this activity as not being performed.

Develop new business models [NO] Axis focuses on camera sales and utilizes
the two-tier sales model. Axis has no requirements regarding the ACAP appli-
cation sales and distribution. They provide a free licensing system to the users
of the platform but at the same time is not involved in sales and distribution of
the ACAP applications. Axis offers a licensing for free business model connected
to the platform and is not facilitating any other business models. The possible
interpretation could be that licensing based business models are a good fit for
the environment of this ecosystem.

Axis is restricting third party developers from being a part of their chain
of distribution. This has a negative effect on enabling new niches and business
opportunities by introducing new business models to third parties, e.g. by intro-
ducing a marketplace which enables third party developers to reach customers
they would not have reached on their own [1, 2]. Related work by Hagel et al. [30]
suggested that the platform leader’s responsibility is to provide focus through
identified business opportunities and forces connected to the ecosystem.

5.2 Activities Connected with Robustness

Create partnership model [YES] The ADP (Application Developer Partner) pro-
gram is an established partnership program offered to all companies interested
in developing software for Axis cameras and allows to set up rules for partners
in the ecosystem [1, 4]. However, the program is explicitly focused on promoting
developers of high volume and broad applications, rather than niche applica-
tions, which most ACAP applications are. Thus, the availability of the program
is not considered as an incentive for the potential ACAP developers [27].

The requirements to reach the highest partner level are steep, hindering the
ACAP developers from advancing to this level due to their size and niched
applications. As a result, the support needed to explain the ACAP developers’
businesses is blocked (also due to lack of sales) by the inability to advance in the

Governance Model for a Hardware-Dependent Software Ecosystem 9

ADP program. Furthermore, Axis’ partner program does not allow independent
developers, decreasing the variety of the ecosystem.

Do marketing [YES] Axis’ main marketing activities are conducted in order
to increase cameras sales. Marketing activities towards potential ACAP devel-
opers are sporadic and small compared to the marketing of cameras. As a result,
the awareness among customers and developers about the ecosystem is not fully
explored and may negatively impact the ecosystem participation [1, 2].

The presence of end customer’s demand to develop ACAP applications sug-
gests that the customers are aware of the ACAP platform. Moreover, as the
majority of the ACAP developers already had a relationship with Axis before
developing the ACAP applications [27], the developers’ awareness and marketing
activities may have only limited effect on participation.

Grow profits [NO] Axis is focusing on camera sales and is not interested
in increasing the profits by providing ACAP applications. However, one of the
requirements to join the gold application partner level is to prove that the appli-
cations generate a certain amount of camera sales. Thus, the potential additional
revenue streams for ACAP applications are considered insignificant.

Partner development programs [YES] These programs could help Axis to
strengthen the potentially less productive weak actors that could decrease the
health and stability of the ecosystem. Axis’ learning center provides training,
seminars, classroom training, tools and quick reference help [33] and is accessible
for members in the ADP program.

The learning center is not designed as a program, but rather as a source of
information, support and training. Axis does not offer any financial support to
partners, but the main reason for a development program is to help strengthen
members of the ecosystem and that is fulfilled today. The technical expertise
delivered by Axis was found to ease the transition to the platform and to im-
prove the perceived quality of communication with developers, which was also
considered as one of the reasons to join this software ecosystem [27].

Form alliances [PARTIALLY] Axis has existing alliances with many rel-
evant companies within the industry through their partner programs, see Sec-
tion 3, but the focus of these relationships is not on the ACAP or its applications.
Therefore, the opportunities of forming sub-groups of participants or strategic
incumbents in a market and in this way increasing the robustness of the ecosys-
tem [1, 16] are not fully explored. The existing alliances within surveillance
industry could be utilized for strengthening the ACAP and its ecosystem.

Stabilize API:s [YES] Axis has stable API:s that remained unchanged after
integration of new features caused by the ACAP introduction. In this regard,
Axis complies with the advices published in related work to ensure backward
compatibility, simplify software configuration [34] and create consistency which
leads to increased trust in the platform [1, 2]. Axis is aware that the API:s are
not optimal, but sees it as a higher priority to keep them stable rather than to
change them. This strategy pays off as stable API:s were considered as one of
the benefits and reasons to join the ecosystem [27].

10 Wnuk et al.

Raise entry barriers [NO] Entry barriers help to ensure that the right compa-
nies join the ecosystem and can be used as a mechanism to steer its growth [1]. If
entry barriers are too low, the stability of the ecosystem might decrease because
of uncontrolled growth and loss of quality (in developers or the components they
develop) and thereby the increases risk of an unhealthy ecosystem [19]. There-
fore, high entry barriers are a recommended way to increase the quality of an
ecosystem [1, 2] by fees, certification programs for the applications and more
rigorous screening of customers [35]. However if the barriers become too high
they might exclude too many developers and hinder innovation [19].

Axis does not impose high entry barriers to join their application development
program: members only have to be a registered company. However, this blocks
access for independent developers, for example students. The company does not
take any fees or commissions associated with published applications. However,
our results suggest that the barriers could be considered as high (not deliberately
set by Axis) because of the following reasons: the dependence of external software
and other actors, the fragmented customer base of Axis end customers, and the
lack of an accessible way to reach the market.

The domain dependence together with the relatively low number of third
party developers in the studied ecosystem imply that Axis should facilitate par-
ticipation and lower entry barriers for newcomers in opposite to what is suggested
by Jansen et al. [1, 2]. This confirms previous research which indicated that high
entry barriers might exclude too many developers [19].

Make partners explicit [YES] Axis publishes a list of ACAP developing com-
panies on their company website and thus making the partners explicit [36].

Propagate operation knowledge [NO] Axis does not have a systematic way
to collect end user experiences, knowledge of in-the-field-performance or feed-
back [37] related to ACAP and is hence not able to communicate these to other
members of the ecosystem. Therefore, we assessed this activity as not being
performed. No negative effects of not propagating operational knowledge were
found. One possible explanation may be that Axis’ two-tier business model re-
duces direct contact with end customers and the ability to collect such data.
Therefore, this task might not be suitable for the platform leader in this ecosys-
tem and may not lead to significant performance improvements [37].

5.3 Activities Supporting Productivity

Organize developer days [NO] Before launching ACAP, Axis has hosted a train-
ing session for developers in Lund. However, the current arrangements of train-
ings at Axis do not include the ACAP developers, unless they offer an additional
product and hence are qualified. Therefore, the potential benefits, e.g. increased
interaction [19], a higher degree of connectedness [19], robustness [19, 16], more
internal connections, raised awareness of the platform [1] and increased prob-
ability of survival [16] are not fully explored. We discovered that this activity
directly effects the participation in this ecosystem [27]. Enabling new players to
easily connect and creating external standards to increase compatibility could
in this case be also helpful.

Governance Model for a Hardware-Dependent Software Ecosystem 11

Collaborative marketing [PARTIALLY] Axis does not systematically per-
form collaborative marketing efforts [38] with third party developers. On a case
by case basis, some forms of collaborative marketing are performed at exhibi-
tions and fairs. Thus, the potential benefits derived from fusions of the products
or resource pooling are not fully explored [38].

Create sales partner program and create new sales channels [NO] Axis has a
channel partner program including companies distributing and selling network
video products and solutions. This does not apply to distribution of software or
more specifically ACAP applications. Axis does not have any outspoken strategy
for how ACAP applications should appear on the market. Thus, the possible
increase of sales margins of ACAP software could not be evaluated. One of
the possible reasons is that many ACAP developers are relatively small players
in the surveillance industry and thus less interesting for Axis. It seems like the
opportunity of creating more value by connecting niche players to customers and
enabling more revenue for the ecosystem participants [1, 2] (both niche players
and the platform leaders) is not fully explored in our case [19].

However, Axis has historically seized opportunities to cooperate with exist-
ing customers and provided information and sales support, although, this was
done sporadically and through personal connections. As a result, new developers
without industry experience or a relationship with Axis would find it difficult to
identify which relationships are needed to access the end customers [39]. Creat-
ing more established relationship with Axis could reduce the perceived risk [39]
and open access to important information and support.

5.4 Remarks from the evaluation

Some interesting and important remarks can be made after our evaluation of
the governance model proposed by Jansen and Cusumano [1, 2]. Several ac-
tivities were confirmed as important and necessary, among them the needs to:
expand applicability beyond the current domain, create and keep stable API:s,
form partnerships, create partner development programs focused on niche play-
ers, support developers by organizing developer days, do marketing and extent
current business models with niche players in mind.

At the same time, only 66% of the niche creation activities, 44% of the ro-
bustness activities and 25% of the productivity activities are fully performed by
Axis. Regarding making the strategy explicit, our results suggest that healthy
relationship and transparent communication could be a good surrogate for ex-
plicit strategy for a relatively small number of ecosystem players. The lack of
co-development and complementary platforms have not had any identified ef-
fects on this ecosystem. This result could suggest that: (1) co-development does
not attract niche players in this kind of software ecosystem or (2) niche players
have knowledge about both the domain and the platform and thus do not need
co-development, which contradicts with the viewpoint of Hanssen et al. [31]. The
lack of new business model development suggests that licensing based business
models are suitable for this ecosystem. Due to focus on camera sales and rela-

12 Wnuk et al.

tively low potential of the ACAP applications revenue stream, Axis seems not
to be interested in growing profits from the ACAP ecosystem.

Our results confirm that keeping high entry barriers helps to ensure the qual-
ity of the ecosystem but also limits the participation of independent developers
and students not employed by companies involved in an ecosystem. Similarly,
although Axis does not propagate knowledge about the ACAP ecosystem, we did
not found this having any negative effects. This might be either because of the
specific nature of the ecosystem or because there were other unofficial channels
for propagating knowledge. Finally, the possibilities of creating more value and
revenue via partner programs by connecting niche players to customers [1, 2] are
not explored by Axis.

To summarize, out of 19 activities in three areas Axis fully performs 8 activ-
ities, these are marked as “Yes” and two partly, these are marked as “Partially”.
Nine activities, marked as “No” in all three areas are not performed. This could
be an early indication of signs of low health in the ecosystem. However, the
ecosystem is slowly growing in actor size and potential and increasing the value
for the connected actors. According to the governance framework, the ecosys-
tem has low or no governance activities supporting productivity, with only one
activity partially supported. However the Axis ecosystem is differentiated from
most of the ecosystems studied in related work [1, 2] by the fact that the plat-
form orchestrator (i.e. Axis) was the market leader before the ecosystem was
created and is not the one supporting the business and revenue models for the
actors. Cameras with or without developed software are packed and distributed
by a set of distributors, resellers and system integrators, that are external to
Axis. Therefore although Axis, as platform owner and orchestrator, does not
undertake governance activities to ensure productivity, this task is covered by
the network of distributors, resellers and system integrators. An expansion of
the model, thus, would be to include activities of vendors and resellers into the
productivity section, support unofficial or non-formal channels for knowledge
dissemination and explore the role of licensing business models in ecosystems
governance. Finally, a necessary addition to the current model could be to con-
sider some activities as satisfy explained which legitimates their absence due to
specific company or business context conditions.

6 Conclusions

In this study, we focus on the governance of a hardware-dependent software
ecosystem. More specifically, we evaluate the governance model applied by Axis,
a network video and surveillance camera producer that is the platform owner and
orchestrator of the Application Development Partner (ADP) software ecosystem.
We conducted an exploratory case study collecting data from observations and
interviews and applied the governance model for the prevention and improvement
of the software ecosystem health proposed by Jansen and Cusumano [1, 2].

Only 66% of niche creation activities, 44% of robustness activities and 25%
of productivity activities are fully performed by Axis. Our results reveal that al-

Governance Model for a Hardware-Dependent Software Ecosystem 13

though the governance actions do not address the majority of the applied frame-
work, the ADP ecosystem is considered a growing ecosystem providing opportu-
nities for its actors. This is explained by the fact that Axis, as the orchestrator
and the platform owner, does not address productivity and robustness of the
ecosystem, but has a network of vendors and resellers to support it and several
of the governance activities (e.g. communication) are achieved by non-formal
means. The current governance model does not take this into consideration.

In future work, we plan to investigate another hardware-dependent software
ecosystem to enable meta-analysis and comparison. Moreover, we plan to in-
vestigate the impact of the business model utilized by Axis on the governance
activities and further explore how Axis can integrate the potential additional
revenue stream into this business model.

Acknowledgements: This work is founded by the SYNERGIES project, Swedish
National Science Foundation, grant 621-2012-5354. We thank Axis and their
partners for their openness during the study.

References

1. Jansen, S., Cusumano, M., Brinkkemper, S.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Incorporated (2013)

2. Jansen, S., Cusumano, M.: Defining software ecosystems: A survey of software
platforms and business network governance. In: The 4th International Workshop
on Software Ecosystems. (2012)

3. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: Software Engineering - Companion Volume,
2009. ICSE-Companion 2009. 31st International Conference on. (2009) 187–190

4. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7) (2012) 1495 – 1510

5. Chulani, S., Williams, C., Yaeli, A.: Software development governance and its
concerns. In: Proc of the 1st international workshop on Software development
governance. SDG ’08, New York, NY, USA, ACM (2008) 3–6

6. Bannerman, P.L.: Software development governance: A meta-management perspec-
tive. In: Proc of the 2009 ICSE Workshop on Software Development Governance.
SDG ’09, Washington, DC, USA, IEEE Computer Society (2009) 3–8

7. Boehm, B.: A process framework for system and software development governance.
In: Proc of the 1st international workshop on Software development governance.
SDG ’08, New York, NY, USA, ACM (2008) 1–1

8. Kofman, A., Yaeli, A., Klinger, T., Tarr, P.: Roles, rights, and responsibilities:
Better governance through decision rights automation. In: Proc of the 2009 ICSE
Workshop on Software Development Governance. SDG ’09, Washington, DC, USA,
IEEE Computer Society (2009) 9–14

9. Vähäniitty, J., Rautiainen, K.T.: Towards a conceptual framework and tool sup-
port for linking long-term product and business planning with agile software de-
velopment. In: Proc of the 1st international workshop on Software development
governance. SDG ’08, New York, NY, USA, ACM (2008) 25–28

14 Wnuk et al.

10. Raatikainen, M., Rautiainen, K., Myllärniemi, V., Männistö, T.: Integrating prod-
uct family modeling with development management in agile methods. In: Proc
of the 1st international workshop on Software development governance. SDG ’08,
New York, NY, USA, ACM (2008) 17–20

11. Lehto, I., Rautiainen, K.: Software development governance challenges of a middle-
sized company in agile transition. In: Proc of the 2009 ICSE Workshop on Software
Development Governance. SDG ’09, Washington, DC, USA, IEEE Computer So-
ciety (2009) 36–39

12. Cheng, T.H., Jansen, S., Remmers, M.: Controlling and monitoring agile software
development in three dutch product software companies. In: Proc of the 2009 ICSE
Workshop on Software Development Governance. SDG ’09, Washington, DC, USA,
IEEE Computer Society (2009) 29–35

13. Ambler, S.W.: Scaling agile software development through lean governance. In:
Proc of the 2009 ICSE Workshop on Software Development Governance. SDG ’09,
Washington, DC, USA, IEEE Computer Society (2009) 1–2

14. Qumer, A.: Defining an integrated agile governance for large agile software de-
velopment environments. In: Proc of the 8th international conference on Agile
processes in software engineering and extreme programming. XP’07, Berlin, Hei-
delberg, Springer-Verlag (2007) 157–160

15. Baars, A., Jansen, S.: A framework for software ecosystem governance. In
Cusumano, M.A., Iyer, B., Venkatraman, N., eds.: Software Business. Volume 114
of Lecture Notes in Business Information Processing. Springer Berlin Heidelberg
(2012) 168–180

16. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of
Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard
Business School Publishing India Pvt. Limited (2004)

17. Erbas, C., Erbas, B.: Software development under bounded rationality and oppor-
tunism. In: ICSE Workshop on Software Development Governance. (2009) 15–20

18. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems – a
conceptual framework. In: 5th International Workshop on Software Ecosystems
(IWSECO). (2013) 33–44

19. van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: a software
ecosystem strategy assessment model. In: Proc of the Fourth European Conference
on Software Architecture: Companion Volume. ECSA ’10, New York, NY, USA,
ACM (2010) 127–134

20. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a
survival strategy: A tale of two software ecosystems. In: Proc of the First Workshop
on Software Ecosystems 2009. IWSECO ’09 (2009) 34–48

21. van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in software ecosys-
tems: a survey of the dutch software industry. In: Proc of the International Con-
ference on Management of Emergent Digital EcoSystems. MEDES ’11, New York,
NY, USA, ACM (2011) 68–75

22. Axis Communications AB: About axis communications. http://www.axis.com/

corporate/about/index.htm (last visited, April 2014)
23. Axis Communications AB: Annual report 2013. http://www.axis.com/files/

annual_reports/2012annual_eng.pdf (last visited, April 2014)
24. Axis Communications AB: Participation in ACAP. http://www.axis.

com/corporate/press/industry_news/article.php?article=090921\

_applicationplatform.htm (last visited, April 2014)

