
A Fast and Space-Economical Algorithm for
Length-Limited Coding

Jyrki Katajainen 1 Alistair Moffat 2 Andrew Turpin 2

1 Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

jyrki@diku.dk
Department of Computer Science, The University of Melbourne,

Parkville 3052, Australia
{alistair,aht}@cs.mu.oz.au

Abst rac t . The minimum-redundancy prefix code problem is to deter-
mine a list of integer codeword lengths I = [li l i E {1.. . n}], given a list
of n symbol weightsp = [pili C {1 .n}], such that ~'~ 2 -l ' < 1,

�9 " i = l - -
n and ~i=1 lipi is minimised. An extension is the minimum-redundancy

length-limited prefix code problem, in which the further constraint li < L
is imposed, for all i C {1. . .n} and some integer L > [log 2 hi. The
package-merge algorithm of Larmore and Hirschberg generates length-
limited codes in O(nL) time using O(n) words of auxiliary space. Here we
show how the size of the work space can be reduced to O(L2). This rep-
resents a useful improvement, since for practical purposes L is O(log n).

1 I n t r o d u c t i o n

Use of Huffman's algorithm [2] for the generation of minimum-redundancy prefix
codes for a weighted set of symbols is well known. For practical use an important
restriction is to limit the codewords to be at most L bits long, since implemen-
tations of data compression methods are usually designed around fixed-width
registers. For example, most current computers use words of 32 bits.

Larmore and Hirschberg [3] described the first efficient algorithm for the
generation of minimum-redundancy length-limited prefix codes. Their package-
merge method requires O(nL) time and O(n) space, where n is the number of
symbols in the alphabet and L is the length limit�9 This improves the method
of Van Voorhis [9] (see also Hu and Tan [1]), which consumes O(Ln 2) time and
space�9 Asymptotically faster algorithms for solving the problem have been de-
veloped recently, see Schieber [7] and the references therein.

In practical applications the speed of the package-merge algorithm is not
a problem and the space requirements turn out to be of greater importance.
In this paper we describe an improved implementation of the package-merge
paradigm-- the boundary package-merge algor i thm-- that constructs a minimum-
redundancy length-limited prefix code in O(L 2) auxiliary space, while retaining
the O(nL) time bound�9 For most purposes the space required is negligible, since L
is typically O(log n). That is, we have developed an "almost in-place" algorithm
for calculating length-limited codes.

13

2 P r e f i x C o d e s

Consider a list p = [Pi[P E { 1 . . . n}] of n positive symbol weights. For example,
p might be the observed frequencies of an alphabet of symbols, as defined by
some data compression method. A code is an integer list l = [li[i E {1 . . . n}] ,
where li is the length of the codeword to be assigned to the i th symbol of the
a lphabet described by p. A prefix code (more precisely, prefix-free code, but for

n brevity we use the contraction) is a code for which K = ~ i=1 2 -h -< 1. Given
a prefix code l, it is straightforward to create a set of n binary codewords such
tha t no codeword is a proper prefix of any other and such that the i th codeword
is li bits long. In terms of codeword calculation, we can thus consider the task to
be essentially done when a code l has been devised. An L-limited prefix code, or
L-bit length-limited prefix code, for some integer L > [log2 n], is a prefix code
in which li _< L, for all i E {1 . . . n}.

n A prefix code is minimum-redundancy if B = ~ i=1 lipi is minimal over all
n l prefix codes. An L-limited prefix code is minimum-redundancy if B = ~ i = 1 iPi

is minimal amongst all L-limited prefix codes. If the symbol weights are frequen-
cies quanti ty B is the number of output bits required by the code I.

Here we examine the construction of minimum-redundancy L-limited pre-
fix codes. The model of computat ion we suppose is a unit-cost random access

n machine, in which integers as large as U = ~ i=1 Pi can be stored in a single
word of storage and manipulated (addition, comparison) in O(1) time. It is also
assumed tha t p is presented in non-decreasing order, Pl <<_ P2 < P3 "'" <_ Pn. We
measure the space requirements of various algorithms by counting the number of
ext ra words of storage required by that algorithm, above and beyond the space
required by input list p, which is assumed to be free. In this framework the recur-
sive package-merge algorithm described by Larmore and Hirschberg [3], requires
O(n) space, and the improved boundary package-merge described in Section 4
requires O(L 2) space. This difference represents a significant improvement, since
for practical use L is a small constant such as 32.

