
Evaluating a Fisheye View of Source Code

Mikkel Rønne Jakobsen & Kasper Hornbæk
Department of Computing
University of Copenhagen

Copenhagen East, Denmark
mikkelj@acm.org, kash@diku.dk

ABSTRACT
Navigating and understanding the source code of a program
are highly challenging activities. This paper introduces a
fisheye view of source code to a Java programming envi-
ronment. The fisheye view aims to support a programmer’s
navigation and understanding by displaying those parts of
the source code that have the highest degree of interest given
the current focus. An experiment was conducted which com-
pared the usability of the fisheye view with a common, linear
presentation of source code. Sixteen participants performed
tasks significantly faster with the fisheye view, although re-
sults varied dependent on the task type. The participants
generally preferred the interface with the fisheye view. We
analyse participants’ interaction with the fisheye view and
suggest how to improve its performance. In the calculation
of the degree of interest, we suggest to emphasize those parts
of the source code that are semantically related to the pro-
grammer’s current focus.

Author Keywords
Fisheye view, information visualization, programming, Eclip-
se, user study

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces

INTRODUCTION
Programming is a complex human activity. The programmer
is typically required to develop correct source code from a
general description of how a program should work. As the
source code grows in size and complexity, the navigation
between and within the files comprising the source code be-
comes mentally demanding. In addition, the programmer
must continually switch between writing new code and un-
derstanding existing code, possibly constructed by other per-
sons. Extensive research has aimed to find ways of support-
ing the programmer in these activities [11,12,17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2006, April 22-27, 2006, Montŕeal, Qúebec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004. . .$5.00.

One approach to supporting navigation and understanding of
source code is information visualization [10, 14]. The first
instance of such an approach was probably Furnas’s fisheye
views [5]. In fisheye views, all source code lines are as-
signed a degree of interest calculated from their a priori im-
portance and their relation to the line of source code in focus.
Lines with a degree of interest below some threshold can
thus be removed or rendered at smaller sizes for a view that
contains both details and context. Fisheye views promise
to integrate pertinent information in just one view; informa-
tion that in state-of-the-art programming environments like
Eclipse, NetBeans and Visual Studio are presented in sepa-
rate windows or require explicit action on part of the user.

The benefits of applying fisheye views to programming have
not been examined empirically. Empirical studies of fish-
eye views in other domains have shown positive results, for
example [15], but have also shown high task completion
times [6], interference with users’ ability to remember the
location of objects [16], and low incidental learning [8].

This paper presents an extension of a widely used open-
source development environment with a fisheye view of
source code. The design of the fisheye view is described, as
are the underlying decisions. We present an empirical eval-
uation of the fisheye view that emphasizes both measures of
usability and analysis of interaction patterns. Based on the
evaluation, we suggest potential improvements to the algo-
rithms and user interface design underlying the fisheye view.
We discuss in particular the algorithm used to calculate the
degree of interest; this is relevant not only for fisheye views
of source code, but also for the general notion of fisheye
views and for fisheye interfaces in other domains.

RELATED WORK
Fisheye views have been used to visualize source code and
programs at different levels of detail. The SHriMP system,
for example, uses fisheye views on graph representations of
the program structure [18]. Turetken et al. [19] described
how to use fisheye views of models used in systems analy-
sis and design. Below, however, we discuss only the use of
fisheye views, and distortion techniques more generally, on
a single file of source code. In addition we discuss empir-
ical evaluations of applying fisheye views to other types of
mainly textual data, such as electronic documents and web
pages.

Furnas [5] defined a general case fisheye view and suggested
that it could be applied to source code, so as to display con-

text information in addition to the lines of source code that
the programmer focuses on. To create such a view, lines
of source code are assigned a degree of interest based on
(1) their level of detail, or a priori importance, and (2) their
distance from the user’s focus (e.g., the currently selected
line of source code). The level of detail is determined from
the hierarchical structure of the program, as given by the in-
dentation of source code lines. Thus, enclosing conditional-
or loop-statements are considered of greater general interest
than highly indented lines. Likewise, local details are con-
sidered more interesting than remote details: lines indented
on the same level and in the same block as the line in fo-
cus are considered of high interest to the user, while lines in
other blocks are considered less interesting. Furnas’s fish-
eye view hides program lines with a degree of interest below
a certain threshold. The display space gained from hiding
parts of the source code provides for contextual information
(i.e., lines of source code with a high degree of interest not
visible in a traditional view). Furnas argued that the fisheye
view, in virtue of its combination of program lines close to
the focus and higher-level information, would show the lines
of greatest interest to the programmer, thereby facilitating
programming.

Furnas’s paper left unanswered several questions about the
implementation of fisheye views for source code. Below we
discuss these questions to outline related work; the remain-
der of the paper may be seen as an attempt to answer them.
One question concerns the use of display space in the fish-
eye view, in particular how to handle a large amount of lines
with the same high degree of interest. Koike [9] proposed
to keep the total amount of information displayed (i.e., the
number of source code lines) constant, and presented an al-
gorithm that usually, but not always, fills the available space.
No general answer to this question is therefore available.

