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Abstract

In this thesis we investigate the comparison complexity of operations used
in the manipulation of worst-case efficient data structures. The focus of
the study is on the design and analysis of priority queues and double-ended
priority queues. A priority queue is a data structure that stores a collection
of elements and supports the operations find -min, insert , extract , decrease,
delete, and meld ; a double-ended priority queue also supports the operation
find -max .

The worst-case efficiency of the priority queues and double-ended prior-
ity queues is improved using data-structural transformations and number
systems. The research has been concentrated on improving the leading con-
stant in the bound expressing the worst-case comparison complexity of the
delete operation while obtaining a constant cost for a subset of the other
operations. Our main contributions are:

– We devise a priority queue that for find -min, insert , and delete has
a comparison-complexity bound that is optimal up to the constant
additive terms, while keeping the worst-case cost of find -min and insert
constant.

– We introduce a priority queue that for delete has a comparison-com-
plexity bound that is constant-factor optimal (i.e. the constant factor
in the leading term is optimal), while keeping the worst-case cost of
find -min, insert , and decrease constant.

– We describe two new data-structural transformations to construct
double-ended priority queues from priority queues.

– We introduce three new number systems.

In total, we introduce seven priority queues, two double-ended priority
queues, and three number systems.
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General introduction

In this thesis we study the efficiency of addressable priority-queue structures.
The main focus of the study is on the reduction of the worst-case comparison
complexity of the operations used in the manipulation of priority queues and
double-ended priority queues.

The thesis consists of this general introduction and seven individual pa-
pers. In the introduction we review worst-case-efficient priority queues rele-
vant to our study. Also we give a brief survey of number systems and we
explain their connection to priority queues. We conclude the introduction
by summarizing the results obtained in the individual papers.

1. Priority queues

A priority queue is a data structure that maintains a collection of elements
from a totally ordered universe. For reasons of simplicity we will not dis-
tinguish the elements from their associated priorities. The following set of
operations is supported by a minimum priority queue Q:

find -min(Q). Returns a reference to a node containing a minimum element
of priority queue Q.

insert(Q, x). Inserts a node referenced by x into priority queue Q. It is
assumed that the node has already been constructed to contain an
element.

extract(Q). Extracts an unspecified node from priority queue Q, and returns
a reference to that node. The extract operation is in some places called
borrow .

delete-min(Q). Removes a minimum element and the node in which it is
contained from priority queue Q.

delete(Q, x). Removes the node referenced by x, and the element it contains,
from priority queue Q.

decrease(Q, x, e). Replaces the element at the node referenced by x with
element e. It is assumed that e is not greater than the element earlier
stored in the node.

meld(Q1, Q2). Creates a new priority queue containing all the elements held
in the priority queues Q1 and Q2, and returns a reference to that pri-
ority queue. This operation destroys Q1 and Q2.

Observe that extract is a non-standard priority queue operation. However,
the importance of using extract internally within priority queues will be
demonstrated in many of the included papers. Furthermore, placing extract
in the priority-queue interface makes it possible to use this operation in other
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2 Claus Jensen

data structures, the advantage of which will be demonstrated in connection
with double-ended priority queues.

A double-ended priority queue Q supports the following operations in
addition to the above-mentioned operations:

find -max (Q). Returns a reference to a node containing a maximum element
of priority queue Q.

delete-max (Q). Removes a maximum element and the node in which it is
contained from priority queue Q.

Throughout the introduction we use m and n to denote the number of
elements stored in the manipulated data structures prior to an operation
and lg n as a shorthand for log2(max {2, n}).

Priority queues are important in many application areas like, for exam-
ple, networks, simulation, compression, and sorting. Priority queues are
used in well-known algorithms like Dijkstra’s single-source shortest-paths
algorithm (see for example [9, Chapter 24]) and heapsort (see [9, Chapter
6]). Priority queues with good worst-case bounds can be used for managing
limited resources like bandwidth in network routers and for managing events
in discrete event simulations.

In the following we review a relevant selection of worst-case-efficient pri-
ority queues introduced by others. Observe that the mentioned comparison-
complexity bounds are derived by us.

Constant-cost find-min. The binary-heap data structure introduced
by Williams [25] in 1964 is one of the most well-known priority queues and
also one of the earliest. For the binary heap by Williams having size n,
the worst-case cost of insert and delete-min is O(lg n) and the comparison
complexity for insert is lg n + 1 and that for delete-min 2 lg n. Gonnet
and Munro [15] has shown that log log n ± O(1) element comparisons are
necessary and sufficient for inserting a element into a binary heap and that
log n + log∗ n ± O(1) element comparisons are necessary and sufficient for
deleting a minimum element from a binary heap.

A binary heap is a nearly complete (or left-complete) binary tree where
each node contains an element. In a minimum heap, the priority-queue
operations maintain the nodes in heap order, i.e. for a node having at least
one child, the element stored at that node should not be greater than an
element stored at any child of that node. A binary heap can be represented
using an array where the nodes are stored in breath-first order.

For a more extensive description of the basic concepts related to binary
heaps (see for example [9, Chapter 6]). The heaps described by Johnson [16]
generalize binary heaps to d-ary heaps, which are d-ary trees for d > 2.

Constant-cost insert. Binomial queues improve the cost of insert to
O(1); for the original version of binomial queues [24] this bound is only valid
in the amortized sense, but it was quickly observed that the bound could
also be achieved in the worst case [5]. Later several other worst-case-efficient
variants of binomial queues have been developed (see, for example [6] or
[10]). For binomial queues, guaranteeing insert at the worst-case constant
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cost, 2 lg n−O(1) is a lower bound and 2 lg n+O(1) an upper bound on the
number of element comparisons performed by delete, see [12].

The basic components of binomial queues are heap-ordered binomial trees,
see Figure 1. For a positive integer r, the rank of a binomial tree can be
defined as follows: A binomial tree of rank 0 is a single node; for ranks higher
than 0, a binomial tree of rank r consists of the root and its r subtrees of
rank 0, 1, . . . , r − 1. The size of a binomial tree is always a power of two,
and the rank of a tree of size 2r is r.

In a standard representation of a binomial tree a node contains an element,
a rank, a parent pointer, a child pointer, and two sibling pointers.

If two heap-ordered binomial trees have the same rank, they can be linked
together by making the root that stores the non-smaller element a child of
the other root. We refer to this as a join. A split is the inverse of a join. A
join involves a single element comparison, and both a join and a split have
the worst-case cost of O(1).

A binomial queue of size n is a forest of O(lg n) binomial trees. To keep
the number of trees bounded, different strategies can be used; one strategy
is to use number systems (see Section 2), another is to define an upper limit
on the number of trees τ . For instance, the binomial queue used in a run-
relaxed heap [10] maintains the invariant τ ≤ blg nc + 1. When inserting
a new node into a binomial queue the node is treated as a tree of rank 0.
Whether this tree is joined with another tree is governed by the strategy
chosen to maintain the number of trees logarithmic.

Constant-cost decrease. Run-relaxed heaps [10] achieve the worst-case
cost of O(1) for insert and decrease. For delete, run-relaxed heaps achieve
the same asymptotical bound in the worst-case sense as binomial queues
and the comparison complexity of delete is 3 lg n+O(1) given that find -min
has the worst-case cost of O(1).

Similar to binomial queues the basic components of run-relaxed heaps are
binomial trees. Apart from the differences in the way the forest of trees is
maintained, the main difference between binomial queues and run-relaxed
heaps is that run-relaxed heaps allow a number of nodes to violate the heap
order. These heap-order violations (potential violations) can be introduced
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Figure 1. A binomial queue storing 7 integers. The binomial trees are drawn in schematic
form.
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by the decrease operation and at most O(lg n) violations are allowed to
appear in the data structure.

