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ABSTRACT

The Standard Hough Transform (SHT) is used to find lines, circles and other image
features in edge maps containing edge points. Edge points which potentially can ‘vote’
for a given line (called its ‘line support’) are highly dependent of line position and orien-
tation due to the boundedness of images. If accumulator array peaks are used to find lines
then peripherally located lines are missed. Uniform feature detection probability in all
parts of the image requires normalization of the accumulator array by the support. The
paper describes some further applications of the concept of support when finding lines,
e.g. determining dominant directions, and gives some guidelines on the choice of the
coordinate system origin.
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1. Introduction

The Standard Hough Transform (SHT) is used to find groups of pixels forming geometrical elements from
an edge point image which typically is the result of using an edge detector on a grey-level image. Examples
of edge point images are shown in figure 1. In this paper we restrict ourselves to elements being straight
line segments of width one to two pixels.

As the Hough transform may be used as well in a bootstrapping procedure (i.e. extracting data from a digi-
tal image of which nothing is known a priori) as in later processing of it, we avoid arbitrary assumptions
about it, like " ... a short line, which is near the edge of the image space. In general an image will not be
composed of such lines." (Leavers [9], p. 76).

For each edge point votes are cast in the Hough parameter space for those parameter combinations which
result in a line through the point (see section 2 for a brief description). By associating an integer value (or
Hough cell) to each parameter combination, this may be done by counting in the cell. A parameter combi-
nation having a significant number of votes is a candidate for a line. The support for a line or more pre-
cisely a Hough cell may be defined as the set of pixels which potentially counts in it. If the size of the sup-
port for a given cell is the number of pixels in the set, it is easily seen that because the edge image is
bounded, the size of the support as a function of the parameters will not be constant. Cohen and Toussaint
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[3] showed this for a circular retina. For rectangular images the support will be largest for diagonal lines
through the center, and be near zero for lines in corners. The support is given approximately by the area
covered by the the inverse Hough transform of a cell representing a given parameter combination; it has the
general shape of a bow tie (see Princen et al. [10], where its is called the template shape, Ratley & Lund-
gren [12] and figure 3).

If line candidates are selected simply by choosing those cells which have the largest counts, disregarding
the support, the line finding process may have a bias against lines in the corners, favouring the diagonals
and lines parallel to the image boundaries. For noisy images, noise in the central part may actually over-
shadow lines near the boundary. This bias is relatively insignificant for sparse images or images with edge
points mainly in the central part, but for dense images with a lot of texture (like figure 1c) it is quite pro-
nounced and the votes have to be normalised in some way before the selection process starts (this is dis-
cussed in section 4). Filtering the Hough space to enhance the peak counts (Leavers [9], Princen et al. [10],
van Veen and Groen [13]) will not affect the bias.

(a) (b) (c)
Figure 1: Edge images. In (a) is shown a simple test image ("test") featuring six lines (128x128, 161 edge
points (1% black)). In (b) is a fairly typical test image ("milk3") with many lines in two directions
(512x512, 12206 edge points (4.7% black)). The original image is quite noisy. In (c) is shown a dense
edge image ("pentagon"), with lines in five dominant directions (512x512, M(E) = 40481 edge points
(15.4% black)).

The support may be used for other purposes than normalisation of the counts. For a completely filled edge
image (completely "black"), the count in a cell is a close approximation to the size of the support for it. If
an edge image has no structure, edge points will be distributed uniformly, and the number of votes cast for a
given parameter combination would be expected to be a constant fraction of the support. The presense of
structure in form of lines will be indicated by a vote significantly different.

This may be used to find dominant line directions (Andersen & Hansen [1]), as discussed briefly below.

2. The Standard Hough Transform (SHT), and notation used

The Standard Hough Transform (SHT) is used to find points forming lines in an edge (point) image called
E (dimensions Nr rows and Nc columns), which typically is the result of using an edge detector on a grey-
level image I . Edge points are marked e.g. as black on a white background. The number of edge points is
called M(E). Examples of edge images are shown in figure 1. The three examples are chosen because they
illustrate how different edge images may be. The test image (figure 1a) is generated by a program and has
few edge points forming six clearly visible groups each corresponding to a line. Figure 1b is a typical scene
image with a medium number of edge points and a mixture of lines and texture. Figure 1c is a difficult
image with a high density of edge points and much local texture, and a small number of dominant line
directions.