Another question concerns how to establish the user’s focus
in the source code, needed to calculate the distance compo-
nent of the degree of interest function. In Furnas’s paper the
focus is given by the currently selected line. It is not obvious,
however, that the focus need be only one line, nor clear how
to determine the focus in situations where the user interacts
with the source view using a mouse. An alternative to the
fisheye view, source code elision, requires the user to manu-
ally fold and unfold blocks of program lines, thus avoiding
the issue of defining the focal point. In Jaba [3], for example,
methods in Java classes were elided, diminishing the bodies
of methods while displaying the method signature lines in
normal size. An empirical study by Cockburn and Smith [3]
showed that such elision may improve navigation tasks in
programming. However, the cost of the user’s direct manip-
ulation of the view may in practice prove to outweigh the
benefits of elision. The experimental tasks used in Cockburn
and Smith’s study were simple and required little use of the
folding mechanism, leaving this question unanswered.

A third question concerns whether we can utilize richer in-
formation about the program structure than Furnas did, that
is, enhancing the degree of interest function beyond using
just indentation level. One technique to distort the source

code that does this is program slicing. Program slicing was
first described as a method used by programmers for reduc-
ing the amount of code to look at when debugging or try-
ing to understand programs [20]. Program slicing limits the
view of the source code to those program lines which affect
the value of a specific variable. Tools for performing slic-
ing automatically have been found useful in debugging [21].
However, program slicing most often uses only variables to
slice the source code, not the structure of the source code, as
Furnas did. The choice of which variables to slice is usually
left to the user. In contrast to the intention of fisheye views,
this requires explicit and deliberate action on part of the user.

Yet another question concerns how to embed a fisheye view
in a source code editor, using the tools available in mod-
ern integrated development environments. As pointed out
by Koike [9], the focus may change continually when a user
edits source code. The effect of such changes on a straight-
forward implementation of fisheye views would probably be
visually very complex. This begs the question how the user’s
interaction with the editor affects the view, and how often the
view should be updated when the user’s focus changes. In
addition, the effects of editing (e.g., pasting or typing) source
code on the visual presentation is not treated in discussions
of fisheye views familiar to us.

We are aware of no evaluations of how fisheye views affect
programming at the level of interacting with individual files
of source code. However, the use of fisheye views on elec-
tronic documents and web pages has been investigated em-
pirically. Paez et al. [13] conducted an empirical study of
electronic documents where the font size was bigger for the
title, headings, and key sentences compared to other parts
of the document. Initially, the entire document was fitted
on the screen, and the user could zoom in on interesting
sections. The empirical study did not find this interface to
perform better than hypertext on measures of time, but did
find some positive user reactions towards the zooming inter-
face. Hornbæk and Frøkjær [8] compared a fisheye interface
for electronic documents to overview+detail and linear inter-
faces. In a task that required participants to read documents
as a basis for writing essays, the fisheye enabled subjects
to quickly get an overview of and read the documents. Af-
terwards, however, participants were able to answer fewer
questions about the content. Fishnet [1] extended a web
browser with a fisheye view by using a bifocal display in
which the context area was compressed, while search terms
were kept readable and highlighted. In an empirical study,
Fishnet was found to improve certain web search tasks, de-
pending on the organization of the web page. However, only
3 out of 13 participants preferred the fisheye interface.

In summary, Furnas’s original paper and related work have
only partly addressed the questions regarding how to imple-
ment fisheye views for source code. Additionally, we find
no studies that have investigated empirically how fisheye in-
terfaces for source code work; studies of fisheye views for
electronic documents and web pages show mixed results.
The remainder of the paper therefore explores answers to

Figure 1. Screenshots of (a) the Linear and (b) the Fisheye interface showing the same source file of 161 lines.

the questions raised, and provides an empirical evaluation of
our implementation of a fisheye view.

A FISHEYE VIEW OF SOURCE CODE
To investigate the questions above, we explored a number of
alternative designs for fisheye views of source code. Figure 1
(b) shows our preferred design, which we refer to as the Fish-
eye interface. Below we explain the design, and compare it
with a baseline linear interface shown in Figure 1 (a).

Both interfaces include an editor, implemented as a plugin in
Eclipse, an extensible development environment1. The plu-
gin extends the Java editor included in Eclipse’s Java Devel-
opment Tools. All features except line numbers and syntax
highlighting of the source code are disabled in the editor.
Both interfaces use an overview+detail approach in which
an overview of the entire document is shown to the right of
the detail view window; previous research [8] suggests such
an interface superior to using just a detail view. The detail
view shows a part of the document that the user has selected.
The overview shows the source code reduced in size to fit
the entire document within the space of the overview area;
the standard source code highlighting is preserved. The text
is unreadable, but it is possible to discern structural features
such as method boundaries and blocks of javadoc comments.
The part of the document shown in the detail view is visu-
ally connected with its position in the overview by lines. The
overview supports the mouse interaction normally expected
from a scrollbar; the thumb can be dragged to scroll the de-
tail view and clicking above or below the thumb scrolls the
detail view one page up or down.

The above features are common to the interfaces; the next
four sections describe the design of the Fisheye interface.
The plugin can be downloaded from the authors’ web sites.
1http://www.eclipse.org

Focus and Context Area
In the Fisheye interface, the detail view of the source code is
divided into two areas: the focus area and the context area.
The total available space is evenly divided between the two
areas. The editable part of the view, the focus area, is re-
duced in size to accommodate a context area. The context
area uses a fixed amount of space above and below the fo-
cus area. It contains a distorted view in which certain parts
of the source code, being of less relevance given the focus
point, are diminished or elided. The focus point is defined
as all lines visible in the focus area. Thus, the context area
is updated when the user scrolls the view, and remains un-
changed when the user moves the caret within the bounds
of the focus area. Our design hereby circumvents the issues
raised earlier concerning how often the focus changes and
the potential problems of frequently updating the view.