Governance Model for a Hardware-Dependent Software Ecosystem 15

25. Bosch, J.: From software product lines to software ecosystems. In: Proc of the
13th International Software Product Line Conference. SPLC ’09, Pittsburgh, PA,
USA, Carnegie Mellon University (2009) 111–119

26. Axis Communications AB: Applications ready to meet your needs. http://www.

axis.com/products/video/compatible_applications/index.php (last visited,
April 2014)

27. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barri-
ers to hardware-centric software ecosystem participation a case study.
Technical report, Lund University, Department of Computer Science,
http://serg.cs.lth.se/index.php?id=89149 (2014)

28. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
Journal of Systems and Software 86(5) (2013) 1294–1306

29. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering – Guidelines and Examples. Wiley (2012)

30. Hagel, J., Brown, J.S., Davison, L.: Shaping strategy in a world of constant dis-
ruption. Harvard Business Review (10) (2008)

31. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem:
Implications for practice and theory. Journal of System and Software 85(7) (2012)
1455–1466

32. Chesbrough, H.: Open Innovation: The new imperative for creating and profiting
from technology. Boston: Harvard Business School Press (2003)

33. Axis Communications AB: Axis’ learning center. http://www.axis.com/academy/
(last visited, April 2014)

34. Viljainen, M., Kauppinen, M.: Software ecosystems: A set of management practices
for platform integrators in the telecom industry. In: Software Business. Volume 80
of Lecture Notes in Business Information Processing. Springer Berlin Heidelberg
(2011) 32–43

35. Rao, A.R., Ruekert, R.W.: Brand alliances as signals of product quality. MIT
Sloan Management Review (1994)

36. Axis Communications AB: The list of the compatible applications. http://

www.axis.com/products/video/compatible_applications/index.php (last vis-
ited, April 2014)

37. van der Schuur, H., Jansen, S., Brinkkemper, S.: The power of propagation: on
the role of software operation knowledge within software ecosystems. In Grosky,
W.I., Badr, Y., Chbeir, R., eds.: MEDES, ACM (2011) 76–84

38. Bucklin, L.P., Sengupta, S.: Organizing successful co-marketing alliances. Journal
of Marketing 57(2) (1993) pp. 32–46

39. Das, T.K., Teng, B.S.: Trust, control, and risk in strategic alliances: An integrated
framework. Organization Studies 22(2) (2001) 251–283

Paper 5

Characterizing the Danish
Telemedicine Ecosystem:
Making Sense of Actor
Relationships

Manikas, K. and Hansen, K. M. (2013a). Characterizing the danish telemedicine
ecosystem: Making sense of actor relationships. In Proceedings of the Fifth Inter-
national Conference on Management of Emergent Digital EcoSystems, MEDES
’13, pages 211–218

132

Characterizing the Danish Telemedicine Ecosystem:
Making Sense of Actor Relationships

Konstantinos Manikas
Department of Computer Science (DIKU)

University of Copenhagen
Njalsgade 128

2300 Copenhagen S
Denmark

kmanikas@diku.dk

Klaus Marius Hansen
Department of Computer Science (DIKU)

University of Copenhagen
Njalsgade 128

2300 Copenhagen S
Denmark

klausmh@diku.dk

ABSTRACT
The use of telemedicine is arguably beneficial even in densely
populated areas in reducing cost and increasing efficiency of
healthcare. However, the implementation of telemedicine so-
lutions in the healthcare system of Denmark has been per-
ceived as being faced with implementation and interoper-
ability issues, silo solutions, and lack of guidelines and stan-
dards. In this paper, we characterise the ecosystem evolved
around the telemedicine services in Denmark and study the
actors involved in this ecosystem. We establish a method for
this study, where we define two actor roles and ways of char-
acterizing actor contributions, and apply the method to the
largest healthcare region of Denmark. Our findings reveal an
ecosystem that is relatively closed to new actors, where the
actors tend to be related to single telemedicine applications,
the applications have low connectivity, and the most influ-
ential actors of the ecosystem can be characterised as both
being beneficial and inhibitory to the ecosystem prosperity.

Categories and Subject Descriptors
K.6.4 [Management of Computing and Information
Systems]: Software Management—Software development ;
E.1.3 [Data]: Data Structures—Graphs and networks

General Terms
Standardisation, Management, Measurement

Keywords
Telemedicine ecosystem, software ecosystem, ecosystem ac-
tor analysis

1. INTRODUCTION
Telemedicine has been successfully applied in sparsely pop-

ulated countries [1] and is now increasingly used in more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MEDES’13 October 28-31, 2013, Neumünster Abbey, Luxembourg
Copyright 2013 ACM 978-1-4503-2004-7/10/10 ...$10.00.

densely populated countries such as Denmark. Telemedicine
arguably reduces cost and increases efficiency in the treat-
ment of elderly and patients with chronic diseases [2] and
has been shown to reduce mortality and emergency admis-
sion rates [3]. However, implementation of telemedical tech-
nologies is expensive and hard [4]. Proprietary solutions that
do not integrate with existing healthcare systems, standards
that are hard to use, application-specific data models, and
application silos make interoperability and communication
between telemedicine and other healthcare applications hard
or non-existent. These are some of the reasons that result
in the existing, implemented telemedicine applications to-
day being mainly restricted to small geographical areas, and,
although they might be collecting data of wider medical in-
terest, they are often unable to share this data with other
systems or utilize data from other systems. Additionally,
most of the reasons above contribute to a significant inte-
gration costs of new telemedicine applications. This results
in that many activities in the telemedicine software industry
tend to become the domain of companies with possibilities
of higher and long-term investment.

The above underlines the importance of making changes
to the existing (organizational and technical) structure of
the Danish telemedicine services for telemedicine to be widely
and successfully adapted and implemented in the healthcare
system. In order to identify points of improvement and re-
structure, the existing telemedicine ecosystem needs to be
studied and its structure in combination with weak points
and bottlenecks identified.

In this paper, we analyze the existing organizational and
technical structure of the telemedicine ecosystem in Den-
mark. More specifically, this paper provides the background
of the telemedicine ecosystem of Denmark (Section 2), re-
ports on related work and identifies that no previous work
has studied the actor relationships in a proprietary software
ecosystem (SECO) (Section 3), proposes that the study of
the actors of an ecosystem provides information about the
prosperity and well-functioning of the ecosystem and pro-
vides a method for conducting a study like this in the Dan-
ish telemedicine ecosystem (Section 4), analyses the findings
from the study of the largest healthcare region in Denmark
(Section 5), discusses future work and threats to validity
(Section 6), and concludes (Section 7).

2. BACKGROUND
In this section, we provide background on the (Danish)

telemedicine ecosystem. We first explain the concept of a
software ecosystem. Next, we provide the background of
the ecosystem under study by analysing the management,
administration and financing of the general healthcare ser-
vices in Denmark and finally define the Danish telemedicine
ecosystem and identify particularities in comparison to the
general software ecosystem definition.

2.1 Software ecosystems
A software ecosystem (SECO) can be defined as:

“the interaction of a set of actors on top of a
common technological platform that results in a
number of software solutions or services. Each
actor is motivated by a set of interests or busi-
ness models and connected to the rest of the ac-
tors and the ecosystem as a whole with symbiotic
relationships, while the technological platform is
structured in a way that allows the involvement
and contribution of the different actors” [5].

The study of SECOs is inspired by natural ecosystems
where different species co-exist and their survival depends
on the survival of the rest of the species, effectively form-
ing a food network. An example of a SECO is Apple’s iOS
where Apple provides interfaces for components of the tech-
nological platform that external developers (actors) can use
to develop apps and generate a revenue by selling them in
the AppStore (thus satisfying a business model). Looking at
the definition, and as we noted in the example, we identify
three main components in a SECO: (i) a set of actors, (ii)
a technological platform, and (iii) a set of business models
that serves these actors.

The actors are characterised by their roles in the eco-
system [5]: The orchestrator is the organiser of the eco-
system that, in most cases, manages the platform and sets
rules and processes. A niche player provides value to the
ecosystem and, many times, takes part on the management
of the ecosystem. External developers take advantage of
the possibilities the ecosystem provides in developing soft-
ware solutions and by that indirectly return value to the
ecosystem.

2.2 The Danish healthcare system
The Danish healthcare system is divided into (i) the pri-

mary sector, that is responsible for preventive healthcare
and practicing diagnosis and treatment, and (ii) the sec-
ondary and tertiary sectors that provide specialised care.
The primary sector consists of private practitioners (e.g.,
general practitioners (GPs), specialists, and dentists) and
municipal/local health service providers, while the secondary
and tertiary sectors are mostly concentrated in hospitals. [6].

To manage the healthcare system there are three admin-
istrative levels [7]:

• Local. This consists of 98 municipalities that are re-
sponsible for prevention, health promotion, and reha-
bilitation.

• Regional. Consisting of five regions that are responsi-
ble for hospitals, psychiatry, and finance private prac-
titioners (GPs and specialists).

• National. The Ministry of Health governs the local
and regional provision of healthcare.

When considering the financing, healthcare is part of the
Danish welfare state that serves as an example of the “uni-
versal model” [8]. All citizens have equal access to a number
of services provided by the state while these services are
funded by collected tax. The same applies for healthcare:
Danish healthcare services are provided to the citizens with-
out direct payment for the service they receive, since health-
care is funded by tax. More specifically there are two dif-
ferent kinds of taxes related to healthcare: the municipality
tax paid to the municipalities (that is among others fund-
ing the municipalities’ healthcare activities) and the “health
contribution”tax paid to the state. The regions, that are the
main healthcare provider is funded by 80% from the state
and 20% from the municipalities [9].

2.3 The telemedicine ecosystem
The main focus of this work is the ecosystem evolved

around the telemedicine services of the Danish healthcare.
We use the definition of the World Health Organisation to
define telemedicine as the “delivery of health care services,
where distance is a critical factor, by all health care profes-
sionals using information and communication technologies”
[10]. Currently there is a number of telemedicine applica-
tions used in the Danish healthcare ranging from simple, but
effective, applications such as the “Teles̊ar” application for
home nurses that makes use of a smartphone to take pic-
tures of patients’ feet for remote monitoring of ulcers and
send them to a specialist for evaluation, to more compli-
cated systems such as the integrated “KIH” system for re-
mote monitoring of patients with chronic obstructive pul-
monary disease (COPD) that includes a device with sensors
at the patient’s site to collect data to repositories and ana-
lyze them for clinicians’ view and evaluation.

If we examine the telemedicine ecosystem, we see an eco-
system that provides software solutions aimed at facilitat-
ing prevention, diagnosis, and treatment for patients. This
is achieved by creating solutions focusing on the patients
(or citizens in the case of prevention), clinicians, or both.
When we analyze the telemedicine ecosystem according to
the SECO components mentioned in Section 2.1, we make
the following remarks.

In the set of actors, at a first glance, we identify the
healthcare management actors mentioned in the paragraph
explaining the Danish healthcare (Section 2.2) as actors of
the ecosystem: the Ministry of Health, the National Board
of Health, the five regions, and the municipalities. The re-
gions, in collaboration with the National Board of Health
and the Ministry of Health, have the role of orchestrator
in the ecosystem. Their responsibility is to assure that de-
velopment within the ecosystem is providing value to the
ecosystem (and eventually to the patients/citizens or clin-
icians). The municipalities might also be involved in the
orchestration, but to a smaller extent, as they have fewer
healthcare responsibilities. Their main role is to support
the regions financially. However, the municipalities, apart
from participating in the orchestration, can have a more ac-
tive participation in the ecosystem by being involved in the
projects, e.g., having telemedicine applications implemented
in their premises. In this paper, we mainly focus at the role
of the regions.

For the needs of characterizing the actor activity of the
telemedicine ecosystem we define two specialised actor roles:

• A host is typically facilitating the implementation of

telemedicine applications: allows the implementation
of telemedicine applications in its organizational pre-
mises and serves as a link between the users (i.e., clini-
cians, patients, citizens). An example of a host can be
a hospital having a telemedicine system implemented.

• A developing actor is involved in developing a tele-
medicine application or system. This could, e.g, be a
software development company, an infrastructure sup-
plier or a project management/administration consul-
tancy.

The business models that serve the actors in this eco-
system is somewhat different than the Apple iOS example.
In contrast to a company developing an application, in the
telemedicine ecosystem, the most common way of developing
an application or system is to have a project initiated that
addresses a specific issue. In such a project, the orchestrator
is mostly represented by the region(s) or the state, the users
(or part of them) by one or several hosts and the project is
developed by one or several developing actors. The activities
and actors are funded by the involved regions while the end
users (patients, clinicians) are external to the funding pro-
cess. Following the financial model of the healthcare system
(as explained in Section 2.2), the telemedicine ecosystem
actors demonstrate a number of symbiotic relationships as
they have a specific amount of funding to share within a
project and among the projects, while they all benefit from
the well-functioning and success of the ecosystem as a whole.
This is analogous to natural ecosystems, in which there are
specific amounts of raw materials (e.g., light or water) for
the species to convert to energy. The species, then, are part
of the transfer of this energy (e.g. from the sun to a plant
and from a plant to a herbivorous species), while all species
benefit from the thriving of the ecosystem.

If we examine the ability of the ecosystem to introduce
new actors, we make the separation between host and devel-
oping actors. The hosts are involved in the ecosystem when
the orchestrators decide to implement an application in their
organizational premises, while there is a defined number of
(possible) hosts for the ecosystem that includes the regions,
hospitals and primary sector practitioners. The ecosystem
is not allowing any additional hosts unless the orchestra-
tor decides otherwise. The developing actors, on the other
hand, are introduced in the telemedicine ecosystem as part
of a project and mainly through a public contest. The man-
agement of each project and the orchestrators publish a call
for tenders that is typically replied by a number of appli-
cants. Based on a number of predefined criteria, the most
suitable tender is chosen from the list of applicants. This is
typically a time-demanding procedure and there is an accep-
tance rate related (typically only one tender accepted, irrel-
evant the number of applicants). The above characterise the
telemedicine ecosystem as a closed ecosystem: it is possible
for new actors to join but only if the orchestrators allow an
opening and after a long and selective procedure.

Examining the platform of the ecosystem, we note that
the Danish healthcare includes common technological plat-
forms for secure communication, video communication, and
service-oriented computing (the “Danish Healthcare Data
Network”(SDN), the“Danish Healthcare Video Hub”(VDX),
and the “National Service Platform” (NSP) respectively).
These platforms have, however, not been built for purposes
of telemedicine (with patients directly involved in use), and

thus, we notice the lack of a widely-used, common plat-
form for telemedicine applications. Applications might be
using the same systems (like identifying patients through
their civil registration number) but the solutions are mainly
ad hoc based, which is to some extent the reason for the
problems in implementing telemedicine applications.

The nature of the software is also different than many of
the known SECOs. Telemedicine applications, in most of
the cases, are handling patient data and possible failure of
these applications might have consequences in confidential-
ity, wrong treatment or even prove fatal for patients. This
indicates that the applications are of mission-critical nature
[11].

Examining the characterization of the telemedicine eco-
system, we note that it deviates from the definition of a
SECO in Section 2.1. That is mainly because the techno-
logical platforms existing in the telemedicine ecosystem are
not telemedical platforms per se. However, we argue for
the use of software ecosystem theories in analysing the tele-
medicine ecosystem for two reasons: (i) the actor structure
commits to a SECO actor structure both in terms of sym-
biotic relationships, business models motivating them and
having as products software and services and (ii) we iden-
tify that part of the problems in the telemedicine ecosystem
is due to the lack of a common and widely used technologic
platform. Thus studying the telemedicine ecosystem as a
software ecosystem will point to issues needed to improve
the software ecosystem for the future.

3. RELATED WORK
In the field of SECO there is a number of papers focusing

on actor relationships. The papers by Molder et al. [12]
and Jansen et al. [13] study the actor relationships with the
ecosystem as a whole by evaluating how open an ecosystem
is to new actors. Kabbedijk and Jansen [14] mine the de-
veloper activity of the free or open source software (FOSS)
Ruby repository, identify three developer roles and conclude
with proposals for improving the health of the ecosystem.
In their paper, van Angeren et al. [15] analyze the choice
of suppliers and supplier-vendor relationships the SECO or-
chestrators make and identify four supplier strategies. Yu et
al. [16] evaluate the collaboration of different FOSS projects
in terms of symbiotic relationships.

From the perspective of FOSS, there is an additional num-
ber of papers studying the FOSS participants in terms of
motivation and collaboration of developers [17, 18], what
affects developer activity in a project [19, 20, 21], the or-
ganizational structure of participants [22], and tools for ex-
tracting information or visualising participant activity [23,
24, 25, 26].

