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Main focus of our study

• The efficiency of addressable priority-queue structures

• Worst-case efficiency

• Comparison complexity

• Constant factors
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Priority queues (introduction)

• A priority queue is a data structure that maintains a collection of

elements from a totally ordered universe

• For reasons of simplicity we do not distinguish elements from their

associated priorities

• Heap-ordered trees can be used as the basic components

• A collection of heap-ordered trees can be maintained using differ-

ent strategies

• The chosen strategy will affect the efficiency of the priority queue
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Set of operations supported by a minimum
priority queue Q

find-min(Q). Returns a reference to a node containing a minimum
element of priority queue Q

insert(Q, x). Inserts a node referenced by x into priority queue Q. It
is assumed that the node has already been constructed to contain
an element

extract(Q). Extracts an unspecified node from priority queue Q, and
returns a reference to that node. The extract operation is in some
places called borrow

delete-min(Q). Removes a minimum element and the node in which it
is contained from priority queue Q

delete(Q, x). Removes the node referenced by x, and the element it
contains, from priority queue Q
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Set of operations supported by a minimum
priority queue Q

decrease(Q, x, e). Replaces the element at the node referenced by x

with element e. It is assumed that e is not greater than the

element earlier stored in the node

meld(Q1, Q2). Creates a new priority queue containing all the elem-

ents held in the priority queues Q1 and Q2, and returns a reference

to that priority queue. This operation destroys Q1 and Q2s



c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (7)

Number systems (introduction)

In a positional number system represented by its digits and their cor-
responding weights.

A representation is a string of digits
〈
d0, d1, . . . , dk−1

〉
of lenght k

Let d =
〈
d0, d1, . . . , dk−1

〉
Where d0 is the least significant digit

value(d) =
k−1∑
i=0

di × wi

Where wi is the weight corresponding to di

b-ary: wi = bi or wi = bi+1 − 1 (Skew)
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Number systems

Binary: di ∈ {0,1}; wi = 2i

Redundant binary: di ∈ {0,1,2}; wi = 2i

Regular binary: di ∈ {0,1,2}; wi = 2i; Every string has the form(
0 | 1 | 01∗2

)∗
[Clancy & Knuth 1977]

Canonical Skew binary: di < j = 0; di ∈ {0,1,2}; di > j ∈ {0,1};
wi = 2i+1 − 1 [Myers 1983]

Zeroless regular: di ∈ {1,2,3}; wi = 2i; Every string has the form(
1 | 2 | 12∗3

)∗
[Brodal 1995]
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Connection between number systems and
priority queue structures

• A binomial queue using binary representation

d = 〈111〉

11 3

18

12

14 37

42
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Connection between number systems and
priority queue structures

• A binomial queue using redundant binary representation

d = 〈202〉

11 2 7

10 8

19

14

16 37

42
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Connection between number systems and
priority queue structures

• A binomial queue using zeroless representation

d = 〈412〉

12 1 11 2 3

18

7

10 8

19

14

16 37

42
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Magical skew system (paper one)

Digit set: di ∈ {0,1,2,3,4}

Extreme digits: di ∈ {0,1,3,4}

Low digits: di ∈ {0,1}

High digits: di ∈ {3,4}

Weight: wi = 2i+1 − 1 (skew)
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Application: Binary heaps

• Using the magical skew system to facilitate insert in a collection

of pointer-based binary heaps we archive the following bounds:

operations worst-case cost
find-min, insert O(1)

delete
O(lgn) (n size of data structure)

6 lgn + O(1) element comparisons
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Regular skew

Cost of a digit change: O(j) at position j

Discretization: Initially, j bricks at position j, i.e. bj = j

Digit set: di ∈ {0,1,2} ∀i; when bk > 0, dk is said to form a wall (1

or 2) of bk bricks

Incremental digit changes: Remove some bricks from some walls in

addition to the normal actions; do not transfer digits across any

walls
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Application: Binary heaps

• Using the regular skew system to facilitate insert and meld in a

collection of pointer-based binary heaps we archive the following

bounds:

operations worst-case cost
find-min, insert O(1)
meld O(lg2 m) (m size of data structure and m < n)

delete
O(lgn) (n size of data structure)

5 lgn + O(1) element comparisons
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Multipartite binomial queue (paper two)

• A multipartite binomial queue consist of the following five

components:

Buffer: This is a binomial queue relying on the regular binary number

system. The buffer is responsible for handling insertions

Reservoir: This is a single tree, initially a binomial tree, but it grad-

ually loses its binomial structure while nodes are borrowed or

deleted
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Multipartite binomial queue

Main store: This is a binomial queue relying on the binary number

system. The large portion of the n elements is stored here

Upper store: This is a circular doubly-linked list that maintains the

order among the roots in the main store. The order is main-

tained using prefix-minimum pointers. For a given rank a prefix-

minimum pointer points to the root which holds the minimum

element among the roots which have equal or smaller rank

Floating tree: This is a single binomial tree. It is needed to regulate

the traffic between the buffer and the main store
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Multipartite binomial queue

main store

delete

insert

< n/2<
√
n

floating tree

(0 | 1)∗

(0 | 1 | 01∗2)∗

reservoirbuffer

Overflow

borrow

delete

Underflow

borrow-based delete
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Multipartite binomial queue operations

find-min: Compares the minimum candidates from the following com-
ponents:

