
Methods for Interactive Constraint
Satisfaction

M.Sc. Thesis by
Jeppe Nejsum Madsen

nejsum@diku.dk

Oral Defense
March 12th, 2003, 13:15 - 15:00

All material available at

www.diku.dk/forskning/performance-engineering/jeppe

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.1/34

Agenda

13:15 - 14:00 Thesis Presentation
� Constraint Networks
� Interactive Constraint Satisfaction
� Fundamental Operations
� Uniform Acyclic Networks
� Conclusion

14:00 - 14:15 Break

14:15 - 15:00 Questions

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.2/34

Constraint Satisfaction Problems
A constraint satisfaction problem (CSP) involves the
assignment of values to variables subject to a set of
constraints.

� Each variable can be given a value chosen from a set
of possible values called its domain.

� The constraints impose limitations on the values the
variables may be assigned simultaneously.

Together, variables, domains, and constraints form a
constraint network.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.3/34

Constraint Networks - 1

A constraint network is a triple R = (X, D, C) where

1. X is a set of variables.

2. D is a map that maps each variable x ∈ X to a finite
set of values which it is allowed to take. The set D(x)
is called the domain of x.

3. C is a set of constraints. Let S = {xk, . . . , x`} ⊆ X.
Each constraint CS ∈ C is a relation with scheme S
and instance CS. The set S is the scope of the
constraint, and |S| denotes the arity of the constraint.
Each tuple in the instance CS ⊆ D(xk) × · · · × D(x`)
specifies a combination of values which the constraint
allows.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.4/34

Constraint Networks - 2
The following notation is used:

� n = |X|

� d = maxx∈X|D(x)|

� e = |C|

A solution to a constraint network is a n-tuple t ∈ D(x1)×

· · · × D(xn) such that t|S ∈ CS for all CS ∈ C.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.5/34

CSP Categories

Given a constraint network R, a CSP can be classified into
the following categories:

1. Determine whether the network R has a solution. This
is the NP-complete CONSTRAINT SATISFIABILITY
problem.

2. Find a solution to the network R, with no preference
as to which one.

3. Find the set of all solutions, denoted Sol(R).

4. Find an optimal solution to the network R, where
optimality is defined by a function on the variables in
R.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.6/34

Solving CSPs

A solution to a constraint network is usually found using
backtracking.

� Many different methods exists

� Many different instantiation orders and pruning
methods have been proposed.

� All known methods have O(dn) worst-case running
time

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.7/34

Interactive Constraint Satisfaction
However, many real life applications require interactive
decision support rather than automatic problem solving.

� The initial constraint network admits many possible
solutions.

� Human guidance is needed to select a solution based
on some additional criteria.

� These criteria cannot be modeled as constraints in the
original network since they are not yet known — the
user can only identify these criteria when
consequences of the initial constraints are revealed.

This is interactive constraint satisfaction.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.8/34

Motivating Example: Product
Configuration

� Goal: From a product family with many possible
variants, select a specific product that matches the
user’s needs.

� Involves selecting combinations of predefined
components subject to a number of problem
constraints.

� Not restricted to physical entities, can also be
paragraphs of a legal document, financial services,
actions in a plan, etc.

A configuration model is used to describe the components

that are available as well as the relations between them.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.9/34

Configuration Model

In constraint-based configuration, a configuration model is
a constraint network R = (X, D, C).

� The variables in X list the components available for
selection.

� The domains in D contain the possible choices for
each component.

� The constraints in C contain the constraints between
the components.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.10/34

A Real-life Example

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.11/34

Usability Requirements

� The response time for all operations should be short.

� The user should not be able to make selections that
lead to a dead-end.

� The user should be able to make a selection and later
retract the selection.

� The user should be able to make a “deselection”.

� The user should be able to make selections in arbitrary
order.

� If a selection is made, which is inconsistent with
previous selections, the user should see a list of
previous selections that need to be retracted to make
the new selection consistent.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.12/34

Usability Requirements

� The response time for all operations should be short.

� The user should not be able to make selections that
lead to a dead-end.

� The user should be able to make a selection and later
retract the selection.