The majority (13 out of 15) of the papers above are focus-
ing on FOSS studies. We recognise a difference in the social
structure of a FOSS and proprietary SECO. The actors in a
FOSS ecosystem are often single developers or participants,
they are many times participating for other reasons than
monetary compensation and can, in most of the cases, join
a project without great effort (e.g., by creating an account
by using a valid e-mail address) [5]. The actors in a non-
FOSS ecosystem, such as the telemedicine ecosystem of our
study, are mainly companies or public organizations, are ob-
jected to harder requirements for joining the ecosystem (e.g.,
being select in a regional or national call for tenders), and
are payed for their work. We argue that these differences

are reflected in the social structure of the ecosystem. To our
knowledge, no published study has conducted a quantitative
analysis of the actors of a non-FOSS SECO.

4. METHOD
Identifying and analysing the network of actors of the

Danish telemedicine ecosystem potentially allows us to char-
acterise the ecosystem as a whole and define its boundary,
identify issues that prevent the ecosystem from evolving,
and draw conclusions about how it is functioning. Our ini-
tial hypotheses are that the telemedicine ecosystem (a) has
software systems that are primarily unrelated and (b) the
actor structure consists of isolated components. We aim to
study the ecosystem by mainly focusing on the following
points:

1. Identify the actors of the telemedicine ecosystem and
their relationships.

2. Extract information about the ecosystem from the study
of the actors and their relationships.

The first point focuses on the identification of the involved
parties of the ecosystem, their role, and their relationships
among each other. The outcome of this point is a list of
actors and connections between the actors. We follow an
application-based approach, where we first identify the tele-
medicine applications and then identify the different actors
related to each application. For example, the telemedicine
system project KIH is managed by a state-controlled organi-
zation (MedCom), implemented in two regions and a num-
ber of hospitals and municipalities, and being tested by a
university department. These actors are listed as connected
with KIH.

To characterise the roles of the actors, we use the roles
explained in Section 2.3: “host” that is having an appli-
cation implemented (e.g., a hospital or municipality) and
“developing actor” that is involved in the development or
implementation of an application (e.g., a software or med-
ical company). We note that these roles complement the
SECO roles mentioned in the SECO background paragraph
(2.1). A host can be a niche player, orchestrator (e.g., a mu-
nicipality) or even an external developer while a developing
actor can be a niche player or an external developer. We ar-
gue that our own defined roles (host and developing actor)
are better suited to draw conclusions about the activity of
the specific ecosystem as they are more concrete and help in
characterizing the applications.

Our analysis aims at identifying applications from all stages
of development, so the collected list of applications can in-
clude applications under development, implemented, or dis-
continued. In this way, we uncover a wider spectrum of
actors.

The second point analyses the actors and their interaction
and deduct information about the ecosystem. To achieve
this, we model the applications, actors and their relation-
ships as a graph and study the properties of this graph with
the use of network theory. More specifically, we identify ac-
tors according to their level of contribution in the ecosystem.
Actors with a high level of contribution to the ecosystem
can be either keystones or dominators [27]. A keystone is
an actor that is essential for the ecosystem and potential
extinction of a keystone would bring consequences to sev-
eral actors or the whole ecosystem. The keystone supports

the prosperity of the ecosystem through actions that result
in the benefit of other actors or the whole ecosystem. A
dominator, on the other hand, is similar to a keystone but
has the tendency to grow in size by eliminating surrounding
species. The roles of the eliminated species in the ecosystem
are then either taken over by the dominator or disappear
from the ecosystem. The dominators are harmful for the
ecosystem’s health as they reduce the ecosystem diversity
and thus affect niche creation.

In food webs of natural ecosystems, Jordán et al. [28]
proposed the keystone index calculation to measure the level
to which a species is a keystone in a food chain. In previous
work [29], we also used PageRank as a way of measuring
the keystone components in the dependency graphs of two
OSGi SECOs. PageRank is the algorithm used by Google
search engine to rank the results of a search. It assigns a
weight for each webpage according to the number of links
pointing towards and from this webpage and the weights
of the linked pages [30]. In the same work, we compared
PageRank with the keystone index and found an overlap
of rankings. In related work, Kabbedijk and Jansen [14],
used the eigenvector centrality to calculate the importance
of a node in a graph of the developer - gem relationship
of the Ruby OSS ecosystem. To identify the keystones in
the telemedicine ecosystem we use the PageRank algorithm,
while we also compare the results to the results from the
eigenvector centrality algorithm.

5. ANALYSIS
To evaluate our hypotheses and method, we applied the

method to one of the five healthcare regions of Denmark,
the Capital Region that is responsible for the Copenhagen
area and the Bornholm island. The Capital Region is an
appropriate sample for our study as it is the biggest region
in terms of population, covering roughly 1.6 million citizens
(around 28% of the total population of Denmark) and ad-
ministering a total of 12 hospitals, 19 psychiatric centers,
247 psychiatrists, 742 GPs, and 164 specialists [7, 31, 32].

We obtained the list of the telemedicine applications and
actors from the Capital Region. We verified the list and
identified the actors by collecting project-related informa-
tion (project descriptions, meeting minutes, supplier invoices)
from the internet. Our extracted data consist of a total
of 28 applications that are running, under development, or
discontinued in the Capital Region, 109 actors 1 and 182
connections between actors and applications. These cre-
ate a network of actors and applications that can be seen
on Figure 12. The white nodes are applications, the grey
are hosts and the black are developing actors. The size of
each node represent the node degree. Since our network is
application-based, all the connections are from and towards
an application.

We observe that the nodes with higher degree are appli-
cations (nine out of the ten nodes with the highest degree).
On average one application has ten connections (10.1) out of
which 4.72 are developing actors, 4.66 hosts and 0.72 other
applications, while one actor is on average connected to a

1We note that the actors might also be related to other
regions (e.g. an application that is implemented in several
hospitals across regions)
2A detailed, interactive graph can be found at http://diku.
dk/~kmanikas/medes_2013/

Figure 1: Mapping of the actor and application connections for Capital region. (White nodes: applications,
grey: hosts, black: developing actors)

little more than one application (1.52, developing actors:
1.44 and hosts: 1.68). The developing actors connected to
the most applications, if we exclude the regions per se3, are
MedCom (5) and the Region’s IT, Medico, and Telephony
unit (IMT) (4), while the most connected hosts are Hvidovre
hospital (8) and Herlev hospital (4). When examining the
distribution of the roles, the majority are developing actors
(43% of the total nodes), 37% are hosts, while 20% are ap-
plications. In analysing this data, we note that the division
between the developing actors and hosts is close to equal.

We draw the following conclusions from the above. First,
the applications are mainly implemented at one host. There
might, however, be a need for more than one host per appli-
cation implementation, e.g., an application that uses both a
hospital and a municipality or an application that handles
teleconferences between the doctors of two hospitals. This
deviation can explained in at least two ways: (i) there is need
for only one implementation, e.g., the application for an im-
plementable cardioverter-defribilator being implemented in
a hospital and supporting all the patients with this implant
in a country-wide manner. (ii) The applications are host
specific and require additional effort to be implemented at
a new host, e.g., based on the specific processes of one hos-
pital.

Second, the high number of actors involved in an appli-
cation is a sign of increased actor diversity. The diversity
of actors and their function is arguably a sign of ecosystem
health and prosperity [33, 27]. The number of applications
per developing actor (1.44) gives the view of applications
being developed by specialised developing actors, i.e. that
each developing actor has one specific role in only one ap-
plication of the ecosystem. That can also be explained by
the “public call for tenders” actor involvement policy the
ecosystem is following: typically only one from a number of
applicants is chosen as appropriate for each call. This, as
already stated in Section 2.3 characterises the ecosystem as
closed in terms of actor involvement. Additionally, it under-
lines the application interoperability issues the ecosystem is
facing. A developing actor is typically involved in only one
application without being involved in possible communica-
tion or interoperability projects with other applications.

Third, although there are connections between applica-
tions (0.72 per application on average), we note that there
is no direct connection between the most influential appli-
cations (applications with many actors), but the application
to application connections are mostly an application con-
necting to an application with few actors and that being,
many times, the only application-to-application connection
of both. This supports the view of low interoperability ap-
plications.

These conclusions contribute to the view of the telemedicine
ecosystem as a group of loosely connected components po-
sitioned around the telemedicine applications. Something
that can be also noted in Figure 1.

Table 14 shows the top ten calculations for PageRank
(probability 0.85) and eigenvector centrality. Examining the
actors of the PageRank set, we distinguish three actors that

3Our study did not include the orchestrator in the roles, as
there were no data to support this role. The regions appear
as developing actors.
4The full set of calculated metrics can be found on http:
//diku.dk/~kmanikas/medes_2013/actors/

have high rankings in both calculations5: Hvidovre hospital,
IMT and MedCom. Hvidovre hospital appears to be the
most influential host actor with participation in eight appli-
cations. When looking closer at the activity of the actor, we
note that it is involved in the three highest degree applica-
tions (applications with most actors) but also to three appli-
cations for which Hvidovre hospital is the only host and that
seem to be developed specifically for that setting. MedCom
is a non-profit, state-established and -funded organization
that has the role of creating standards, project management
and quality assurance of telemedicine applications. IMT is
an organization responsible for the infrastructure of Capi-
tal region hospitals with focus on standardised IT, medical
technology and telephony.

From the host perspective, the involvement of Hvidovre
hospital in projects that are implemented at additional hosts
could constitute keystone activity, as it is providing value to
the ecosystem by participating in applications that are wider
implemented. However, the implementation of applications
that are specific to the Hvidovre hospital setting may affect
the prosperity of the ecosystem in the long term: other hosts
that would require similar applications would either have to
spend resources in migrating the existing applications or cre-
ate new ones. Taking into consideration the financial model
of the telemedicine ecosystem, as it looks at the moment, i.e.,
that there is a fixed amount of funds invested in projects,
this kind of activity results in reserving funds that can be
used in other ecosystem activity. This implies dominator ac-
tivity as the actor is taking over funds that could be shared
with other hosts.

From the developing actor perspective, we notice that part
of the activity of MedCom is to create telemedicine stan-
dards that aim at assisting the development of telemedicine
applications. That, in combination with the fact that Med-
Com does not develop applications, implies keystone activity
as it provides value to the ecosystem by easing the develop-
ment of other developing actors. The activity of IMT could
be translated as both keystone or dominator. From one side,
it is beneficial for the rest of the actors to have a standard-
ised way of communicating to and from the hospitals. On
the other hand, however, it could imply dominator activity
if IMT apart from standards is also the only supplier of the
infrastructure.

When comparing the PageRank and eigenvector central-
ity sets, we find a small overlap with a Jaccard index6 of
0.33. However, the most influential host and developing ac-
tors (after the exclusion of the regions) appear to be the
same with the inversion of IMT and MedCom. Those three
actors are also the actors with highest degree, again if we
exclude the orchestrator regions. At this point our data are
not solid enough to support an argument for or against the
use of eigenvector centrality as means of revealing the most
influential actors in an ecosystem.

6. DISCUSSION AND FUTURE WORK
Our analysis verified our initial hypotheses of the applica-

tions being to a large extent unrelated and the actors being

5Once more, the regions are not taken into account: In this
graph they appear as developing actors as our analysis did
not have enough data to support the orchestrator role.
6The size of the set intersection divided by size of the set
union.

Table 1: Top ten nodes for PageRank and eigenvector centrality calculations.
PageRank Eigenvector Centrality

Actor Type Actor Type
Hvidovre Hospital host Capital Region dev
Capital Region dev Central Region dev
IMT dev MedCom dev
Hillerød Hospital host Welfare Technology Fund dev
Amager Hospital host Hvidovre Hospital host
MedCom dev Herlev Hospital host
Central Region dev IMT dev
Ministry of Interior dev South Region dev

Frederikssund Hospital host Århus University hospital host
Rigshospitalet host Frederiksberg Hospital host
host: hosting actor
dev: developing actor

separated into unrelated components. Additionally, with the
use of network theory we identified three actors that appear
to be influential in the ecosystem and elaborated on their
roles. These findings, however interesting for the descrip-
tion of the ecosystem and the verification of our method,
are far from complete. In particular, we identify that the
regions might not be independent from each other on their
activity. This is implied by the existence of hosts from differ-
ent regions in our actor list. Our next step is to identify the
applications and actors from the rest of the regions to com-
pare the overlap and form a complete picture of the actor
activity in the ecosystem.

7. CONCLUSION
Telemedicine is a notion that is not as widely applied

in the Danish healthcare as one would expect examining
the benefits it provides. The benefits of telemedicine ap-
plications seem to be counterweighted by, among others,
implementation and interoperability issues, silo solutions,
and possible lack of use of guidelines and standards. In
this paper we focus on the ecosystem structured around the
Danish telemedicine services. We describe the telemedicine
ecosystem with the state and the five healthcare regions be-
ing the orchestrators, having a business model where the
actors are publicly funded, and being characterised by the
lack of a widely-used common technological infrastructure
for mission-critical software. We propose the study of the
network of actors and applications to provide better insight
to the ecosystem, while, we identify that there is no previ-
ous work of this kind in proprietary SECOs. We establish
a study method where we define two kinds of actors specific
for the telemedicine ecosystem and propose the characteri-
zation of the actors and their activity, according to the level
of contribution they have to the ecosystem, as keystone or
dominator. We apply our method to the Capital Region of
Denmark, the most populated of the five healthcare regions,
and (i) identify the tendency of single implementation appli-
cations, either because of the nature of the applications or
because of the applications being ad-hoc solutions, (ii) iden-
tify variability in actors and their functions, (iii) characterise
the ecosystem as rather closed in terms of introducing new
actors, (iv) identify the actor structure clustered around the
applications with the clusters separated from each other, (v)
identify three actors as the most influential, and (vi) charac-
terise the activity of these actors as keystone and dominator.

Acknowledgements
We would like to thank Judith Lørup Rindum from the Cap-
ital Region for providing us with the list of telemedicine
applications. This work has been partially funded by the
Connect2Care project7.

8. REFERENCES
[1] R. Wootton. Recent advances: Telemedicine. British

Medical Journal, 323(7312):557–560, September, 2001.

[2] K.M. Hansen, M. Ingstrup, M. Kyng, and J.W. Olsen.
Towards a software ecosystem of healthcare services.
In Infrastructures for Healthcare: Global Healthcare,
Proceedings of the 3rd International Workshop, pages
28–31, Copenhagen, Denmark, June, 2011.

[3] A. Steventon, M. Bardsley, J. Billings, J. Dixon,
H. Doll, S. Hirani, M. Cartwright, L. Rixon,
M. Knapp, C. Henderson, et al. Effect of telehealth on
use of secondary care and mortality: findings from the
whole system demonstrator cluster randomised trial.
BMJ: British Medical Journal, 344, 2012.

[4] H. B. Christensen, M. Christensen, K. M. Hansen,
K. Manikas, and S. Urazimbetova. Requirements for a
Software-Intensive Ecosystem for Telemedicine. In
Med@Tel 2012: Global Telemedicine and eHealth
Updates, volume 5, pages 423–427, Luxembourg,
April, 2012.

[5] K. Manikas and K. M. Hansen. Software ecosystems –
a systematic literature review. Journal of Systems and
Software, 86(5):1294 – 1306, 2013.

[6] Danish Ministry of Health and Prevention.
http://www.sum.dk/Aktuelt/Publikationer/
Publikationer/UK Healthcare in DK.aspx. Health
care in denmark, 2008.

[7] The Danish Ministry of the Interior and Health. The
local government reform - in brief, 2008.

[8] G. Esping-Andersen. The three worlds of welfare
capitalism, volume 6. Polity press Cambridge, 1990.

[9] P. T. Andersen and J. J. Jensen. Healthcare reform in
denmark. Scandinavian journal of public health,
38(3):246–252, 2010.

[10] World Health Organization. Telemedicine.
opportunities and developments in member states.
Global Observatory for eHealth series – Volume 2,
2010.

7http://www.partnerskabetunik.dk/projekter/
connect2care.aspx

[11] H.B. Christensen and K.M. Hansen. Net4care:
Towards a mission-critical software ecosystem. In
Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012
Joint Working IEEE/IFIP Conference on, pages
224–228. IEEE, Helsinki, Finland, August, 2012.

[12] J. te Molder, B. van Lier, and S. Jansen. Clopenness
of systems: The interwoven nature of ecosystems. In
Third International Workshop on Software Ecosystems
(IWSECO-2011), pages 52–64. CEUR-WS, Brussels,
Belgium, June, 2011.

[13] S. Jansen, S. Brinkkemper, J. Souer, and L.
Luinenburg. Shades of gray: Opening up a software
producing organization with the open software
enterprise model. Journal of Systems and Software,
85(7):1495 – 1510, 2012.

[14] J. Kabbedijk and S. Jansen. Steering insight: An
exploration of the ruby software ecosystem. In
Software Business, volume 80 of Lecture Notes in
Business Information Processing, pages 44–55.
Springer Berlin Heidelberg, 2011.
10.1007/978-3-642-21544-5 5.

[15] J. van Angeren, V. Blijleven, and S. Jansen.
Relationship intimacy in software ecosystems: a
survey of the dutch software industry. In Proceedings
of the International Conference on Management of
Emergent Digital EcoSystems, MEDES ’11, pages
68–75, California, USA, November, 2011.