The package-merge algorithm makes use of a tree data structure. An item s
is a tree, and if s is an item and tl and t2 are two trees then t = s(t l , t2) is also
a tree, with i tem s the root of tree t. I f t = s(t t , t2) and items sl and s2 are the
roots of trees tl and t2 then s is the parent of items ~ql and s2 in tree t. Similarly,
i tems Sl and s2 are the children of i tem s. If i tem s is a singleton and has no
children, then it is a leaf i tem of the tree, otherwise it is an internal item. To be
consistent with the description of Larmore and Hirschberg, we will also refer to
internal i tems as packages. The depth of any i tem is one greater than the depth
of its parent; the depth of a root is zero.

We also require an analogous one-dimensional structure called a chain. A
singleton node x is a chain; and if y is a chain and x is a node then x(y) is a
chain. In this lat ter case x is the head of the chain and y is its tail. Note tha t
chains may coalesce; if y is a chain and xx and x2 are two nodes then xl (y) and
x2 (y) are both chains.

14

3 P a c k a g e - M e r g e

In the package-merge algorithm of Larmore and Hirschberg [3] L lists of trees
are developed, with each tree in each list having an associated weight. The first
list is simply a list of n leaves, with the i th tree in the list having weight Pi.
The second list is then developed by merging, in increasing weight order, a copy
of the first list with a list of packages produced from the first list. Packages
are produced from a list of trees by forming new trees si(t2i-l,t2i), for each
i ~ {1, 2 . . . [rn/2J }, where th is the hth tree in the list, and m is the cardinality
of the list. The weight of a package, stored in item si, is the sum of the weights of
its children. In general, list j is developed by forming a list of packages from list
j - 1 and merging this list with a copy of the first list developed. For example, the
lists developed by the package-merge method when applied to the input weights
p = [1, 1, 5, 7, 10, 14] with L = 4 are shown in Figure 1.

Define the active leaves to be the leaves of the first 2n - 2 trees of the Lth
list. Extracting the code from the final set of L lists is achieved by processing
these active leaves--each active leaf corresponds to exactly one of the original
symbols, and li should be set to the number of active leaves corresponding to Pi.
In the above example n = 6, so the first 10 trees in the fourth list contain the
active leaves that yield the code, as shown by the shaded region in Figure 1. The
first two trees in the bot tom list of Figure 1 are active leaves corresponding to
Pl and p2, thus l = [1, 1, 0 , . . . , 0] after these two trees are processed. The third
tree has two leaves, again corresponding to Pl and P2, so l = [2, 2 , 0 , . . . , 0] after
this tree has been expanded. After all 10 trees are processed l = [4, 4, 3, 2, 2, 2],
which is a minimum-redundancy 4-limited code. Note that a 3-limited code can
also be calculated by processing the active leaves reachable from the first ten
items in the third list, yielding l = [3, 3, 3, 3, 2, 2].

n It is instructive to examine how K = ~ i=1 2-1~ changes as the code is ex-
t racted from the active leaves. Initially, l = [0, 0 , . . . , 0] and K = n. If a tree
chosen in list L is a leaf with weight Pi, then li increases from 0 to 1, and K
reduces by 2 -1. If the chosen tree is a package then it will have leaves at vari-
ous levels. A straightforward inductive argument shows that the reduction in K

List Trees

. ~ . " ::: . . .~.. . . --f;::::: . .~
:" 7 1 0 : : ' t 2 14: 24

"~.
43

Fig. 1. Package-merge on the input weights [1, 1, 5, 7, 10, 14] with L = 4

15

arising from the leaves of any tree rooted in the j t h list is 2- (L- j+1) , so every
package in the Lth list reduces K by 2 -1. Tha t is, choosing 2n - 2 trees from
the L th list reduces K from n to 1, guaranteeing that the code generated is a
prefix code. Fhrthermore, the greedy manner in which the trees are constructed
and chosen guarantees both tha t li <_ L and that B = ~ i n i lipi is minimised.