To ensure that the number of heap-order violations do not become too
large, violation-reducing transformations are used. The use of these trans-
formations ensures that decrease can be supported at the worst-case cost of
O(1). The idea behind the transformations is that they perform some in-
cremental work, if necessary. This incremental work guarantees that nodes
which violate the heap order are moved upward in the trees.

Constant-cost meld. If the worst-case cost of O(1) for insert and meld
is required the meldable priority queues described in [2] and [4] achieve
these bounds. The bootstrapped priority queues described in [4] achieve the
worst-case cost of O(1) for meld by using a priority queue that supports
meld at the worst-case cost of O(lg n). A bootstrapped priority queue is a
priority queue that is represented as a pair. Each pair in the bootstrapped
structure contains an element and a priority queue, and each priority queue
contains pairs. This way the bootstrapped priority queue is a priority queue
which can recursively contain other priority queues. Using this kind of re-
cursion, a bootstrapped priority queue transforms meld into a special case
of insert . For the bootstrapped priority queues described in [4], the com-
parison complexity for delete-min is at least 4 lg n−O(1) and delete is not
supported.

One of the reasons the meldable priority queues in [2] can achieve the
worst-case cost of O(1) for meld is by maintaining a structure consisting of
one tree instead of a forest of trees. For a positive integer r, the rank of a
meldable tree can be defined as follows: A tree of rank 0 is a single node; for
ranks higher than 0, a tree of rank r consists of a node having at least one
and at most three subtrees of rank 0, 1, . . . , r− 1. However, one subtree of
the node can have a rank that is non-smaller than r. The rank of the tree
containing the root is 0. Given a node in any meldable tree, the number of
subtrees having the same rank is maintained by emulating a zeroless number
system (see Section 2). The zeroless number system ensures that the number
of subtrees having the same rank is within the range {1, 2, 3}, which again
guarantees that the sizes of the trees are exponential with respect to their
ranks. The subtrees maintained using the zeroless number system all have
ranks which are smaller than the rank of the tree of their parent. Allowing
one subtree to have a rank that is non-smaller than the rank of the tree
of its parent facilitates the achievement of the worst-case cost of O(1) for
meld . The comparison complexity for delete and delete-min of the meldable
priority queues described in [2] is 7 lg n+O(1) (the bound is derived in [14]).

2. Number systems

The connection between number systems and data structures is well-known
and number systems have been utilized in the design of worst-case efficient
data structures for a long time. This connection was, as far as we know,
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first made explicit in the seminar notes by Clancy and Knuth [8]. In this
section we give a brief survey of how number systems can be used in the
design of priority queues.

The following notation and definitions are valid throughout this section.
In a positional number system represented by its digits and their correspond-
ing weights, a numeral representation is a string of digits 〈d0, d1, . . . , d`−1 〉,
` being the length of the representation. Here d0 is the least significant digit
and d`−1 6= 0 the most significant digit. In order of appearance the least
significant digit is the lowest digit of the string and the most significant digit
the highest digit of the string. Let d = 〈d0, d1, . . . , d`−1 〉; the decimal value
of d, denoted value(d), is

∑`−1
i=0 di ·wi, where wi is the weight corresponding

to di. In a b-ary numeral representation, wi = bi. A numeral representation
can have constraints which limits the form a string can take. One way to
express these constraints is to use the syntax of regular expressions (see, for
example, [1, Section 3.3]).

We will here define a number system as a numeral representation together
with the corresponding operations on the numbers. A number system can
allow the following standard operations:
increment(d, i): Assert that i ∈ {0, 1, . . . , `− 1}. Perform ++di resulting in

d′, i.e. value(d′) = value(d) + wi. Transform d′ to a form that fulfils
the given constraints, if necessary.

decrement(d, i): Assert that i ∈ {0, 1, . . . , `− 2}. Perform --di resulting in
d′, i.e. value(d′) = value(d) − wi. Transform d′ to a form that fulfils
the given constraints, if necessary.

add(d, d′): Construct a string d′′ fulfilling the given constraints such that
value(d′′) = value(d) + value(d′).

For increment the special case where only the least significant digit is oper-
ated on usually suffices for the task at hand. Normally, if only this special
case has to be handled, the realization of the number system is simpler than
that in the general case where an arbitrary digit di, i ∈ {0, 1, . . . , `− 1}, can
be increased. The same applies to decrement .

The binary number system is well-known within computer science. The
digit set of a binary representation is di ∈ {0, 1} and their corresponding
weight is wi = 2i, value(d) is

∑`
i=0 di · wi, and every string has the form

(0 | 1)∗. If the connection between the binary number system and the num-
ber of trees in a collection of trees (for example in a binomial queue) is
used, inserting into a priority queue can be realized elegantly by emulating
an increment in the associated number system. Using this connection the
worst-case efficiency of insert in a binomial queue is directly related to how
far a carry is propagated in the corresponding numeral representation. Us-
ing a representation where only the digits 0 and 1 are allowed, insert has
the worst-case cost of Θ(lg n). The reasons for the high worst-case cost is
that an increment can result in a propagating carry, likewise a decrement
immediately after an increment can result in a propagating borrow. The
consequence of using the binary number system in connection with binomial
queues is therefore that inserting a node can result in a sequence of tree joins



6 Claus Jensen

and removing a node can result in a sequence of tree splits. Therefore, an
alternating sequence of insertion and removal of nodes results in a sequence
of priority-queue operations all having a Θ(lg n) cost.

Using an extra (redundant) digit in the representation can solve the prob-
lem of expensive alternating increment and decrement operations. Having
a redundant representation makes it possible to have value(d) = value(d′)
using two different strings. This way, the usage of digits 0, 1, and 2 will
make it possible to avoid hitting the same string of digits when increasing
and decreasing a number, thereby avoiding an alternating sequence of carries
and borrows. Even though an alternating sequence of expensive operations
can be avoided by the use of a redundant representation a single operation
can still have the worst-case cost of Θ(lg n).

Constant-cost increment. A regular redundant representation can be
used to avoid the Θ(lg n) cost of a single increment . A regular representation
also uses the digit set di ∈ {0, 1, 2}. However, it also maintains the constraint
that every digit 2 is preceded by at least one digit 0; this definition was used
in [22]. Using the syntax of regular expressions every regular string has
the form (0 | 1 | 01∗2)∗. A substring of the form 01∗2 is called a block.
Alternatively, the regular representation could also be defined using a more
loose constraint stating that between every two 2’s there is a 0 or more
formally stated if di = 2 and dk = 2 and i < k, then dj = 0 for some j ∈
{i+ 1, . . . , k − 1}; this definition was used in [8]. The regularity constraints
guarantee that an increment can be performed at the worst-case cost ofO(1);
for a proof of this claim, see [8]. Therefore, if the regular representation
is used in connection with binomial queues, the insert operation can be
performed at the worst-case cost of O(1).

In a regular representation every digit 2 corresponds to a delayed carry
and maintaining the regularity of a string can be done using a fix. A fix sets
di ← di − 2 and di+1 ← di+1 + 1. Maintaining the regularity of a string in
connection with every increment(d, i) is done by fixing the closest delayed
carry higher than i in the carry sequence (sequence of carries ordered by the
digit index i of the digits which the carries are associated with).

The delayed carries can be maintained in first-in last-out (FILO) order,
when increment only has to be supported at the least significant digit. As
a consequence of this order the carry with the lowest digit is accessed first.
Using a carry stack, increments can be performed as follows (here the strong
constraint is used).