Degree of Interest Function
A degree of interest (DOI) function determines if and how
much the lines are diminished in the context area. The de-
gree of interest for a program linex given the focus pointp
is calculated as:

DOI (x|p) = API (x)−Dsyntactic(p, x)−Dsemantic(p, x)

First, the DOI function is based on an a priori interest (API)
component defined by (a) the type of program line for which
the degree of interest is currently being calculated and (b)
that line’s indentation level. The type of a program line is de-
termined by deducing the most general abstract syntax tree
(AST) node from the line. A priori interest for a noden in
the AST of the source file with root noder is defined as:

API (n) = BI (n) −
√

wLODd(r, n)

A priori interest is the base interest of the node,BI (n), di-
minished with the factorwLOD by the node’s distance to the
root,d(r, n). Program lines containing one of the keywords

Base interest for an indenting program statement 30
Base interest for a package declaration 20
Base interest for a type declaration 20
Base interest for a method declaration 20
Base interest for a field declaration 10
Base interest for a variable declaration 10
Base interest for block closing ”}” 2
Level of detail weightwLOD of node inAPI(n) 2

Table 1. DOI function constants in the Fisheye interface.

package, class, interface, or method, are assigned a higher a
priori interest than other lines. Enclosing statements—that
is, those lines containing one of the Java keywords catch, if,
finally, for, switch, try, or while—are also assigned a higher
a priori interest. This is similar to Furnas’s proposal. Ta-
ble 1 lists the values ofBI (n) for different types of lines
that are used to balance how lines are diminished in the con-
text area. The constants were found through iterations of
the design and evaluation with programmers. For efficiency,
we process consecutive program lines as a block whenever
possible. AST nodes that span multiple lines, and lines of
other types than those mentioned above, for example com-
ment lines, are processed as blocks.

A second component of the DOI function is based on the
line’s distance from the focus point. The distance is calcu-
lated as the sum of the syntactic distance and the semantic
distance. The syntactic distance is calculated similar to Fur-
nas’s proposal; lines in the same indented block as the focus
point are closer to the focus point than lines on other inden-
tation levels and in different blocks, thus contributing to a
higher degree of interest. In addition to syntactic distance,
the Fisheye interface also calculates semantic distance from
the focus point. Lines containing declarations of classes,
methods and variables that are referenced in the focus point
are deemed more relevant than other lines, including syntac-
tically close lines, and are therefore assigned an even higher
degree of interest. This type of line is highlighted with an
alternate background color to express their semantic relation
to the visible lines in the focus point. Thus, our design move
beyond the ideas of Furnas by using semantic information in
the second component of the DOI function.

Magnification Function
A magnification function prioritizes each program line ac-
cording to its degree of interest in order to reduce the size of
the least interesting lines. A line’s magnification is thus de-
termined by its relevance relative to the amount of lines yet
to be allocated space in the context area. Lines with similar
degrees of interest are prioritized according to their distance
in lines from the focus area, so that lines closest to the fo-
cus area are allocated space first. Figure 2 lists a simplified
version of the algorithm used in the Fisheye interface.

We chose this strategy in the design of the Fisheye interface
to solve the problem of deciding how to use the available
display space, an issue that we discussed in the section on re-
lated work. An alternative implementation of Furnas’s fish-
eye view is to use a magnification function that does not take

linesLeft = countLines(blocks);
foreach (block in prioritized blocks) {

ratio = availableSpace / linesLeft;
zoom = block.getDOI() * SQRT(ratio);
block.setZoomLevel(ZOOM_FACTOR * zoom);
linesLeft -= block.getLines();
availableSpace -= block.getHeight();

}

Figure 2. Pseudo-code for calculating the magnification
of lines in the context area.

(a) (b)

Figure 3. Fisheye view of 161 lines of source code; (a) the
Fisheye interface and (b) with alternative magnification
function that clips the source code to fit the view.

the amount of available space into consideration, and simply
clips the view to the available display space. Figure 3 illus-
trates the difference between the two strategies. The fixed
degree of magnification for the source lines in Figure 3(b)
causes lines with a high degree of interest, that are far from
the focus area, to be suppressed or clipped from the view.
Similar approaches were used by Cockburn and Smith [3]
and Hornbæk and Frøkjær [8]. In contrast, our prioritization
strategy in Figure 3(a) first allocates space to the lines with
high DOI to assure that they are included in the view.

User Interaction
The focus area offers the same facilities for interaction as a
normal editor. The caret can be moved within the bounds of
the focus area, scrolling the view contents when moving the
caret against the upper or lower bound. The context area au-
tomatically reduces in size to fit the content; near the top of
the document, for example, when the user scrolls by hold-
ing an arrow key to move the caret past the upper edge of
the focus area, the upper part of the context area retracts.
By moving, or brushing, the mouse over lines in the context
area, those lines are highlighted in the overview. Clicking on
a line in the context area centers the focus area around that
line and places the caret in the line.

EXPERIMENT
To gain a better understanding of the usability of fisheye
views of source code, a controlled experiment was con-
ducted in which the Fisheye interface was compared to the
Linear interface. One goal of the experiment was to mea-
sure the usability of the interfaces for programming tasks,
especially to seek evidence regarding the expectations about
fisheye views raised by Furnas. Another goal was to describe
how users interact with the two interfaces, so as to gain an
understanding of how the design presented in the previous
section affect user’s navigation and understanding.