[16] L. Yu, S. Ramaswamy, and J. Bush. Software
evolvability: An ecosystem point of view. In Software
Evolvability, 2007 Third International IEEE Workshop
on, pages 75 –80, Paris, France, October, 2007.

[17] W. Scacchi. Collaboration practices and affordances in
free/open source software development. In
Collaborative Software Engineering, pages 307–327.
Springer Berlin Heidelberg, 2010.
10.1007/978-3-642-10294-3 15.

[18] T. Mens and M. Goeminne. Analysing the evolution of
social aspects of open source software ecosystems. In
Third International Workshop on Software Ecosystems
(IWSECO-2011), pages 1–14. CEUR-WS, Brussels,
Belgium, June, 2011.

[19] E. Ververs, R. van Bommel, and S. Jansen. Influences
on developer participation in the Debian software
ecosystem. In Proceedings of the International
Conference on Management of Emergent Digital
EcoSystems, MEDES ’11, pages 89–93, California,
USA, November, 2011.

[20] K. van Ingen, J. van Ommen, and S. Jansen.
Improving activity in communities of practice through
software release management. In Proceedings of the
International Conference on Management of Emergent
Digital EcoSystems, MEDES ’11, pages 94–98,
California, USA, November, 2011.

[21] R. P. M. Krishna and K. G. Srinivasa. Analysis of
projects and volunteer participation in large scale free
and open source software ecosystem. SIGSOFT Softw.
Eng. Notes, 36:1–5, March, 2011.

[22] C. Jergensen, A. Sarma, and P. Wagstrom. The onion
patch: migration in open source ecosystems. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of

software engineering, ESEC/FSE ’11, pages 70–80,
Szeged, Hungary, September, 2011.

[23] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. The
small project observatory: Visualizing software
ecosystems. Science of Computer Programming,
75(4):264 – 275, 2010. Experimental Software and
Toolkits (EST 3): A special issue of the Workshop on
Academic Software Development Tools and
Techniques (WASDeTT 2008).

[24] M. Lungu, J. Malnati, and M. Lanza. Visualizing
gnome with the small project observatory. In Mining
Software Repositories, 2009. MSR ’09. 6th IEEE
International Working Conference on, pages 103 –106,
Vancouver, Canada, May, 2009.

[25] M. Goeminne and T. Mens. A framework for
analysing and visualising open source software
ecosystems. In Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software
Evolution (IWPSE), IWPSE-EVOL ’10, pages 42–47,
Antwerp, Belgium, September, 2010.

[26] S. Neu, M. Lanza, L. Hattori, and M. D’Ambros.
Telling stories about gnome with complicity. In
Visualizing Software for Understanding and Analysis
(VISSOFT), 2011 6th IEEE International Workshop
on, pages 1 –8, Virginia, USA, September 2011.

[27] M. Iansiti and R. Levien. Keystones and dominators:
Framing operating and technology strategy in a
business ecosystem. Harvard Business School, Boston,
2004.

[28] F. Jordán, A. Takács-Sánta, and I. Molnár. A
reliability theoretical quest for keystones. Oikos, pages
453–462, 1999.

[29] K. M. Hansen and K. Manikas. Towards a network
ecology of software ecosystems: an analysis of two
OSGi ecosystems. In Proceedings of the 25th
International Conference on Software Engineering &
Knowledge Engineering (SEKE’2013), Boston, USA,
June, 2013.

[30] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks
and ISDN systems, 30(1-7):107–117, 1998.

[31] The Danish e Health Portal.
https://www.sundhed.dk/service/english/. Accessed:
January 2013.

[32] The Capital Region of Denmark.
http://www.regionh.dk/english/english.htm.
Accessed: January 2013.

[33] D. Rapport, R. Costanza, A. McMichael. Assessing
ecosystem health. Trends in Ecology & Evolution,
13(10): 397–402, 1998.

Paper 6

Analysis and Design of
Software Ecosystem
Architectures – Towards the
4S Telemedicine Ecosystem

Christensen, H. B., Hansen, K. M., Kyng, M., and Manikas, K. (2014). Analysis
and design of software ecosystem architectures – towards the 4s telemedicine
ecosystem. Information and Software Technology, 56(11):1476 – 1492

142

Analysis and design of software ecosystem architectures – Towards
the 4S telemedicine ecosystem

Henrik Bærbak Christensen a, Klaus Marius Hansen b,⇑, Morten Kyng a,c, Konstantinos Manikas b

a Department of Computer Science, Aarhus University, Denmark
b Department of Computer Science (DIKU), University of Copenhagen, Denmark
c The Alexandra Institute, Aarhus, Denmark

a r t i c l e i n f o

Article history:
Received 4 July 2013
Received in revised form 8 May 2014
Accepted 9 May 2014
Available online 28 May 2014

Keywords:
Software ecosystem architecture
Third-party sponsored software ecosystems
Telemedicine software ecosystems

a b s t r a c t

Context: Telemedicine, the provision of health care at a distance, is arguably an effective way of increas-
ing access to, reducing cost of, and improving quality of care. However, the deployment of telemedicine is
faced with standards that are hard to use, application-specific data models, and application stove-pipes
that inhibit the adoption of telemedical solutions. To which extent can a software ecosystem approach to
telemedicine alleviate this?
Objective: In this article, we define the concept of software ecosystem architecture as the structure(s) of a
software ecosystem comprising elements, relations among them, and properties of both. Our objective is
to show how this concept can be used (i) in the analysis of existing software ecosystems and (ii) in the
design of new software ecosystems.
Method: We performed a mixed-method study that consisted of a case study and an experiment. For (i),
we performed a descriptive, revelatory case study of the Danish telemedicine ecosystem and for (ii), we
experimentally designed, implemented, and evaluated the architecture of 4S.
Results: We contribute in three areas. First, we define the software ecosystem architecture concept that
captures organization, business, and software aspects of software ecosystems. Secondly, we apply this
concept in our case study and demonstrate that it is a viable concept for software ecosystem analysis.
Finally, based on our experiments, we discuss the practice of software engineering for software ecosys-
tems drawn from experience in creating and evolving the 4S telemedicine ecosystem.
Conclusion: The concept of software ecosystem architecture can be used analytically and constructively
in respectively the analysis and design of software ecosystems.

� 2014 Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecom-
mons.org/licenses/by-nc-sa/3.0/).

1. Introduction

The research field of software ecosystems has emerged as the
study of the complex interaction between extensible software
frameworks and software architecture(s) on one hand, and organi-
zations, users, customers, developers, and businesses on the other.
It is inspired by natural ecosystems in which species are character-
ized by symbiotic relationships and their survival relies heavily on
the survival of the ecosystem [45,33,6,10,11,39]. We define a
‘software ecosystem’ as:

the interaction of a set of actors on top of a common technolog-
ical platform that results in a number of software solutions or
services. [42].

Further, ‘‘Each actor is motivated by a set of interests or
business models and connected to the rest of the actors and
the ecosystem as a whole with symbiotic relationships, while,
the technological platform is structured in a way that allows the
involvement and contribution of the different actors.’’ [42].

A well-known example of a software ecosystem is the Android
ecosystem. From a software ecosystem point of view, Google con-
trols the Android platform while external developers can build
applications (‘‘apps’’) that are distributed to Android users via the
Google Play store. Thus, Google has collaborated with external
developers to quickly build functionality in the form of more than
700,000 apps [64]. In this way, the Android software ecosystem has
arguably helped Google increase the value of Android for its users,
increased attractiveness, accelerated innovation, and decreased
cost [6].

We may distinguish between two main elements of software
ecosystems:

http://dx.doi.org/10.1016/j.infsof.2014.05.002
0950-5849/� 2014 Elsevier B.V.
This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

⇑ Corresponding author. Tel.: +45 61732721.
E-mail addresses: hbc@cs.au.dk (H.B. Christensen), klausmh@diku.dk (K.M. Hansen),

mkyng@cs.au.dk (M. Kyng), kmanikas@diku.dk (K. Manikas).

Information and Software Technology 56 (2014) 1476–1492

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

� Actors that may, e.g., be individuals or organizations. Depending
on their activities in the ecosystem, they can have different
roles including ‘orchestrator’ (such as Google in the Android
ecosystem), ‘keystone’ (such as Samsung in the Google ecosys-
tem), and ‘niche player’ (such as external software developers
in the Android ecosystem). Additionally, each actor has an
incentive for being active in the ecosystem that, often, can be
represented by a business model.
� Software that exists as a platform/framework or as software

solutions or services built on the platform. Software forms a
main element of software ecosystems and a software ecosystem
can be studied through the software elements that it consists of,
their relations, and properties. The ability of the platform to
incorporate different elements and the interaction and interop-
erability of the elements, are characteristics of the platform.

In this article we report on work in relation to telemedicine eco-
systems spanning the period from 2008 to the present. It covers
analysis of the general Danish telemedicine ecosystem, work on a
new technological infrastructure platform, named Net4Care [47],
and design as well as partial evaluation of a new organization
created to accelerate the evolution of the ecosystem based on the
Net4Care platform. The new organization is called ‘‘Stiftelsen for
Softwarebaserede SundhedsServices’’ (in English: The Foundation
for Software-based Healthcare Services), and hereafter referred to
by its acronym ‘‘4S’’.

The 4S organization must handle a large set of diverse stake-
holders, including national healthcare agencies, regional hospitals,
software development houses, IT departments, etc. with highly
complex interactions between. To understand and manage this
complexity, we propose the concept of software ecosystem
architecture, extending previous work by Manikas and Hansen
[42]. We use this concept to frame a case study of the current
Danish telemedicine ecosystem to inform the creation of 4S. In this
context, the concept provides a common terminology across the
central three structures of a software ecosystem: the organiza-
tional structure, the business structure, and the software structure.

We investigate this concept to ultimately answer the following
research question:

‘‘How can software ecosystems be modeled in a systematic way
that allows reasoning about software ecosystems while details of
the software ecosystem can be abstracted away?’’

Section 3 discusses the research question in detail.
Our contributions are threefold. First, we define and discuss the

software ecosystem architecture concept. Secondly, we present the
case of the current Danish telemedicine ecosystem in terms of
the proposed concept, and discuss challenges that are relevant in
areas beyond telemedicine. Finally, we present how the practice
of software engineering is affected, through describing the creation
and evolution of a central ecosystem architecture, Net4Care, that
serves as a reference architecture and learning vehicle for telemed-
icine for the actors in 4S.

2. Related work

In this article, we analyze software ecosystems using the con-
cept of ‘software ecosystem architecture’ and report on the case
of the Danish telemedicine ecosystem. To our knowledge there is
no previous work on software ecosystems for telemedicine or even
for healthcare as such, apart from our own previous publications
[24,15,16,40]. However, there is significant work on conceptualiz-
ing and modeling software ecosystems.

For example, there is related work that has influenced the way
software ecosystems are modeled either by contributing to

conceptualization [55,1,2,13] or by addressing a specific aspect of
software ecosystems such as the platform and software component
architecture [7,9,8,53,34].

Jansen et al. [33,31] and Boucharas et al. [12] propose the anal-
ysis and modeling of a software ecosystem from the software ven-
dor perspective and separate ecosystems in three levels: the
software ecosystem, the software supply network and the software
vendor level. Jansen et al. [30], similarly, define three scope levels
for software ecosystems: an external view, an internal view and an
organization centric-perspective. Bosch [6] categorize software
ecosystems according to their platform as operating system-
centric, application-centric, or end-user programming-centric.
Campbell and Ahmed [14] identify three dimensions of the engi-
neering process of software ecosystems: business, architectural,
and social. These map to our business, software, and organizational
structure (with differences in the social dimension versus what the
organizational structure covers). While their focus is on the
engineering process, our focus is on the structure of an underlying
software ecosystem.

Additionally, there is significant related work on quality
aspects of software ecosystems. One such aspect is ‘health’ or
‘sustainability’. In this context, van den Berk et al. [61] propose
an ecosystem-based model for assessing the strategy of a soft-
ware ecosystem called SECO-SAM. In their paper, they make an
analogy between human health and ecosystem health and model
the ecosystem health as being influenced by the biology of the
ecosystem, the lifestyle, the environment, and the intervention
of so-called healthcare organizations. Jansen et al. [30] define
ecosystem health as a characteristic of the software supply
network level in their three-level model mentioned above.
Additionally, they propose the application of the measures of
den Hartigh et al. [19] for defining the health of software ecosys-
tems. van Angeren et al. [60] describe the robustness of the
Iansiti and Levien [27] health measures of business ecosystems
as an important factor for vendors that choose to depend on a
software ecosystem. McGregor [43] translates the measures by
Iansiti and Levien [27] to measures that can be applied to open
source projects, Kilamo et al. [35,36] propose a framework for
going from a proprietary to a Free/Libre/Open Source Software
(FLOSS) ecosystem. One of the framework activities is setting
up a ‘‘community watchdog’’ to assess three aspects of the
newly created ecosystem: the community, the software, and
‘‘how well the objectives of the company are met’’. Although
not directly stated, the watchdog indirectly assesses the health,
while provide a number of measures to be applied in FLOSS
ecosystems. Manikas and Hansen [41] propose a framework for
the measurement of the ecosystem health. This framework
consists of three ecosystem aspects that influence the ecosystem
health: the actors, software and orchestration. In our work, we
seek to understand how the structure of software ecosystems
can be used to reason about these aspect also eventually with
respect to health.

3. Method

We base our research on our own systematic literature review
[42] and existing mapping studies and literature analyzes [1,55]
to provide input and formulate our research question. The main
research of this work can be summarized by the question:

‘‘How can software ecosystems be modeled in a systematic way
that allows reasoning about software ecosystems while details of
the software ecosystem can be abstracted away?’’

More specifically, in this article, we are concerned with the fol-
lowing sub questions:

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

‘‘(a) How can the concept of ‘software ecosystem architecture’ be
used to model an existing (Danish telemedicine) software
ecosystem to find areas of improvement?’’

‘‘(b) How can the concept of ‘software ecosystem architecture’
support the engineering of a new (Danish telemedicine) software
ecosystem?’’

In this article, we introduce the concept of software ecosystem
architecture (explained in Section 4) and propose to model software
ecosystems through their architecture. We apply our concept in a
mixed method study: a descriptive case study in the Danish tele-
medicine ecosystem and an experiment in the Danish telemedicine
ecosystem by creating the 4S organization including the Net4Care
technological platform.

We use the Danish telemedicine ecosystem as our case study
unit of analysis because we have access to information that can
provide a deep insight on the case making it what Yin [67] refers
to as a revelatory case study.

Our experiment focuses on the design of software ecosystems.
We apply the concept of software ecosystem architecture and
engineer a technological platform, Net4Care, investigating how a
software framework can be engineered so that it can serve as a
common technological platform, create the 4S organization to
serve as the orchestrator of the platform, and change the business
model of the telemedicine ecosystem.

Table 1 shows the data collection methods for the case study
and the data created from our experiment. For both, the telemed-
icine ecosystem is analyzed in the three structures of the ecosys-
tem architecture: organizational, software and business structure.

In order to describe the organizational structure of our case
study, we collected data with qualitative methods, e.g., inter-
views/discussions with ecosystem orchestrators actors, external
participants and interested parties from public authorities and
organizations as well as companies. The public authorities
included The National eHealth Authority, where we had several
meetings with head of section, software architects and people
responsible for standards: MedCom, The Danish Healthcare
Datanetwork, where we held meetings with the deputy head and
the person in charge of international projects; the five Danish
regions, where we had several meetings with managers of
telemedicine projects, people heading telemedicine centers, IT
departments and departments for procurement and medical
technology; and a small number of municipalities where we had
meetings with managers of telemedicine projects and managers
of departments responsible for telemedicine. From companies we
had meetings with CEOs and telemedicine managers from provid-
ers of telemedicine, electronic patient records, and care records.
The companies involved are Capgemini (now Capgemini Sogeti),
CSC Scandihealth, KMD, Logica (now CGI), Systematic, SilverBullet,
Sekoia, TDC, and Trifork.

In addition we studied publicly available records form several
telemedicine projects, including the two largest projects from the
National action plan for deployment of telemedicine. The records
included meeting minutes, project reports and project participants.

Finally, we conducted a quantitative analysis of the network of
actors and telemedicine application of a part (the largest of the five
healthcare regions, the Capital Region, in Denmark) of the ecosys-
tem [40].

Similarly for the characterization of the software structure of the
ecosystem: we reviewed a number of existing applications and
systems (FMK [22], RRS [54], TELEKAT [57], VAGUS, Telesår[58],
EgenJournal [21], Sundt Hjem) and standards ([26], CDA ([5]), PHMR
[52], XDS.b [66]), used the application network in the actor – appli-
cation qualitative study mentioned above and interviewed an SMB
in the field of telemedical application development Viewcare [62].

The variability of sources in the organizational structure and
software structure of the case study addresses source triangulation
[51,20]. Additionally, in this article we are using a mixed method of
a case study and an experiment. Therefore, we obtain method
triangulation [51,20] in the characterization of the software
ecosystem architecture concept.