1) Fix the first carry if any.
2) Add one.
3) If the least significant digit becomes 2, fix this 2, and if the fix creates

a new carry, add this to the carry stack.
The increment of the least significant digit only requires a constant num-

ber of digit changes. Therefore, the corresponding insert operation in a
binomial queue can be performed at the worst-case cost of O(1).

Constant-cost arbitrary increment. The regular number system can
also be used to support an increment at an arbitrary digit in the string.
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An arbitrary increment can be performed at the worst-case cost of O(1) as
follows (here the loose constraint is used).

1. If di = 0 or di = 1 is part of a block, increase di by one and fix the 2
ending the block.

2. Otherwise, increase di by one and fix di.

One way to realize this stronger type of regular number system is to use the
guide data structure described in [3] to handle the delayed carries and their
corresponding blocks at O(1) worst-case cost. The idea of the guide data
structure is, that given a digit position, it can identify and remove the block
where this digit is positioned.

Using the fact that an arbitrary increment is supported, the add operation
can be realized as follows (again the loose constraint is used). Given two
regular strings of lengths k and `, assuming without loss of generality that
k ≤ `, process the digits of the shorter string one digit at a time and update
the digits of the longer string accordingly. Let di denote the digit at position
i in the shorter string and d′i the digit in the longer string.

– di = 0: Do nothing.

– di = 1:

◦ If d′i = 0 or d′i = 1 is part of a block, increase d′i by one and fix the
2 ending the block.
◦ Otherwise, increase d′i by one and fix d′i.

– di = 2: Carry out the previous case twice.

It follows from the definition of the loose regularity constraint that the
sum of the digits of a string having length k is at most k + 1. Therefore, if
k is the length of the shorter string in an addition, at most k + 1 fixes are
performed. Therefore, for two binomial queues of sizes m and n, m ≤ n, the
corresponding meld operation involves at most lgm+2 element comparisons
and has the worst-case cost of O(lgm).

Constant-cost increment and decrement. The above-mentioned
regular representation cannot be used, when both increment and decrement
have to be supported at the worst-case cost of O(1). However, using a digit
set of size four (see [8, p. 56 ff.] and [18]) in a regular number system, where
every digit di has the corresponding weight wi = 2i, the constant worst-case
cost for both increment and decrement can be obtained. The digit set used
can be di ∈ {0, 1, 2, 3} or di ∈ {1, 2, 3, 4}. If the digit set di ∈ {1, 2, 3, 4} are
used the representation is zeroless. A zeroless regular representation having
the digit set di ∈ {1, 2, 3, 4} has the property that between any two digits
equal to 4 there is a digit other than 3, and between any two digits equal to
1 there is a digit other than 2, except when one of the digits equal to 1 is
the most significant digit.

In a zeroless regular representation having the digit set di ∈ {1, 2, 3, 4},
every digit 4 corresponds to a delayed carry and every digit 1 to a delayed
borrow. The regularity of a string under operation can be maintained as
follows. In connection with every increment(d, i) or decrement(d, i), pro-
cess the closest delayed carry or borrow higher than i in the carry/borrow
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sequence by performing a fix. A fix processes a delayed carry by setting
di ← di−2 and di+1 ← di+1 +1 and a delayed borrow by setting di ← di +2
and di+1 ← di+1 − 1.

The delayed carries and borrows can be maintained in FILO order, when
increment and decrement only have to be supported at the least signifi-
cant digit. As a consequence, the carry/borrow with the lowest digit is
accessed first. Using a carry/borrow stack, increment and decrement can be
performed as follows:

1) Fix the first carry or borrow if any.

2) Add or subtract one as desired.

3) If the least significant digit becomes 4 or 1, fix this digit, and if the fix
creates a new carry or borrow, add this to the carry/borrow stack.

Both increment and decrement of the least significant digit only requires
a constant number of digit changes. Therefore, the corresponding insert and
extract operations in a binomial queue can be performed at the worst-case
cost of O(1). The correctness of the worst-case bounds of increment and
decrement can be proved by showing that both increment and decrement
maintain the representation regular [13].

Other number systems and data structures. A zeroless regular
numeral representation with the digit set di ∈ {1, 2, 3} having the corres-
ponding weight wi = 2i and where every string has the form (1 | 2 | 12∗3)∗

was used by Brodal in [2]. Observe that these meldable priority queues were
reviewed in Section 1.

The use of the above-mentioned number systems is not only connected
to binomial queues but can also be used in connection with other priority
queue structures like selection trees [19, Section 5.2.3 and 5.4.1], complete
binary leaf trees [17], and pennants [23].

For some priority queues other types of number systems may be a more
natural choice. For example, a skew-binary number system [21] can be used
to obtain a constant amount of digit changes per increment and decrement
operation. In the skew-binary numeral representation di ∈ {0, 1, 2} and the
corresponding weight is wi = 2i+1 − 1. The skew-binary numeral repre-
sentation is a redundant representation whereas the canonical skew-binary
numeral representation [21] has an unique representation. In a canonical
skew-binary representation there is the following constraint on the digits: If
dj = 2, then di = 0 for all i ∈ {0, 1, . . . , j − 1}. For an example of a priority
queue that uses the canonical skew-binary number system, see [4].

3. Outline of this thesis

Here we summarize the results obtained in the individual papers, see also
Table 1 and Table 2.

1. Amr Elmasry, Claus Jensen, and Jyrki Katajainen, Two skew-binary
numeral systems and one application, Theory of Computing Systems,
vol. 50, no. 1 (2012), 185–211.
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Table 1. The worst-case comparison complexity for the operations of the designed priority
queues; m and n are the sizes of the data structures and m < n. The symbol – means
that the worst-case bound of the operation is not derived in the paper.

Paper find -min insert extract decrease meld delete

1 0a O(1) O(1) – O(lg2m) 3 lg n+O(1)
2 0b O(1) 0 c – – lg n+O(1)
3 O(1) O(1) O(1) O(1) O(lgm) lg n+O(lg lg n)
4 0b O(1) O(1) O(1) – lg n+O(lg lg n)
5 0d O(1) – – O(1) 3 lg n+O(1)
6 0d O(1) – – O(1) 2 lg n+O(1)

aA global minimum pointer is used, therefore find-min can be performed without
element comparisons.

bThe comparison complexity proved in the paper is O(1). However, using a global
minimum pointer we can reduce the comparison complexity to 0.

cNodes are extracted using the split operation, therefore no element comparisons are
performed.

dA minimum element is kept in a special node, therefore find-min can be performed
without element comparisons.

2. Amr Elmasry, Claus Jensen, and Jyrki Katajainen, Multipartite pri-
ority queues, ACM Transactions on Algorithms, vol. 5, no. 1 (2008),
article 14.

3. Amr Elmasry, Claus Jensen, and Jyrki Katajainen, Two-tier relaxed
heaps, Acta Informatica, vol. 45, no. 3 (2008), 193–210.

4. Amr Elmasry, Claus Jensen, and Jyrki Katajainen, On the power of
structural violations in priority queues, Proceedings of the 13th Com-
puting: The Australasian Theory Symposium, Conferences in Research
and Practice in Information Technology 65, Australian Computer So-
ciety, Inc. (2007), 45–53.

5. Claus Jensen, A note on meldable heaps relying on data-structural
bootstrapping, CPH STL Report 2009-2, Department of Computer Sci-
ence, University of Copenhagen (2009).