Participants
The 16 participants (2 female) were students at the authors’
department (7) or professional programmers (9). Partici-
pants were screened to have at least one year of program-
ming experience in an object-oriented language. Half of
them had over five years of general programming experi-
ence. The participants were between 24 and 34 years old.

Tasks
Tasks addressed both navigation and program understand-
ing. Navigation tasks from a study of source code elision [3]
were used to evaluate the hypothesis that the fisheye view en-
ables the programmer to navigate faster in the source code.
We expected that it would be easier to find the information
required to solve the task with the Fisheye interface, because
there would be no need for scrolling the view. In cases
where the information was not directly accessible without
scrolling, we expected the user to navigate more quickly to
the required information once it had been located.

To study whether the fisheye view affects program under-
standing, we also used composite task types that require
more complex user interaction than the navigation tasks.
These composite task types were based on issues in object-
oriented programming, including delocalization, which have
been discussed in the empirically based literature on pro-
gramming (e.g., [4]). Finally, we used a type of task con-
cerning the understanding of control structures in the source
code, similar to tasks used in a study of control structure di-
agrams [7]. Below we describe the instances of these task
types, which make up the 18 tasks used in the experiment.

One-step-navigation tasks
The first of two types of navigation task was of a form sim-
ilar to: ”In the method ’update’, find the program line with
the first call to the method ’Math.min’.” The tasks of this
type varied only with respect to the names of the methods
and used source files from [3]. The tasks were repeated with
source files of 186–187 lines and 368–376 lines.

Two-step-navigation tasks
The following is an example of the second type of navigation
task used in the experiment: ”In the method ’hasGreen’, find
the return type of the method that is called last.” Only the
method name in the task text were varied between tasks of
this type. Like the one-step-navigation tasks, this type of
task used source files from an earlier study [3], repeated with
source files of 162–176 lines and 365–366 lines.

Determine-field-encapsulation tasks
One of the composite tasks involved determining whether
or not two fields are encapsulated, that is, whether the vari-
ables are protected from external reference and correspond-
ing get- and set-methods exist. The tasks were of the fol-
lowing form, varying only by the names of the fields: ”How
many of the fields ’fText’ and fFont’ are encapsulated cor-
rectly?” The source used in these tasks contained 340–361
lines and 34–38 methods—too many methods to be visible
simultaneously in the Fisheye interface.

Task type Linear Fisheye
One-step-navigation 2 2
Two-step-navigation 2 2
Determine-field-encapsulation 1 1
Determine-delocalization 2 2
Determine-control-structure 2 2
Total 9 9

Table 2. Number of tasks performed by each participant.

Determine-delocalization tasks
Another challenging type of task involved determining delo-
calization in the source code, for example: ”The method ’up-
date’ (line 207–214) contains a total of 6 method calls. How
many of the methods called are declared in this file?” These
tasks used source code files from the JHotDraw 5.2 program
(http://www.jhotdraw.org/) with a number of method calls
between five and nine, of which several were calls to meth-
ods declared in other files (delocalized code).

Determine-control-structure tasks
The last type of task concerned the control structure within a
single method. An example of a task concerned with count-
ing enclosing statements read: ”In the method ’mergeTer-
mInfos’ (line 201–238), how many for, while and if/else
statements enclose line 233?” An example of a task con-
cerned with finding the closing brace of a block read: ”In
the method ’renameFile’ (line 225–281), find the line con-
taining the ’}’ that ends the if-block which starts on line
241.” These tasks used source code files from two Apache
Jakarta projects selected to contain methods with a body of
more program lines than visible simultaneously in the Fish-
eye interface.

Materials
Participants used a laptop computer for the experiment with
the screen set to a 1024 x 768 resolution with 16-bit color.
The Eclipse window used all available screen space. For
input, participants used the laptop’s keyboard and an opti-
cal, wireless mouse. Tasks were presented in a task view in
Eclipse next to the editor view. Participants typed their an-
swer to the tasks in the task view and clicked a button to con-
tinue, enabling us to accurately register completion times.

Design
A within-subjects experimental design was used, the inde-
pendent variables being interface type (Fisheye, Linear) and
task type (One-step-navigation, Two-step-navigation, Deter-
mine-field-encapsulation, Determine-delocalization, Deter-
mine-control-structure). Participants performed a set of nine
tasks with each interface, see Table 2. The order of tasks and
interfaces were systematically varied and counter-balanced
across participants.

Procedure
Prior to solving the 18 experimental tasks, participants were
given an introduction lasting about 30 minutes. In the intro-
duction, participants were explained how to operate the two
interfaces, and were given a few minutes to try them. As part

of the introduction, participants also performed a set of nine
warm-up tasks; five tasks using the Linear interface and four
tasks using the Fisheye interface. Participants were allowed
to ask questions during the warm-up tasks. Details of the
tasks were explained and, if participants were hesitant, they
were reminded how to operate the interfaces.

After the introduction, a set of nine experimental tasks were
performed with each of the two interfaces. The participants
were urged to give correct answers as quickly as possible,
without asking questions during the experiment. A question-
naire about the interface just used was administered to the
participants following each set of tasks. This questionnaire
contained five questions from QUIS [2], and eight additional
questions specific to the experiment (see Table 4). A third
and final questionnaire was administered after all tasks had
been completed, asking the participants for their age, gen-
der and programming experience. The questionnaire also
asked participants to compare the Fisheye interface with the
Linear interface on a comparative scale. Additionally, par-
ticipants were asked to write advantages and disadvantages
of the Fisheye interface compared to the Linear interface.
Finally, they were given the opportunity to verbally express
their experiences with the two interfaces. The entire experi-
ment lasted between 60 and 90 minutes for each participant.

