Improving the efficiency of priority-queue structures

Claus Jensen

Co-authors

Six of the seven papers in the thesis have been produced in collaboration with:

- Amr Elmasry
- Jyrki Katajainen

Main focus of our study

- The efficiency of addressable priority-queue structures
- Worst-case efficiency
- Comparison complexity
- Constant factors

Priority queues (introduction)

- A priority queue is a data structure that maintains a collection of elements from a totally ordered universe
- For reasons of simplicity we do not distinguish elements from their associated priorities
- Heap-ordered trees can be used as the basic components
- A collection of heap-ordered trees can be maintained using different strategies
- The chosen strategy will affect the efficiency of the priority queue

Set of operations supported by a minimum priority queue Q

find-min (Q). Returns a reference to a node containing a minimum element of priority queue Q
$\operatorname{insert}(Q, x)$. Inserts a node referenced by x into priority queue Q. It is assumed that the node has already been constructed to contain an element
extract (Q). Extracts an unspecified node from priority queue Q, and returns a reference to that node. The extract operation is in some places called borrow
delete-min (Q). Removes a minimum element and the node in which it is contained from priority queue Q
delete (Q, x). Removes the node referenced by x, and the element it contains, from priority queue Q

Set of operations supported by a minimum priority queue Q

decrease (Q, x, e). Replaces the element at the node referenced by x with element e. It is assumed that e is not greater than the element earlier stored in the node
$\operatorname{meld}\left(Q_{1}, Q_{2}\right)$. Creates a new priority queue containing all the elements held in the priority queues Q_{1} and Q_{2}, and returns a reference to that priority queue. This operation destroys Q_{1} and $Q_{2} s$

Number systems (introduction)

In a positional number system represented by its digits and their corresponding weights.

A representation is a string of digits $\left\langle d_{0}, d_{1}, \ldots, d_{k-1}\right\rangle$ of lenght k

Let $d=\left\langle d_{0}, d_{1}, \ldots, d_{k-1}\right\rangle$
Where d_{0} is the least significant digit
$\operatorname{value}(\boldsymbol{d})=\sum_{i=0}^{k-1} d_{i} \times w_{i}$
Where w_{i} is the weight corresponding to d_{i}
b-ary: $w_{i}=b^{i}$ or $w_{i}=b^{i+1}-1$ (Skew)

Number systems

Binary: $d_{i} \in\{0,1\} ; w_{i}=2^{i}$
Redundant binary: $d_{i} \in\{0,1,2\} ; w_{i}=2^{i}$
Regular binary: $d_{i} \in\{0,1,2\} ; w_{i}=2^{i}$; Every string has the form $\left(0|1| 01^{*}\right)^{*}$ [Clancy \& Knuth 1977]

Canonical Skew binary: $d_{i}<j=0 ; d_{i} \in\{0,1,2\} ; d_{i}>j \in\{0,1\}$; $w_{i}=2^{i+1}-1$ [Myers 1983]

Zeroless regular: $d_{i} \in\{1,2,3\} ; w_{i}=2^{i}$; Every string has the form $\left(1|2| 12^{*} 3\right)^{*}$ [Brodal 1995]

Connection between number systems and priority queue structures

- A binomial queue using binary representation

$$
d=\langle 111\rangle
$$

Connection between number systems and priority queue structures

- A binomial queue using redundant binary representation

$$
d=\langle 202\rangle
$$

(1) (2)

Connection between number systems and priority queue structures

- A binomial queue using zeroless representation
$d=\langle 412\rangle$

Magical skew system (paper one)

Digit set: $d_{i} \in\{0,1,2,3,4\}$
Extreme digits: $d_{i} \in\{0,1,3,4\}$
Low digits: $d_{i} \in\{0,1\}$
High digits: $d_{i} \in\{3,4\}$
Weight: $w_{i}=2^{i+1}-1$ (skew)

Application: Binary heaps

- Using the magical skew system to facilitate insert in a collection of pointer-based binary heaps we archive the following bounds:

operations	worst-case cost
find-min, insert	$O(1)$
delete	$O(\lg n)(n$ size of data structure $)$
	$6 \lg n+O(1)$ element comparisons