6. Amr Elmasry, Claus Jensen, and Jyrki Katajainen, Strictly-regular
number system and data structures, Proceedings of the 12th Scandina-
vian Symposium and Workshops on Algorithm Theory, Lecture Notes
in Computer Science 6139, Springer-Verlag (2010), 26–37.

7. Amr Elmasry, Claus Jensen, and Jyrki Katajainen, Two new methods
for constructing double-ended priority queues from priority queues,
Computing, vol. 83, no. 4 (2008), 193–204.

In paper 1, we use two skew-binary number systems and a forest of
pointer-based binary heaps to derive two different data structures that sup-
port find -min and insert at the worst-case cost of O(1), and delete at loga-
rithmic cost.

The first skew-binary number system, which we call the magical skew sys-
tem, has a digit set of size five, skew weights, and an unconventional carry-
propagation mechanism. The magical skew system supports increment and
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decrement at a constant worst-case cost and each operation involves at
most four digit changes. Using the magical skew system in combination
with pointer-based binary heaps we obtain a data structure that supports
find -min and insert at the worst-case cost of O(1), and delete at logarithmic
worst-case cost using at most 6 lg n element comparisons.

The second skew-binary number system, which we call the regular skew
system, has a digit set of size three and skew weights. The regular skew
system supports increment and decrement at constant worst-case cost and
each operation involves at most two digit changes. The system supports
add at the worst-case cost of O(lg2 k), where k is the length of the shorter
representation, and the operation involves at most O(k) digit changes. We
use the regular skew system together with pointer-based binary heaps to
create a data structure that supports find -min and insert at the worst-case
cost of O(1); delete at worst-case logarithmic cost using at most 3 lg n +
O(1) element comparisons; and meld at the worst-case cost of O(lg2m), m
denoting the number of elements stored in the smaller priority queue. This
priority queue improves all bounds of the above-mentioned priority queue.

The two priority queues both use extract in delete to preserve the struc-
ture of the tree from which a node is deleted. This use of extract to keep
the structure intact is also used in papers 2, 3, 4, and 7.

Observe that if all priority queues performing find -min and insert at the
worst-case cost of O(1) and delete at logarithmic worst-case cost are consid-
ered we do not improve the best known comparison-complexity bounds for
delete. However, for binary heaps we do push the limit as it has been shown
that the array-based implementation of a binary heap [25] has Ω(lg lg n) as
a lower bound on the worst-case complexity of insert [15].

In paper 2, we present multipartite priority queues that for find -min,
insert , and delete has a comparison-complexity bound that is optimal1up to
the constant additive terms, and perform find -min and insert at the worst-
case cost of O(1). Using multipartite priority queues we produce an adaptive
sorting algorithm that is constant-factor optimal (i.e. the constant factor in
the leading term is optimal) for several measures of disorder.

Multipartite priority queues consist of the following components which
through their interaction facilitate the achieved bounds:

1. The main store is a binomial queue that holds most of the elements.

2. The upper store is the component that maintains the order among the
roots of the binomial queue in the main store. The order is maintained
using prefix-minimum pointers. For a given rank a prefix-minimum
pointer points to the root which holds the minimum element among
the roots with equal or smaller rank.

3. The insert buffer is a binomial queue which handles all insert oper-
ations.

1Given the comparison-based lower bound for sorting (see [9, Chapter 9]), it follows
that delete has to perform at least lgn−O(1) element comparisons, if find-min and insert
only perform O(1) element comparisons.
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4. The reservoir is a tree from which nodes are extracted.

5. The floating tree is created when the insert buffer becomes too large.
The tree is merged into the main store incrementally.

We use the extraction of an element from the reservoir to preserve the
structure of the tree from which a node is deleted. Using extraction based
delete in combination with the prefix-minimum pointers of the upper store
make it possible to obtain the comparison-complexity bound of lg n+O(1)
for delete. The insert buffer and the floating tree are used to avoid updating
the prefix-minimum pointers every time an insert operation is performed.

For priority queues performing find -min and insert at the worst-case cost
of O(1) and delete at logarithmic worst-case cost the best known compari-
son-complexity bounds for delete were 2 lg n + O(1) for minimum-remem-
bering run-relaxed heaps [10] and lg n + O(lg lg n) for layered heaps [11].
Multipartite priority queues improve the comparison-complexity bound for
delete to lg n+O(1).

Paper 2 is a journal version of the conference paper on layered heaps
[11] written by Amr Elmasry. Observe that the data structure has been
heavily redesigned and that the parts that are still used (the parts that gave
improved worst-case bounds) were developed in a collaboration between the
authors (see the acknowledgement note in the conference paper [11]).

In paper 3, we present two-tier relaxed heaps for which the comparison
complexity of delete is constant-factor optimal, and which perform find -min,
insert , and decrease at the worst-case cost of O(1).

Two-tier relaxed heaps consist of two modified run-relaxed heaps, one
holding the elements and another holding pointers to the minimum candi-
dates. To support insert and extract at worst-case constant cost, a zeroless
regular number system using a digit set of size four is utilized. The heap
holding pointers to the minimum candidates uses lazy deletions (marking).
Incremental global rebuilding is used to remove the markings when the num-
ber of markings becomes to large.

For priority queues performing find -min, insert , and decrease at the
worst-case cost of O(1) and delete at logarithmic worst-case cost the best
known comparison-complexity bounds for delete were 3 lg n+O(1) for min-
imum-remembering run-relaxed heaps [10]. Two-tier relaxed heaps improve
this bound to lg n+ 3 lg lg n+O(1).

In paper 4, we present a priority queue called a pruned binomial queue
that for delete has a comparison-complexity bound that is constant-factor
optimal, and perform find -min, insert , and decrease at the worst-case cost
of O(1). Furthermore, we show that using structural violations it is possible
to obtain worst-case comparison-complexity bounds comparable to those
obtained using heap-order violations in two-tier relaxed heaps.

The pruned binomial queues use the same two-tier structure as the two-
tier relaxed heaps in paper 3. In the pruned binomial queues having the best
comparison-complexity bound for delete, we emulate heap-order violations
using a shadow structure. When a violation occurs we replace the violating



12 Claus Jensen

Table 2. The worst-case comparison complexity for the operations of the designed double-
ended priority queues; m and n are the sizes of the data structures and m < n. The symbol
– means that the worst-case bound of the operation is not derived in the paper.

Paper find -min/
find -max

insert extract meld delete

7 O(1) O(1) O(1) – lg n+O(1)
7 O(1) O(1) O(1) O(lgm) lg n+O(lg lg n)

node with a placeholder node and move the node and its subtree to the
shadow structure.

In paper 5, we present a meldable priority queue that uses data-structural
bootstrapping to obtain a good comparison-complexity bound for delete,
while achieving a constant worst-case cost for find -min, insert , and meld .

The data structure is created by bootstrapping a binomial queue that sup-
ports insert at constant worst-case cost and meld at logarithmic worst-case
cost. The structure obtains a 3 lg n + O(1) comparison-complexity bound
for delete improving the bound of 7 lg n + O(1) achieved by Brodal for his
meldable priority queues (the bound of Brodal’s meldable priority queues is
derived in [14]). The bound of 3 lg n+O(1) for delete is improved in paper
6 to 2 lg n+ O(1). However, the priority queue in paper 6 is more involved
and mainly of theoretical interest.

In paper 6, we present a new number system, which we call the strictly-
regular system. The system supports the operations: increment , decrement ,
cut , concatenate, and add having a digit set of size three. The strictly-
regular system is superior to both the regular number system which with a
digit set of size three only supports increment and a regular number sys-
tem which with a digit set of size four can support both increment and
decrement .

