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Abst rac t .  The minimum-redundancy prefix code problem is to deter- 
mine a list of integer codeword lengths I = [li l i E {1.. .  n}], given a list 
of n symbol weightsp = [pili C {1 .n}], such that ~'~ 2 -l '  < 1, 

�9 " i = l  - -  
n and ~i=1 lipi is minimised. An extension is the minimum-redundancy 

length-limited prefix code problem, in which the further constraint li < L 
is imposed, for all i C {1. . .n}  and some integer L > [log 2 hi. The 
package-merge algorithm of Larmore and Hirschberg generates length- 
limited codes in O(nL) time using O(n) words of auxiliary space. Here we 
show how the size of the work space can be reduced to O(L2). This rep- 
resents a useful improvement, since for practical purposes L is O(log n). 

1 I n t r o d u c t i o n  

Use of Huffman's algorithm [2] for the generation of minimum-redundancy prefix 
codes for a weighted set of symbols is well known. For practical use an important  
restriction is to limit the codewords to be at most L bits long, since implemen- 
tations of data  compression methods are usually designed around fixed-width 
registers. For example, most current computers use words of 32 bits. 

Larmore and Hirschberg [3] described the first efficient algorithm for the 
generation of minimum-redundancy length-limited prefix codes. Their package- 
merge method requires O(nL) time and O(n) space, where n is the number of 
symbols in the alphabet and L is the length limit�9 This improves the method 
of Van Voorhis [9] (see also Hu and Tan [1]), which consumes O(Ln 2) time and 
space�9 Asymptotically faster algorithms for solving the problem have been de- 
veloped recently, see Schieber [7] and the references therein. 

In practical applications the speed of the package-merge algorithm is not 
a problem and the space requirements turn out to be of greater importance. 
In this paper we describe an improved implementation of the package-merge 
paradigm-- the  boundary package-merge algor i thm-- that  constructs a minimum- 
redundancy length-limited prefix code in O(L 2) auxiliary space, while retaining 
the O(nL) time bound�9 For most purposes the space required is negligible, since L 
is typically O(log n). That  is, we have developed an "almost in-place" algorithm 
for calculating length-limited codes. 
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2 P r e f i x  C o d e s  

Consider a list p = [Pi[P E { 1 . . .  n}] of n positive symbol weights. For example, 
p might be the observed frequencies of an alphabet  of symbols, as defined by 
some data  compression method. A code is an integer list l = [li[i E {1 . . . n} ] ,  
where li is the length of the codeword to be assigned to the i th symbol of the 
a lphabet  described by p. A prefix code (more precisely, prefix-free code, but for 

n brevity we use the contraction) is a code for which K = ~ i=1  2 -h  -< 1. Given 
a prefix code l, it is straightforward to create a set of n binary codewords such 
tha t  no codeword is a proper prefix of any other and such that  the i th codeword 
is li bits long. In terms of codeword calculation, we can thus consider the task to 
be essentially done when a code l has been devised. An L-limited prefix code, or 
L-bit  length-limited prefix code, for some integer L > [log2 n],  is a prefix code 
in which li _< L, for all i E {1 . . .  n}. 

n A prefix code is minimum-redundancy if B = ~ i=1  lipi is minimal over all 
n l prefix codes. An L-limited prefix code is minimum-redundancy if B = ~ i = 1  iPi 

is minimal amongst  all L-limited prefix codes. If the symbol weights are frequen- 
cies quanti ty B is the number of output  bits required by the code I. 

Here we examine the construction of minimum-redundancy L-limited pre- 
fix codes. The model of computat ion we suppose is a unit-cost random access 

n machine, in which integers as large as U = ~ i=1  Pi can be stored in a single 
word of storage and manipulated (addition, comparison) in O(1) time. It  is also 
assumed tha t  p is presented in non-decreasing order, Pl <<_ P2 < P3 "'" <_ Pn. We 
measure the space requirements of various algorithms by counting the number  of 
ext ra  words of storage required by that  algorithm, above and beyond the space 
required by input list p, which is assumed to be free. In this framework the recur- 
sive package-merge algorithm described by Larmore and Hirschberg [3], requires 
O(n) space, and the improved boundary  package-merge described in Section 4 
requires O(L 2) space. This difference represents a significant improvement,  since 
for practical use L is a small constant such as 32. 