-3-

The Hough transform is based on lines being parametrisised by two parameters. A Hough transform com-
monly used (Duda & Hart [4]) assumes polar representation of a line, a line being the points

Lθ ,ρ = {(x, y)|ρ = x cos(θ ) + y sin(θ )} (1)

θ being in [0; π [. The coordinates (x, y) are in a coordinate system with origin O; here center
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) of the image is chosen as O. θ and ρ are both limited to a number of discrete values Nθ

and Nρ . In this paper nearly all examples use the values Nθ = 45 (corresponding to a resolution of 4°) and
Nρ = 256 (corresponding to a resolution of 2.8 pixels in a 512 by 512 image). These values have been cho-
sen to obtain clear plots illustrating the principles rather than useful results, but they are still in the range of
useful values according to Lam et.al. [8]. The effects of peak spreading and peak extension can be
observed, but are not significant for this paper.

An image E is transformed by the SHT by taking each edge pixel P = (x, y) in E and incrementing a
counter (also called a cell in the Hough space) for each possible coordinate pair (θ , ρ). If the polar coordi-
nates for P are (v p, R p), P will be represented by the Hough transform as a sinusoid

ρ = R p cos(θ − v p) (2)

The maximum value for R p is RE =
1

2 √ N 2
r + N 2

c .

The family of sinusoids resulting from a Hough transform of a line will form a butterfly (Leavers [9], Lam

et al. [8], and figure 3b). Typically θ will be chosen from the set θ i =
(i − 1)π

Nθ
( i in [1; Nθ ]), and ρ is

restricted to a member of ρ j = (
Nρ

2
− j + 1)RE /Nρ ( j in [1; Nρ ]). Figure 2 shows plots of the results of

two Hough transforms. The letters i and j are in the following used for the indices (called theta and rho
indices) corresponding to θ i and ρ j values. A cell Hij in the Hough space with a high count indicates a
candidate for a line. This is clearly illustrated in figure 2a.

The Hough cells forms a 2D histogram. For certain purposes it may be viewed alternatively as a collection
of 1D histograms; an example is the directional analysis desribed later. This idea is also found in Cohen and
Toussaint [3]. For a giv en θ the counter values Hij for all ρ values form a histogram. Two histograms for
θ = 25° and 36° are shown in figure 4. Lines corresponding to the maxima are plotted in figure 5. The two
histograms have a common ∩-shaped form. A closer examination shows that of the 20 maxima in figure
4a, only the leftmost 10 correspond to actual lines. The 11 maxima in figure 4b do not correspond to lines
at all. The form of the histogram is discussed further in section 3.

The effects of the choice of values for Nθ and Nρ and the effects of over- or undersampling (respectively
under- and overquantisation) are discussed in Lam et al. [8], Kiryati & Bruckstein [6] and and van Veen and
Groen [13]. The effects of choice of origin for the image E, or of the image E being bounded by a rectan-
gle have howev er not been investigated, and will be topics covered by this paper.

3. Support and bias

In this section we will define the concept of support for a Hough cell, and show how the traditional method
of selecting candidates by using maxima in the Hough space will result in a bias favouring diagonal lines in
the middle of the image, if the edge image is sufficiently dense and uniform.

The voting support V (C) for a cell Cθ ,ρ is defined as the set of edge points in E that causes that cell to be
incremented. The support S(C) for a cell Cθ ,ρ is defined as the set of points in E which potentially is in
V (C). S(C) has the general shape of a bow tie, the borders of which are formed by the lines corresponding
to (θ , ρ) plus/minus half the cell size. This is illustrated in figure 3. Princen et al. [10] calls this bow tie
shape a template shape, in this case corresponding to an rectangular cell. The support for a cell is a particu-
lar instance an template. We distinguish between the support for a cell and the support for the line Lθ ,ρ ,
because the latter is not well defined.
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(a) (b)
Figure 2: Hough transforms of two of the images in figure 1: (a) test image (1a). Note the six peaks corre-
sponding to three vertical lines (θ index 1), one diagonal (θ index 34) through the origin O and two diago-
nals in the left lower corner (θ index 12). In (b) is shown the Hough transform for pentagon (1c). The
peaks corresponding to approximately 100 lines in the five dominant directions (θ indices 7, 16, 25, 34 and
43) are not clearly distinguishable.