RESULTS
The data collected comprised task completion times, accu-
racy, preference, and participants’ satisfaction with the in-
terfaces. Data were analyzed with repeated measures analy-
sis of variance. Because the distribution of task completion
times was positively skewed, the completion times were sub-
jected to logarithmic transformation prior to analysis.

Accuracy
We find no significant difference between interface type in
the accuracy of participants’ answers to the tasks,F (1, 14) =
.147, p = .707. In total, 288 tasks were completed by the
participants, of which 129 tasks were completed correctly
with the Linear interface (89%) and 131 tasks completed
correctly with the Fisheye interface (91%).

Task Completion Times
The task completion times are summarized in Table 3. The
average task completion time is lower with the Fisheye inter-
face compared to the Linear interface,F (1, 14) = 4.76, p =
.047. However, tasks and interfaces interact,F (8, 7) =
9.57, p = .004, and we thus analyzed data per task to de-
scribe those task related differences.

Completion times show no significant difference between
the interfaces in one-step-navigation tasks,F (1, 14) =
0.57, p = .463. In two-step-navigation tasks, participants
used significantly less time with the Fisheye interface com-
pared with the Linear interface,F (1, 14) = 9.49, p = .008,
a difference of 18% in average completion time. We ex-
pected the fisheye view to generally improve navigation.
However, the results suggest improvements only when nav-
igating to methods that are visible and highlighted because

Task type Linear Fisheye
M SD M SD

One-step-navigationa 32.3 16.2 30.5 13.5
Two-step-navigationa 39.9 13.9 33.8 13.9
Determine-field-encapsulationb 80.7 24.7 96.8 37.6
Determine-delocalizationa 92.1 46.9 61.1 34.1
Determine-control-structurea 43.9 17.1 50.5 20.7
Average 55.2 35.849.8 31.5

Table 3. Task completion times in seconds. Significantly
lower times are shown in bold.(a) N=32, (b) N=16.

they are being referenced in the focus area, which occurred
in the second step of the two-step-navigation tasks.

Participants tended to complete determine-field-encapsula-
tion tasks slower using the Fisheye interface compared with
the Linear interface, but the difference in average comple-
tion time was not significant,F (1, 14) = 2.24, p = .157.
Though not significant, we did not expect to find inferior
performance of Fisheye compared to the Linear interface.

In determine-delocalization tasks, participants counted how
many of the methods or fields used in the body of a given
method that were declared in the source file. On average,
participants completed those tasks significantly faster (about
51%) using the Fisheye interface compared with the Linear
interface,F (1, 14) = 13.9, p = .002.

The determining-control-structure tasks involved counting
the conditional and loop statements that enclosed a given
program line, or finding the closing brace of a given loop
control structure. Overall, we found no difference in com-
pletion time for these task types,F (1, 14) = 3.85, p = .070.
However, participants used more time to find the closing
brace of a given loop control structure with the Fisheye inter-
face compared to the Linear interface,F (1, 14) = 7.73, p =
.015. When implementing the Fisheye interface, we as-
signed a relatively low base interest to closing braces, Ta-
ble 1. As a result, the closing braces to be found in these
tasks were not visible in the context area. This may explain
why participants used more time with the Fisheye interface,
because they had to scroll the view to find the closing brace.

Satisfaction
Overall, participants preferred the Fisheye interface com-
pared with the Linear interface (t = −5.229, df = 14, p <
.001). Only one participant slightly preferred the Linear in-
terface and one participant did not answer the question.

Average satisfaction scores for the two interfaces are sum-
marized in Table 4 for the 14 questions that the participants
answered. All questions were answered on a scale from one
to seven. Across all questions, the participants rated the
Fisheye interface better than the Linear interface, multivari-
ate analysis of varianceF (1, 15) = 10.0, p = .005. Below
we analyse each of the questions; all tests are made with in-
dividual analyses of variance tested againstF (1, 15).

In general, participants liked the Fisheye interface better

than the Linear interface (p < .006). The Fisheye interface
also scored better on the scale from terrible to wonderful
(p < .004). There was no significant difference in how the
participants found the two interfaces on the scale from hard
to easy (p > .9). However, three participants mentioned
as a disadvantage of the Fisheye interface that it required
more training to use effectively. Participants found the Fish-
eye interface both more pleasant (p < .03) and more fun
(p < .001) to use than the Linear interface.

On the scale from confusing to clear, the participants found
the Fisheye interface to be significantly less clear than the
Linear interface (p < .04); the only question where the Fish-
eye interface scores lower than the Linear interface. Five
participants commented as a disadvantage of the Fisheye in-
terface that it could be confusing to use, in particular with
scrolling. Also, some participants did not clearly understand
that program lines were shown and highlighted because they
were related to one or more lines in the focus area. We found
no significant difference between the two interfaces in the
participants’ answers of whether they often lost their orienta-
tion in the source code (p > .05), nor was there a difference
in the answer to whether it was clear to them where in the
source code they were looking (p > .25). These results sug-
gest that the Fisheye interface was not confusing in general,

Satisfaction question Linear Fisheye

1. How did you find the interface in general?
Very poor - Very good 4.13 (.34) 5.44(.20)

2.-6. How was the interface to use?
Terrible - Wonderful 4.00 (.29) 5.13(.15)

Hard - Easy 5.19 (.37) 5.13 (.31)
Frustrating - Pleasant 3.81 (.41) 5.00(.29)