4. Software ecosystem architecture

We define the concept of ‘software ecosystem architecture’ by
generalizing the definition by Bass et al. [4] of ‘software architec-
ture’ (and extending on the definition of Manikas and Hansen
[42]):

The architecture of a software ecosystem is the set of structures
needed to reason about the software ecosystem, which com-
prise actor and software elements, relations among them, and
their properties.

The definition stresses that the architecture of a software eco-
system consists of multiple structures, each consisting of actor
and software elements. Software forms the core of a software eco-
system, therefore the software structure of the software ecosystem
is important. Moreover, a main purpose of software ecosystem
actors is to create value (in a for-profit or non-profit manner)
and thus the business structure of a software ecosystem becomes
relevant. Finally, it is important to govern the interaction and orga-
nization of actors and software (e.g., for an actor to provide a soft-
ware-based service in the ecosystem) and thus the organizational
structure of a software ecosystem becomes important.

While many other structures can be discerned for software eco-
systems, we argue that the above three are highly relevant and
critical for reasoning about a software ecosystem. Consequently,
we discuss these in turn and apply them in our analysis and design.
Table 2 summarizes this discussion.

4.1. Organizational structure

The organizational structure of a software ecosystem contains
actor and software elements that are related to the governance
of the interaction and organization of the elements in the ecosys-
tem. Important aspects of the organizational structure are the sets
of actor and software elements included, the boundary of the

Table 1
Data collected and created during our case study and experiment.

Danish telemedicine ecosystem Experiment: 4S

Unit of analysis Data collection Unit of design Data creation

Organizational
structure

Interviews, publicly available records, qualitative analysis of ecosystem actor-
application network

Organizational
structure

4S organization creation

Business structure Archival records of projects including Telesår Business structure Business modeling
Software structure Interview with SMBs; analysis of existing applications, technologies, & standards Software structure Net4Care platform development &

evaluation

1478 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

ecosystem they define, and how the structure governs interac-
tions and support coordination among actors and software
elements.

The interaction of actors is also related to the role each actor
serves in the ecosystem. Specific roles might be more prone or
even necessary to have interaction in different kinds of ecosystems,
e.g., software developing organizations would have to interact with
certification organizations in an ecosystem to promote their
software products.

Moreover, the number of actors involved in an ecosystem and
the level of selection they have to go through to be involved is part
of the organizational structure. This is described by assessing how
open the ecosystem is to external actors (e.g., by using the
approach of Jansen et al. [32] or Manikas and Hansen [40]). Finally,
the actors involved in the ecosystem usually have a commitment
to the ecosystem. This commitment makes them aligned with
the common goal of the ecosystem: its sustainability. Each actor
has its own set of goals, however in order for the individual actors
goals to be achieved and continued, the survival and thriving of the
ecosystem is usually required. Exceptions are e.g. the cases where
an actor decides to favor another ecosystem or where conflicts
among actors weaken the sustainability of an ecosystem.

4.2. Business structure

The business structure contains actor and software elements
that are related to how actors create, deliver, and capture value.
‘Value’ here refers to the benefit an actor gets from the software
ecosystem, e.g., in form of need satisfaction or problem solution.
A software element may deliver value in itself (e.g., an application)
or be a resource in creating value (e.g., a platform or a reusable
component/service). This structure is important in reasoning about
cost, revenue, and/or sustainability of the software ecosystem.
Note that business models do not necessarily model commercial
organizations’ businesses.

We describe business structure through business models using
the ‘business model ontology’ formalism [49,50]. ‘Business models’
are here defined as

A business model describes the rationale of how an organiza-
tion creates, delivers, and captures value.

An excerpt of the business model ontology is shown in Fig. 1.
Four aspects of business models are distinguished: the ‘product’,
‘customer interface’, ‘infrastructure management’, and ‘financial’
aspects.

In our models, we use the practical realization of Osterwalder’s
business ontology as ‘business model canvases’. Here, the product
aspects are covered by the ‘value proposition’ building block that
concerns what values an organization is providing for a customer.
The customer interface aspects are covered by the ‘customer
segment’, ‘channel’, and ‘customer relationship’ building blocks
that respectively describe types of customers, how customers are
reached, and the type of relationships that are established to
customers. The infrastructure management aspect is managed by
the ‘key partners’, ‘key resources’, and ‘key activities’ building
blocks. Key resources are the most important assets (e.g., physical
or intellectual) whereas key activities are the most import actions
(e.g., development or platform management) that are required for
the business model to work. Finally, the financial aspects are covered
by the ‘cost structure’ and ‘revenue stream’ building blocks that
describe expense and income respectively in the business model.

4.3. Software structure

The software structure contains actor and software elements
that are related to the production of applications in the software
ecosystem. The primary actors are developers of the software eco-
system platform and of applications. Software elements may
(recursively) be seen as consisting of multiple structures such as
units of code (i.e., modules), runtime functions (i.e., components),

Table 2
Examples of structures of software ecosystems.

Structure Elements Relations Models

Organizational
structure

Applications, platform, orchestrator, users, developers,
boards, development projects, plans

Governed by, developed by,
maintained by, connected to

Organizational structure, organization relationship
& interaction, organization roles

Business
structure

Products, services, partners, customers, resources Channels, customer relationship,
revenue stream

Business model canvas

Software
structure

Modules, functions, services, nodes, developers Depends on, used by, deployed on,
developed by

Software architecture description

Value
Proposition

Cost Structure Revenue Stream

Key Resource

Key Activity

Key Partner

Customer
Relationship

Channel

Customer
Segment

Fincancial
Aspects

Product
Aspects

Infrastructure
Management

Aspects

Customer
Interface
Aspects

Fig. 1. Business model ontology taken from Osterwalder [49] with business model canvas terminology added.

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492 1479

or deployment nodes. These structures are important in reasoning
about system quality attributes such as modifiability, performance,
availability, and security [4]. Software architecture (models) are
suitable for this type of reasoning and thus we model the software
structure of software ecosystem architectures through software
architecture descriptions.

We describe software structure in alignment with the ISO/IEC
42010 standard [28], see Fig. 2. Here an ‘architecture description’
consists of a set of ‘architectural views’ each of which adheres to
the convention of an ‘architectural viewpoint’. An example of an
architectural description that adheres to this would be a 4 + 1
views-based architectural description [38]. Furthermore architec-
ture decisions are described through an ‘architecture rationale’
and relations between elements in an architectural description
are modeled through ‘correspondences’. Architectural decisions
are made to support ‘architectural requirements’. An architectural
view embodies ‘architectural models’ often in the form of (UML)
diagrams. A view models one or more structures through its
architectural models.

In our architectural descriptions, e.g., we use a set of viewpoints
that, using UML, model how software is developed (through a
‘‘development view’’), how software behaves at runtime (through
a ‘‘functional view’’), and how software is deployed to hardware
(through a ‘‘deployment view’’) [25]. We use quality attribute
scenarios, as defined by [4], to describe architectural requirements.

A example functional model for Net4Care (which will be intro-
duced in Section 6) is shown in Fig. 8 on page 27, and examples of
quality attribute scenarios are shown in Section 6.3.

4.4. Relationships among structures

The main relationships among the three structures that we
emphasize are shown in Fig. 3. In addition numerous other rela-
tions exist. For example, a set of software services that are part
of the software structure may provide the basis for the value

creation of a business as described in the business structure and
be created and governed as described in the organizational
structure.

5. Danish telemedicine software ecosystem architecture
analysis

This study focuses on telemedicine as an application domain for
software ecosystems in the Danish healthcare. The World Health
Organization (WHO) defines telemedicine as

The delivery of health care services, where distance is a critical
factor, by all health care professionals using information and
communication technologies for the exchange of valid informa-
tion for diagnosis, treatment and prevention of disease and inju-
ries, research and evaluation, and for the continuing education
of health care providers, all in the interests of advancing the
health of individuals and their communities [65].

To this extent, the unit of analysis of our case study is defined
by the ecosystem around the telemedicine services in Danish
healthcare. In this section, we describe our case study using the
concept of software ecosystem architecture, described in Section 4.
The aim is to find areas of improvements, cf. question (a) in
Section 3. How we address the areas identified is described in
Section 6.

Below, we first analyze the organizational structure of telemed-
icine in Denmark, the government policies developed to address
need of increased uptake, and the issues the policy is intended to
address. Next, we provide a more detailed analysis of current
issues based on the business and software structures of the soft-
ware ecosystem architecture. Finally, we outline the challenges
remaining in the ecosystem under study.

5.1. Organizational structure

In Denmark, telemedicine services form part of the healthcare
services offered by the public healthcare system. The telemedicine
ecosystem is administered by the same administrative organs as
the general healthcare. The organization of the healthcare system
is fairly decentralised and has three administrative levels [48]:

State level The Ministry of Health governs the regional and
municipal organization and management of
healthcare. This includes organizations dealing
with national infrastructure standards, architec-
ture, compliance testing and implementation,
and organizations dealing with cost structure
and value creation.

Regional level Five geographical regions each own and run hos-
pitals and finance private practitioners (in partic-
ular general practitioners (GPs)). Financing is
based on transfers from the state and municipal
levels. This includes organizations dealing with
regional hospital systems: architecture, tenders
and requirements, operation and national report-
ing and organizations dealing with general
practitioners.

Local level There are 98 municipalities that are locally
responsible for prevention, health promotion and
rehabilitation. Furthermore, the local level is also
responsible for health-related services such as
home care and care in nursing homes. This
includes organizations dealing with municipality
healthcare: architecture principles, tenders and
requirements, and operation.

Architecture
Description

Architecture
View

Architecture
ModelModel Kind

Architecture
Viewpoint

Architecture
Rationale

Correspon-
dence

1..*

0..*
1..*

1..*1..*
1..*

1

1

1

Stakeholder
1..*

1..*

Fig. 2. Excerpt of the ISO/IEC 42010 architecture description ontology.

Software
Structure

Organizational
Structure

Business
Structure

derives value from

creates value
based on software
products

organizes
applications

Fig. 3. Main relationships between structures.

1480 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

A main issue is the relations among the different elements
listed above, and the kind of coordination and predictability that
these relations support. As a result of this, telemedicine in
Denmark has been characterized by hundreds of uncoordinated,
small projects, each developing their own solution, including
infrastructure. Those solutions are not able to share data, due to
the lack of common infrastructure, and they most often disappear
when the resources of the project are consumed. This has resulted
in more than 350 current telemedicine initiatives [44] of which the
minority are in production.

This is also supported by our qualitative study of telemedicine
applications and the organizations [40]. We analyzed the telemed-
icine applications and organizations for the Capital Region of
Denmark. This is the largest, in terms of population, of the five
healthcare regions in Denmark, with around 30% of the country’s
population. We identified the organizations related to the telemed-
icine applications implemented in the region and mapped the
relationships between organizations, between organizations and
applications, and between applications and applications. Our
results revealed an ecosystem clustered around the telemedicine
applications with low connectivity between the clusters. In other
words, we noted a low application interaction and the tendency
of the organizations to be connected to mainly one telemedicine
application.

In order to examine how open the ecosystem is to external
organizations, we separate the organizations in three roles that
are important in the telemedicine ecosystem1:

� Developing or external organization. Organizations that are
involved in the ecosystem with a specific task. This can include
the development, maintenance or support of an application, the
project management, supplier of related assets or services. The
involvement of developing organizations is done, as we discuss
in Section 5.2, either with a call for tenders where the actor with
the accepted tender is appointed for the required task, or for
services with cost lower than 500;000 Danish crowns (about
65;000 euros) direct fee-specific contracting. The ecosystem is
relatively closed to external developing organizations: the eco-
system allows new developing organizations to be involved but
new organizations are subjected to an acceptance rate (usually
one out the applicants) and following a procedure of submitting
a tender that might prove time and resource demanding. While
direct contracting is sometimes allowed, this only includes
minor tasks and the involvement is time-limited.
� Host. Organizations that are hosting telemedicine applications

in their organizational premisses. This kind of organizations
typically represent the product owner and customer/end user.
The ecosystem is closed to new host organizations: There is cur-
rently a number of hospitals and municipalities that can be used
as hosts in telemedical projects. Orchestrators can decide to
include other organizations as hosts if there is a need. Moreover,
in some cases, as we also discuss in Section 5.3, a developing
organization might also serve as an application host. In that
case, the ecosystem is almost as open to hosts of this kind as
to developing organizations, but with the additional restriction
that the host should commit to privacy and security regulations
concerning healthcare data.2

� Orchestrator. Organizations involved in the governing body of
the ecosystem typically responsible for the technological plat-
form(s). As the ecosystem does not have one common techno-
logical platform, the assessment of how open the ecosystem is

to organizations of this role is not possible. Orchestrators of
existing platforms that are not ecosystem-wide (e.g. National
Service Platform and Healthcare Datanet) have been introduced
by appointment of state level organizations.

5.2. Business structure

Telemedicine systems, in a Danish context, are typically devel-
oped as part of a project. One or several orchestrators decide on
investing in solving a specific problem. A project is then initiated
where service provider actors (developing organizations) might
be involved. The required activities and processes are identified
and, if external actors are needed, a public call for tenders is
announced. External actors are selected based on their proposals
for large projects (cf. Section 5.1).

As an example, consider the national telemedicine project
"Telesår".3 The project aims at bringing expert diagnosis and treat-
ment of ulcers to patients through the use of a mobile phone with
a camera and a web-based electronic ulcer journal. The rationale
behind this project is that expert ulcer diagnosis for patients with
limited mobility (e.g., elderly) is expensive but at the same time
necessary as these patients are in the high risk of developing severe
ulcer complications often resulting in amputations. A usage scenario
is that a home-care nurse visits an elderly patient with a diabetic
foot ulcer and – in connection with changing the bandage – takes
a picture with the mobile phone and then uploads it in the ‘‘ulcer
journal’’. If the nurse finds that action might be needed immediately,
she may set up an on-line conference with a dermatologist who, at
the backend, logs in to the ulcer journal from his or her office and
analyzes the picture of the patient, evaluating how the patient needs
to be treated. If no immediate action is deemed necessary the
dermatologist evaluates the pictures off-line.

In this scenario, the patient receives better diagnosis and treat-
ment with fewer visits to the specialized hospital departments. The
dermatologist can do a better job through closer observation and a
specialized record. Furthermore the specialist may treat more
patients. Also the home-care nurse learns from the dialog with
the dermatologist and is thus able to provide the patient with
better care. The regions and municipalities get more value for
money, since faster diagnosis and earlier treatment may be pro-
vided, while the state increases the efficiency of the provided
healthcare services by reducing costs.

A business model canvas for the ‘‘Telesår’’ project is shown in
Fig. 4. The history of the project and the business model illustrates
some of the issues with the current Danish telemedicine ecosys-
tem. First, projects related to telemedical ulcer treatments have a
history that goes back approximately 10 years as local (medical)
research projects [17]. Secondly, the project, while now being
implemented on a national scale as one of the five projects men-
tioned in Section 5.4, uses a proprietary electronic journal (‘‘ple-
je.net’’) that to our knowledge does not integrate with national
or international standards and that as such does not reuse national
services (see Section 5.3).

5.3. Software structure

In 2010, we conducted a study of the technical status of current
telemedicine projects (RRS, TELEKAT, Telesår, EgenJournal), a
commercial system (ViewCare), and international experience and
standards (HL7, CDA, and PHMR).

The study included both actors and software architecture
elements and relationships, and included interviews with regional
hospital IT departments, architects and developers, documentation

1 A similar classification and evaluation was followed in Manikas and Hansen [40].
2 Traditional hosts like hospitals are also committed to this kinds of regulations,

but this does not appear as cumbersome as this is part of the everyday work in a
hospital. 3 http://medcom.dk/wm112455.

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

reviews, and the development of architectural functional and
deployment views for the studied systems. Based on this raw
material, a commonality/variability analysis was conducted.

Perhaps not surprisingly as all studied projects and products
have the same core use case: ‘‘Measure clinical information in
the home of a patient, send it to a hospital server for storage and
review by a clinician’’, the same software architecture was shared
between all software systems. They were all variants of a three-tier
information systems, as depicted in Fig. 5. That is, a monitoring
application deployed in the home collects various measurements
and uploads them to a proprietary project server, stores data in a
proprietary format in a proprietary database, and allows clinicians
to browse and view data using a clinician application. Essentially
all projects were ‘‘stove-pipe’’ systems as generally there were no
reuse of software modules, of data formats, or of databases among
projects. In other words, there was many software system but no
ecosystem-wide platform. In addition, existing platforms were
only used in a minority of the systems.

One explanation was the lack of an organizational structure in
2010 to govern a coordinated development effort between projects

to ensure reuse and ensure a use of common formats and database
infrastructures. The period was that of exploration and early exper-
iments, often driven by local initiatives and funding.

Our study formed the basis for outlining architectural require-
ments for a framework/platform (Net4Care) that could serve as
software structure for an ecosystem for telemedicine.

Specifically we identified three main issues, detailed in [16], in
the current state that from a technical viewpoint inhibit a natural
evolution of the ecosystem and that had to be addressed.