� The user should be able to make a “deselection”.

� The user should be able to make selections in arbitrary
order.

� If a selection is made, which is inconsistent with
previous selections, the user should see a list of
previous selections that need to be retracted to make
the new selection consistent.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.12/34

Usability Requirements

� The response time for all operations should be short.

� The user should not be able to make selections that
lead to a dead-end.

� The user should be able to make a selection and later
retract the selection.

� The user should be able to make a “deselection”.

� The user should be able to make selections in arbitrary
order.

� If a selection is made, which is inconsistent with
previous selections, the user should see a list of
previous selections that need to be retracted to make
the new selection consistent.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.12/34

Usability Requirements

� The response time for all operations should be short.

� The user should not be able to make selections that
lead to a dead-end.

� The user should be able to make a selection and later
retract the selection.

� The user should be able to make a “deselection”.

� The user should be able to make selections in arbitrary
order.

� If a selection is made, which is inconsistent with
previous selections, the user should see a list of
previous selections that need to be retracted to make
the new selection consistent.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.12/34

Usability Requirements

� The response time for all operations should be short.

� The user should not be able to make selections that
lead to a dead-end.

� The user should be able to make a selection and later
retract the selection.

� The user should be able to make a “deselection”.

� The user should be able to make selections in arbitrary
order.

� If a selection is made, which is inconsistent with
previous selections, the user should see a list of
previous selections that need to be retracted to make
the new selection consistent.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.12/34

Usability Requirements

� The response time for all operations should be short.

� The user should not be able to make selections that
lead to a dead-end.

� The user should be able to make a selection and later
retract the selection.

� The user should be able to make a “deselection”.

� The user should be able to make selections in arbitrary
order.

� If a selection is made, which is inconsistent with
previous selections, the user should see a list of
previous selections that need to be retracted to make
the new selection consistent.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.12/34

Fundamental Operations

ADD-CONSTRAINT Add unary user constraint to R and
remove domain values that can lead to a dead end.

REMOVE-CONSTRAINT Remove unary user constraint
from R and update domain values accordingly.

RESTORATION Compute set of user constraints that must
be retracted for a new user constraint Cx to be valid.

If these operations can be implemented efficiently, all us-

ability requirements are fulfilled.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.13/34

Logic Puzzle: n-queen problem

A classical problem from artificial intelligence. The goal is
to place n queens (n ≥ 4) on a chess board of size n × n
such that no queen can attack another.
A constraint network formulation:

X = {q1, . . . , qn},

D(x) = {1, . . . , n}, for x ∈ X

|qi − qj| 6= i − j, for 1 ≤ i ≤ n, j > i and

qi 6= qj, for 1 ≤ i ≤ n, j > i.

For n = 8, the initial constraint network has 92 possible

solutions.
Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.14/34

Demo
Queen demo

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.15/34

file://D:/work/Personal/UNI/Thesis/Demo/queen.htm

Efficient Fundamental Operations

Divide processing in two parts:

1. Offline compilation step. Compile the initial constraint
network into a form that allows efficient processing.

2. Online execution of fundamental operations on the
compiled network.

For many applications, including product configuration, the

online part is executed more frequently than the offline part.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.16/34

Graphical Representation

Constraint Graph Undirected graph in which each node
represents a variable and there is an arc between any
two variables that are related by a constraint.

Example

X = {model, case, ide, scsi, cpu}

C = {C{model,cpu,case}, C{ide,scsi}, C{case,scsi}}
scsiide

model cpu case

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.17/34

Arc Consistency in Binary
Networks

� A variable x is arc consistent relative to y if, and only
if, for every value a ∈ D(x) there exists a value
b ∈ D(y) such that (a, b) ∈ Cxy.

� An arc {x, y} in the constraint graph of R is arc
consistent if and only if x is arc consistent relative to y
and y is arc consistent relative to x.

� A constraint network is arc consistent if, and only if,
all arcs are arc consistent.