The following observations hold for the support: (1) if θ is undersampled, the support for neighbour cells in
the θ direction may overlap; (2) a line may have only a few pixels in common with the nearest cell; (3) if θ
is limited to values θ i , the cell shrinks to width zero, and the points of of S(C) will fall between parallel
lines in a band of width ∆ρ = RE /Nρ (Princen et al. [10]); (4) if θ is undersampled (or ρ overquantisised),
some points may be excluded from the support although they actually belong to it.

Point (4) needs an explanation. If voting is done by incrementing counters in cells indicated by the sinusoid
R p cos(θ i − v p), cells corresponding to some ρ j may be skipped where the sinusoid declines or inclines
steeply, unless θ is subsampled, or the sinusoid is traversed using interpolation. A pixel may in this way not
vote for all possible lines through it, and may consequently be missing from the support for these lines.
This will happen whenever R p is larger than a critical radius Rcrit defined in section 6. This radius is
closely linked to the equivalent line length Lq found in Lam et al. [8], which depends on the dimension of
the image and the quantisation scheme.

As the edge image E is bounded (typically rectangular), the size of the support S(C) will not be constant.
Lines near the corners of an image will have insignificant support, while the diagonals have large support.
Lines parallel to the borders have all equal support which falls in between. This is illustrated as follows. A
line between (0,9) and (9,0) has the Euclidean length 10√2 or 14, while the line between (0,99) and (99,0)
has the length 100√2 or 141. Let us assume that the former is solid, and the latter is missing 85% of the
points. The SHT will then select the latter as a better candidate, unless the counts are normalised by the
size of the support (giving normalised counts 1.00 and 0.85 respectively). Similar results were demon-
strated for a circular retina in Cohen and Toussaint [3], who gives the probability density function for noise

as f (y) =
2

π √ 1 − y2 (y being the distance from the center of the image). The effect is found for any

bounded retina independent of its shape, but the density function depends on the shape.

A complication may be that the number of counts coming from the points of a certain line depends on the
definition of a digital line. If the points of a line have been generated by a scan-conversion algorithm for
drawing 1-pixel lines (see e.g. Foley et. al. [5]), the number of points forming it will be equal to the differ-
ence in coordinates; as an example, a line between (0,9) and (9,0) will only have 10 points, one for each
first coordinate. van Veen and Groen [13] contains a detailed discussion of this. It is however only rele-
vant if the edge image E is generated by a line drawing program and will not be taken into consideration
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(a) (b)
Figure 3: The inverse Hough transform for an 128 * 128 image. In (a) is shown the inverse Hough trans-
form. Light grey and black indicates which pixels will count in the cell for θ = 60° and ρ = +24 ( H6,25);
these pixels form the support for that cell. Black indicate the line corresponding to the θ i and ρ j of the
cell. Coordinate axes are dark grey. The "bow tie" form is exaggerated by using a very coarse sampling of θ
(Nθ = 15) and ρ ( Nρ = 64), and to allow θ to have 20 intermediate values between given θ i and θ i+1. If
this subsampling was not used, the "bow tie" would be a band bounded by two parallel lines with distance
2.8 pixels. In (b) is shown why the support for a cell may miss pixels, using Nθ = 36 and Nρ = 128. The
two sinusoids forming the boundary of a "butterfly" form are the Hough transforms for the points (9,3) and
(63,123), which are end points for a line segment with θ = 65. 8° and ρ = 24 as in (a). The nearest cell has
indices (i, j) = (14, 47), corresponding to θ = 60°. Note that as ρ is overquantisised, not all cells having
the points in their support will have their counter incremented. The sinusoids are more dense when Nθ is
increased, and for points near the origin (because the amplitude is equal to the distance R p).
here.