As described here, the package-merge method requires both O(nL) t ime and
O(nL) space. Larmore and Hirschberg reduced the space requirement to O(n)
by implementing the method recursively and performing a controlled amount
of reevaluation ra ther than storing intermediate results [3]. Our development,
described in the next section, also starts with the space-inefficient package-merge
and arrives at a third version tha t requires O(L 2) auxiliary space.

Finally, note tha t it is possible to store the solution as a list a = [ajl j C
{ 1 . . . L}], where aj is the number of active leaves in the j t h list, thereby avoiding
the need to store the list 1. In the example a = [2, 3, 6, 6] when L = 4 and
a = [4, 6, 6] when L = 3. If conversion is required, a straightforward O(n)- t ime
loop suffices to convert a into the corresponding list l. Boundary package-merge,
described in the next section, produces a as its output.

4 B o u n d a r y P a c k a g e - M e r g e

The package-merge algorithm develops trees in an exhaustive manner; tha t is,
list j - 1 is completely created before construction of list j is commenced, and
all of lists 1 through to L - 1 are fully instantiated before even the initial tree in
list L is determined. The first key observation we make is tha t trees can also be
built as a demand-driven or lazy process, beginning with the roots of the 2n - 2
trees in the Lth list and adding the necessary children to complete them [6].
The roots must be created in increasing weight order, so for every package tha t
appears in list L the weight of two items in list L - 1 must have been calculated.
This in turn leads to the creation of items in list L - 2, and so on. Since there
are no packages in the first list these cascading demands can always eventually
be satisfied.

The basic operat ion in this demand-driven process is the appending of a tree
to some list j , where 1 _< j < L. Each t ime this operation is performed it is
necessary to determine whether the next i tem is a leaf or a package. The next
leaf has weight Pc+l, where all leaves of weight Pk for 1 _< k < c have already
been included in list j ; and the next package is of weight equal to the sum of
the next two unused trees in list j - 1. As in the original package-merge method
the candidate with the smaller weight is selected. Hence, when a tree is required
in list j two trees must be instantiated in list j - 1 before the choice between
package and leaf can be made. These two trees will be referred to as lookahead
trees, as they are created to allow knowledge of the weight of the next package
in list j , but the package they form may not become par t of an active tree until
some t ime in the future. When the two lookahead trees in list j - 1 are eventually
used to form a package in list j two more lookahead trees must be created in list
j - 1 so tha t the weight of the next package in list j can be determined.

16

Input

Step 1

Step 2

Step 3a
Step 3b

Output

A set of L lists of trees, a list of n symbol weights, and the
index j of the list in which an i tem is required. Suppose tha t
list j currently contains c singleton trees.
If j = 1 then create a singleton tree d of weight Pc+l and
append it to list 1. Return.
Let tl and t2 be the two lookahead trees in list j - 1 and s be
the sum of the weights of their roots. If s is larger than P~+I
then do Step 3a, otherwise do Step 3b.
Create a new leaf d with weight P~+I. Append d to list j .
Create a new tree d = s (t l , t 2) . Append d to list j . Invoke
LAzYPM twice with parameter j - 1 to generate new lookahead
trees in list j - 1.
The same set of L lists, with one extra tree in list j and perhaps
extra trees in lists 1 to j - 1.

F ig . 2. Algorithm LAzYPM

1 1 : i - - ~ ' : s
" - C

"~.
1 1 ii~ ii:i ~1i; 2

(a) (b)

: ~ ~ : s 7 ~,i'ii~!~ s 7

5 i~i~ i i:~ii::~::i 2 5 7

(c) (d)

10

Fig. 3. Demand-driven list development on the weights [1, 1, 5, 7, 10, 14] with
L = 3 after: (a) two trees have been created; (b) three trees have been created;
(c) four trees have been created; and (d) five trees have been created

Algorithm LAzYPM in Figure 2 describes this process, accepting a list num-
ber as a parameter , and then generating the next tree in tha t list using the
demand-driven method. When applied 2n - 2 times with parameter L to a set of
initialised lists, LAzYPM produces all active trees. Initially, each list contains as
lookahead trees two leaves with weight pl and p2-- these are the first two items
in all of the L lists, since all of the weights are assumed to be positive and the
first package in each list has weight Pl + P2.