The package-merge algorithm makes use of a tree data  structure. An item s 
is a tree, and if s is an item and tl and t2 are two trees then t = s(t l ,  t2) is also 
a tree, with i tem s the root of tree t. I f t  = s( t t , t2)  and items sl and s2 are the 
roots of trees tl and t2 then s is the parent of items ~ql and s2 in tree t. Similarly, 
i tems Sl and s2 are the children of i tem s. If i tem s is a singleton and has no 
children, then it is a leaf i tem of the tree, otherwise it is an internal item. To be 
consistent with the description of Larmore and Hirschberg, we will also refer to 
internal i tems as packages. The depth of any i tem is one greater than  the depth 
of its parent;  the depth of a root is zero. 

We also require an analogous one-dimensional structure called a chain. A 
singleton node x is a chain; and if y is a chain and x is a node then x(y) is a 
chain. In this lat ter  case x is the head of the chain and y is its tail. Note tha t  
chains may coalesce; if y is a chain and xx and x2 are two nodes then xl (y) and 
x2 (y) are both  chains. 
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3 P a c k a g e - M e r g e  

In the package-merge algorithm of Larmore and Hirschberg [3] L lists of trees 
are developed, with each tree in each list having an associated weight. The first 
list is simply a list of n leaves, with the i th tree in the list having weight Pi. 
The second list is then developed by merging, in increasing weight order, a copy 
of the first list with a list of packages produced from the first list. Packages 
are produced from a list of trees by forming new trees si(t2i-l,t2i), for each 
i ~ {1, 2 . . .  [rn/2J }, where th is the hth tree in the list, and m is the cardinality 
of the list. The weight of a package, stored in item si, is the sum of the weights of 
its children. In general, list j is developed by forming a list of packages from list 
j - 1 and merging this list with a copy of the first list developed. For example, the 
lists developed by the package-merge method when applied to the input weights 
p = [1, 1, 5, 7, 10, 14] with L = 4 are shown in Figure 1. 

Define the active leaves to be the leaves of the first 2n - 2 trees of the Lth  
list. Extracting the code from the final set of L lists is achieved by processing 
these active leaves--each active leaf corresponds to exactly one of the original 
symbols, and li should be set to the number of active leaves corresponding to Pi. 
In the above example n = 6, so the first 10 trees in the fourth list contain the 
active leaves that  yield the code, as shown by the shaded region in Figure 1. The 
first two trees in the bot tom list of Figure 1 are active leaves corresponding to 
Pl and p2, thus l = [1, 1, 0 , . . . ,  0] after these two trees are processed. The third 
tree has two leaves, again corresponding to Pl and P2, so l = [2, 2 , 0 , . . . ,  0] after 
this tree has been expanded. After all 10 trees are processed l = [4, 4, 3, 2, 2, 2], 
which is a minimum-redundancy 4-limited code. Note that  a 3-limited code can 
also be calculated by processing the active leaves reachable from the first ten 
items in the third list, yielding l = [3, 3, 3, 3, 2, 2]. 

n It is instructive to examine how K = ~ i=1  2-1~ changes as the code is ex- 
t racted from the active leaves. Initially, l = [0, 0 , . . . , 0 ]  and K = n. If a tree 
chosen in list L is a leaf with weight Pi, then li increases from 0 to 1, and K 
reduces by 2 -1. If the chosen tree is a package then it will have leaves at vari- 
ous levels. A straightforward inductive argument shows that  the reduction in K 
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Fig.  1. Package-merge on the input weights [1, 1, 5, 7, 10, 14] with L = 4 
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arising from the leaves of any tree rooted in the j t h  list is 2- (L- j+1) ,  so every 
package in the Lth  list reduces K by 2 -1. Tha t  is, choosing 2n - 2 trees from 
the L th  list reduces K from n to 1, guaranteeing that  the code generated is a 
prefix code. Fhrthermore,  the greedy manner  in which the trees are constructed 
and chosen guarantees both tha t  li <_ L and that  B = ~ i n i  lipi is minimised. 