We demonstrate the potential of the number system by using it to modify
Brodal’s meldable priority queues obtaining a comparison-complexity bound
of 2 lg n+O(1) for delete, improving the original bound of 7 lg n+O(1), while
maintaining the constant cost of find -min, insert , and meld .

In paper 7, we describe two data-structural transformations to construct
double-ended priority queues from priority queues. Using the first transfor-
mation we obtain a double-ended priority queue that for find -min, insert ,
and delete has a comparison-complexity bound that is optimal up to the
constant additive terms, and perform find -min, find -max , and insert at
the worst-case cost of O(1). Using the second transformation we obtain a
double-ended priority queue that supports find -min, find -max , and insert at
the worst-case cost ofO(1); meld at the worst-case cost ofO(min {lgm, lg n});
and that for delete has a comparison-complexity bound that is constant-
factor optimal. The two data-structural transformations are general trans-
formations, but to obtain the above-mentioned bounds we use the priority
queues developed in papers 1 and 2.

In the first transformation we use a special pivot element to partition the
elements of the double-ended priority queue into three collections (main-
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tained as priority queues) containing the elements smaller than, equal to,
and larger then the pivot element. Using this partition of the elements we
can delete an element only touching one priority queue. To maintain the
partitioning balanced we rebuild the data structure after a linear number
of operations. The rebuilding is done incrementally to obtain the derived
worst-case bounds. In the second transformation we use the total corres-
pondence approach (see [7]) and the fact that the underlying priority queue
supports decrease. Utilizing the fact that decrease in two-tier relaxed heaps
(paper 3) has a constant worst-case cost, we obtain a double-ended priority
queue delete operation which comparison-complexity bound is dominated by
the priority queue delete operation. Using the previously best known trans-
formations to construct double-ended priority queues from priority queues
[7, 20] the worst-case bound for delete becomes at least twice the bound of
the delete operation of the underlying priority queues.
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Abstract. We introduce two numeral systems, the magical skew system
and the regular skew system, and contribute to their theory develop-
ment. For both systems, increments and decrements are supported using
a constant number of digit changes per operation. Moreover, for the reg-
ular skew system, the operation of adding two numbers is supported
efficiently. Our basic message is that some data-structural problems are
better formulated at the level of a numeral system. The relationship
between number representations and data representations, as well as op-
erations on them, can be utilized for an elegant description and a clean
analysis of algorithms. In many cases, a pure mathematical treatment
may also be interesting in its own right. As an application of numeral
systems to data structures, we consider how to implement a priority
queue as a forest of pointer-based binary heaps. Some of the number-
representation features that influence the efficiency of the priority-queue
operations include weighting of digits, carry-propagation and borrowing
mechanisms.
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1 Introduction

The interrelationship between numeral systems and data structures is efficacious.
As far as we know, the issue was first discussed in the paper by Vuillemin on
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binomial queues [2] and the seminar notes by Clancy and Knuth [3]. However,
in many write-ups this connection has not been made explicit.

In a positional numeral system, a string 〈d0, d1, . . . , d`−1〉 of digits di, i ∈
{0, 1, . . . , `− 1}, is used to represent an integer, ` being the length of the repre-
sentation. By convention, d0 is the least-significant digit, d`−1 the most-significant
digit, and d`−1 6= 0. If wi is the weight of di, the string represents the value∑`−1
i=0 diwi. In binary systems wi = 2i, and in skew binary systems wi = 2i+1−1.

In the standard binary system di ∈ {0, 1}, in a redundant binary system di ∈
{0, 1, 2}, and in the zeroless variants di 6= 0. Other numeral systems include the
regular system [3], which is a redundant binary system where di ∈ {0, 1, 2} con-
ditional on that between every two 2’s there is at least one 0; and the canonical
skew system [4], which is a skew binary system where di ∈ {0, 1} except that the
first non-zero digit may be 2. These numeral systems and some others, together
with their applications to data structures, are discussed in [5, Chapter 9].

The key operations used in the manipulation of number representations in-
clude a modification of a specified digit in a number, e.g. by increasing or de-
creasing a digit by one, and an addition of two numbers. Sometimes, it may
also be relevant to support the cutting of a number in two numbers and the
concatenation of two numbers. For all operations, the resulting representations
must still obey the rules governing the numeral system. An important measure
of efficiency is the number of digit changes made by each operation.

As an application, we consider addressable and meldable priority queues,
which store one element per node, and support the following operations:

find -min(Q). Return a handle (pointer) to the node with a minimum element
in priority queue Q.

insert(Q, x). Insert node x, already storing an element, into priority queue Q.
borrow(Q). Remove an unspecified node from priority queue Q, and return a

handle to that node.
delete-min(Q). Remove a node from priority queue Q with a minimum element,

and return a handle to that node.
delete(Q, x). Remove node x from priority queue Q.
meld(Q1, Q2). Create and return a new priority queue that contains all the

nodes of priority queues Q1 and Q2. This operation destroys Q1 and Q2.

Since find -min is easily accomplished at O(1) worst-case cost by maintaining
a pointer to the node storing the current minimum, delete-min can be imple-
mented at the same asymptotic worst-case cost as delete by calling delete with
the handle returned by find -min. Hence, from now on, we shall concentrate on
the operations insert , borrow , delete, and meld .

Employing the developed numeral systems, we describe two priority-queue
realizations, both implemented as a forest of pointer-based binary heaps, which
support insert at O(1) worst-case cost and delete at O(lg n) worst-case cost,
n denoting the number of elements stored in the data structure prior to the
operation, and lg n being a shorthand for log2(max {2, n}). In contrast, for the
array-based implementation of a binary heap [6], Ω(lg lg n) is known to be a
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Table 1. The numeral systems employed in some priority queues and their effect on the
complexity of insert . All the mentioned structures support find-min at O(1) worst-case
cost and delete at O(lgn) worst-case cost, where n is the size of the data structure.

Digit set Forest of
binomial trees

Forest of
pennants

Forest of
perfect binary heaps

{0, 1} O(lgn) worst case
O(1) amortized [2]

O
(
lg2 n

)
worst case [8] O

(
lg2 n

)
worst case

[folklore]

{0, 1}, there
may be one 2

O(1) worst case [9] O(lgn) worst case [10] O(lgn) worst case [§6]a

O(1) amortized [11, 12]

{0, 1, 2} O(1) worst case [13] O(lgn) worst case [10]
O(1) worst case [8]

O(1) worst case [§6]a

{1, 2, 3, 4} O(1) worst case [14]a

{0, 1, 2, 3, 4} O(1) worst case [§4]

a borrow has O(1) worst-case cost.

lower bound on the worst-case complexity of insert [7]. Our second realization
supports borrow at O(1) worst-case cost and meld at O(lg2m) worst-case cost,
m denoting the number of elements stored in the smaller priority queue. We
summarize relevant results related to the present study in Table 1.

A binomial queue is a forest of heap-ordered binomial trees [2]. If the queue
stores n elements and the binary representation of n contains a 1-bit at position
i, i ∈ {0, 1, . . . , blg nc}, the queue contains a tree of size 2i. In the binary numeral
system, an addition of two 1-bits at position i results in a 1-bit carry to position
i+1. Correspondingly, in a binomial queue two trees of size 2i are linked resulting
in a tree of size 2i+1. For binomial trees, this linking is possible at O(1) worst-
case cost. Since insert corresponds to an increment of an integer, insert would
have logarithmic worst-case cost due to the propagation of carries. Instead of
relying on the binary system, some of the other specialized variants could be
used to avoid cascading carries. That way, a binomial queue can support insert
at O(1) worst-case cost [9, 13, 14]. A binomial queue based on a zeroless system,
where di ∈ {1, 2, 3, 4}, also supports borrow at O(1) worst-case cost [14].