Figure 3 shows the lists from the earlier example when evaluated using al-
gori thm LAzYPM with L = 3. Figure 3a shows the state of the lists after two
trees in L have been processed, with Figures 3b, 3c, and 3d showing the lists
after creation of the third, fourth and fifth trees in list L respectively.

The advantage of the demand-driven approach to list development is tha t all

17

of the leaves in all of the constructed trees rooted in list L are definitely known
to be active, as exactly 2n - 2 trees are created in list L. This means tha t the
leaves of each level L tree can be processed and included into a running solution
as soon as that tree is formed, and then the space occupied by that tree freed for
reuse. For example, in Figure 3d the first five trees rooted in list L (shown in the
shaded region) are known to be active. These trees can be discarded and a set to
[2, 3, 3], where a is the active leaf list described earlier. Unfortunately, the peak
space requirement is still O(nL). To see this, consider the case when Pi = 1, for
M1 i. For large n and L, two lookahead trees in list L - 1 correspond to four
outs tanding trees in list L - 2; moreover, two more lookahead trees are required.
These six trees correspond to 12 trees (plus two more lookahead trees) in list
L - 3, and so on. Hence, for this example O(nL) space can still be required.

By the construction of the lists, however, we know that if the r ightmost active
leaf in list j has weight Pc, then aj -- c, and this is the second key observation
tha t makes the new method possible. This observation suggests tha t building
complete trees is wasteful, as a can be extracted knowing only the r ightmost
active i tem at each depth in each tree. Boundary package-merge exploits this
observation by manipulat ing lists of one-dimensional chains rather than two-
dimensional trees. Each chain corresponds to an equivalent tree of the same
weight in the package-merge lists. A node in a chain is a package node if its
weight is derived from the sum of two weights from the previous list, or a lea/
node otherwise. A node in list j differs from a tree, however, in that it stores a
single pointer into the list j - 1, and it also stores a count of the number of leaf
nodes to its left in list j including itself. Let the pair (w, c) define a node, where
w is the weight of the node and c is the leaf node count; and let each of the L
lists be a list of chains of nodes.

Each chain forms a boundary between the nodes that will become active if
the head of the chain becomes ac t ive- - the nodes tha t were children of this tree
in the two-dimensional package-merge--and those nodes that belong to other
trees. Hence, if the head node in any chain becomes active it is known tha t all
other nodes in chain are active. Fhrthermore, for each node in the chain tha t
becomes active, say (wj,cj) in list j , it is known tha t the first cj leaf nodes in
list j have become active, and that any others remain of indeterminate status
as lookahead nodes. The chain beginning at the (2n - 2)nd node in list L gives
the result a by setting aj = cj for each node (wj, cj} in the chain. For example,
the final boundary chain for the lists in Figure 1 is (24, 6)((14, 6)((5, 3)((1, 2)))),
giving a = [2, 3, 6, 6].

The revised method is described in Figure 4. All L lists are initialised to
contain the first two lookahead chains (Pl, 1) and (:o2, 2). The need for 2 n - 2
chains in list L again drives the process.

At each step there are two candidate chains to be considered for entry into
list j . The first candidate is a singleton chain (Pc+l, c + 1), where all leaf nodes
of weight Pk for k < c have already been added to list j . The second candidate
is a package with weight equal to the sum of the weights of the head nodes in
the two lookahead chains in list j - 1, and whose count is equal to the count of

18

Input

Step 1

Step 2

Step 3a
Step 3b

Output

A set of L lists of chains, a list of n symbol weights, and the
index j of the list in which an i tem is required. Suppose that
(w, c}(y) is the last chain in list j , with weight w, count c, and
tail y. Tha t is, there are c singletons in list j .
If j = 1 then create a singleton chain (Pc+l, c ~- 1} and append
it to list 1. Return.
Let s be the sum of the weights of the heads of the two looka-
head chains in list j - 1. If s is larger than pr then do Step 3a,
otherwise do Step 3b.
Create a new chain d = (Pc+t, c + 1)(y). Append d to list j .
Let z be the second of the two lookahead chains in list j - 1.
Create a new chain d = (s, c)(z). Append d to list j . Invoke
BOUNDARYPM twice with parameter j - 1.
The same set of L lists, with one extra chain in list j and
perhaps extra chains in lists 1 to j - 1.