As described here, the package-merge method requires both  O(nL) t ime and 
O(nL) space. Larmore and Hirschberg reduced the space requirement to O(n) 
by implementing the method recursively and performing a controlled amount  
of reevaluation ra ther  than storing intermediate results [3]. Our development, 
described in the next section, also starts  with the space-inefficient package-merge 
and arrives at a third version tha t  requires O(L 2) auxiliary space. 

Finally, note tha t  it is possible to store the solution as a list a = [ajl j C 
{ 1 . . .  L}], where aj is the number  of active leaves in the j t h  list, thereby avoiding 
the need to store the list 1. In the example a = [2, 3, 6, 6] when L = 4 and 
a = [4, 6, 6] when L = 3. If  conversion is required, a straightforward O(n)- t ime 
loop suffices to convert a into the corresponding list l. Boundary package-merge, 
described in the next section, produces a as its output.  

4 B o u n d a r y  P a c k a g e - M e r g e  

The package-merge algorithm develops trees in an exhaustive manner;  tha t  is, 
list j - 1 is completely created before construction of list j is commenced, and 
all of lists 1 through to L - 1 are fully instantiated before even the initial tree in 
list L is determined. The first key observation we make is tha t  trees can also be 
built as a demand-driven or lazy process, beginning with the roots of the 2n - 2 
trees in the Lth  list and adding the necessary children to complete them [6]. 
The roots must be created in increasing weight order, so for every package tha t  
appears  in list L the weight of two items in list L - 1 must have been calculated. 
This in turn leads to the creation of items in list L - 2, and so on. Since there 
are no packages in the first list these cascading demands can always eventually 
be satisfied. 

The basic operat ion in this demand-driven process is the appending of a tree 
to some list j ,  where 1 _< j < L. Each t ime this operation is performed it is 
necessary to determine whether the next i tem is a leaf or a package. The next 
leaf has weight Pc+l, where all leaves of weight Pk for 1 _< k < c have already 
been included in list j ;  and the next package is of weight equal to the sum of 
the next two unused trees in list j - 1. As in the original package-merge method 
the candidate with the smaller weight is selected. Hence, when a tree is required 
in list j two trees must be instantiated in list j - 1 before the choice between 
package and leaf can be made. These two trees will be referred to as lookahead 
trees, as they are created to allow knowledge of the weight of the next package 
in list j ,  but the package they form may not become par t  of an active tree until 
some t ime in the future. When the two lookahead trees in list j - 1 are eventually 
used to form a package in list j two more lookahead trees must be created in list 
j - 1 so tha t  the weight of the next package in list j can be determined. 
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Input  

Step 1 

Step 2 

Step 3a 
Step 3b 

Output  

A set of L lists of trees, a list of n symbol weights, and the 
index j of the list in which an i tem is required. Suppose tha t  
list j currently contains c singleton trees. 
If j = 1 then create a singleton tree d of weight Pc+l and 
append it to list 1. Return. 
Let tl and t2 be the two lookahead trees in list j - 1 and s be 
the sum of the weights of their roots. If s is larger than  P~+I 
then do Step 3a, otherwise do Step 3b. 
Create a new leaf d with weight P~+I. Append d to list j .  
Create a new tree d = s ( t l , t 2 ) .  Append d to list j .  Invoke 
LAzYPM twice with parameter  j - 1  to generate new lookahead 
trees in list j - 1. 
The same set of L lists, with one extra  tree in list j and perhaps 
extra  trees in lists 1 to j - 1. 