• Upper store, the prefix-minimum pointer of the tree of the
largest rank in the main store

• The floating tree if such exists

• The buffer

• The reservoir

insert: All new elements are inserted into the buffer

delete-min: If the minimum is in the main store a node is borrowed in
the reservoir and the structure of the tree is re-established. The
prefix-minimum pointers in the upper store are updated

delete: The node is swapped with its parent until it becomes a root,
after which the procedure used in delete-min is followed
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Multipartite binomial queue bounds

• Multipartite binomial queue have the following worst-case

comparison-complexity bounds for the operations:

operations worst-case cost
find-min, insert O(1)

delete
O(lgn) (n size of data structure)

lgn + O(1) element comparisons
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Bipartite binomial queue

• A new result which is not in the thesis (a collaboration with Amr

Elmasry and Jyrki Katajainen)

• Simplifies multipartite binomial queue

• All trees are binomial

• Now supports meld at logarithmic worst-case cost
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Bipartite binomial queue

main store

delete

Union

borrow

insert

Overflow

floating tree

(0 | 1)∗

(0 | 1 | 01∗2)∗

buffer

borrow

Union

borrow-based delete

< 10 lgn
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Bipartite binomial queue bounds

• Bipartite binomial queue have the following worst-case comparison-

complexity bounds for the operations:

operations worst-case cost
find-min, insert O(1)

meld

O(lgn) (m and n are the sizes of data

structures and m < n)

lgn+O(lg lgn) element comparisons

delete
O(lgn) (n size of data structure)

lgn + O(1) element comparisons
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Two-tier relaxed heaps - Relaxed heaps (pa-
per three)

• A relaxed binomial tree is a almost heap-ordered binomial tree

• Some nodes can be marked active indicating that there may be a

heap-order violation

• A relaxed heap supports decrease and the number of active nodes

is at most blgnc (Driscoll, Gabow, Shrairman og Tarjan 1988)

• A singleton is an active node which has no active siblings

• A run is a sequence of consecutive active siblings

• The number of active nodes can be reduced using violation-

reducing transformations
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Two-tier relaxed heaps

• Two-tier relaxed heaps consist of the following two compon-

ents:

Upper store: This is a modified relaxed heap whose nodes contain

pointers to the following nodes in the lower store:

• current roots and current active nodes

• former roots and former active nodes which are only marked

for deletion in the upper store

Lower store: This is a modified relaxed heap containing the elements
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Zeroless regular system

• To support insert and extract at worst-case constant cost, a

zeroless regular number system is used

Digit set: di ∈ {1,2,3,4}

Extreme digits: di ∈ {1,4}

Weight: wi = 2i

Regularity: Between any two digits equal to 4 there is a digit other

than 3, and between any two digits equal to 1 there is a digit

other than 2, except when one of the digits equal to 1 is the most

significant digit
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Two-tier relaxed heaps

• The upper store uses lazy deletions (marking) when, a join is

done or an active node is made non-active in the lower store, as

a normal deletion would be too expensive

• Incremental global rebuilding is used to remove the markings when

the number of marked nodes become to large
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Two-tier relaxed heaps

• A two-tier relaxed heap storing 12 integers

Upper storeRuns

Singletons

• • • •

•

• •

•

Lower store

Runs

Singletons

11 2 3

18

7

1 6

19

14

12 37

42

•

•
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Two-tier relaxed heaps operations

find-min: Use a minimum pointer in the upper store

insert, extract: Utilizes the zeroless number system

decrease: Make the node active, after which violation-reducing trans-

formations may be used to reduce the number of active nodes

delete: Borrow a node using extract and re-establish the structure of

the tree
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Two-tier relaxed heaps bounds

• Two-tier relaxed heaps have the following worst-case comparison-

complexity bounds for the operations:

operations worst-case cost
find-min, insert, extract, decrease O(1)

meld
O(min {lgm, lgn}) (m and n are the

sizes of data structures)

delete
O(lgn) (n size of data structure)

lgn+O(lg lgn) element comparisons
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Pruned binomial queue (paper four)

• A priority queue where structural violations are used instead of

heap-order violations

• The bounds are obtained by mimicking heap-order violations using

a shadow structure

• A violating node is replaced with a placeholder node and moved

to the shadow structure

• Using structural violations it is possible to obtain worst-case com-

parison-complexity bounds comparable to those obtained using

heap-order violations in two-tier relaxed heaps



c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (32)

Meldable heaps relying on bootstrapping (pa-
per five)

• Use a binomial heap that supports insert at constant worst-case

cost and meld at logarithmic worst-case cost

• Modify the binomial heap using data-structural bootstrapping

• Results in a structure where binomial heaps contain binomial

heaps
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Meldable heaps relying on bootstrapping