An approach similar to that used for binomial queues has also been considered
for binary heaps. The components in this case are either perfect binary heaps [11,
12] or pennants [10]. A perfect binary heap is a heap-ordered complete binary
tree, and accordingly is of size 2i+1−1 where i ≥ 0. A pennant is a heap-ordered
tree whose root has one subtree that is a complete binary tree, and accordingly
is of size 2i where i ≥ 0. In contrast to binomial trees, the worst-case cost
of linking two pennants of the same size is logarithmic, not constant. To link
two perfect binary heaps of the same size, we even need to have an additional
node, and if this node is arbitrarily chosen, the worst-case cost per link is also
logarithmic. When perfect binary heaps are used, it is natural to rely on a skew
binary system. Because of the linking cost, this approach achieves O(lg n) worst-
case cost [10] and O(1) amortized cost per insert [11, 12]. By implementing the
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linkings incrementally with the upcoming operations, O(1) worst-case cost per
insert is achievable for pennants [8].

The remainder of this paper is organized as follows. In Section 2, we re-
view the canonical skew system introduced in [4]. Due to its conventional carry-
propagation mechanism, in our application a digit change may involve a costly
linking. We propose two ways of avoiding this computational bottleneck. First,
in Section 3, we introduce the magical skew system that uses five symbols, skew
weights, and an unconventional carry-propagation mechanism. It may look mys-
terious why this numeral system works as effectively as it does; to answer this
question, we use an automaton to model the behaviour of the numeral system.
We discuss the application of the magical skew system to priority queues in
Section 4. Second, in Section 5, we modify the regular system discussed in [3]
to get a better fit for our application. Specifically, we use skew binary weights,
and support incremental digit changes (this idea was implicit in [8]) making the
incremental execution of linkings possible without breaking the invariants of this
numeral system. We discuss the application of the regular skew system to pri-
ority queues in Section 6. To conclude, in Section 7, we briefly summarize the
results proved and the issues left open.

2 Canonical Skew System: A Warm-Up

In this section, we review the canonical skew system introduced in [4]. A positive
integer n is represented as a string 〈d0, d1, . . . , d`−1〉 of digits, least-significant
digit first, such that

– di ∈ {0, 1, 2} for all i ∈ {0, 1, . . . , `− 1}, and d`−1 6= 0,
– if dj = 2, then di = 0 for all i ∈ {0, 1, . . . , j − 1},
– wi = 2i+1 − 1 for all i ∈ {0, 1, . . . , `− 1}, and

– the value of n is
∑`−1
i=0 diwi.

In other words, every string has at most one 2; if a 2 exists, it is the first non-zero
digit. In this system, every number is represented uniquely [4].

From the perspective of the related applications (see, for example, [4, 9]), it
is important that such number representations efficiently support increments,
decrements, and additions. Here, we shall only consider increments and decre-
ments; additions can be realized by converting the numbers to binary form, re-
lying on ordinary binary addition, and converting the result back to skew binary
form.

In a computer realization, we would rely on a sparse representation [5, Sec-
tion 9.1], which keeps all non-zero digits together with their positions in a singly-
linked list. Only one-way linking is necessary since both the increment and decre-
ment operations access the string of digits from the front, by adding new digits or
removing old digits. The main reason for using a sparse representation is to have
an immediate access to the first non-zero digit. Consequently, the overall cost of
the operations will be proportional to the number of non-zero digits accessed.

In this system, increments are performed as follows:
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Algorithm increment(〈d0, d1, . . . , d`−1〉)

1: let dj be the first non-zero digit, if it exists
2: if dj exists and dj = 2
3: dj ← 0
4: increase dj+1 by 1
5: else
6: increase d0 by 1

Clearly, this procedure increases the value of the represented number by one.
Also, by a straightforward case analysis, it can be shown that the procedure
maintains the representation canonical.

Decrements are equally simple:

Algorithm decrement(〈d0, d1, . . . , d`−1〉)

1: assert 〈d0, d1, . . . , d`−1〉 is not empty
2: let dj be the first non-zero digit
3: decrease dj by 1
4: if j 6= 0
5: dj−1 ← 2

As a result of the operation, the value of the represented number is reduced by
2j+1−1 and increased by 2(2j−1), so the total change is −1 as it should be. It is
again easy to check that this operation maintains the representation canonical.

The efficiency of the operations and the representation can be summarized
as follows.

Theorem 1 ([4]). The canonical skew system supports increments and decre-
ments at O(1) worst-case cost, and each operation involves at most two digit
changes. The amount of space needed for representing a positive integer n while
supporting these modifications is O(lg n).

Remark 1. With respect to the number of digit changes made, the canonical skew
system is very efficient. However, in an application domain, the data structure
relying on this system is not necessarily efficient since each digit change may
require a costly data-structural operation (cf. Section 6). ut

3 Magical Skew System

In this section, we introduce a new skew-binary numeral system, which uses an
unconventional carry-propagation mechanism. Because of the tricky correctness
proof, we call the system magical. In this system, we represent a positive integer
n as a string 〈d0, d1, . . . , d`−1〉 of digits, least-significant digit first, such that
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– di ∈ {0, 1, 2, 3, 4} for all i ∈ {0, 1, . . . , `− 1}, and d`−1 6= 0,
– wi = 2i+1 − 1 for all i ∈ {0, 1, . . . , `− 1}, and

– the value of n is
∑`−1
i=0 diwi.

Remark 2. In general, a skew binary system that uses five symbols is redundant,
i.e. there is possibly more than one representation for the same integer. However,
the operational definition of the magical skew system and the way the operations
are performed guarantee a unique representation for any integer. ut

We define two operations on strings of digits: An increment increases the cor-
responding value by one, and a decrement decreases the value by one. We define
the possible representations of numbers operationally: The empty string ε repre-
sents the integer 0, and a positive integer n is represented by the string obtained
by starting from ε and performing the increment operation n times. Hence, to
compute the representation of n, a naive algorithm performing n increments has
O(n) cost since each increment involves a constant amount of work.

We say that a string 〈d0, d1, . . . , d`−1〉 of digits is valid if di ∈ {0, 1, 2, 3, 4}
for each i ∈ {0, 1, . . . , `− 1}. The most interesting part of our correctness proofs
is to show that increments and decrements retain the strings valid.

In a computer realization, we use a doubly-linked list to record the digits of
a string. This list should grow when the string gets a new non-zero last digit
and shrink when the last digit becomes 0. Such a representation is called dense
[5, Section 9.1].

Remark 3. The number of digits in the string representing a positive integer
may only change by one per operation. ut

A digit is said to be high if it is either 3 or 4, and low if it is either 0 or 1. For
efficiency reasons, we also maintain two singly-linked lists to record the positions
of high and low digits, respectively.

Remark 4. The lists recording the positions of high and low digits should be
updated after every operation. Only the first two items per list may change per
operation. Accordingly, it is sufficient to implement both lists singly-linked. ut

3.1 Increments

Assume that dj is high. A fix for dj is performed as follows:

Algorithm fix (〈d0, d1, . . . , d`−1〉, j)

1: assert dj is high
2: decrease dj by 3
3: increase dj+1 by 1
4: if j 6= 0
5: increase dj−1 by 2
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Remark 5. Since w0 = 1, w1 = 3, and 3wi = wi+1 + 2wi−1 for i ≥ 1, a fix does
not change the value of the represented number. ut

The following pseudo-code summarizes the actions to increment a number.