Arc consistency can be achieved in time O(ed2) and in-

volves removing inconsistent domain values.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.18/34

Tractable Problems
Theorem ([Freuder, 1982]). Let R be a binary constraint
network and let (V, E) be the associated constraint graph.
If (V, E) is a tree and R is arc consistent, then a solution
to R can be obtained without backtracking by using a
breadth first search in (V, E).

Unfortunately, in general

� networks are not binary, and

� the constraint graph is not a tree!

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.19/34

Transformation to Binary Network

Given a constraint network R = (X, D, C), the dual
network is a binary constraint network Rd = (Xd, Dd, Cd)
where

1. Xd is a set of dual variables. Xd = {S | CS ∈ C}.

2. Dd is a function that maps each dual variable S ∈ Xd

to the dual domain Dd(S) = {t | t ∈ CS}.

3. The constraints in Cd are

Cd = {Cd
S,T | S, T ∈ Xd, S ∩ T 6= ∅}

where Cd
S,T is the binary constraint

Cd
S,T = {(u, v) | u ∈ CS, v ∈ CT, u|S∩T = v|S∩T}.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.20/34

Dual Network Properties

� There is a dual variable for each original constraint.

� The domain of a dual variable is the set of tuples from
the corresponding original constraint.

� A solution to the dual problem can be mapped back to
a solution to the original problem.

If we can make the constraint graph of the dual problem into

a tree, the original problem becomes tractable !

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.21/34

Tree Clustering

A systematic decomposition method for transforming the
dual network into a tree [Dechter and Pearl, 1989]. Based
on results for acyclic hypergraphs originating in relational
database theory.

� Triangulate constraint graph by adding redundant
constraints. Finding a minimal triangulation is
NP-complete, so a heuristic is used.

� Identify maximal cliques.

� For each clique, synthesize a new constraint for the
clique’s variables. Exponential in the size of the
largest clique.

� Find a join tree as the maximum spanning tree of the
resulting dual graph.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.22/34

Tree Clustering Example

Input: Initial constraint graph.

f a b

c

de

g

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.23/34

Tree Clustering Example

Step 1: Triangulate constraint graph.

f a b

c

de

g

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.23/34

Tree Clustering Example

Step 2: Identify maximal cliques and solve subproblems.

f a b

c

de

g

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.23/34

Tree Clustering Example

Step 3: Create constraint for each maximal clique.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.23/34

Tree Clustering Example

Step 3: Resulting dual network.

a, b, c, d

b, ga, c, d, e

a, e, f

ba, c, da, e
a

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.23/34

Tree Clustering Example

Step 4: Find join tree as maximum spanning tree.

a, b, c, d

b, ga, c, d, e

a, e, f

ba, c, da, e

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.23/34

Cartesian Product Representation

The maximum number of tuples in a constraint is
exponential in the number of variables in the clique. For
some test instances, more than 1012 tuples are generated.

Idea: Use Cartesian products to generate the set of tuples.

Example: Given a relation with tuples
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}

we can generate the tuples using Cartesian products:
{(0, 0, 0)} ∪ ({0, 1} × {0, 1} × {1})

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.24/34

Properties of the CPR

� Saves space. In all test instances, the number of tuples
was reduced significantly. The 1012 tuples was
reduced to 478.

� Preserves the relational operations select, project and
join

A compression heuristic was presented in
[Katajainen and Madsen, 2002]. Join algorithms for
compressed relations can be found in [Madsen, 2002].

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.25/34

Experimental Results

Algorithms for tree clustering and the fundamental
operations have been implemented and evaluated on a large
number of constraint networks.

� Tree clustering succeeds on all real-life instances.

� The fundamental operations are too slow for all but the
smallest networks.

The inefficiency of the fundamental operations is due to
the fact that the running time of arc consistency is
quadratic in the number of uncompressed tuples.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.26/34

Improving the Performance

A uniform acyclic network is an acyclic network where

|S ∩ T| ≤ 1, for all CS, CT ∈ C

In a uniform acyclic network, arc consistency can be
maintained in time quadratic in the number of compressed
tuples.