The number of points in S(C) may be computed or it may be measured by doing a SHL on a " black" image
consisting entirely of edge points. The resulting Hough space B has the form shown in figure 7, having
maxima at the image diagonals. It is important to use the same Hough transform algorithm on the black
image to obtain a B usable as described below, as the effects of e.g. aliasing should be identical for both the
edge image and the corresponding support image B.

If the 40481 edge points in figure 1c were uniformly distributed, it could be expected that the resulting
Hough transform would have approximately the same shape as figure 7, all values being scaled down by a

factor
M(E)

M(allblack)
=

40481

262144
; this scaled-down parameter space is called B′. In figure 4 two sets of the

values of B′ have been plotted with the signature "support".

We assume in this paper that the scale has been chosen that the width of lines is one or two pixels.

A reasonable assumption about the general form of a Hough space histogram H is that it is the scaled sup-
port B′ plus or minus an amount due to local variations in the distribution of edge points due to e.g. ran-
dom variations, texture or lines.

A further assumption based on preliminary analysis and evidence about edge detectors is that we will
expect that lines will have a voting support V (C) along the line containing at least an average number of
pixels (giving counts above average), surrounded by areas having pixel counts below average. This is
because edge detectors suppress other edge points in a small neighbourhood; it can be seen in the edge
image as a "white" band on both sides of a line, as illustrated in figure 6. A line will thus appear in the his-
togram as a peak, as may be seen in figure 4. Such peaks may of course be caused by other features in the
image. Princen et al. [11] and Cohen and Toussaint [3] do not consider multiple edge point suppression
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(a) (b)
Figure 4: Hough counts corresponding to one θ . In (a) θ is 25°, or cell index 7 (of 45). This is one of the
dominating directions of 115°. The 20 largest values are marked (see plot in figure 5a). The 10 peaks in
the ρ index interval 116 to 178 does not correspond to lines in the image. The image however contains lines
corresponding to the peaks corresponding to low ρ values. In (b) θ is 36°, or cell index 10. It has been
chosen as an example of a direction with none or very few lines. The 11 largest values are marked (see plot
in figure 5b). They do not correspond to any lines. The signature "support" is the scaled support size as
described in the text.

(a) (b)
Figure 5: Lines corresponding to one θ . The lines have been plotted with a program which produces line
segments instead of lines going between images borders. In (a) θ is 25°. Lines corresponding to the 20
largest values are plotted. The lowest ρ index 68 corresponds to the upper left line. The lines have all
approximately the same support. In (b) θ is 36°, and the 11 largest values plotted. The lowest ρ index 94 is
in the upper left.

done by some edge detectors, but make the assumption that the distribution is a combination of uniformly
distributed additive noise and "real" linepoints.
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(a) (b)
Figure 6: Edge detector behaviour. (a) is a part of figure 1b, and (b) is taken from figure 1c. Edge points
forming lines are surrounded by non-edge ("white") pixels. Even in textured regions with no obvious lines,
clusters of edge points tend to be surrounded by non-edge bands.

The concept of support is not limited to lines. Any geometrical element like a circle, an ellipsis, or a
parabola will for certain parameter sets have points outside the image boundary, thus decreasing the sup-
port. The discussion above will consequently be valid in the general case.

4. Avoiding the bias

Using the maxima without taking the support into consideration may introduce a bias favouring lines which
are in the middle of an image and at oblique angles, because only a small fraction of a line with large sup-
port is needed to outvote a line with small support, even if all points in the latter are present. Another effect
is that votes coming from texture in regions with large support may "drown" lines with small support.
Because B′ = B * M(E)/(Nr * Nc), the significance of B′ increases with the total number of edge points.
The bias is not a problem for images with a low number of edge points, or when the edge points are in the
middle of the image, or if the dominant directions are parallel with the axes, but is quite pronounced in
images like "pentagon". This may be observed in figure 2a (a sparse image), and in figure 2b (a dense
image).

