
c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (1)

Improving the efficiency of

priority-queue structures

Claus Jensen

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (2)

Co-authors

Six of the seven papers in the thesis have been produced in collab-

oration with:

• Amr Elmasry

• Jyrki Katajainen

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (3)

Main focus of our study

• The efficiency of addressable priority-queue structures

• Worst-case efficiency

• Comparison complexity

• Constant factors

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (4)

Priority queues (introduction)

• A priority queue is a data structure that maintains a collection of

elements from a totally ordered universe

• For reasons of simplicity we do not distinguish elements from their

associated priorities

• Heap-ordered trees can be used as the basic components

• A collection of heap-ordered trees can be maintained using differ-

ent strategies

• The chosen strategy will affect the efficiency of the priority queue

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (5)

Set of operations supported by a minimum
priority queue Q

find-min(Q). Returns a reference to a node containing a minimum
element of priority queue Q

insert(Q, x). Inserts a node referenced by x into priority queue Q. It
is assumed that the node has already been constructed to contain
an element

extract(Q). Extracts an unspecified node from priority queue Q, and
returns a reference to that node. The extract operation is in some
places called borrow

delete-min(Q). Removes a minimum element and the node in which it
is contained from priority queue Q

delete(Q, x). Removes the node referenced by x, and the element it
contains, from priority queue Q

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (6)

Set of operations supported by a minimum
priority queue Q

decrease(Q, x, e). Replaces the element at the node referenced by x

with element e. It is assumed that e is not greater than the

element earlier stored in the node

meld(Q1, Q2). Creates a new priority queue containing all the elem-

ents held in the priority queues Q1 and Q2, and returns a reference

to that priority queue. This operation destroys Q1 and Q2s

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (7)

Number systems (introduction)

In a positional number system represented by its digits and their cor-
responding weights.

A representation is a string of digits
〈
d0, d1, . . . , dk−1

〉
of lenght k

Let d =
〈
d0, d1, . . . , dk−1

〉
Where d0 is the least significant digit

value(d) =
k−1∑
i=0

di × wi

Where wi is the weight corresponding to di

b-ary: wi = bi or wi = bi+1 − 1 (Skew)

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (8)

Number systems

Binary: di ∈ {0,1}; wi = 2i

Redundant binary: di ∈ {0,1,2}; wi = 2i

Regular binary: di ∈ {0,1,2}; wi = 2i; Every string has the form(
0 | 1 | 01∗2

)∗
[Clancy & Knuth 1977]

Canonical Skew binary: di < j = 0; di ∈ {0,1,2}; di > j ∈ {0,1};
wi = 2i+1 − 1 [Myers 1983]

Zeroless regular: di ∈ {1,2,3}; wi = 2i; Every string has the form(
1 | 2 | 12∗3

)∗
[Brodal 1995]

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (9)

Connection between number systems and
priority queue structures

• A binomial queue using binary representation

d = 〈111〉

11 3

18

12

14 37

42

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (10)

Connection between number systems and
priority queue structures

• A binomial queue using redundant binary representation

d = 〈202〉

11 2 7

10 8

19

14

16 37

42

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (11)

Connection between number systems and
priority queue structures

• A binomial queue using zeroless representation

d = 〈412〉

12 1 11 2 3

18

7

10 8

19

14

16 37

42

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (12)

Magical skew system (paper one)

Digit set: di ∈ {0,1,2,3,4}

Extreme digits: di ∈ {0,1,3,4}

Low digits: di ∈ {0,1}

High digits: di ∈ {3,4}

Weight: wi = 2i+1 − 1 (skew)

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (13)

Application: Binary heaps

• Using the magical skew system to facilitate insert in a collection

of pointer-based binary heaps we archive the following bounds:

operations worst-case cost
find-min, insert O(1)

delete
O(lgn) (n size of data structure)

6 lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (14)

Regular skew

Cost of a digit change: O(j) at position j

Discretization: Initially, j bricks at position j, i.e. bj = j

Digit set: di ∈ {0,1,2} ∀i; when bk > 0, dk is said to form a wall (1

or 2) of bk bricks

Incremental digit changes: Remove some bricks from some walls in

addition to the normal actions; do not transfer digits across any

walls

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (15)