F ig .  2. Algorithm LAzYPM 

1 1 : i - - ~ ' :  s 
" -  . . . .  C 

"~. 
1 1 ii~ ii:i ~1i; 2 

(a) (b) 

: ~ ~ :  s 7 ~,i'ii~!~ s 7 
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(c) (d) 

10 

Fig.  3. Demand-driven list development on the weights [1, 1, 5, 7, 10, 14] with 
L = 3 after: (a) two trees have been created; (b) three trees have been created; 
(c) four trees have been created; and (d) five trees have been created 

Algorithm LAzYPM in Figure 2 describes this process, accepting a list num- 
ber as a parameter ,  and then generating the next tree in tha t  list using the 
demand-driven method. When applied 2n - 2 times with parameter  L to a set of 
initialised lists, LAzYPM produces all active trees. Initially, each list contains as 
lookahead trees two leaves with weight pl and p2-- these  are the first two items 
in all of the L lists, since all of the weights are assumed to be positive and the 
first package in each list has weight Pl + P2. 

Figure 3 shows the lists from the earlier example when evaluated using al- 
gori thm LAzYPM with L = 3. Figure 3a shows the state of the lists after two 
trees in L have been processed, with Figures 3b, 3c, and 3d showing the lists 
after creation of the third, fourth and fifth trees in list L respectively. 

The advantage of the demand-driven approach to list development is tha t  all 
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of the leaves in all of the constructed trees rooted in list L are definitely known 
to be active, as exactly 2n - 2 trees are created in list L. This means tha t  the 
leaves of each level L tree can be processed and included into a running solution 
as soon as that  tree is formed, and then the space occupied by that  tree freed for 
reuse. For example, in Figure 3d the first five trees rooted in list L (shown in the 
shaded region) are known to be active. These trees can be discarded and a set to 
[2, 3, 3], where a is the active leaf list described earlier. Unfortunately, the peak 
space requirement is still O(nL). To see this, consider the case when Pi = 1, for 
M1 i. For large n and L, two lookahead trees in list L - 1 correspond to four 
outs tanding trees in list L - 2; moreover, two more lookahead trees are required. 
These six trees correspond to 12 trees (plus two more lookahead trees) in list 
L - 3, and so on. Hence, for this example O(nL) space can still be required. 

By the construction of the lists, however, we know that  if the r ightmost active 
leaf in list j has weight Pc, then aj -- c, and this is the second key observation 
tha t  makes the new method possible. This observation suggests tha t  building 
complete trees is wasteful, as a can be extracted knowing only the r ightmost  
active i tem at each depth in each tree. Boundary package-merge exploits this 
observation by manipulat ing lists of one-dimensional chains rather  than  two- 
dimensional trees. Each chain corresponds to an equivalent tree of the same 
weight in the package-merge lists. A node in a chain is a package node if its 
weight is derived from the sum of two weights from the previous list, or a lea/ 
node otherwise. A node in list j differs from a tree, however, in that  it stores a 
single pointer into the list j - 1, and it also stores a count of the number  of leaf 
nodes to its left in list j including itself. Let the pair (w, c) define a node, where 
w is the weight of the node and c is the leaf node count; and let each of the L 
lists be a list of chains of nodes. 

Each chain forms a boundary between the nodes that  will become active if 
the head of the chain becomes ac t ive- - the  nodes tha t  were children of this tree 
in the two-dimensional package-merge--and those nodes that  belong to other 
trees. Hence, if the head node in any chain becomes active it is known tha t  all 
other nodes in chain are active. Fhrthermore,  for each node in the chain tha t  
becomes active, say (wj,cj) in list j ,  it is known tha t  the first cj leaf nodes in 
list j have become active, and that  any others remain of indeterminate status 
as lookahead nodes. The chain beginning at the (2n - 2)nd node in list L gives 
the result a by setting aj = cj for each node (wj, cj} in the chain. For example, 
the final boundary  chain for the lists in Figure 1 is (24, 6)((14, 6)((5, 3)((1, 2)))), 
giving a = [2, 3, 6, 6]. 