The problem is to a certain extent avoided using the Random Hough Transform (Kälviäinen et al. [7]). Any
random sampling of edge points will reduce the number of edge points contributing votes in the Hough
space, thus effectively reducing M(E). This is equivalent to making the original edge image less dense.
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Figure 7: The support S(C) for all possible cells Cθ ,ρ in an 512x512 image, plotted as a function of θ and ρ
indices. The peaks at θ index 1 is due to undersampling in ρ . The two maxima are at the diagonals ((θ , ρ)
indices (12,128) and (34,128)). The zero counts in the border area are for lines outside the E image bound-
aries.

The selection of candidates has to be based on some normalisation to avoid the bias. It is clear that the his-
togram H should be normalised in some way by either the size of the support B or the scaled value B′
before the selection process. From the assumptions about H in section 3 it is however not clear how this
may be done in the best way. The method used should preserve the peaks corresponding to lines, and scale
that part of a peak not due to noise or texture in a way to make selection of a maximum independent of the
size of the support. There are several ways to normalise H by either B or B′. Normalisation of a quantity Q
is done by dividing it by a number QN . If the normalisation factor is an expected value as well, it may be
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subtracted before the division (Q − QN )/QN ; the squared difference is often used to eliminate the sign and
emphasise the difference. Taking combinations, five possibilities could be:

Variant New histogram H ′ computed as

1 H ′ij =
(Hij − B′ij)2

B′ij
2 H ′ij =

Hij − B′ij
B′ij

3 H ′ij =
Hij − Bij

Bij

4 H ′ij =
Hij

Bij

5 H ′ij = Hij − B′ij

When Bij or B′ij is zero in a denominator, H ′ij is arbitrarily set to zero.

Variant 1 has the familiar χ 2 form, but this does not indicate whether the count is higher or lower than
expected. Furthermore a count which accidentally is equal to the average and has low-count neighbours will
give a local minimum rather than a maximum. Variant 2 preserves the sign, but will also produce zero if the
count is average. Variant 3 compares the count to the maximum possible, and will give neg ative values, but
with maxima at interesting counters. Variant 4 scales the peaks, but otherwise preserves the shape of the
histogram. These four variants all scales the height of the peaks by a number which is small for lines near
the image boundary; this has the unfortunate effect to reverse the bias to some extent. Variant 5 avoids this
reversal, but does on the other hand not fully remove the bias. The conclusion of this is that to normalise
properly, we need amore precise model for H .

Tw o plots showing variant 3 are shown in figures 8 and 9. Compared to figures 4 and 5, this is a clear
improvement even when using a method found purely by heuristics.

5. Utilising the support

As the scaled support expresses the expected number of votes for evenly distributed edge points, deviations
from it (e.g. table 1, variant 1) is a measure of uneveness, caused e.g. by texture or lines. The χ 2-like sum

Si =
Nθ

j=1
Σ

(Hij − B′ij)2

B′ij
(3)

can be used to select θ values most likely to correspond to dominant line directions (see Andersen &
Hansen [1]). This is illustrated in figure 10, which shows that the main directions in the images from figure
1 are seen as peaks in the plot of Si .

The variant 3 in table 1 can be used to select line candidates for a given θ . The method of selecting candi-
dates by looking at peaks is not completely satisfactory. In figure 9a some lines are missing, as they hav e
not corresponding peaks in the histogram. This may be explained by peak spreading and extension. In fig-
ure 9b it can on the other hand be seen that peaks in the normalised histogram does not always correspond
to actual lines, but is a response to other image features. The selection of candidates have thus to be fol-
lowed by an evaluation of the candidates to decide if the lines are present or not. This evaluation process is
the topic of e.g. Andersen & Hansen [1,2].