Application: Binary heaps

• Using the regular skew system to facilitate insert and meld in a

collection of pointer-based binary heaps we archive the following

bounds:

operations worst-case cost
find-min, insert O(1)
meld O(lg2 m) (m size of data structure and m < n)

delete
O(lgn) (n size of data structure)

5 lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (16)

Multipartite binomial queue (paper two)

• A multipartite binomial queue consist of the following five

components:

Buffer: This is a binomial queue relying on the regular binary number

system. The buffer is responsible for handling insertions

Reservoir: This is a single tree, initially a binomial tree, but it grad-

ually loses its binomial structure while nodes are borrowed or

deleted

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (17)

Multipartite binomial queue

Main store: This is a binomial queue relying on the binary number

system. The large portion of the n elements is stored here

Upper store: This is a circular doubly-linked list that maintains the

order among the roots in the main store. The order is main-

tained using prefix-minimum pointers. For a given rank a prefix-

minimum pointer points to the root which holds the minimum

element among the roots which have equal or smaller rank

Floating tree: This is a single binomial tree. It is needed to regulate

the traffic between the buffer and the main store

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (18)

Multipartite binomial queue

main store

delete

insert

< n/2<
√
n

floating tree

(0 | 1)∗

(0 | 1 | 01∗2)∗

reservoirbuffer

Overflow

borrow

delete

Underflow

borrow-based delete

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (19)

Multipartite binomial queue operations

find-min: Compares the minimum candidates from the following com-
ponents:

• Upper store, the prefix-minimum pointer of the tree of the
largest rank in the main store

• The floating tree if such exists

• The buffer

• The reservoir

insert: All new elements are inserted into the buffer

delete-min: If the minimum is in the main store a node is borrowed in
the reservoir and the structure of the tree is re-established. The
prefix-minimum pointers in the upper store are updated

delete: The node is swapped with its parent until it becomes a root,
after which the procedure used in delete-min is followed

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (20)

Multipartite binomial queue bounds

• Multipartite binomial queue have the following worst-case

comparison-complexity bounds for the operations:

operations worst-case cost
find-min, insert O(1)

delete
O(lgn) (n size of data structure)

lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (21)

Bipartite binomial queue

• A new result which is not in the thesis (a collaboration with Amr

Elmasry and Jyrki Katajainen)

• Simplifies multipartite binomial queue

• All trees are binomial

• Now supports meld at logarithmic worst-case cost

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (22)

Bipartite binomial queue

main store

delete

Union

borrow

insert

Overflow

floating tree

(0 | 1)∗

(0 | 1 | 01∗2)∗

buffer

borrow

Union

borrow-based delete

< 10 lgn

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (23)

Bipartite binomial queue bounds

• Bipartite binomial queue have the following worst-case comparison-

complexity bounds for the operations:

operations worst-case cost
find-min, insert O(1)

meld

O(lgn) (m and n are the sizes of data

structures and m < n)

lgn+O(lg lgn) element comparisons

delete
O(lgn) (n size of data structure)

lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (24)

Two-tier relaxed heaps - Relaxed heaps (pa-
per three)

• A relaxed binomial tree is a almost heap-ordered binomial tree

• Some nodes can be marked active indicating that there may be a

heap-order violation

• A relaxed heap supports decrease and the number of active nodes

is at most blgnc (Driscoll, Gabow, Shrairman og Tarjan 1988)

• A singleton is an active node which has no active siblings

• A run is a sequence of consecutive active siblings

• The number of active nodes can be reduced using violation-

reducing transformations

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (25)

Two-tier relaxed heaps

• Two-tier relaxed heaps consist of the following two compon-

ents:

Upper store: This is a modified relaxed heap whose nodes contain

pointers to the following nodes in the lower store:

• current roots and current active nodes

• former roots and former active nodes which are only marked

for deletion in the upper store

Lower store: This is a modified relaxed heap containing the elements

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (26)

Zeroless regular system

• To support insert and extract at worst-case constant cost, a

zeroless regular number system is used

Digit set: di ∈ {1,2,3,4}

Extreme digits: di ∈ {1,4}

Weight: wi = 2i

Regularity: Between any two digits equal to 4 there is a digit other

than 3, and between any two digits equal to 1 there is a digit

other than 2, except when one of the digits equal to 1 is the most

significant digit

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (27)