Boring - Fun 3.56 (.29) 5.25(.35)
Confusing - Clear 5.81(.31) 4.50 (.37)

7. It was clear most of the time where I was in the source code.
I disagree - I agree 5.88 (.31) 5.25 (.36)

8. I often lost my orientation in the source code.
I disagree - I agree 2.88 (.43) 2.56 (.26)

9. How do you perceive the tasks?
Very challenging - Very easy 5.31 (.27) 5.56 (.24)

10. How were your answers to the tasks?
Very poor - Very good 5.56 (.26) 5.75 (.27)

11.-12. Was the source code...
Hard to understand - Easy to understand 4.81 (.31) 5.19 (.23)

Hard to overview - Easy to overview 4.44 (.38) 4.94 (.28)

13. Were methods you were trying to locate in the source code...
Hard to locate - Easy to locate 3.50 (.39) 5.31(.35)

14. Were other information in the source code...
Hard to locate - Easy to locate 3.50 (.35) 5.60(.22)

Table 4. Average satisfaction scores (and standard error
of the mean) for the 14 satisfaction questions for the two
interfaces. The anchor points on a semantic differential
scale is shown below each question. Significantly better
scores are shown in bold.

but rather that it was confusing when searching by scrolling
in the source code.

Participants found it easier to find methods (p < .004) and
other information (p < .001) in the source code with the
Fisheye interface than with the Linear interface. Also, most
participants commented in the questionnaire that they felt
the Fisheye interface gave a better overview of the source
code and helped to locate methods and variables. About
half of the participants commented as an advantage that they
could see enclosing statements in the Fisheye interface.

The fisheye view’s poor performance in determine-field-en-
capsulation tasks may be explained by comments made by
some participants. They found it difficult to search for vari-
ables and methods in the context area while scrolling, be-
cause the context area was displaying lines which are se-
mantically related to the lines in the focus area. As lines
scroll in and out of focus, different semantic relationships in
the source code take effect, resulting in irregular changes to
the context area.

The focus area in the Fisheye interface was too small accord-
ing to comments made by 12 out of the 16 participants. A
few participants added that they would find this a problem
when writing or editing the code.

Interaction with the Interfaces
Data describing the participants’ interaction with the inter-
faces were automatically collected during the experiment.
We visualized this interaction with progression maps, which
have previously been used to analyze reading of electronic
documents [8]. Analysis of the progression maps revealed
patterns in the participants’ interaction which, in many of
the tasks, are clearly distinguishable between the two in-
terfaces. The patterns evident in the progression maps sup-
port the conclusions based on the task completion times, but
also indicate some problems with the Fisheye interface. We
show representative patterns and provide counts of partici-
pants who interact in a similar way.

The progression maps are used to show which part of the
source file was visible in the focus area at a given time during
the task (see Figure 4 to Figure 8). Dashed horizontal lines
ending in a circled number to the right of the map indicate
program lines that hold the answer to the task. In progression
maps for tasks where more than one program line is used to
answer the task, the numbers indicate the order in which the
lines are to be used. Certain forms of interaction are anno-
tated with symbols in the progression maps: a hand symbol
when user scrolled the view by dragging the scrollbar thumb
and an arrow-in-document symbol when user clicked in the
context area. Other interaction forms are directly discern-
able from the map, such as scrolling by arrow keys and page
up/down keys respectively.

Typical patterns found in progression maps for two of the
two-step-navigation tasks, see Figure 4, show that with the
Linear interface, participants had to search through the file
for both methods. With the Fisheye interface, 11 out of

(a) Linear interface (b) Fisheye interface

Figure 4. Progression maps, two-step-navigation tasks.

16 participants were able to find the return type in the sec-
ond method directly in the context area. Similar differences
are evident in progression maps for the one-step-navigation
tasks.

Progression maps representative for determine-field-encap-
sulation tasks are shown in Figure 5. The patterns indicate
that while participants found places of interest and jumped
by clicking in the context area in the Fisheye interface, they
also needed to scroll to search the 34–38 methods. Analysis
of the progression maps does not yield any explanation why
participants solved this type of task slower with the Fisheye
interface, as the task completion time results suggest. One
possible cause is that participants searched more slowly by
scrolling in the Fisheye interface than in the Linear interface.

Typical interaction patterns can be seen in the representa-
tive progression maps for determine-delocalization tasks in
Figure 6 (involving variables) and Figure 7 (involving meth-
ods). The progression maps confirm that participants made
several searches and jumps in the source code with the Lin-
ear interface. Being asked to determine how many of the
called methods were defined in the source file, they had to
search for the definition of each method, returning each time
to find the name of the method called next, start searching
again, and so forth. The progression maps for the Fisheye
interface show that once participants had navigated to the
method, they were able to use the fisheye view’s context area
to find the information necessary to complete the tasks. In
the Fisheye interface, 12 out of the 16 participants completed
the tasks with minimal interaction.

Figure 8 shows the progression maps for the two determine-
control-structure tasks that involved counting program state-

(a) Linear interface (b) Fisheye interface

Figure 5. Progression maps, determine-field-encapsula-
tion tasks.