The  revised method is described in Figure 4. All L lists are initialised to 
contain the first two lookahead chains (Pl, 1) and (:o2, 2). The need for 2 n -  2 
chains in list L again drives the process. 

At each step there are two candidate chains to be considered for entry into 
list j .  The first candidate is a singleton chain (Pc+l, c + 1), where all leaf nodes 
of weight Pk for k < c have already been added to list j .  The second candidate 
is a package with weight equal to the sum of the weights of the head nodes in 
the two lookahead chains in list j - 1, and whose count is equal to the count of 
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Input  

Step 1 

Step 2 

Step 3a 
Step 3b 

Output  

A set of L lists of chains, a list of n symbol weights, and the 
index j of the list in which an i tem is required. Suppose that  
(w, c}(y) is the last chain in list j ,  with weight w, count c, and 
tail y. Tha t  is, there are c singletons in list j .  
If  j = 1 then create a singleton chain (Pc+l, c ~- 1} and append 
it to list 1. Return. 
Let s be the sum of the weights of the heads of the two looka- 
head chains in list j - 1. If s is larger than  pr then do Step 3a, 
otherwise do Step 3b. 
Create a new chain d = (Pc+t, c + 1)(y). Append d to list j .  
Let z be the second of the two lookahead chains in list j - 1. 
Create a new chain d = (s, c)(z). Append d to list j .  Invoke 
BOUNDARYPM twice with parameter  j - 1. 
The same set of L lists, with one extra  chain in list j and 
perhaps  extra chains in lists 1 to j - 1. 

F ig .  4. Algorithm BOUNDARYPM 

the head of the chain currently at the end of list j .  
Figure 5 shows how Steps 3a and 3b of BOUNDARYPM affect the list struc- 

ture. Figure 5a shows the input to the algorithm, with the last chain in the Lth  
list labelled (w,c)(y) and the second lookahead chain in list L -  1 labelled z. 
Chain (w, c} (y) defines the chain of r ightmost active nodes (the current solution 
boundary) ,  so all nodes in and to the left of that  chain are definitely in the active 
set. The next symbol weight that  has not been used in list L is Pc+l. I fpc+l  < s, 
where s is the sum of the weights of the nodes at the heads of the two lookahead 
chains in list L - 1, then a chain with head (Pc+I, c + 1 / and tail y is added to 

1 
<W,C> 

(a) (c) 

L, 
<p~+rC+l> 

(b) 
<S,C> 

Fig .  5. Addition of a node to list L: (a) initial situation; (b) if Step 3a is used; 
and (c) if Step 3b is used 
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list L and the boundary  shifts to the position shown in Figure 5b. On the other 
hand (Figure 5c), i fpc+l  _> s, then the chain added to list L has tail z and head 
(s ,c/ .  In this case no new leaves are added in list L, so the count is unchanged 
from the node (w, c); but  all nodes in the chain are confirmed as active, so the 
tail of the chain is inherited from z, the second lookahead chain in list L - 1. As 
more nodes are created in list L the boundaries move further to the right; the 
final boundary  after 2n - 2 nodes have been created in list L defines the desired 
L-limited prefix code. 

5 A n a l y s i s  

We now examine the computat ional  resources consumed during the execution of 
algori thm BOUNDARYPM, first considering the space required. 

At any given point of t ime during the execution of the algorithm there are 
exactly two lookahead chains extant  in each of the first L - 1 lists, and two 
chains are required in the L th  l i s t - -one current chain, and one new chain being 
constructed. Each extant  chain contains just one node in each prior list. More- 
over, chains might coalesce as they link through the lists. The total  number  M 
of nodes actually required at any given point in t ime is thus bounded above by 
2L + 2 ( L -  1) + . . -  + 2 = 2~L=1 i = L ( L +  1). 