Two-tier relaxed heaps

• The upper store uses lazy deletions (marking) when, a join is

done or an active node is made non-active in the lower store, as

a normal deletion would be too expensive

• Incremental global rebuilding is used to remove the markings when

the number of marked nodes become to large

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (28)

Two-tier relaxed heaps

• A two-tier relaxed heap storing 12 integers

Upper storeRuns

Singletons

• • • •

•

• •

•

Lower store

Runs

Singletons

11 2 3

18

7

1 6

19

14

12 37

42

•

•

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (29)

Two-tier relaxed heaps operations

find-min: Use a minimum pointer in the upper store

insert, extract: Utilizes the zeroless number system

decrease: Make the node active, after which violation-reducing trans-

formations may be used to reduce the number of active nodes

delete: Borrow a node using extract and re-establish the structure of

the tree

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (30)

Two-tier relaxed heaps bounds

• Two-tier relaxed heaps have the following worst-case comparison-

complexity bounds for the operations:

operations worst-case cost
find-min, insert, extract, decrease O(1)

meld
O(min {lgm, lgn}) (m and n are the

sizes of data structures)

delete
O(lgn) (n size of data structure)

lgn+O(lg lgn) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (31)

Pruned binomial queue (paper four)

• A priority queue where structural violations are used instead of

heap-order violations

• The bounds are obtained by mimicking heap-order violations using

a shadow structure

• A violating node is replaced with a placeholder node and moved

to the shadow structure

• Using structural violations it is possible to obtain worst-case com-

parison-complexity bounds comparable to those obtained using

heap-order violations in two-tier relaxed heaps

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (32)

Meldable heaps relying on bootstrapping (pa-
per five)

• Use a binomial heap that supports insert at constant worst-case

cost and meld at logarithmic worst-case cost

• Modify the binomial heap using data-structural bootstrapping

• Results in a structure where binomial heaps contain binomial

heaps

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (33)

Meldable heaps relying on bootstrapping

• A simplified view of a bootstrapped heap

Q

• •

R

x
7 •

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (34)

Meldable heaps relying on bootstrapping bounds

• The bounds for a meldable heaps relying on bootstrapping

operations worst-case cost
find-min, insert, meld O(1)

delete
O(lgn) (n size of data structure)

3 lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (35)

Strictly-regular number system (paper six)

Digit set: di ∈ {0,1,2}

Strict regularity: Every sting has the form
(
1+ | 01∗2

)∗(
ε | 01+

)
Extreme digits: 0 and 2

Weight: wi = 2i

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (36)

Increment

fix -carry(d, i): Assert that di ≥ 2. Perform di ← di − 2 and di+1 ←
di+1 + 1

Algorithm increment(d, i):

1: di ← di + 1

2: Let db be the first extreme digit before di, db ∈ {0,2, undefined}
3: Let da be the first extreme digit after di, da ∈ {0,2, undefined}
4: if di = 3 or (di = 2 and db 6= 0)

5: fix -carry(d, i)

6: else if da = 2

7: fix -carry(d, a)

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (37)

Decrement

fix -borrow(d, i): Assert that di ≤ 1. Perform di+1 ← di+1 − 1 and

di ← di + 2

Algorithm decrement(d, i):

1: Let db be the first extreme digit before di, db ∈ {0,2, undefined}
2: Let da be the first extreme digit after di, da ∈ {0,2, undefined}
3: if di = 0 or (di = 1 and db = 0 and i 6= r − 1)

4: fix -borrow(d, i)

5: else if da = 0

6: fix -borrow(d, a)

7: di ← di − 1

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (38)

Other operations

cut(d, i): Cut rep(d) into two strings having the same value as the

numbers corresponding to 〈d0, d1, . . . , di−1〉 and
〈
di, di+1, . . . , dk−1

〉
.