Algorithm increment(〈d0, d1, . . . , d`−1〉)

1: increase d0 by 1
2: let dj be the first digit where dj ∈ {3, 4}, if it exists
3: if dj exists
4: fix (〈d0, d1, . . . , d`−1〉, j)

Remark 6. The integers from 1 to 30 are represented by the following strings in
our system: 1, 2, 01, 11, 21, 02, 12, 22, 03, 301, 111, 211, 021, 121, 221, 031, 302,
112, 212, 022, 122, 222, 032, 303, 113, 2301, 0401, 3111, 1211, 2211. ut
Remark 7. If we do not insist on performing the fix at the first high digit, the
representation may become invalid. For example, starting from 22222, which is
valid, two increments will subsequently give 03222 and 30322. If we now repeat-
edly fix the second 3 in connection with the forthcoming increments, after three
more increments we will end up at 622201. ut

As for the correctness, we need to show that by starting from 0 and ap-
plying any number of increments, in the produced string every digit satisfies
di ∈ {0, 1, 2, 3, 4}. When fixing dj , although we increase dj−1 by 2, no violation
is possible as dj−1 was at most 2 before the increment. So, a violation would
only be possible if, before the increment, d0 or dj+1 was 4.

To show that our algorithms are correct, we use some notions of the theory
of automata and formal languages. We use d∗ to denote the string that contains
zero or more repetitions of the digit d. Let S = {S1, S2, . . .} and T = {T1, T2, . . .}
be two sets of strings of digits. We use S | T to denote the set containing all the
strings in S and T . We write S ⊆ T if for every Si ∈ S there exists Tj ∈ T such
that Si = Tj , and we write S = T if S ⊆ T and T ⊆ S.

We also write S
+−→ T indicating that the string T results by applying an

increment operation to S, and we write S +−→ T if for each Si ∈ S there exists

Tj ∈ T such that Si
+−→ Tj . Furthermore, we write S for a string that results

from S by increasing its first digit by one without performing a fix, and S for
{S1, S2, . . .}. To capture the intricate structure of allowable strings, we define
the following rewriting rules, each specifying a set of strings.

τ
def
= 2∗ | 2∗1 (1)

α
def
= 2∗1γ (2)

β
def
= 2∗ | 2∗1τ | 2∗3ψ (3)

γ
def
= 1 | 2τ | 3β | 4ψ (4)

ψ
def
= 0γ | 1α (5)
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position i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

digit di 0 3 2 2 2 3 1 1 4 1 1 3 2 2 1

ψ

γ

ψ
α

γ

2∗1

4

β

β2∗1

1

1

03

2∗3

2∗1

α

τ

ε

3

Fig. 1. The unique representation of the integer 100 000 in the magical skew system
and its syntactic structure in the form of a parse tree.

Remark 8. The aforementioned rewriting rules can be viewed as production rules
of an extended context-free grammar, i.e. one that allows arbitrary regular ex-
pressions in the definition of production rules. Actually, it is not difficult to
convert these rules into a strictly right-regular form. As an illustration, the syn-
tactic structure of a string in the magical skew system is given in Fig. 1. ut

The definitions of the rewriting rules immediately imply that

τ = ε | 1 | 2τ
β = 1 | 32∗ | 2τ | 32∗1τ | 32∗3ψ | 4ψ

= 1 | 2τ | 3
(
2∗ | 2∗1τ | 2∗3ψ

)
| 4ψ

= 1 | 2τ | 3β | 4ψ
= γ

ψ = 1γ | 2α
= 1γ | 22∗1γ

= α

Next, we show that the strings representing the positive integers in the mag-
ical skew system can be classified into a number of equivalence classes, that we
call states. Every increment is equivalent to a transition whose current and next
states are uniquely determined by the current string. Since this state space is
closed under the transitions, and each contains a set of strings of digits drawn
from the set {0, 1, 2, 3, 4}, the correctness of the increment operation follows.

Define the eleven states: 12α, 22β, 03β, 30γ, 11γ, 23ψ, 04ψ, 31α, 21τ , 02τ ,
and 12τ . We show that the following are the only possible transitions when
performing increments. This implies that the numbers in our system must be
represented by one of these states.
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1. 12α
+−→ 22β

12α = 122∗1γ = 122∗1
(
1 | 2τ | 3β | 4ψ

) +−→ 222∗1τ | 222∗3
(
0β | 1ψ

)
=

222∗1τ | 222∗3
(
0γ | 1α

)
= 22

(
2∗1τ | 2∗3ψ

)
⊆ 22β

2. 22β
+−→ 03β

Obvious.
3. 03β

+−→ 30γ

03β
+−→ 30β = 30γ

4. 30γ
+−→ 11γ

Obvious.
5. 11γ

+−→ 21τ | 23ψ

11γ = 11
(
1 | 2τ | 3β | 4ψ

) +−→ 21τ | 23
(
0β | 1ψ

)
= 21τ | 23ψ

6. 23ψ
+−→ 04ψ

Obvious.
7. 04ψ

+−→ 31α

04ψ
+−→ 31ψ = 31α

8. 31α
+−→ 12α

Obvious.
9. 21τ

+−→ 02τ
Obvious.

10. 02τ
+−→ 12τ

Obvious.
11. 12τ

+−→ 22β

12τ
+−→ 22τ ⊆ 22β

Remark 9. The strings representing the integers from 1 to 4 in the magical skew
system are 1, 2, 01, 11. These strings are obviously valid, though not in the form
of any of the defined states. However, the string 21, which represents the integer
5, is of the form 21τ . So, we may assume that the initial string is 21 and the
initial state is 21τ . ut

3.2 Decrements

Our objective is to implement decrements as the reverse of increments. Given a
string representing a number, we can efficiently identify the current state.

Remark 10. The first two digits are enough to distinguish between all the states
except the states 12τ and 12α. To distinguish 12τ from 12α, we need to examine
the first items of the lists recording the positions of high and low digits. If the
string contains a high digit, then we conclude that the current state is 12α.
Otherwise, we check the second item of the list recording the positions of low
digits, and compare that to the position of the last digit. If only one low digit
exists or if the second low digit is the last digit, the string is of the form 122∗

or 122∗1; that is 12τ . On the other hand, if the second low digit is not the last
digit, the string is of the form 122∗11, 122∗122∗, or 122∗122∗1; that is 12α. ut
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Assume that dj is low. We define an unfix as the reverse of a fix:

Algorithm unfix (〈d0, d1, . . . , d`−1〉, j)

1: assert dj is low and j 6= `− 1
2: increase dj by 3
3: decrease dj+1 by 1
4: if j 6= 0
5: decrease dj−1 by 2

The following pseudo-code summarizes the actions to decrement a number:

Algorithm decrement(〈d0, d1, . . . , d`−1〉)

1: assert the value of 〈d0, d1, . . . , d`−1〉 is larger than 5
2: case the current state is in
3: {12α, 03β, 11γ, 04ψ, 02τ}: unfix (〈d0, d1, . . . , d`−1〉, 0)
4: {30γ, 31α}: unfix (〈d0, d1, . . . , d`−1〉, 1)
5: {23ψ}: unfix (〈d0, d1, . . . , d`−1〉, 2)
6: {22β}: let dj be the first digit where dj = 3, if dj exists
7: unfix (〈d0, d1, . . . , d`−1〉, j + 1)
8: {12τ, 21τ}: do nothing
9: decrease d0 by 1

Remark 11. If the string is of the form 22β, with the first high digit dj = 3, then
dj+1 is a low digit (cf. rewriting rules (3) and (5)). By unfixing this low digit,
we get the exact reverse of the increment process. ut

We write T
−−→ S indicating that the string S results by applying a decrement

to T , and we write T −−→ S if for each Ti ∈ T there exists Sj ∈ S such that

Ti
−−→ Sj . Furthermore, T stands for a string that results from T by decreasing

its first digit by one, and T for {T1, T2, . . .}. We then have

γ = β

α = ψ

We show that the following are the only possible transitions when performing
decrements. This implies that the numbers in our system must be represented
by one of our states.