• A simplified view of a bootstrapped heap

Q

• •

R

x
7 •
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Meldable heaps relying on bootstrapping bounds

• The bounds for a meldable heaps relying on bootstrapping

operations worst-case cost
find-min, insert, meld O(1)

delete
O(lgn) (n size of data structure)

3 lgn + O(1) element comparisons
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Strictly-regular number system (paper six)

Digit set: di ∈ {0,1,2}

Strict regularity: Every sting has the form
(
1+ | 01∗2

)∗(
ε | 01+

)
Extreme digits: 0 and 2

Weight: wi = 2i
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Increment

fix -carry(d, i): Assert that di ≥ 2. Perform di ← di − 2 and di+1 ←
di+1 + 1

Algorithm increment(d, i):

1: di ← di + 1

2: Let db be the first extreme digit before di, db ∈ {0,2, undefined}
3: Let da be the first extreme digit after di, da ∈ {0,2, undefined}
4: if di = 3 or (di = 2 and db 6= 0)

5: fix -carry(d, i)

6: else if da = 2

7: fix -carry(d, a)
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Decrement

fix -borrow(d, i): Assert that di ≤ 1. Perform di+1 ← di+1 − 1 and

di ← di + 2

Algorithm decrement(d, i):

1: Let db be the first extreme digit before di, db ∈ {0,2, undefined}
2: Let da be the first extreme digit after di, da ∈ {0,2, undefined}
3: if di = 0 or (di = 1 and db = 0 and i 6= r − 1)

4: fix -borrow(d, i)

5: else if da = 0

6: fix -borrow(d, a)

7: di ← di − 1
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Other operations

cut(d, i): Cut rep(d) into two strings having the same value as the

numbers corresponding to 〈d0, d1, . . . , di−1〉 and
〈
di, di+1, . . . , dk−1

〉
.

Transform
〈
di, di+1, . . . , dk−1

〉
into a strictly-regular form, if neces-

sary

concatenate(d,d′): Concatenate rep(d) and rep(d′) into one string that

has the same value as
〈
d0, d1, . . . , dk−1, d

′
0, d
′
1, . . . , d

′
k′−1

〉
. Trans-

form
〈
d0, d1, . . . , dk−1, d

′
0, d
′
1, . . . , d

′
k′−1

〉
into a strictly-regular form,

if necessary

add(d,d′): Construct a string d′′ of strictly-regular form such that

value(d′′) = value(d) + value(d′)
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Application: Meldable priority queues

• Meldable priority queues using the strictly-regular number sys-

tem have the following bounds:

operations worst-case cost
find-min, insert, meld O(1)

delete
O(lgn) (n size of data structure)

2 lgn + O(1) element comparisons
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Two new transformations to construct double-
ended priority queues (paper seven)

• A double-ended priority queue can extend the set of operations

supported by a priority queue by the following operations:

find-max(Q). Returns a reference to a node containing a maximum

element of Q

delete-max(Q). Removes a maximum element and the node in which

it is contained from Q
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First transformation

• A special pivot element is used to partition the elements of the

double-ended priority queue into three collections

• The three collections (maintained as priority queues) contain the

elements smaller than, equal to, and larger than the pivot element

• Using this partition of the elements, we can delete an element

only touching one priority queue

• To maintain the partitioning balanced the data structure is rebuild

after a linear number of operations

• The rebuilding is done incrementally to obtain worst-case bounds
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Application of first transformation

• Using the first transformation together with the multipartite

binomial queue the following bounds can be obtained:

operations worst-case cost
find-min/find-max , insert, extract O(1)

delete
O(lgn) (n size of data structure)

lgn + O(1) element comparisons
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Second transformation

• Use the total correspondence approach

• The fact that the underlying priority queue supports insert, extract,

and decrease (increase) at O(1) cost

• The transformation replaces the two priority queue delete oper-

ations used in the standard total correspondence approach with

one delete operation and some operations having O(1) cost
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Application of second transformation

• Utilizing the fact that insert, extract, and decrease (increase) in two-

tier relaxed heaps has a constant worst-case cost the following

bounds are obtained:

operations worst-case cost
find-min/find-max , insert, extract O(1)

meld
O(min {lgm, lgn}) (m and n are the

sizes of data structures)

delete
O(lgn) (n size of data structure)

lgn+O(lg lgn) element comparisons



c© Performance Engineering Laboratory University of Copenhagen, Denmark, 23 October 2012 (45)

Main results

• We devised a priority queue that for find-min, insert, and delete has
a comparison-complexity bound that is optimal up to the constant
additive terms, while keeping the worst-case cost of find-min and
insert constant

• We introduced a priority queue that for delete has a comparison-
complexity bound that is constant-factor optimal (i.e. the con-
stant factor in the leading term is optimal), while keeping the
worst-case cost of find-min, insert, and decrease constant

• We described two new data-structural transformations to con-
struct double-ended priority queues from priority queues

• We introduced three new number systems

In total, we introduced seven priority queues, two double-ended pri-
ority queues, and three number systems.
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