Regular skew

Cost of a digit change: $O(j)$ at position j
Discretization: Initially, j bricks at position j, i.e. $b_{j}=j$
Digit set: $d_{i} \in\{0,1,2\} \forall i$; when $b_{k}>0, d_{k}$ is said to form a wall (1) or 2) of b_{k} bricks

Incremental digit changes: Remove some bricks from some walls in addition to the normal actions; do not transfer digits across any walls

Application: Binary heaps

- Using the regular skew system to facilitate insert and meld in a collection of pointer-based binary heaps we archive the following bounds:

operations	worst-case cost
find-min, insert	$O(1)$
meld	$O\left(\lg ^{2} m\right)(m$ size of data structure and $m<n)$
delete	$O(\lg n)(n$ size of data structure $)$
	$5 \lg n+O(1)$ element comparisons

Multipartite binomial queue (paper two)

- A multipartite binomial queue consist of the following five components:

Buffer: This is a binomial queue relying on the regular binary number system. The buffer is responsible for handling insertions

Reservoir: This is a single tree, initially a binomial tree, but it gradually loses its binomial structure while nodes are borrowed or deleted

Multipartite binomial queue

Main store: This is a binomial queue relying on the binary number system. The large portion of the n elements is stored here

Upper store: This is a circular doubly-linked list that maintains the order among the roots in the main store. The order is maintained using prefix-minimum pointers. For a given rank a prefixminimum pointer points to the root which holds the minimum element among the roots which have equal or smaller rank

Floating tree: This is a single binomial tree. It is needed to regulate the traffic between the buffer and the main store

Multipartite binomial queue

Multipartite binomial queue operations

find-min: Compares the minimum candidates from the following components:

- Upper store, the prefix-minimum pointer of the tree of the largest rank in the main store
- The floating tree if such exists
- The buffer
- The reservoir
insert: All new elements are inserted into the buffer
delete-min: If the minimum is in the main store a node is borrowed in the reservoir and the structure of the tree is re-established. The prefix-minimum pointers in the upper store are updated
delete: The node is swapped with its parent until it becomes a root, after which the procedure used in delete-min is followed

Multipartite binomial queue bounds

- Multipartite binomial queue have the following worst-case comparison-complexity bounds for the operations:

operations	worst-case cost
find-min, insert	$O(1)$
delete	$O(\lg n)(n$ size of data structure $)$ $\lg n+O(1)$ element comparisons

Bipartite binomial queue

- A new result which is not in the thesis (a collaboration with Amr Elmasry and Jyrki Katajainen)
- Simplifies multipartite binomial queue
- All trees are binomial
- Now supports meld at logarithmic worst-case cost

Bipartite binomial queue

Bipartite binomial queue bounds

- Bipartite binomial queue have the following worst-case comparisoncomplexity bounds for the operations:

operations	worst-case cost
find-min, insert	$O(1)$
meld	$O(\lg n)(m$ and n are the sizes of data
	structures and $m<n)$ $\lg n+O(\lg \lg n)$ element comparisons
delete	$O(\lg n)(n$ size of data structure $)$ $\lg n+O(1)$ element comparisons

Two-tier relaxed heaps - Relaxed heaps (paper three)

- A relaxed binomial tree is a almost heap-ordered binomial tree
- Some nodes can be marked active indicating that there may be a heap-order violation
- A relaxed heap supports decrease and the number of active nodes is at most $\lfloor\lg n\rfloor$ (Driscoll, Gabow, Shrairman og Tarjan 1988)
- A singleton is an active node which has no active siblings
- A run is a sequence of consecutive active siblings
- The number of active nodes can be reduced using violationreducing transformations

Two-tier relaxed heaps

- Two-tier relaxed heaps consist of the following two components:

Upper store: This is a modified relaxed heap whose nodes contain pointers to the following nodes in the lower store:

- current roots and current active nodes
- former roots and former active nodes which are only marked for deletion in the upper store

Lower store: This is a modified relaxed heap containing the elements

Zeroless regular system

- To support insert and extract at worst-case constant cost, a zeroless regular number system is used

Digit set: $d_{i} \in\{1,2,3,4\}$
Extreme digits: $d_{i} \in\{1,4\}$
Weight: $w_{i}=2^{i}$
Regularity: Between any two digits equal to 4 there is a digit other than 3, and between any two digits equal to 1 there is a digit other than 2, except when one of the digits equal to 1 is the most significant digit