(a) Linear (b) Fisheye

Figure 6. Progression maps for determine-delocalization
tasks involving variables.

ments enclosing a given line. In the first task, all participants
using the Linear interface scrolled down to the specified line,
and were then able to answer the task without scrolling fur-
ther, Figure 8(a). Six out of eight participants using the Fish-
eye interface continued to scroll the focus area to determine
the control structure and answer the task, Figure 8(b). The
Fisheye interface thus makes the task of finding the enclos-
ing statements harder for participants. The second task, Fig-
ure 8(c) and 8(d), shows a different result. All participants
using the Linear interface, once they had found the specified
line, had to scroll back at least once to determine the con-
trol structure. Seven of eight participants using the Fisheye
interface, however, could determining the control structure
using the context area without scrolling any further. These
interaction patterns confirm our hypothesis that the Fisheye
interface helps to determine large control structures faster.

For determine-control-structure tasks where participants had
to find the closing brace of a loop-structure, the progression
maps did not show any apparent differences in how partici-
pants interacted with the Fisheye interface compared to the
Linear interface. The inferior performance with the Fish-
eye interface in these tasks, with respect to task completion
times, could be caused by the smaller focus area.

DISCUSSION
The results from our experiment show an overall improve-
ment in task completion times with the fisheye interface for
representative program navigation and understanding tasks.
Yet, strong differences in task completion times were found
among tasks. Participants were equally accurate in answer-
ing the tasks. They much preferred the Fisheye interface and
scored it significantly higher on 6 of 14 satisfaction ques-
tions, for example concerning whether the interface was eas-
ier or more pleasant to use. By analyzing progression maps,
we identified great variation in how the participants inter-
acted with the Fisheye interface. In spite of the short time
the participants used the interface, several of them displayed
very effective use of the fisheye view. The context area was
frequently used for searching and navigating in the source
code. Many tasks were completed with sparse interaction
resulting in reduced physical effort compared to the interac-
tion with the Linear interface.

To discuss our design and empirical results, we return to the
questions raised in the section on related work. The first
question concerned how to use the display space in a fisheye

(a) Linear (b) Fisheye

Figure 7. Progression maps, determine-delocalization tasks involving methods.

(a) Linear, task 1 (b) Fisheye, task 1 (c) Linear, task 2 (d) Fisheye, task 2

Figure 8. Progression maps for determine-control-structure tasks concerned with counting enclosing statements. The
line numbered 1 indicates the program line given in the task, line 2 the farthest line needed to answer the task.

view. Many fisheye views of text [1, 3, 8] show mostly di-
minished text in the context area. We propose to have mainly
readable text displayed in the context area. This allows direct
use of the information in the context view, which is evident
in the tasks where users directly read source lines displayed
in the context area or when they click in the context area to
jump to a certain line. Further experimental work is needed
to understand the difference between these two approaches
to displaying content in the context views. Alternative ap-
proaches should be considered; for example, dispensing with
a static context area and displaying context information in
proximity to the focus point would make it clear to the user
why that context information is displayed.

A second question concerned how to establish the user’s fo-
cus point in the source code. Our solution to use a focus
area spanning many lines as the focus point gives the inter-
face stability, because the context view rarely needs updat-
ing. Some participants, however, were confused about what
semantic relation that caused program lines to be shown and
highlighted in the context area. How to make transparent to
users why lines are shown in the context view is not easy.
One solution could be to allow the user to control the fo-
cus point more accurately, for example by the position of the
caret. This would allow for an easily understandable relation
between focus point and context information, but would also
make the interface visually busy.

We succeeded in using richer information in establishing
the degree-of-interest, a challenge also raised in the section
on related work. Our data show that the Fisheye interface
helped participants to find and navigate to a method, if the
method is semantically related to the focus area. Partici-
pants also spent less time using the Fisheye interface to de-

termine which methods are called in the focus area. The
significant effect of showing lines in the context area that
are related to the focus area may have been influenced by
those lines being highlighted. Nevertheless, we argue that
fisheye views in source code editors should include program
lines which are referenced by the lines in the programmer’s
focus. In contrast, the results of our experiment leads us to
believe that the Fisheye interface is less useful for display-
ing lines containing declarations of methods and variables,
which are not directly related to the programmer’s point of
focus. In common programming environments, such lines
are typically displayed in outlines of the edited source file.
Considering the tradeoff between showing those lines in the
context area compared to having a larger focus area for edit-
ing source code, we think that the base interest assigned to
such lines as method headers in the Fisheye interface seems
too high (see Table 1). Future work could examine the rel-
ative utility of the various kinds of information that could
be shown in the context area, but also alternative ways of
creating the degree of interest function; automatically, for
example, by using eye tracking or logging of participants’
navigation.

The fourth question raised in the section on related work
concerned how to integrate fisheye views in a modern de-
velopment environment. Our plug-in works with Eclipse,
but some issues remain. In particular, our implementation
of how the fisheye view changes when scrolling is still un-
satisfactory: the information needed when scanning during
scrolling seems much different from that needed while read-
ing and editing source code.

At least three problems and limitations of the experiment
should be considered when interpreting the results. First,

participants were given relatively short time to practice with
the interfaces before the experiment. Informal observations
made during the experiment suggest that participants some-
times hesitated or expressed doubts, leading us to suspect
that they were given insufficient time to become confident
in using the Fisheye interface. Second, the realism of the
programming environment was reduced because we limited
the tools available to the participants during the experiment.
Modern source code editors often offer advanced features,
such as hyperlinking and advanced highlighting. Also, many
tools are usually available in addition to the editor, such as
the outline view mentioned earlier, which may affect how
programmers use the editor. Our results do therefore not
necessarily reflect the effect of the Fisheye interface in prac-
tice. Third, simple programming activity was investigated
in this paper. In particular, we investigated only navigation
and program understanding of static programs, not of pro-
grams that are created or modified by the user. We still face
the challenge of uncovering what long term effects fisheye
views in source code editors may have on programming.