Transform
〈
di, di+1, . . . , dk−1

〉
into a strictly-regular form, if neces-

sary

concatenate(d,d′): Concatenate rep(d) and rep(d′) into one string that

has the same value as
〈
d0, d1, . . . , dk−1, d

′
0, d
′
1, . . . , d

′
k′−1

〉
. Trans-

form
〈
d0, d1, . . . , dk−1, d

′
0, d
′
1, . . . , d

′
k′−1

〉
into a strictly-regular form,

if necessary

add(d,d′): Construct a string d′′ of strictly-regular form such that

value(d′′) = value(d) + value(d′)

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (39)

Application: Meldable priority queues

• Meldable priority queues using the strictly-regular number sys-

tem have the following bounds:

operations worst-case cost
find-min, insert, meld O(1)

delete
O(lgn) (n size of data structure)

2 lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (40)

Two new transformations to construct double-
ended priority queues (paper seven)

• A double-ended priority queue can extend the set of operations

supported by a priority queue by the following operations:

find-max(Q). Returns a reference to a node containing a maximum

element of Q

delete-max(Q). Removes a maximum element and the node in which

it is contained from Q

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (41)

First transformation

• A special pivot element is used to partition the elements of the

double-ended priority queue into three collections

• The three collections (maintained as priority queues) contain the

elements smaller than, equal to, and larger than the pivot element

• Using this partition of the elements, we can delete an element

only touching one priority queue

• To maintain the partitioning balanced the data structure is rebuild

after a linear number of operations

• The rebuilding is done incrementally to obtain worst-case bounds

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (42)

Application of first transformation

• Using the first transformation together with the multipartite

binomial queue the following bounds can be obtained:

operations worst-case cost
find-min/find-max , insert, extract O(1)

delete
O(lgn) (n size of data structure)

lgn + O(1) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (43)

Second transformation

• Use the total correspondence approach

• The fact that the underlying priority queue supports insert, extract,

and decrease (increase) at O(1) cost

• The transformation replaces the two priority queue delete oper-

ations used in the standard total correspondence approach with

one delete operation and some operations having O(1) cost

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (44)

Application of second transformation

• Utilizing the fact that insert, extract, and decrease (increase) in two-

tier relaxed heaps has a constant worst-case cost the following

bounds are obtained:

operations worst-case cost
find-min/find-max , insert, extract O(1)

meld
O(min {lgm, lgn}) (m and n are the

sizes of data structures)

delete
O(lgn) (n size of data structure)

lgn+O(lg lgn) element comparisons

c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (45)

Main results

• We devised a priority queue that for find-min, insert, and delete has
a comparison-complexity bound that is optimal up to the constant
additive terms, while keeping the worst-case cost of find-min and
insert constant

• We introduced a priority queue that for delete has a comparison-
complexity bound that is constant-factor optimal (i.e. the con-
stant factor in the leading term is optimal), while keeping the
worst-case cost of find-min, insert, and decrease constant

• We described two new data-structural transformations to con-
struct double-ended priority queues from priority queues

• We introduced three new number systems

In total, we introduced seven priority queues, two double-ended pri-
ority queues, and three number systems.

	Title page
	Co-authors
	Main focus of our study
	Priority queues (introduction)
	Set of operations supported by a minimum priority queue Q
	Set of operations supported by a minimum priority queue Q
	Number systems (introduction)
	Number systems
	Connection between number systems and priority queue structures
	Connection between number systems and priority queue structures
	Connection between number systems and priority queue structures
	Magical skew system (paper one)
	Application: Binary heaps
	Regular skew
	Application: Binary heaps
	Multipartite binomial queue (paper two)
	Multipartite binomial queue
	Multipartite binomial queue
	Multipartite binomial queue operations
	Multipartite binomial queue bounds
	Bipartite binomial queue
	Bipartite binomial queue
	Bipartite binomial queue bounds
	Two-tier relaxed heaps - Relaxed heaps (paper three)
	Two-tier relaxed heaps
	Zeroless regular system
	Two-tier relaxed heaps
	Two-tier relaxed heaps
	Two-tier relaxed heaps operations
	Two-tier relaxed heaps bounds
	Pruned binomial queue (paper four)
	Meldable heaps relying on bootstrapping (paper five)
	Meldable heaps relying on bootstrapping
	Meldable heaps relying on bootstrapping bounds
	Strictly-regular number system (paper six)
	Increment
	Decrement
	Other operations
	Application: Meldable priority queues
	Two new transformations to construct double-ended priority queues (paper seven)
	First transformation
	Application of first transformation
	Second transformation
	Application of second transformation
	Main results