Suppose tha t  a pool of free nodes of size 2M is allocated at the s tar t  of the 
algorithm. Nodes are allocated at Steps 1 and 3 of Figure 4, but are nowhere 
deallocated. Indeed, it is not at all obvious how explicit deallocation can take 
place in any efficient manner.  Fortunately, deallocation of nodes no longer re- 
quired can be done economically by periodically performing a garbage collection 
step. Whenever the pool of available nodes is empty, the set of current chains is 
t raversed and all nodes on them marked as "in-use' .  Then, the complete node 
pool is inspected sequentially and nodes not currently "in-use" collected onto a 
free list. Both of these steps require O(M) time, and if the pool contains 2M 
nodes, the combined mark/col lect  process is guaranteed to release at  least M 
nodes onto the free list. Thus, the amortized cost of each node allocation is O(1), 
and the total  memory  required is 2M -- O(L 2) nodes plus O(L) space for the 
various list indexing arrays. Therefore, we have 

T h e o r e m  1. The boundary package-merge algorithm described above requires 
O(L 2) auxiliary space to construct a minimum-redundancy L-limited prefix code 
for an alphabet of n symbols. 

Let us now consider the running t ime of BOUNDARYPM. The two lemmas 
below follow directly from the description of the algorithm: 

L e m m a  2. There are at most 2nL list items created by boundary package-merge. 

Proof: By induction, showing tha t  each list contains fewer than 2n items. The 
first list contains n items, establishing a basis. Assume tha t  list j has i < 2n 
items. Then list j + 1 has n + [i/2J < 2n items. [] 
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L e m m a 3 .  Each execution of algorithm BOUNDAI~YPM takes O(1) time. 

Proof: If a pointer is maintained to the end of each list, nodes can be appended to 
the list in constant time. This array of pointers consumes O(L) space, and does 
not impact the space bound of Lemma 1. Comparison, addition and assignment 
are all O(1) operations by assumption, so Steps I and 2 take O(1) time. Provided 
the pool of nodes is at least twice the size of the peak requirement, the cost of 
creating a new node is O(1) amortized time, as discussed above. Steps 3a and 3b 
also require chain manipulations, but these involve a single pointer assignment 
each, so are also O(1). Finally, note that  the recursive calls at Step 3b are not 
counted, since they result in separate executions of BOUNDARYPM. [] 

Lemmas 2 and 3 yield 

T h e o r e m 4 .  The boundary package-merge algorithm described above requires 
O(nL) time to construct a minimum-redundancy L-limited prefix code for an 
alphabet of n symbols. 

6 D i s c u s s i o n  

The boundary package-merge algorithm has been implemented and tested on the 
frequency distribution of the approximately 1,000,000 distinct words appearing 
in a corpus containing three gigabytes of English text.  A minimum-redundancy 
code for this distribution averages 11.521 bits per word and has a maximum 
eodelength of 29 bits; the boundary package merge method calculated an L = 22 
length-limited code in approximately two minutes on a mid-range workstation 
using just a few kilobytes of auxiliary memory. In contrast, our implementation 
of Larmore and Hirschberg's algorithm requires over 60 megabytes of auxiliary 
memory [6] for that  input data. Surprisingly, this heavily restricted code still 
attains 11.846 bits per symbol. 

A number of other methods have been devised recently for calculating length- 
limited codes. Based upon a problem reduction due to Larmore and Przyty-  

cka [4], S chieber [7] has given an O(n2~ ~ L loglog ~))-time and O(n)-space al- 
gorithm for this problem. At the time of writing we know of no implementation 
of this method. Nevertheless, it provides another starting point from which the 
space-efficiency of the length-limited coding problem can be explored, and may 
yield algorithms of practical significance. 

Moffat et al. [6] considered an alternative formulation in which each problem 
instance is described by a list [(wi, fi) I i e {1 . . .  r}], where the pair (wi, fi) repre- 
sents fi  repetitions of weight wi, and ~i~=1 fi = n. In this case O(r log(n/r)) time 
and space suffices to generate a minimum-redundancy code, and O(Lr log(n/r)) 
time and space suffices for the generation of a length-limited code. 
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