CONCLUSION
We have presented a design and empirical evaluation of a
fisheye view applied to source code. The aim has been
to support programmers in navigating and understanding
source code by displaying those parts of the source code that
have the highest degree of interest given the programmer’s
current focus. In designing the interface, we have priori-
tized to retain a static division between the focus and the
context areas of the fisheye view, and to saturate the context
area with readable information. Further, we have introduced
semantic relations between parts of the source code in the
calculation of the degree of interest. The interface is fully
integrated with the Eclipse development environment.

In an experiment, we compared the usability of an interface
using the fisheye view with an interface using a linear view
of the source code. Sixteen participants performed nine tasks
with each of the two interfaces. Overall, the participants per-
formed the tasks significantly faster with the fisheye view,
although an effect of task type was present. The participants
generally preferred the interface with the fisheye view. The
experiment illustrates how participants interacted with the
fisheye view, thereby identifying information in the context
area that was useful to participants. Semantically related in-
formation seems important, while source code displayed be-
cause of a high a priori degree of interest was less useful.

In summary, fisheye views seem promising for displaying
source code. Our study suggests, however, that further work
should attempt to improve performance across all tasks, and
that the degree of interest function may be further refined.

ACKNOWLEDGEMENTS
We thank Tue Haste Andersen and Morten Hertzum for help-
ful comments on a draft of this paper. For providing us with
task material used in his study, we thank Andy Cockburn.
We would like to thank the persons that helped by participat-
ing in the experiment. Finally, we thank the CHI reviewers
for constructive comments.

REFERENCES
1. P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye web browser

with search term popouts: a comparative evaluation with overview
and linear view. InProc. AVI 2004, 133–140. ACM Press, 2004.

2. J. P. Chin, A. Virginia, and K. L. Norman. Development of an
instrument measuring user satisfaction of the human-computer
interface. InProc. CHI ’88, 213–218. ACM Press, 1988.

3. A. Cockburn and M. Smith. Hidden messages: evaluating the
efficiency of code elision in program navigation.Interacting with
Comp., 15:387–407, 2003.

4. A. Dunsmore, M. Roper, and M. Wood. Object-oriented inspection in
the face of delocalisation. InProc. 22nd Int. Conf. on Software Eng.,
467–476. ACM Press, 2000.

5. G. W. Furnas. The fisheye view: A new look at structured files. In
S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors,Readings
In Information Visualization: Using Vision To Think, 312–330.
Morgan-Kaufmann, 1999. Originally published as Bell Laboratories
Technical Memorandum #81-11221-9, October 12, 1981.

6. C. Gutwin. Improving focus targeting in interactive fisheye views. In
Proc. CHI 2002, 267–274. ACM Press, 2002.

7. D. Hendrix, J. H. Cross II, and S. Maghsoodloo. The effectiveness of
control structure diagrams in source code comprehension activities.
IEEE Trans. Software Eng., 28:463–477, 2002.

8. K. Hornbæk and E. Frøkjær. Reading patterns and usability in
visualizations of electronic documents.ACM Trans.
Computer-Human Interaction, 10(2):119–149, 2003.

9. H. Koike. Fractal views: a fractal-based method for controlling
information display.ACM Trans. Information Systems,
13(3):305–323, 1995.

10. J. I. Maletic, A. Marcus, and M. Collard. A task oriented view of
software visualization. InProc. VISSOFT ’02, 32–42, 2002.

11. A. von Mayrhauser and A. M. Vans. From program comprehension to
tool requirements for an industrial environment. InProc. 2nd
Workshop on Program Comprehension, 78–86, 1993.

12. A. von Mayrhauser and A. M. Vans. Program understanding behavior
during debugging of large scale software. InProc. 7th Workshop on
Empirical Studies of Programmers, 157–179. ACM Press, 1997.

13. L. B. Ṕaez, J. B. da Silva-Fh., and G. Marchionini. Disorientation in
electronic environments: A study of hypertext and continuous
zooming interfaces. InProc. 59th Annual Meeting of the American
Society for Information Science, 58–66, 1996.

14. B. A. Price, I. S. Small, and R. M. Baecker. A taxonomy of software
visualization. InProc. 25th Hawaii Int. Conf. on System Sciences,
597–606, 1992.

15. D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, M.
Roseman. Navigating hierarchically clustered networks through
fisheye and full-zoom methods.ACM Trans. CHI, 3(2):162–188,
1996.

16. A. Skopik, C. Gutwin. Improving revisitation in fisheye views with
visit wear.Proc. CHI 2005, 771–780, 2005.

17. M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller. Cognitive design
elements to support the construction of a mental model during
software exploration.J. Software Systems, 44:171–185, 1999.

18. M.-A. D. Storey, K. Wong, and H. A. M̈uller. How do program
understanding tools affect how programmers understand programs?
Sci. Comput. Program., 36(2-3):183–207, 2000.

19. O. Turetken, D. Schuff, R. Sharda, and T. T. Ow. Supporting systems
analysis and design through fisheye views.Commun. ACM,
47(9):72–77, 2004.

20. M. Weiser. Programmers use slices when debugging. InCommun.
ACM, 446–452, 1982.

21. M. Weiser and J. Lyle. Experiments on slicing-based debugging aids.
Proc. 1st Workshop on Empirical Studies of Programmers, 187–197,
1986.