F ig . 4. Algorithm BOUNDARYPM

the head of the chain currently at the end of list j .
Figure 5 shows how Steps 3a and 3b of BOUNDARYPM affect the list struc-

ture. Figure 5a shows the input to the algorithm, with the last chain in the Lth
list labelled (w,c)(y) and the second lookahead chain in list L - 1 labelled z.
Chain (w, c} (y) defines the chain of r ightmost active nodes (the current solution
boundary) , so all nodes in and to the left of that chain are definitely in the active
set. The next symbol weight that has not been used in list L is Pc+l. I fpc+l < s,
where s is the sum of the weights of the nodes at the heads of the two lookahead
chains in list L - 1, then a chain with head (Pc+I, c + 1 / and tail y is added to

1
<W,C>

(a) (c)

L,
<p~+rC+l>

(b)
<S,C>

Fig . 5. Addition of a node to list L: (a) initial situation; (b) if Step 3a is used;
and (c) if Step 3b is used

19

list L and the boundary shifts to the position shown in Figure 5b. On the other
hand (Figure 5c), i fpc+l _> s, then the chain added to list L has tail z and head
(s ,c/ . In this case no new leaves are added in list L, so the count is unchanged
from the node (w, c); but all nodes in the chain are confirmed as active, so the
tail of the chain is inherited from z, the second lookahead chain in list L - 1. As
more nodes are created in list L the boundaries move further to the right; the
final boundary after 2n - 2 nodes have been created in list L defines the desired
L-limited prefix code.

5 A n a l y s i s

We now examine the computat ional resources consumed during the execution of
algori thm BOUNDARYPM, first considering the space required.

At any given point of t ime during the execution of the algorithm there are
exactly two lookahead chains extant in each of the first L - 1 lists, and two
chains are required in the L th l i s t - -one current chain, and one new chain being
constructed. Each extant chain contains just one node in each prior list. More-
over, chains might coalesce as they link through the lists. The total number M
of nodes actually required at any given point in t ime is thus bounded above by
2L + 2 (L - 1) + . . - + 2 = 2~L=1 i = L (L + 1).

Suppose tha t a pool of free nodes of size 2M is allocated at the s tar t of the
algorithm. Nodes are allocated at Steps 1 and 3 of Figure 4, but are nowhere
deallocated. Indeed, it is not at all obvious how explicit deallocation can take
place in any efficient manner. Fortunately, deallocation of nodes no longer re-
quired can be done economically by periodically performing a garbage collection
step. Whenever the pool of available nodes is empty, the set of current chains is
t raversed and all nodes on them marked as "in-use' . Then, the complete node
pool is inspected sequentially and nodes not currently "in-use" collected onto a
free list. Both of these steps require O(M) time, and if the pool contains 2M
nodes, the combined mark/col lect process is guaranteed to release at least M
nodes onto the free list. Thus, the amortized cost of each node allocation is O(1),
and the total memory required is 2M -- O(L 2) nodes plus O(L) space for the
various list indexing arrays. Therefore, we have

T h e o r e m 1. The boundary package-merge algorithm described above requires
O(L 2) auxiliary space to construct a minimum-redundancy L-limited prefix code
for an alphabet of n symbols.

Let us now consider the running t ime of BOUNDARYPM. The two lemmas
below follow directly from the description of the algorithm:

L e m m a 2. There are at most 2nL list items created by boundary package-merge.

Proof: By induction, showing tha t each list contains fewer than 2n items. The
first list contains n items, establishing a basis. Assume tha t list j has i < 2n
items. Then list j + 1 has n + [i/2J < 2n items. []

20

L e m m a 3 . Each execution of algorithm BOUNDAI~YPM takes O(1) time.