6. Choosing the origin and quantisation parameters

As illustrated in figure 3b, the tangent to the sinusoid may have an slope exceeding 45° for certain points
and certain quantisation values Nθ and Nρ , with the result that a pixel will not cast a vote in all relevant
cells. The derivative of equation (2) is d ρ/dθ = −R p sin(θ − v p). Transforming this back to image coordi-
nates, and observing that | − sin(θ − v p)| is less or equal to 1, this happens when
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(a) (b)
Figure 8: Normalised Hough counts, computed as (Hij − Bij)/Bij . In (a) θ is 25°, or cell index i = 7 (of 45).
The 18 most significant peaks are marked (see plot in figure 9a). Note that some of the peaks are common
with figure 4a. Most marked values correspond to actual lines. In (b) θ is 36°, or cell index i = 10. The
most significant 6 values are marked (see plot in figure 9b). None of the values correspond to actual lines.
The stippled lines (at -0.82 and -0.79) is a visual aid only.

(a) (b)
Figure 9: Lines corresponding to one θ . In (a) θ is 25°. Lines corresponding to the 18 values in figure 8a
are plotted. The lowest ρ index 15 corresponds to the upper left line. The lines drawn for ρ indices 195,
220 and 224 (lower left three lines) does not correspond to actual lines. Generally the lines plotted have
quite different support, the least support for the lines in the upper left and lower right corners. In (b) θ is
36°. Lines corresponding to the 6 values in figure 8b are plotted. The lowest ρ index 14 is the upper left
line. None of these lines correspond to actual lines.
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Figure 10: Finding dominant line directions. The values of Si from equation (3) are plotted for (a) "test3"
(figure 1a, (b) "milk3" (figure 1b) and (c) "pentagon" (figure 1c). The texture in the lower left corner of
"pentagon" broadens the peak for theta index 62. In this figure Nρ = 256 and Nθ = 180.

R p ≥ Rcrit =
Nθ RE

π Nρ
(4)

This effect is most pronounced for lines with ρ near zero.

In Lam et al. [8] is defined an equivalent line length Lq =
∆q ρ

sin(∆qθ /2)
, ∆q ρ being the ρ quantisation interval

(here RE /Nρ ) and ∆qθ being the θ interval (here π /Nθ ). If a line has length less than Lq, we will have peak
extension, and if the length is greater, we will have peak spreading.

If we approximate sin(x) by x for small values, we get an approximation

Lq =
∆q ρ

∆qθ /2
= 2Rcrit

From this it clearly follows that the origin O and maximal radius Rmax should be chosen so the circle
defined by these two parameters covers the area of interest, O being placed at the barycenter for the area. If
nothing is known about an image, the natural choice is to place O at the center of the image itself, and let
Rmax = RE . This is different from e.g. Leavers [9], who chooses Rmax = Nr /2 − 1.

The effects of choosing a small value for Rcrit is that long lines near the diagonal may get fewer votes, and
that lines near the corners may not count in the relevant Hough cell.

7. Discussion and conclusion

The notion of support has surprisingly enough not found its way to the literature about the SHT. Cohen and
Toussaint[3] suggest maximum entropy quantization to avoid the bias problem, but this requires pooling of
Hough cells corresponding to regions having less support. This reduces the detection and localization accu-
racy in low support areas, e.g. near the image corners.

The effects of support for dense edge images has been demonstrated in this paper, and two applications
have been mentioned. Support and bias are general concepts, which may be used for the application of the
Hough transform on other geometrical elements as well. An explanation of why the problem with bias has
only been sparsely mentioned in the literature until now may be that the edge images used have not been
very dense or had lines near the corners. Using the Random Hough Transform seems to be another way of
avoiding the bias.

The idea of considering one row (or column) in the Hough space as a histogram and combine it with nor-
malisation seems to be a very promising technique which can be used as one step in a multi-step selection-
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evaluation cycle. In such a process the computation of a χ 2 value for each direction may be used to find
dominant line directions. Princen et al. [11] use hypothesis testing and normalize cell counts by dividing
by an average of neighbouring cell counts. They use a specific model of a line profile on which they suggest
a test statistic. This test statistic corresponds to variant 4 of the methods discussed in section 4 for avoiding
bias. Further research is however needed to find a suitable normalisation method for use in the selection
process, and to verify that the edge image line model is valid for commonly used edge detectors.
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