� Lack of integration among (tele-)medical systems. The systems
are not integrated and often replicate data in diverse data for-
mats and storage systems.
� Missed opportunities for reuse. All studied systems had essen-

tially the same architecture, but all had built their own software
modules, used proprietary data formats, and hosted own data
centers.
� Low buildability of integrated telemedicine systems. Bass et al.

[4] defines the architectural quality attribute buildability as:
Buildability . . . refers to the ease of constructing a desired system.

Fig. 4. Telesår telemedicine project organization business model canvas.

Patient’s Client ProjectServer

Database

Clinician’s
Viewer

Fig. 5. Deployment view of typical telemedicine project.

1482 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

The few systems that allowed integration used standards with
very steep learning curves, there was a lack of tutorials and test
environments, and it was closed source software, which made
development prohibitory slow and expensive.

As an example of lack of integration, in a case of telemedical care
of Implantable Cardio-Defibrillator (ICD) patients at Rigshospitalet
in Denmark, doctors, and analysts had to consult up to 12 different
applications at the hospital to cater for remote patients. Another
example was a small SMB that had developed a system for Chronic
obstructive pulmonary disease (COPD) patients that provides tele-
conferencing and digital measuring of spirometry and subsequent
upload and review by the clinician. While successful from a clinical
and patient point of view, the SMB hosted its own servers with the
databases and the clinicians’ system at the hospital had to be on
the SMB’s VPN. This lack of integration forced the clinician to copy
and paste measured values manually into the hospital’s EPR
system. The SMB argument for this lack of integration with the
regional hospital’s infrastructure was mainly speed of deployment
and maintenance and thus the overall perception of the company’s
solution.

Regarding missed opportunities for reuse, all studied systems has
similar functionality (medical data upload, database storage and
retrieval, browsing and review by clinicians, etc.) but all code mod-
ules were developed from scratch. The lack of a common, shared,
infrastructure to reuse forced companies to build all components
themselves. Thus, small to medium sized business with expertise
in e.g. home care were essentially excluded for the market due to
lack of resources to develop and host server side solutions.

As examples of low buildability, a PhD student in the Net4Care
project spent more than 80 hours demonstrating that medicine
data could be read for a telemedicine application from a national
web service built on top of the National Service Platform (NSP)
for healthcare integration [59]. Several sources contributed to the
slow process. While documentation of the web service interface
existed, it was not detailed enough to allow a valid SOAP message
to be composed, the WSDL contained defects that made it
impossible to generate client stubs, descriptive error codes from
the service were missing making defect tracing cumbersome, and
the security model code assumed non-existing certificates and
provided yet another layer of required understanding. Moreover,
no ‘‘server in a box’’ existed so learning and test programs
depended upon test servers outside our control and whose charac-
teristics were changed without notification making the developed
software fragile.

The three issues are of course not orthogonal: increased reuse
leads to faster and more reliable development and thus to
improved buildability, and reusing storage systems and standard-
ized data formats leads to easier integration. The issues, however,
works strongly against a natural emergence and evolution of a soft-
ware ecosystem. Without common and shared software architec-
tural standards, data formats, storage systems, modules and
information resources, development and integration is difficult,
especially for small and medium sized business.

These issues must thus influence the software engineering prac-
tice and shape how a software ecosystem is created and evolved.
The Net4Care ecosystem framework was specifically designed to
address these issues, as detailed in Section 6.3 below.

5.4. The challenges that remain

To address issues in the telemedicine ecosystem, the govern-
ment set up a task force in cooperation with the major actors
among the ministries, the Danish Regions and Local Government
Denmark (‘‘Kommunernes Landsforening’’). The aim was to
develop an action plan for the deployment of telemedicine [23].

The plan outlines five national, large scale telemedicine pro-
jects, and in addition mentions the development of a national ref-
erence architecture for telemedicine [46]. The projects are
intended to develop and deploy software, including some infra-
structure elements and to provide experience with and evaluation
of the software and organizational set-ups used. At the end of the
experiments, the successful parts are to be deployed nationally.

The national plan is primarily intended to address two impor-
tant issues: scale and quality. First of all, telemedicine solutions
are now likely to be deployed on a national scale over the next five
to ten years. Secondly, the quality of the solutions is likely to
improve both with respect to software and to organization. This
likely quality improvement is due to the fact that many actors will
share the cost of developing and maintaining the software. Fur-
thermore it will be easier for the actors to share experience on
organization.

While the action plan tackles issues that need to be addressed,
our analysis4 points to some important concerns that should be
addressed if the ecosystem is to grow and attract numerous players
during the next years.

In short, the current ecosystem is suffering from weak organiza-
tional, business and software structures, and very weak links
between them. This results in high transaction costs summarized
by the following: ad hoc solutions to coordination and develop-
ment (weak organizational structure and weak links), low attrac-
tiveness of markets (weak business structure not being
addressed by the organizational structure) and low accessibility
(weak software structure not being addressed by the organiza-
tional structure). Below we consider these in turn.

Ad hoc solutions: The current organizational structure is not able
to effectively develop the software structure and the business
structure as described in Sections 5.1 and 5.2. When major prob-
lems are identified ad hoc solutions, like the task force developing
the action plan, are chosen and these solutions usually address
problems in the software structure directly instead of developing
the organizational structure to create effective links between the
structures.

Low attractiveness of markets: Current markets for telemedicine
in Denmark are fragmented and their characteristics are very diffi-
cult to identify and they are changing. Thus there are no credible
long term plans for how to develop telemedicine at the regional
level. The closest to such plans are the government plan for deploy-
ment of telemedicine and the Danish Regions Shared Indicators for
the digitization of healthcare [18]. As described above the govern-
ment plan mentions infrastructure elements and a five telemedi-
cine projects under development and evaluation. The indicators
of the regions list four of the five projects of the government plan.
Thus, from a business as well as a hospital point of view, the cur-
rent plans imply that the markets are more or less on hold until
the experiments are finished and evaluated. At that point in time,
if the projects are successful, a small number of telemedicine sys-
tems together with some infrastructure elements will be deployed
nationally. If some of the experiments fail nothing is stated about
what will happen. In neither case do the current plans provide a
way forward for companies that want to market telemedicine sys-
tems in Denmark, except for the companies providing the systems
used in the experiments.

The municipalities are several steps behind compared to the
government and the regions due to the fact that up until now
mainly hospital departments have driven the numerous telemedi-
cine projects in Denmark. In a recent policy paper on telehealth
[37], the Danish Municipalities outline a strategy and point to

4 This analysis is done as part of the national project ‘‘Denmark as a telemedicine
pioneer’’ and based on interviews and workshops with more than 50 companies.

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492 1483

some of the challenges facing the municipalities, including the
need to supplement the ‘‘hospital/diagnosis/illness-specific’’ per-
spective with a ‘‘non-illness specific’’ perspective. In addition, the
challenges include problems with existing economic models and
the need for new ways to share costs between region and munici-
palities, poor equipment and system quality, and lack of system
integration. In the long run the new focus on telemedicine and
telehealth by the municipalities will almost certainly strengthen
the development of the ecosystem. However, in the short term
the most likely effect is that municipalities will do some more pre-
paratory work before investing in telemedicine and -health. In
summary the current business structure is weak and the ad hoc
solutions at the level of the organizational structure do not create
links that are capable of improving the development of the busi-
ness structure.

Low accessibility: The companies that do decide to enter the
market, and their customers, are faced with another challenge:
the low accessibility of public healthcare infrastructure and ser-
vices. This low accessibility is due to several factors: written docu-
mentation is sparse and not of high quality, often the rationale
behind solutions is not obvious and no explanations available,
and there is no support in terms of tutorials or ‘‘help desks’’. The
result is that the learning curve for a company that wants to use
the Health Data Network and/or some of the associated services
like Shared Medicine Card5 is very steep and often prevents SMBs
from entering the market. In summary the current software struc-
ture is weak and the ad hoc solutions at the level of the organiza-
tional structure do not create links that are capable of improving
the development of the software structure.

6. Danish telemedicine software ecosystem architecture design
and realization

In the following section, we describe our experiment using the
software ecosystem architecture concept introduced in Section 4.

During 2008, we came to realize the need for significant improve-
ments of the Danish telemedicine ecosystem, c.f. Section 5.1. Our
first attempts on setting up research and development projects to
address the situation focused on two issues:

� Improving the software structure: we began to work on national
infrastructure based on international standards and supporting
integration between systems from different vendors, as well as
increased international market potential.
� Improving the business structure: we tried to develop business

models for different types of participants, e.g., SMBs with
telemedicine products, providers of hardware, infrastructure
companies e.g. telecoms, and the different providers of
telemedicine services, including hospitals and municipalities.

As mentioned above and described below in more detail, our
work on improving the software structure through national infra-
structure based on international standards progressed well and
we developed an effective set of tools and tutorials as the first ele-
ments of the technological platform of the ecosystem. We named
the platform ‘‘Net4Care’’, after the project that provided most of
the funding.

However, it turned out to be more difficult to create convincing
results regarding improvement of the business structure, i.e. what
would the benefit be for e.g. an SMB developing telemedicine prod-
ucts? A main challenge was that the links between the software
structure, the organizational structure and the business structure
were weak. Thus the impact of positive developments in software

structure was slow to develop in the business structure. Con-
cretely, paths from our research in terms of the Net4Care platform
to uptake was quite long and uncertain since we had no direct con-
nection to national or regional forums making decisions in the
area, i.e. to the relevant parts of the emerging organizational
structure.

In order to improve the situation and accelerate the develop-
ment of the ecosystem, we decided to supplement our work on
the software structure (work on the Net4Care infrastructure plat-
form) and the business structure (work on business models), with
an effort directed towards the organizational structure. Thus, we
began to work on establishing a new open source foundation with
the mandate to promote telemedicine and representing relevant,
interested parties. The intention was that this new organization,
4S, should play a key role in the acceleration of ecosystem develop-
ment as an orchestrator in the organizational structure.

6.1. Organizational structure

The new 4S organization should be an orchestrator responsible
for the open source infrastructure platform for telemedicine, Net4-
Care (see Section 6.3) and have the qualities to maximize the like-
lihood of success. We made literature surveys on open source,
healthcare, and software ecosystems [42] and studied involved
Danish organizations and their plans, including public open source
organizations. Based on this, we decided upon a set of characteris-
tics of 4S. The characteristics covered both organizational structure
aspects, such as the mission and structure of 4S and community
building (including with healthcare professionals and patients),
aspects related to business structure, e.g. developing viable
business models, and aspects related to software structure, e.g.
understandability and accessibility of software resources, and
‘‘traditional’’ open source organizational aspects, e.g., governance.
During 2012, we then held a number of meetings and workshops
with relevant, interested parties where we presented the ideas
and the rationale behind 4S. The status after the initial round of
discussions were:

Mission: There was general agreement on the need for an orga-
nization that could play the role of the orchestrator in the organi-
zational structure and streamline the ecosystem around an
infrastructure framework like Net4Care. The main critique con-
cerned the likelihood of sufficient backing from major players
and speed of uptake.

Structure of the organization: In order to speed up the formation
of 4S and to create an agile, adaptable organization, we proposed a
bottom-up approach where interested individuals from relevant
organizations at the state, regional, and municipality levels agreed
upon a proposal and then tried to secure organizational backing
and membership. This in turn led to a structure where we could
allow only a few organizations to be mandatory members from
the start. On the other hand informal accept from most was impor-
tant. There was general agreement that it would not be feasible to
establish 4S through a process where all the major bodies at the
state, regional, and municipality levels as well as business repre-
sentatives were invited. There was some concern about the likeli-
hood of convincing the needed mandatory members to participate.

Community building: Current Danish telemedicine initiatives are
mainly controlled by IT managers and project leaders. This in turn
often leads to dissatisfaction among the involved healthcare pro-
fessionals and less than optimal results for the patients. To change
this we proposed to create a number of healthcare communities as
an important part of 4S. There was general agreement on—and only
few discussions of—these issues. However, we ourselves became
concerned about how to create this involvement, since the main
elements in the technological platform of the ecosystem, i.e. the
Net4Care framework, was about infrastructure. Thus, the platform5 https://fmk-online.dk.

1484 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

itself did not seem to be a good vehicle for discussions of chal-
lenges in telemedical treatments of different types of illness.

Traditional open source organizational aspects: This concerned
primarily how to create developer involvement and quality assur-
ance. However, we also considered development plans/projects
and their creation and prioritization to be very important.
Especially we wanted to secure the influence of the different
communities.

Understandability and accessibility: In our view, 4S had to
provide a very high degree of understandability, accessibility, test-
ability etc. of the elements of the technological platform in order to
become a success. We already had some very good results in this
area through the Net4Care website6 and there was general agree-
ment on this. Especially commercial companies could list numerous
examples on non-understandability, non-accessibility and lack of
test environments concerning existing healthcare infrastructure, cf.
also Section 5.1 and Section 5.4.

Two important developments in the period from the end of
2012 until the late spring of 2013 changed the prospects for 4S
in a very positive way. First, the Alexandra Institute and three
other organizations were granted a large telemedicine contract
by The National Board of Technology and Innovation with one of
the authors as project leader. This provided resources for the work
on establishing 4S, and – even more importantly – it gave new
legitimacy to our efforts on making 4S an orchestrator in the
Danish telemedical software ecosystem.

Secondly, a draft of the new national reference software
architecture for telemedicine systems was published [46]. This
reference architecture closely followed the architecture that we
had worked with in Net4Care, and thus the platform was now
viewed as an implementation of the reference architecture. The
key elements of the platform (i.e., the Net4Care framework and
test-environment) began to be used as a common technological
platform in the software ecosystem: The framework and test
environment was used as tools for both companies and healthcare
service providers to evaluate and experiment with how different
systems and components fit the reference architecture, how to
modify them to increase compliance and how to design and imple-
ment new interface based on the standards of the reference archi-
tecture to increase data sharing.

These developments very directly impacted both the backing
from major players, which were one of the outstanding issues, cf.
‘‘Mission’’ above, and the commitment from mandatory members,
cf. ‘‘Structure of the organization’’ above. The only major outstand-
ing issue was how to create viable communities.

The technological platform with the Net4Care framework and
test environment provided a good basis for community building
involving it people from both private companies supplying IT sys-
tems and from organizations delivering healthcare services, e.g. the
regional IT departments hosting the IT systems of the hospitals in
their region. However, it was not well-suited for organizing discus-
sions around how to improve telemedicine for different groups of
patients or citizens and for the healthcare professionals working
with these groups. In other words, the platform, with its focus on
the Net4Care framework and test-environment was not suited
for this kind of community building. In order to advance the crea-
tion of active communities we decided to make software used
directly by patients/citizens and healthcare professionals a primary
concern of 4S.

One way to do this was to make agreements with a number of
vendors supplying such systems and using the Net4Care frame-
work and test-environment. We are working on this and expect
it to be an area of activity that will grow steadily in the future.

However, these telemedicine systems are closed source and setting
up agreements with the vendors is a slow process. In addition most
vendors considers experiments with and development of their
systems as something that is company internal and under their
tight control. In short, most vendors do not view their telemedicine
systems as potential elements in a technological platform of a
software ecosystem. And from a user perspective (patients/citizens
and healthcare professionals), the path from a successful experi-
ment to new versions of the commercial software to be improved
via the experiments is very long and the conditions governing the
company decisions are opaque.

Thus, we decided to pursue a different path as our main
strategy: the inclusion of a major open source telemedicine plat-
form as part of the technological platform for which 4S was
responsible. We had for some time had discussions with the three
regions responsible for those of the national large scale experi-
ments that were developing infrastructure elements and a tele-
medicine system for handling data collection by the patients
themselves, cf. Section 5.4. Backed by the alignment of
the reference architecture with the Net4Care framework and
test-environment as well as the legitimacy provided by the large
telemedicine contract granted by The National Board of
Technology and Innovation we managed to make an agreement
with the three regions that the telemedicine platform in question,
called Open Tele, would be handled by 4S. This agreement in turn
made it attractive for the five groups of patients/healthcare
professionals currently using systems based on the Open Tele
platform to participate in communities organized by 4S.

6.2. Business structure

Fig. 6 shows the business model canvas for the 4S organization.
The central value propositions are cheaper telemedicine IT devel-
opment through ease of system integration and cross-sector and
-supplier integration. This is to be achieved through platform
development, (test) platform hosting, and ecosystem governance,
the key resources include open source components (Net4Care
and OpenTele) and integrated national healthcare services.

Fig. 7 shows the Telesår business model under the assumption
that the Telesår project becomes part of the 4S ecosystem. This
adds to the value propositions of the Telesår project in that IT
development would arguably become cheaper (faster), result in a
better integrated system, and be based on open standards. This
should result in a changed cost structure in which establishment
and running costs should be lowered (but a stakeholder fee to 4S
should be added). As part of the Telesår project, there is now the
potential that parts of the project can be made available as
services/components to other telemedicine applications (see
‘‘Key Activities’’ and ‘‘Key Resources’’) with the possibility of use
by others (see ‘‘Customer Segments’’ and ‘‘Revenue Streams’’).