Proof: If a pointer is maintained to the end of each list, nodes can be appended to
the list in constant time. This array of pointers consumes O(L) space, and does
not impact the space bound of Lemma 1. Comparison, addition and assignment
are all O(1) operations by assumption, so Steps I and 2 take O(1) time. Provided
the pool of nodes is at least twice the size of the peak requirement, the cost of
creating a new node is O(1) amortized time, as discussed above. Steps 3a and 3b
also require chain manipulations, but these involve a single pointer assignment
each, so are also O(1). Finally, note that the recursive calls at Step 3b are not
counted, since they result in separate executions of BOUNDARYPM. []

Lemmas 2 and 3 yield

T h e o r e m 4 . The boundary package-merge algorithm described above requires
O(nL) time to construct a minimum-redundancy L-limited prefix code for an
alphabet of n symbols.

6 D i s c u s s i o n

The boundary package-merge algorithm has been implemented and tested on the
frequency distribution of the approximately 1,000,000 distinct words appearing
in a corpus containing three gigabytes of English text. A minimum-redundancy
code for this distribution averages 11.521 bits per word and has a maximum
eodelength of 29 bits; the boundary package merge method calculated an L = 22
length-limited code in approximately two minutes on a mid-range workstation
using just a few kilobytes of auxiliary memory. In contrast, our implementation
of Larmore and Hirschberg's algorithm requires over 60 megabytes of auxiliary
memory [6] for that input data. Surprisingly, this heavily restricted code still
attains 11.846 bits per symbol.

A number of other methods have been devised recently for calculating length-
limited codes. Based upon a problem reduction due to Larmore and Przyty-

cka [4], S chieber [7] has given an O(n2~ ~ L loglog ~))-time and O(n)-space al-
gorithm for this problem. At the time of writing we know of no implementation
of this method. Nevertheless, it provides another starting point from which the
space-efficiency of the length-limited coding problem can be explored, and may
yield algorithms of practical significance.

Moffat et al. [6] considered an alternative formulation in which each problem
instance is described by a list [(wi, fi) I i e {1 . . . r}], where the pair (wi, fi) repre-
sents fi repetitions of weight wi, and ~i~=1 fi = n. In this case O(r log(n/r)) time
and space suffices to generate a minimum-redundancy code, and O(Lr log(n/r))
time and space suffices for the generation of a length-limited code.

A c k n o w l e d g e m e n t

This work was supported by the Australian Research Council.

21

R e f e r e n c e s

1. T.C. Hu and K.C. Tan. Path length of binary search trees. SIAM Journal of Applied
Mathematics, 22(2):225-234, March 1972.

2. D.A. Huffman. A method for the construction of minimum-redundancy codes. Proc.
Inst. Radio Engineers, 40(9):1098-1101, September 1952.

3. L.L. Larmore and D.S. Hirschberg. A fast algorithm for optimal length-limited
Huffman codes. Journal o] the ACM, 37(3):464-473, July 1990.

4. L.L. Larmore and T.M. Przytycka. Constructing Huffman trees in parallel. SIAM
Journal on Computing. To appear.

5. A. Moffat and J. Katajainen. In-place calculation of minimum-redundancy codes.
In Proc. Workshop on Algorithms and Data Structures, Kingston University,
Canada, August 1995. Springer-Verlag. To appear.

6. A. Moffat, A. Turpin, and J. Katajainen. Space-efficient construction of optimal
prefix codes. In Proc. IEEE Data Compression Conference, pages 192-201, Snow-
bird, Utah, March 1995. IEEE Computer Society Press, Los Alamitos, California.

7. B. Schieber. Computing a minimum-weight k-link path in graphs with the concave
Monge property. In Proc. 6th Ann. Symp. Discrete Algorithms, pages 405-411, San
Francisco, California, January 1995. SIAM, Philadelphia, Pennsylvania.

8. J. van Leeuwen. On the construction of Huffman trees. In Proc. 3rd International
Colloquium on Automata, Languages, and Programming, pages 382-410, Edinburgh
University, Scotland~ July 1976.

9. D.C. Van Voorhis. Constructing codes with bounded codeword lengths. IEEE
Transactions on Information Theory, IT-20(2):288-290, March 1974.