A uniform acyclic network can be constructed from an

acyclic network by intelligently applying the split operator.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.27/34

The Split Operator

Original constraint.

a b c d
0 0 0 1
0 0 1 {0, 1}
1 1 0 1
1 1 1 {0, 1}

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.28/34

The Split Operator

After split. Original constraint replaced by two new
constraints and a new meta variable λ is added.

a b λ

0 0 0
0 0 1
1 1 2
1 1 3

c d λ

0 1 0
1 {0, 1} 1
0 1 2
1 {0, 1} 3

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.28/34

The Split Operator

After compression.

a b λ

0 0 {0, 1}
1 1 {2, 3}

c d λ

0 1 {0, 2}
1 {0, 1} {1, 3}

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.28/34

Uniform Acyclic Network
Construction

� Process each edge of the join tree in a bottom up
fashion.

� For each edge {CS, CT} split the constraints CS and
CT into CS′ , CS′′ , CT′ , CT′′ .

� Join CS′′ and CT′′ .

� Replace CS and CT with the three new constraints
which are now linked with a single variable.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.29/34

Example

Dual Network generated by tree clustering.

a, e, f

a, b, c, d

a, c, d, e

b, g

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.30/34

Example

Process edge. Split the two constraints.

a, e, f

a, c, d, λ1

a, c, d, e

g, λ0

b, λ0

b, λ1

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.30/34

Example

Combine two of the new constraints.

a, e, f

a, c, d, λ1

a, c, d, e

g, λ0

b, λ0, λ1

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.30/34

Example

Process next edge.

f , λ2

a, c, d, λ1

a, c, d, λ3

g, λ0

b, λ0, λ1

e, λ2, λ3

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.30/34

Example

Process final edge.

f , λ2

λ1, λ4

a, c, d, λ3, λ4

g, λ0

b, λ0, λ1

e, λ2, λ3

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.30/34

Experimental Results

� For some networks, a uniform acyclic network could
not be constructed due to memory usage.

� For all the uniform acyclic networks constructed, the
worst- case response time for the fundamental
operations was less than 2 seconds and the average
less than 0.1 seconds.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.31/34

Summary of Results

� Fundamental operations for an interactive constraint
solver have been identified and described formally.

� Tree clustering is viewed as one of the standard
solutions for constraint network compilation.
Experimental results show that, while being
polynomial, it is not fast enough for interactive use.

� A new method based on uniform acyclic networks
have been proposed.

� Uniform acyclic networks enables response times
suitable for interactive use.

� It is not always feasible to construct a uniform acyclic
network.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.32/34

Break

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.33/34

References

R. DECHTER AND J. PEARL. Tree clustering for
constraint networks. Artificial Intelligence 38(3):
353–366, 1989.

E. C. FREUDER. A sufficient condition for backtrack-free
search. Journal of the ACM 29(1):24–32, 1982.

J. KATAJAINEN AND J. N. MADSEN. Performance tuning
an algorithm for compressing relational tables. In
Proceedings of the 8th Scandinavian Workshop on
Algorithm Theory, volume 2368 of Lecture Notes in
Computer Science, pages 398–407. Springer-Verlag,
2002.

J. N. MADSEN. Algorithms for compressing and joining
relations. CPH STL Report 2002-1, Department of
Computing, University of Copenhagen, 2002. Available
at http://www.cphstl.dk.

Methods for Interactive Constraint Satisfaction, March 12th, 2003 – p.34/34

http://www.cphstl.dk

	Agenda
	Constraint Satisfaction Problems
	Constraint Networks - 1
	Constraint Networks - 2
	CSP Categories
	Solving CSPs
	Interactive Constraint Satisfaction
	Motivating Example: Product Configuration
	Configuration Model
	A Real-life Example
	Usability Requirements
	Fundamental Operations
	Logic Puzzle: n-queen problem
	Demo
	Efficient Fundamental Operations
	Graphical Representation
	Arc Consistency in Binary Networks
	Tractable Problems
	Transformation to Binary Network
	Dual Network Properties
	Tree Clustering
	Tree Clustering Example
	Cartesian Product Representation
	Properties of the CPR
	Experimental Results
	Improving the Performance
	The Split Operator
	Uniform Acyclic Network Construction
	Example
	Experimental Results
	Summary of Results
	Break
	References