6.3. Software structure

The 4S ecosystem’s software structure elaborates on the
Net4Care framework. This framework was architected based upon
the three issues identified in current telemedicine: lack of integra-
tion, low buildability, and lack of reuse; and designed as best
possible to fulfill the requirements of an application-centric
ecosystem [6]. The other categories of ecosystems as defined by
Bosch: operating system-centric and programming-centric;
seemed less relevant for telemedicine. Bosch lists four essential
success factors for an application-centric ecosystem:

1. The foremost success factor is a large set of customers or the
promise of those customers.6 http://www.net4care.org.

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492 1485

2. The platform company should aim to simplify contribution by
third party developers, by popular development environ-
ments, stable and expressive interfaces, and easy deploy-
ment and integration.

3. The platform shouldprovide solutions to extend data models and
work flows as well as integrate into the same user experience.

4. The platform should provide a viable sales channel where
third party contributions are exposed to customers.

Of these, points (2) and (3) are achievable by a strong commit-
ment by the technical development team and realizable in the soft-
ware structure, point (4) must be provided by the organizational

Fig. 6. 4S business model canvas.

Fig. 7. Telesår and 4S business model canvas. Grayed blocks signify potential implications of 4S on the Telesår business model.

1486 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

and business structure, and finally (1) can be hoped for from the
quality of the efforts invested in all three structures.

Our analysis showed little focus had been on the simplification
of contribution and extendability of data models in prevailing
infrastructure and telemedicine pilot projects. Thus, our team set
out to develop an architecture for the ecosystem platform with
special attention to these aspects and inspired by the functional
and architectural requirements elicited in the analysis phase.

The main architectural drivers became the following quality
attribute scenarios [3]:

(QAS 1/Modifiability) An SMB developer with a strong background
in electronics and hardware-near computing [source] wants to
develop a telemedical application for the home that supports
uploading measured clinical values [stimulus] using the Net4Care
framework [artifact] as part of preliminary exploration and proto-
typing [environment]. The developer downloads, installs, and tests
a first prototype having a full round-trip of clinical measurements
(from device to simulated server and back again) [response] within
four staff hours [response measure].

This scenario captures an important aspect of Bosch’s require-
ment of simply contribution namely the ability for third party to
understand and develop using the framework.

(QAS 2/Integrability) A clinician [source] wants to review telemed-
ical measurements of a patient [stimulus] using the regional
Electronic Health Record (EHR) system [artifact] as part of daily
work [environment]. The clinician can query, view, and annotate
the data [response] without need of starting specialized telemedi-
cine applications nor copy-pasting data between applications
[response measure].

This is another aspect of Bosch’s second point, namely easy
deployment and integration, in that the Net4Care platform seeks
to avoid stove-pipe systems with its own clinician applications,
databases and servers, and replace them with integration into
existing clinical systems.

(QAS 3/Modifiability) An SMB developer [source] wants to support
a new type of measurements in the home [stimulus] using the
Net4Care framework [artifact] during development [environment].
The developer defines appropriate software modules with proper
clinical encodings and integrates them into the Net4Care
operational environment [response] within two weeks [response
measure].

This final architectural driving scenario captures the third Bosch
requirement of extend data models and work flows. The scenario
requires two parts. The first is that the technical framework con-
tains adequate hotspots/variability points to allow customization
and extending of data types, and the second is that there are certi-
fication processes in place that verify that the choices made con-
cerning clinical encoding are clinically valid so the resulting data
produced can integrate into EHR and other clinical systems.

6.3.1. Net4Care architecture and reference implementation
To support the main three architectural requirements in the

form of the scenarios (as well as a set of architectural and func-
tional requirements reported elsewhere [25]) we made the follow-
ing central architectural decisions.

� Information resources primarily in the form of open source
well proven and tested tutorials on the web site www.net4-
care.org provides a shallow learning curve for developers.

� Reference implementation as open source.
� Staged testing environment which provides a simple isolated

test environment for fast development that seamlessly can
be migrated into a full operations environment.

� Clinical standards used at the back tier for storage format
(Continua Alliance Personal Health Monitoring Record (PHMR)
[52] which is a HL7 ‘‘Clinical Document Architecture’’ stan-
dard [5]) as well as for database system (XDS.b Cross-Enter-
prise Document Sharing [66] which is a standard for clinical
storage systems).

An overview of the functional run-time view of the Net4Care
framework is shown in Fig. 8. We follow Bass et al. [3][§9]’s recom-
mended practice to represent the component-connector view
using UML object notation: Boxes represent run-time components,
single line boxes are (passive) objects while boxes with an extra
vertical line represents processes (active objects). Links represent
connectors that mediate data and control flow at run-time
between components. Verbs on the links describe the type or role
of data/control exchanged.

Note that while object notation in its UML interpretation only
represent one of potentially many different instances of a system,
Fig. 8 represents the general configuration of run-time elements
that all instances of Net4Care will have. For instance, any HomeC-
lientApplication will have any number of StandardTeleObserva-
tions but only one DataUploader, etc.

In the figure, components marked by light gray are those the
SMB developer must develop, while the rest are provided by the
Net4Care framework. The web site’s information resources provide
detailed tutorials regarding download, installation, and first expo-
sure (‘‘Hello World’’) in using and configuring the framework. The
home client framework is available in Java and C#, while the server
is purely Java based.

The SMB Comp is our abstraction over all code that is not related
to the Net4Care framework except for the fact that it must produce
medical measurements, like blood pressure, weight, spirometry
measurements, etc. Such measurements we denote telemedical
observations. Thus it is in this component that the SMB will invest
time and effort to have a competitive edge in the market for tele-
medicine: ease of use, appealing interface, intuitive device cou-
pling, etc. Though it is represented by a single gray box, it should
by far be the greatest investment by the SMB as Net4Care should
ideally handle the rest.

The ObservationSpecifics is the framework’s main variability
point with regards to the concrete types of telemedical observa-
tions that the SMB wants to support. This requires some insight
into clinical informatics, notably code systems which are used to
uniquely identify the type of measurements made. Here, we have
invested special attention to provide guides, tutorials, and code
support that allows non-expert users of Net4Care to produce clin-
ical valid data while shielding them as best possible from the full
details of HL7 which has a very steep learning curve.

The DataUploader is a standard client side class that handles all
the transport to the application and storage tiers. The Net4Care
server is responsible for translating the core data from the client
side into full and validated PHMR documents and store them in
national/regional XDS.b. Once stored, clinician systems like EHR
can retrieve data using standard XDS.b profiles.

The ServerConnector protocol between the client system and the
Net4Care server and the XDS.b Adapter component in the server are
also architectural variability points and serve the requirement of a
staged testing environment. These can be configured by the SMB
developer in stages, where the simplest uses local, simplified, vari-
ants which allows fast and non-distributed development. Progres-
sively more complex variants are provided by the Net4Care
platform, like an HTTP connection to a OSGi-based webserver,
and ultimately the production ready variants using secure HTTPS
connections and real XDS.b interfaces. These variability points thus
support both QAS 1 and 3.

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492 1487

One lesson learned from the development of the software struc-
ture is that the engineering practice for software ecosystems must
be aligned with lessons learned from analysis of successful applica-
tion-centric ecosystems. Notably, the requirements of simplified
contribution by 3rd party and extensible data models and work flows
can be supported at the software framework level if included early
in the architectural analysis. Moreover, these points must have
strong focus in the creation and evolution of the ecosystem.

6.3.2. The Open Tele data collection telemedicine system
As described above, we decided to include an open source data

collection system called Open Tele in addition to Net4Care. The
idea was to use Open Tele to generate interest among healthcare
professionals and citizens/patients and thus supplement the
interest among IT people generated by Net4Care. Basically, Open
Tele corresponds to the box ‘‘SMB Comp’’ in Fig. 8. The Open Tele
system includes a tablet used by citizens/patients for data collec-
tion, including device that can be coupled to the tablet. In addition,
the system provides local data storage and access for healthcare
professionals.

The system is a new addition to the ecosystem and to 4S, and
we do not yet have much experience with it. However, we expect
it to play two important roles. First of all it will allow us to set up
experiments together with healthcare professionals and citizens/
patients where we are free to choose which parts of the system
we want to work with. And, if successful, the results of an

experiment may be included in the Open Tele software system if
the necessary resources for implementation according to the 4S
quality requirements can be provided. In addition, commercial
vendors working with closed source are free to use the same
results to improve their systems. Secondly, we plan to further
develop Open Tele to work together with an app store approach
to open a new channel for contributions.

In terms of the essential factors from Bosch, Open Tele contrib-
utes significantly to a large set of customers or the promise of those
customers primarily through its enabling of community building.
The app store approach will both simplify contribution by third
party developers and provide a viable sales channel. Finally the
possibilities of Open Tele in combination with Net4Care provides
solutions to extend data models and work flows as described in
Section 6.3.1 above.

7. Evaluation

The 4S software ecosystem is now being realized. Obviously the
quality of the Net4Care framework and its compliance with the
national reference architecture is a key element in this. But our dis-
cussions with actors and other stakeholders indicates that the
establishment of 4S as a credible orchestrator has been, and is, cru-
cial to the evolution of the ecosystem.

Our primary evaluation to date, however, has been through the
use of the Net4Care framework. This framework has successfully

:StandardTeleObservation

:DataUploader

:ObservationSpecifics composes

:HomeClientApplication
:SMB Comp.

produce

:Receiver

uses

:PHMRBuilder

:HL7Document

:XDS.b Adapter

store

:N4C Server

:SSNRegister

:EHR

:XDSRegistry

:XDSRepository

use

produce

:AfinityDomain:National Services

ServerConnector

Fig. 8. Functional view of Net4Care. UML object notation is used to represent the run-time structure of any instance of the framework. The notation used is explained in detail
in the text.

1488 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

fulfilled the aspect of ‘‘technological platform . . .that allows involve-
ment and contribution of the different actors’’ and ‘‘with symbiotic
relationships’’ [42]. Table 3 shortly outlines involved actors and
their main interests, which we will expand upon below.

The actors so far can coarsely be classified in three classes: pri-
vate companies, regional hospitals and their healthcare IT depart-
ments, and educational institutions, each having their own
interests and perspectives.

Sekoia [56] is a small company (with less than 20 employees)
that develops IT solutions for healthcare with strong commitment
to user-driven innovation to ensure high quality in use of their
products. With this emphasis they are less inclined for large invest-
ments into back tier development such as hosting data warehouses
and integration with existing clinical systems. Thus the Net4Care
framework is well suited to handle back tier aspects and presently
integration experiments with their Android tablet end-user solu-
tions is explored.

The interest from the regional healthcare IT departments is
mainly in the experiences gained and software modules devel-
oped to handle PHMR and XDS.b. One key aspect at present is
augmenting measured values in the home with context informa-
tion, for instance if a measurement is uploaded then who actually
made the measurement: was it the patient alone, aided by a
home nurse, or perhaps under the supervision of a trained clini-
cian? This issue (which is irrelevant in a hospital setting) demon-
strates how the symbiotic relationships between actors are
important, as the issue was first raised by clinicians collaborating
with Sekoia and thus brought to the attention of the architectural
team for Net4Care and onwards to the larger group of actors.
Thus the primary interest of the regional healthcare is learning
and interaction.

Finally, the framework has been used by educational institu-
tions, primarily for student master-level projects. The engineering
school’s projects had device integration as primary focus area and
the framework thus supplied the back tier at a very modest learn-
ing cost. We have interviewed several of the groups and they agree
that our QAS 1 (on page 25) is indeed fulfilled as getting the first
‘‘Hello World’’ application running is easy and the tutorials provide
sufficient detail for getting their prototype work going without too
much hassle. Also for their (simple) use, they found the frame-
work’s support for handling new types of measurements adequate,
QAS 3. However, for adding context data as required by Sekoia, QAS
3 was not fully covered.

8. Discussion and future work

4S is now acting as an orchestrator and the Net4Care frame-
work exhibits features of an ecosystem technical platform, espe-
cially with respect to the symbiotic relationships and interaction
of the actors. However, we still await contributions in terms of
software modules that can be used across the ecosystem. At pres-
ent, software is built ‘‘on top’’ of Net4Care for the individual actor
and largely for learning, testing, and experimentation, more than
for contribution.

Additional studies of the applicability of the software ecosystem
architecture concept to different ecosystems are required. The con-
cept itself is not specific to telemedicine, and we would expect the
types of analyzes and designs we have made to generalize to other
types of ecosystems, i.e., that our study has external validity. We
expect our work to be most useful in areas where there is no obvi-
ous orchestrator and/or no obvious candidate for doing the type of
integrated analysis and design that the software ecosystem archi-
tecture approach supports. This view is supported by the fact that
numerous sets of publicly funded open source software exists in
Denmark, but their role and use is very limited, and no orchestrator
exists. This is similar to the situation described in Section 5 and we
find it likely that an analysis and subsequent design initiatives
based on our approach will have a reasonable chance to improve
the situation.

Reliability, i.e., the extent to which our study can be repeated is
another probable issue. Since our case study is revelatory and our
experiment depends on many parameters that are outside of our
control (e.g., the involved actors and their behavior), it is question-
able that it can be reproduced with the same results. However, as
discussed above in relation to external validity, we find it likely
that the software ecosystem architecture approach may be used
successfully in ways similar to the work presented in this paper,
but in different areas. This could be done e.g. in situations where
funding is available for developing an open source platform, but
no obvious orchestrator and/or no well-functioning organizational,
business and/or software structure exist. In the following section
we present a set of guidelines for people interested in this type
of use.

8.1. Analysis and design guidelines

We provide a set of general guidelines on how a similar study
can be carried out. We separate our guidelines in two sections:
analysis, concerning the modeling of a software ecosystem, and
Design, concerning the steps towards designing a software
ecosystem.

8.1.1. Analysis
Phase A1: Identify and characterize the software ecosystem

using the elements of the theory: technological platform, actors,
and software build on the platform. Identify and characterize ele-
ments and relations of the three structures: organizational, busi-
ness, and software. Select models to be used in describing them.

Questions to consider include:

� Are some expected types of actors, elements and/or relations
missing, under- or overrepresented?
� Where in its evolution is the ecosystem (e.g., emerging, new, or

old)?

Phase A2: Analyze and understand the software ecosystem:
Collect and analyze information on the elements and relations of
the three structures. Focus on the sustainability of each structure,

Table 3
List for actors in Net4Care.

Actor Type Size Interest/contribution

Sekoia, Silverbullet Companies Small Explore as integration system
Trifork/next step citizen Company Small Use module; explore as integration system
CSC; Systematic Companies Large Explore as integration system
CGI Company Large XDS.b learning and integration
Region Nord; region Midt; region Hovedstaden Hospitals Large PHMR and XDS.b learning
Aarhus University (School of Engineering); University of Southern Denmark Universities Large Use as back-end
Aarhus University; University of Copenhagen Universities Large Ecosystem/architectural case

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492 1489

and interactions among the structures, especially concerning
issues.

Questions to consider include:

� Is the software ecosystem stable, unstable, or evolving?
� How are benefits distributed among the actors?
� What are the entry conditions and incentives to join?

Phase A3: Evaluate the results of analysis. Present and discuss
results of analysis with actors and other stakeholders. Possibly
repeat A1 and A2.

8.1.2. Design
Below we list the phases of designing an emergent ecosystem.

The design is using the output of the analysis of the existing eco-
system. The steps are inspired by the steps for carrying out an
experiment described by Wohlin et al. [63].

Phase D1: Scoping of design: Identify and characterize the goals
of the design. Using the ecosystem analysis as input, focus on the
areas of the ecosystem under development that appeared to be
missing or problematic and define what purposes the design is
going to serve. These purposes could relate to sustainability of
the structures, e.g., overcoming issues identified through analysis.

Phase D2: Create a design. Develop a design consisting of one or
more new or revised elements, e.g. software platform, orchestrator,
keystone, or distribution channels. Develop a process plan for real-
izing the design. Since evolving an ecosystem is outside the control
of any one actor, contingency planning should be considered.

Questions to consider include:

� Are the new/revised elements likely to create a process that will
make the ecosystem meet the goals?
� How robust is the design, i.e. will all parts of the design have to

realized?
� Who are the key actors whose participation is crucial for

realization?

Phase D3: Evaluate and revise the design.
Discuss goals and design with key actors and other stakeholder,

i.e., those whose support is crucial to the realization of the design.
Questions to consider include:

� Do actors agree with the goals?
� Do actors believe that realization of the design is feasible?
� Who will participate?
� Will the necessary resources be available?

Phase D4: Realize the design. Execute the plan and monitor the
evolution of the ecosystem.

Phase D5: Evaluate the ecosystem. Model the software ecosys-
tem after the design realization.

Questions to consider include:

� Have the identified areas improved?
� Has the general ecosystem health sustainability improved?
� Is the ecosystem providing more opportunities to the actors

than before?
� Are there other areas that need improvement?