Two-tier relaxed heaps

- The upper store uses lazy deletions (marking) when, a join is done or an active node is made non-active in the lower store, as a normal deletion would be too expensive
- Incremental global rebuilding is used to remove the markings when the number of marked nodes become to large

Two-tier relaxed heaps

- A two-tier relaxed heap storing 12 integers

Two-tier relaxed heaps operations

find-min: Use a minimum pointer in the upper store
insert, extract: Utilizes the zeroless number system
decrease: Make the node active, after which violation-reducing transformations may be used to reduce the number of active nodes
delete: Borrow a node using extract and re-establish the structure of the tree

Two-tier relaxed heaps bounds

- Two-tier relaxed heaps have the following worst-case comparisoncomplexity bounds for the operations:

operations	worst-case cost
find-min, insert, extract, decrease	$O(1)$
meld	$O(\min \{\lg m, \lg n\}) \quad(m$ and n are the sizes of data structures $)$
delete	$O(\lg n)(n$ size of data structure $)$ $\lg n+O(\lg \lg n)$ element comparisons

Pruned binomial queue (paper four)

- A priority queue where structural violations are used instead of heap-order violations
- The bounds are obtained by mimicking heap-order violations using a shadow structure
- A violating node is replaced with a placeholder node and moved to the shadow structure
- Using structural violations it is possible to obtain worst-case com-parison-complexity bounds comparable to those obtained using heap-order violations in two-tier relaxed heaps

Meldable heaps relying on bootstrapping (paper five)

- Use a binomial heap that supports insert at constant worst-case cost and meld at logarithmic worst-case cost
- Modify the binomial heap using data-structural bootstrapping
- Results in a structure where binomial heaps contain binomial heaps

Meldable heaps relying on bootstrapping

- A simplified view of a bootstrapped heap

Meldable heaps relying on bootstrapping bounds

- The bounds for a meldable heaps relying on bootstrapping

operations	worst-case cost
find-min, insert, meld	$O(1)$
delete	$O(\lg n)(n$ size of data structure $)$

Strictly-regular number system (paper six)

Digit set: $d_{i} \in\{0,1,2\}$
Strict regularity: Every sting has the form $\left(1^{+} \mid 01^{*} 2\right)^{*}\left(\varepsilon \mid 01^{+}\right)$
Extreme digits: 0 and 2
Weight: $w_{i}=2^{i}$

Increment

fix-carry (d, i) : Assert that $d_{i} \geq 2$. Perform $d_{i} \leftarrow d_{i}-2$ and $d_{i+1} \leftarrow$ $d_{i+1}+1$

Algorithm increment (\boldsymbol{d}, i) :
1: $d_{i} \leftarrow d_{i}+1$
2: Let d_{b} be the first extreme digit before $d_{i}, d_{b} \in\{0,2$, undefined $\}$
3: Let d_{a} be the first extreme digit after $d_{i}, d_{a} \in\{0,2$, undefined $\}$
4: if $d_{i}=3$ or $\left(d_{i}=2\right.$ and $\left.d_{b} \neq 0\right)$
5: fix-carry (\boldsymbol{d}, i)
6: else if $d_{a}=2$
7: fix-carry (\boldsymbol{d}, a)

Decrement

$$
\begin{aligned}
& \text { fix-borrow }(\boldsymbol{d}, i) \text { : Assert that } d_{i} \leq 1 . \text { Perform } d_{i+1} \leftarrow d_{i+1}-1 \text { and } \\
& \qquad d_{i} \leftarrow d_{i}+2
\end{aligned}
$$

Algorithm decrement (\boldsymbol{d}, i) :
1: Let d_{b} be the first extreme digit before $d_{i}, d_{b} \in\{0,2$, undefined $\}$
2: Let d_{a} be the first extreme digit after $d_{i}, d_{a} \in\{0,2$, undefined $\}$
3: if $d_{i}=0$ or $\left(d_{i}=1\right.$ and $d_{b}=0$ and $\left.i \neq r-1\right)$
4: fix-borrow (\boldsymbol{d}, i)
5: else if $d_{a}=0$
6: \quad fix-borrow (\boldsymbol{d}, a)
7: $d_{i} \leftarrow d_{i}-1$