8.2. Future work

The recent addition of the Open Tele data collection system
adds new groups of actors in addition to those listed in Table 3.
The primary interest of the new groups of healthcare professionals
and citizens/patients is to explore possibilities for improving and
extending the system. Thus the first concrete activity will be a

small series of evaluation and design workshops to provide input
to further development of the Open Tele system.

Similarly, seminars are being planned for companies interested
in the app store approach. In addition to software aspects of apps
we have begun to look at healthcare and economic aspects. In
one end of the spectrum is a category of apps where only tradi-
tional evaluations have been done, e.g., of stability and security
issues. Somewhere in the middle are apps where clinical evalua-
tions of effects have been carried out (and is made available
through the app store). Finally we are considering a category of
apps where citizens can be referred to receive them for free. These
aspects are primarily related to the three administrative levels
described in Section 5.1. 4S already has good relations to both
the state and the regional levels and the relations to the level of
municipalities are under development.

In addition to these new groups, several of the existing actors in
Net4Care are also interested in Open Tele. Companies delivering
systems to coordinate interaction among healthcare organizations
providing service to patients having a chronic condition are
considering Open Tele as a way to add data collection capabilities.
However, for some of the companies making telemedicine systems
Open Tele is a competitor. We expect that 4S will be able to
provide a sufficient active and creative environment to make the
pros more important than the cons. In any case we will have to
be very explicit about the different roles of Net4Care and Open Tele
in the ecosystem.

Finally, a number of municipalities are planning to acquire ver-
sions of Open Tele with a range of smaller additions/modifications.
Currently the expectation is that the new/modified software will
become part of the open source software managed by 4S.

9. Conclusion

The first contribution of this article has been to define the con-
cept of ‘software ecosystem architecture’ as ‘‘the set of structures
needed to reason about the software ecosystem, which comprise
actor and software elements, relations among them, and properties
of both’’; identify the organizational, business, and software struc-
tures of software ecosystems as central; and apply these concept to
the analysis of the current Danish telemedicine ecosystem, identi-
fying challenges and opportunities in this.

The second contribution of the article has been to, within the
framework of software ecosystem architecture, to present the
design, realization, and (partial) evaluation of a software ecosys-
tem, 4S, for telemedicine. The development of healthcare IT sys-
tems in general, and telemedicine applications in particular, is
hindered by (i) complex problem and solution domains, by (ii) lim-
ited economies of scale, and by (iii) problems of integration and
interoperability.

The 4S software ecosystem aims at (i) reducing the complexity
of problem and solution domains by providing reusable compo-
nents and services that incorporate national and international
standards; at (ii) improving economies of scale by providing a plat-
form (Net4Care and OpenTele) on which to build telemedical
applications; and at (iii) increasing integration and interoperability
by providing components to access national services in an interop-
erable way.

Finally, the Net4Care technological platform has showed how
an emphasis on key success factors for application-centric software
ecosystems, that of simplified contribution and extensible data mod-
els and work flows, can be supported by adopting a software engi-
neering practice focusing on well-written on-line information
resources, a staged testing environment, and an open source refer-
ence implementation, and thus serve as the software structure

1490 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

basis for gaining interest, commitment, and symbiotic relation-
ships among actors.

Acknowledgements

The research reported in this article has been supported by the
Net4Care project that is funded by Caretech Innovation,7 the Con-
nect2Care project that is funded by the UNIK Partnership,8 and the
project ‘‘Kick-start of Denmark as telemedicine pioneer country’’
that is funded by The National Board of Technology and Innovation.9

References

[1] O. Barbosa, C. Alves, A systematic mapping study on software ecosystems, in:
Third International Workshop on Software Ecosystems (IWSECO-2011), CEUR-
WS, 2011, pp. 15–26.

[2] O. Barbosa, R.P. Santos, C. Alves, C. Werner, S. Jansen, Software ecosystems –
analyzing and managing business networks in the software industry, in:
Jansen et al. [29], Chapter: A Systematic Mapping Study on Software
Ecosystems from a Three-Dimensional Perspective, 2013, pp. 59–81.

[3] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed.,
Addison-Wesley, Boston, MA, USA, 2003.

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, third ed.,
Addison-Wesley, Boston, MA, USA, 2013.

[5] K.W. Boone, The CDA Book, Springer, 2011.
[6] J. Bosch, From software product lines to software ecosystems, in: Proceedings

of the 13th International Software Product Line Conference (SPLC ’09),
Carnegie Mellon University, Pittsburgh,PA, USA, 2009, pp. 111–119. <http://
portal.acm.org/citation.cfm?id=1753235.1753251>.

[7] J. Bosch, Architecture challenges for software ecosystems, in: Proceedings of
the Fourth European Conference on Software Architecture: Companion
Volume (ECSA ’10), ACM, New York, NY, USA, 2010, pp. 93–95. http://
dx.doi.org/10.1145/1842752.1842776.

[8] J. Bosch, Architecture in the age of compositionality, in: M. Babar, I. Gorton
(Eds.), Software Architecture, Lecture Notes in Computer Science, vol. 6285,
Springer, Berlin/Heidelberg, 2010, pp. 1–4. doi:10.1007/978-3-642-15114-9_1.

[9] J. Bosch, P. Bosch-Sijtsema, Coordination between global agile teams: from
process to architecture, in: Agility Across Time and Space, Springer, Berlin,
Heidelberg, 2010, pp. 217–233. doi:10.1007/978-3-642-12442-6_15.

[10] J. Bosch, P. Bosch-Sijtsema, From integration to composition: on the impact of
software product lines, global development and ecosystems, J. Syst. Softw. 83
(1) (2010) 67–76. SI: Top Scholars. <http://www.sciencedirect.com/science/
article/B6V0N-4WPJ5XY-1/2/e69f658f21dfa50b9d1aa468a6cfb46d>.

[11] J. Bosch, P.M. Bosch-Sijtsema, Softwares product lines global development and
ecosystems: collaboration in software engineering, in: Collaborative Software
Engineering, Springer, Berlin, Heidelberg, 2010, pp. 77–92. doi:10.1007/978-3-
642-10294-3_4.

[12] V. Boucharas, S. Jansen, S. Brinkkemper, Formalizing software ecosystem
modeling, in: Proceedings of the 1st International Workshop on Open
Component Ecosystems (IWOCE ’09), ACM, New York, NY, USA, 2009, pp.
41–50. http://dx.doi.org/10.1145/1595800.1595807.

[13] C. Burkard, T. Widjaja, P. Buxmann, Software ecosystems, Business Inform.
Syst. Eng. 4 (2012) 41–44. http://dx.doi.org/10.1007/s12599-011-0199-8.

[14] P.R.J. Campbell, F. Ahmed, A three-dimensional view of software ecosystems,
in: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume (ECSA ’10), ACM, New York, NY, USA, 2010, pp. 81–84.
http://dx.doi.org/10.1145/1842752.1842774.

[15] H.B. Christensen, M. Christensen, K.M. Hansen, M. Kyng, K. Manikas, M.
Surrow, S. Urazimbetova, Requirements for a software-intensive ecosystem for
telemedicine, in: Med@Tel 2012: Global Telemedicine and eHealth Updates,
vol. 5, 2012, pp. 423–427.

[16] H.B. Christensen, K.M. Hansen, Net4care: towards a mission-critical software
ecosystem, in: WICSA/ECSA, IEEE, 2012, pp. 224–228.

[17] J. Clemensen, S.B. Larsen, N. Ejskjaer, Telemedical treatment at home of
diabetic foot ulcers, J. Telemed. Telecare 11 (suppl 2) (2005) 14–16.

[18] Danske Regioner, Regionernes fælles pejlemærker for digitalisering af
sundhedsvæsenet. fra strategi til handling: Nye pejlemærker i perioden fra
2014 til 2016, 2013, in Danish.

[19] E. den Hartigh, M. Tol, W. Visscher, The health measurement of a business
ecosystem, in: Proceedings of the European Network on Chaos and Complexity
Research and Management Practice Meeting, 2006, pp. 1–39.

[20] N. Denzin, The Research Act: A Theoretical Introduction to Sociological
Methods, McGraw-Hill, 1978.

[21] EgenJournal, CITH Co-constructing IT and Healthcare, 2010. <http://
www.cith.dk>.

[22] FMK, Fælles medicinkort, 2010. <http://www.ssi.dk/Sundhedsdataogit/
National%20Sundheds-it/Faelles%20Medicinkort.aspx>.

[23] Fonden for Velfærdsteknologi, National handlingsplan for udbredelse af
telemedicin, June 2012, in Danish.

[24] K. Hansen, M. Ingstrup, M. Kyng, J. Olsen, Towards a software ecosystem of
healthcare services, in: Proceedings of the 3rd International Workshop on
Infrastructures for Healthcare: Global Healthcare, 2011. pp. 28–31.

[25] K.M. Hansen, The Net4Care platform – version 0.3, Tech. rep., Net4Care, 2012.
[26] HL7, Hl7: health level seven international, 1987. <http://www.hl7.org>.
[27] M. Iansiti, R. Levien, The Keystone Advantage: What the New Dynamics of

Business Ecosystems Mean for Strategy� Innovation� and Sustainability,
Harvard Business Press, 2004.

[28] ISO 42010, Systems and software engineering – architecture description, ISO/
IEC/IEEE 42010:2011(E), 2011.

[29] S. Jansen, S. Brinkkemper, M. Cusumano (Eds.), Software Ecosystems –
Analyzing and Managing Business Networks in the Software Industry,
Edward Elgar, Cheltenham, UK, 2013.

[30] S. Jansen, S. Brinkkemper, A. Finkelstein, Business network management as a
survival strategy: a tale of two software ecosystems, in: First International
Workshop on Software Ecosystems (IWSECO-2009), Citeseer, 2009, pp. 34–48.

[31] S. Jansen, S. Brinkkemper, A. Finkelstein, Software ecosystems – analyzing
and managing business networks in the software industry, in: Jansen et al.
[29], Chapter: Business Network Management as Survival Strategy, 2013,
pp. 29–42.

[32] S. Jansen, S. Brinkkemper, J. Souer, L. Luinenburg, Shades of gray: opening up a
software producing organization with the open software enterprise model, J.
Syst. Softw. 85 (7) (2012) 1495–1510. <http://www.sciencedirect.com/
science/article/pii/S0164121211003013>.

[33] S. Jansen, A. Finkelstein, S. Brinkkemper, A sense of community: a research
agenda for software ecosystems, in: 31st International Conference on Software
Engineering – Companion Volume, 2009 (ICSE-Companion 2009), May 2009,
pp. 187–190.

[34] R. Kazman, M. Gagliardi, W. Wood, Scaling up software architecture analysis, J.
Syst. Softw. 85 (7) (2012) 1511–1519. Software Ecosystems. <http://
www.sciencedirect.com/science/article/pii/S0164121211000793>.

[35] T. Kilamo, I. Hammouda, T. Mikkonen, T. Aaltonen, From proprietary to open
source-growing an open source ecosystem, J. Syst. Softw. 85 (7) (2012) 1467–
1478. Software Ecosystems. <http://www.sciencedirect.com/science/article/
pii/S0164121211001683>.

[36] T. Kilamo, I. Hammouda, T. Mikkonen, T. Aaltonen, Software ecosystems –
analyzing and managing business networks in the software industry, in:
Jansen et al. [29], Chapter: Open Source Ecosystem: A Tale of Two Cases, 2013,
pp. 276–306.

[37] Kommunernes Landsforening, Kommunernes strategi for telesundhed, April
2013, in Danish.

[38] P.B. Kruchten, The 4 + 1 view model of architecture, IEEE Softw. 12 (6) (1995)
42–50.

[39] M. Lungu, M. Lanza, T. Gı̂rba, R. Robbes, The small project observatory:
visualizing software ecosystems, Sci. Comput. Programm. 75 (4) (2010) 264–
275. Experimental Software and Toolkits (EST 3): A special issue of the
Workshop on Academic Software Development Tools and Techniques
(WASDeTT 2008). <http://www.sciencedirect.com/science/article/B6V17-
4X6MSPV-3/2200/91f82400b828c4fe2aa6bc04551d0a57>.

[40] K. Manikas, K.M. Hansen, Characterizing the Danish telemedicine ecosystem:
making sense of actor relationships, in: Proceedings of the Fifth International
Conference on Management of Emergent Digital EcoSystems, ACM, 2013, pp.
211–218.

[41] K. Manikas, K.M. Hansen, Reviewing the health of software ecosystems–a
conceptual framework proposal, in: Fifth International Workshop on Software
Ecosystems (IWSECO-2013), CEUR-WS, 2013, pp. 33–44.

[42] K. Manikas, K.M. Hansen, Software ecosystems – a systematic literature
review, J. Syst. Softw. 86 (5) (2013) 1294–1306.

[43] J.D. McGregor, A method for analyzing software product line ecosystems, in:
Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume (ECSA ’10), ACM, New York, NY, USA, 2010, pp. 73–80.
http://dx.doi.org/10.1145/1842752.1842773.

[44] MedCom, Overview of danish telemedical initiatives, 2013. <https://
medcom.medware.dk/telemedicine_projects> (accessed December 2013).

[45] D. Messerschmitt, C. Szyperski, Software Ecosystem: Understanding an
Indispensable Technology and Industry, MIT Press Books 1, 2003.

[46] National Sundheds-It, Referencearkitektur for opsamling af helbredsdata hos
borgeren, Version 0.18 in public hearing, April 2013, in Danish.

[47] Net4Care, Net4care website, 2014. <http://www.net4care.org> (accessed April
2014).

[48] M. Olejaz, A.J. Nielsen, A. Rudkjøbing, H.O. Birk, A. Krasnik, C. Hernández-
Quevedo, Denmark: health system review, Health Syst. Trans. 14 (2) (2012)
1–192.

[49] A. Osterwalder, The Business Model Ontology: A Proposition in a Design
Science Approach, Ph.D. thesis, University of Lausanne, 2004.

[50] A. Osterwalder, Y. Pigneur, Business Model Generation: A Handbook for
Visionaries, Game Changers, and Challengers, Wiley, 2010.

[51] M.Q. Patton, Qualitative Research and Evaluation Methods, SAGE Publications,
Inc., 2002.

[52] PHMR, Implementation Guide for CDA Release 2.0 Personal Healthcare
Monitoring Report (PHMR) (International Realm) Draft Standard for Trial
Use Release 1.1, October 2010.

7 http://www.caretechinnovation.dk.
8 http://www.partnerskabetunik.dk.
9 http://www.alexandra.dk/dk/projekter/sider/kickstart-af-danmark-som-tele-

medicinsk-foregangsland.aspx.

H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

[53] R. Robbes, M. Lungu, A study of ripple effects in software ecosystems (nier
track), in: Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11), ACM, New York, NY, USA, 2011, pp. 904–907. http://
dx.doi.org/10.1145/1985793.1985940.

[54] RRS, Remote rehabilitation support, 2009. <http://www.caretechinnovation.
dk/en/projects/rrs.htm>.

[55] R.P. Santos, C.M.L. Werner, A proposal for software ecosystem engineering, in:
Third International Workshop on Software Ecosystems (IWSECO-2011),
CEUR-WS, 2011, pp. 40–51.

[56] Sekoia, Sekoia website, 2014. <http://www.sekoia.dk> (accessed April 2014).
[57] TELEKAT, TELEKAT: Telehomecare, chronic patients and the integrated

healthcare system, 2007. <http://www.telekat.eu>.
[58] Telesår, Telemedicinsk sårvurdering, 2006. <http://www.pleje.net>.
[59] S. Urazimbetova, Experiences of integration of telemedicine to national

services, Tech. rep., Net4Care, 2012.
[60] J. van Angeren, V. Blijleven, S. Jansen, Relationship intimacy in software

ecosystems: a survey of the dutch software industry, in: Proceedings of the
International Conference on Management of Emergent Digital EcoSystems,

MEDES ’11, ACM, New York, NY, USA, 2011, pp. 68–75. http://dx.doi.org/
10.1145/2077489.2077502.

[61] I. vanden Berk, S. Jansen, L. Luinenburg, Software ecosystems: a software
ecosystem strategy assessment model, in: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, ECSA ’10, ACM,
New York, NY, USA, 2010, pp. 127–134. http://dx.doi.org/10.1145/1842752.
1842781.

[62] ViewCare, Viewcare, 2011. <http://www.viewcare.com>.
[63] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in Software Engineering, Springer, 2012.
[64] B. Womack, Google says 700,000 applications available for android, October

2012. <http://www.businessweek.com/news/2012-10-29/google-says-700-
000-applications-available-for-android-devices> (accessed April 2014).

[65] World Health Organization, Telemedicine. opportunities and developments in
member states, Report on the second global survey on eHealth, 2010.

[66] XDS.b, IT Infrastructure Technical Framework, Volume 1 (ITI TF-1), Integration
Profiles, Revision 9.0, August 2012.

[67] R.K. Yin, Case Study Research: Design and Methods, fifth ed., SAGE, 2013.

1492 H.B. Christensen et al. / Information and Software Technology 56 (2014) 1476–1492