Other operations

$\operatorname{cut}(d, i)$: Cut rep($\boldsymbol{d})$ into two strings having the same value as the numbers corresponding to $\left\langle d_{0}, d_{1}, \ldots, d_{i-1}\right\rangle$ and $\left\langle d_{i}, d_{i+1}, \ldots, d_{k-1}\right\rangle$. Transform $\left\langle d_{i}, d_{i+1}, \ldots, d_{k-1}\right\rangle$ into a strictly-regular form, if necessary
concatenate $\left(d, d^{\prime}\right)$: Concatenate $\operatorname{rep}(\boldsymbol{d})$ and $\operatorname{rep}\left(\boldsymbol{d}^{\prime}\right)$ into one string that has the same value as $\left\langle d_{0}, d_{1}, \ldots, d_{k-1}, d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{k^{\prime}-1}^{\prime}\right\rangle$. Transform $\left\langle d_{0}, d_{1}, \ldots, d_{k-1}, d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{k^{\prime}-1}^{\prime}\right\rangle$ into a strictly-regular form, if necessary
$\operatorname{add}\left(\boldsymbol{d}, \boldsymbol{d}^{\prime}\right)$: Construct a string $\boldsymbol{d}^{\prime \prime}$ of strictly-regular form such that $\operatorname{value}\left(\boldsymbol{d}^{\prime \prime}\right)=\operatorname{value}(\boldsymbol{d})+\operatorname{value}\left(\boldsymbol{d}^{\prime}\right)$

Application: Meldable priority queues

- Meldable priority queues using the strictly-regular number system have the following bounds:

operations	worst-case cost
find-min, insert, meld	$O(1)$
delete	$O(\lg n)(n$ size of data structure $)$
	$2 \lg n+O(1)$ element comparisons

Two new transformations to construct doubleended priority queues (paper seven)

- A double-ended priority queue can extend the set of operations supported by a priority queue by the following operations:
find-max (Q). Returns a reference to a node containing a maximum element of Q
delete-max (Q). Removes a maximum element and the node in which it is contained from Q

First transformation

- A special pivot element is used to partition the elements of the double-ended priority queue into three collections
- The three collections (maintained as priority queues) contain the elements smaller than, equal to, and larger than the pivot element
- Using this partition of the elements, we can delete an element only touching one priority queue
- To maintain the partitioning balanced the data structure is rebuild after a linear number of operations
- The rebuilding is done incrementally to obtain worst-case bounds

Application of first transformation

- Using the first transformation together with the multipartite binomial queue the following bounds can be obtained:

operations	worst-case cost
find-min/find-max, insert, extract	$O(1)$
delete	$O(\lg n)(n$ size of data structure $)$ $\mathbf{l g} n+O(1)$ element comparisons

Second transformation

- Use the total correspondence approach
- The fact that the underlying priority queue supports insert, extract, and decrease (increase) at $O(1)$ cost
- The transformation replaces the two priority queue delete operations used in the standard total correspondence approach with one delete operation and some operations having $O(1)$ cost

Application of second transformation

- Utilizing the fact that insert, extract, and decrease (increase) in twotier relaxed heaps has a constant worst-case cost the following bounds are obtained:

operations	worst-case cost
find-min/find-max, insert, extract	$O(1)$
meld	$O(\min \{\lg m, \lg n\})(m$ and n are the sizes of data structures $)$
delete	$O(\lg n)(n$ size of data structure $)$ $\lg n+O(\lg \lg n)$ element comparisons

Main results

- We devised a priority queue that for find-min, insert, and delete has a comparison-complexity bound that is optimal up to the constant additive terms, while keeping the worst-case cost of find-min and insert constant
- We introduced a priority queue that for delete has a comparisoncomplexity bound that is constant-factor optimal (i.e. the constant factor in the leading term is optimal), while keeping the worst-case cost of find-min, insert, and decrease constant
- We described two new data-structural transformations to construct double-ended priority queues from priority queues
- We introduced three new number systems

In total, we introduced seven priority queues, two double-ended priority queues, and three number systems.