1. 22β
−−→ 12τ | 12α

22β = 22
(
2∗ | 2∗1τ | 2∗3ψ

) −−→ 122∗ | 122∗1τ | 122∗1
(
3γ | 4α

)
= 122∗ | 122∗1

(
ε | 1 | 2τ

)
| 122∗1

(
3β | 4ψ

)
= 12

(
2∗ | 2∗1

)
| 122∗1

(
1 | 2τ | 3β | 4ψ

)
= 12τ | 122∗1γ = 12τ | 12α
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2. 12α
−−→ 31α

Obvious.
3. 31α

−−→ 04ψ

31α
−−→ 04α = 04ψ

4. 04ψ
−−→ 23ψ

Obvious.
5. 23ψ

−−→ 11γ

23ψ = 23
(
0γ | 1α

) −−→ 11
(
3γ | 4α

)
= 11

(
3β | 4ψ

)
⊆ 11γ

6. 11γ
−−→ 30γ

Obvious.
7. 30γ

−−→ 03β

30γ
−−→ 03γ = 03β

8. 03β
−−→ 22β

Obvious.
9. 12τ

−−→ 02τ
Obvious.

10. 02τ
−−→ 21τ

Obvious.
11. 21τ \ {21} −−→ 11γ

21τ \ {21} = 21
(
ε | 1 | 2τ

)
\ {21} = 21

(
1 | 2τ

) −−→ 11
(
1 | 2τ

)
⊆ 11γ

Remark 12. For the above state transitions, the proof does not consider a decre-
ment on the five strings from 21 down to 1. ut

3.3 Properties

The following lemma directly follows from the state definitions.

Lemma 1. Define a block to be a maximal substring where none of its digits is
high, except its last digit. Define the tail to be the substring of digits following
all the blocks in the representation of a number.

– The body of a block ending with 4 is either 0 or of the form 12∗1.
– The body of a block ending with 3 is either 0 or of the form 12∗1 or 2∗.
– Each 4, 23 and 33 is followed by either 0 or 1.
– There can be at most one 0 in the tail, which must then be its first digit.

The next lemma provides a bound on the number of digits in any string.

Lemma 2. For any positive integer n 6= 3, the number of digits in the string
representing n in the magical skew system is at most lg n.

Proof. Inspecting all the state definitions and strings for small integers, the sum
of the digits for any of our strings is at least 2, except for the strings 1 and 01.
We also note that d`−1 6= 0. It follows that, for all other strings, either d`−1 > 1
or d`−1 = 1 and dj 6= 0 for some j 6= `−1. Accordingly, we have n ≥ 2` implying
that ` ≤ lg n. ut
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The following lemma bounds the average of the digits in any of our strings
to be at most 2.

Lemma 3. If 〈d0, d1, . . . , d`−1〉 is a representation of a positive integer in the

magical skew system, then
∑`−1
i=0 di ≤ 2`. If `′ denotes the number of the digits

constituting the blocks of the representation, then 2`′ − 1 ≤
∑`′−1
i=0 di ≤ 2`′.

Proof. We prove the second part of the lemma, which implies the first part using
the fact that any digit in the tail is at most 2. First, we show by induction on
the length of the strings that the sum of the digits of a substring of the form
α, β, γ, ψ is respectively

∑
α = 2`α,

∑
β = 2`β ,

∑
γ = 2`γ + 1,

∑
ψ = 2`ψ − 1,

where `α, `β , `γ , `ψ are the lengths of the corresponding substrings when ignoring
the trailing digits that are not in a block. The base case is for the substring solely
consisting of the digit 3, which is a type-γ substring with `γ = 1 and

∑
γ = 3.

From rewriting rule (2),
∑
α = 2(`α−`γ−1)+1+

∑
γ = 2(`α−`γ−1)+1+2`γ+1 =

2`α. From rewriting rule (3),
∑
β = 2(`β−`ψ−1)+3+

∑
ψ = 2(`β−`ψ−1)+3+

2`ψ−1 = 2`β . From rewriting rule (4),
∑
γ = 3+

∑
β = 3+2`β = 3+2(`γ−1) =

2`γ + 1. Alternatively,
∑
γ = 4 +

∑
ψ = 4 + 2`ψ−1 = 4 + 2(`γ −1)−1 = 2`γ + 1.

From rewriting rule (5),
∑
ψ =

∑
γ = 2`γ + 1 = 2(`ψ − 1) + 1 = 2`ψ − 1.

Alternatively,
∑
ψ = 1 +

∑
α = 1 + 2`α = 1 + 2(`ψ−1) = 2`ψ−1. The induction

step is accordingly complete, and the above bounds follow.
Consider the substring that constitutes the blocks of the representation. Let

`′ be the length of that substring. Since any sequence of blocks can be represented
in one of the forms: 12α, 22β, 03β, 30γ, 11γ, 23ψ, 04ψ, 31α (excluding the tail).

It follows that `α, `β , `γ , `ψ = `′−2. A case analysis implies that
∑`′−1
i=0 di either

equals 2`′ − 1 or 2`′ for all cases. ut

As a consequence to the previous two lemmas, we get the following corollary.

Corollary 1. The sum of the digits in the string representing a positive integer
n in the magical skew system is at most 2 lg n.

The efficiency of the operations and the representation can be summarized
as follows.

Theorem 2. The magical skew system supports increments and decrements at
O(1) worst-case cost, and each operation involves at most four digit changes.
The amount of space needed for representing a positive integer n while supporting
these modifications is O(lg n).

4 Application: A Worst-Case-Efficient Priority Queue

A binary heap [6] is a heap-ordered binary tree where the element associated with
a node is not greater than that associated with its children. A perfect binary heap
of height h is a complete binary tree storing 2h−1 elements for an integer h ≥ 1.
Our heaps are pointer-based; each node has pointers to its parent and children.
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As in a binomial queue, which is an ordered collection of heap-ordered bino-
mial trees, in our binary-heap version, we maintain an ordered collection of per-
fect binary heaps. A similar approach has been used in several earlier publications
[10–12]. The key difference between our approach and the earlier approaches is
the numeral system in use; here we rely on our magical skew system. Assuming
that the number of elements being stored is n and that 〈d0, d1, . . . , d`−1〉 is the
representation of n in the numeral system, we maintain the invariant that the
number of perfect binary heaps of size 2i+1 − 1 is di.

To keep track of the perfect binary heaps, we maintain an auxiliary structure
resembling the magical skew system. As before, we maintain a doubly-linked list
of digits and two singly-linked lists recording the positions of the high digits and
the low digits, respectively. In addition to these lists, we associate each digit with
a list of items where each item stores a pointer to the root of a perfect binary
heap of that particular size. To facilitate fast find -min, we maintain a pointer
to a root that is associated with a minimum element.

The basic toolbox for manipulating binary heaps is given in most textbooks
on algorithms and data structures (see, for example, [15, Chapter 6]). We need
the function siftdown to reestablish the heap order when the element associated
with a node is made larger, and the function siftup to reestablish the heap order
when the element associated with a node is made smaller. Both operations are
known to have logarithmic cost in the worst case; siftdown performs at most
2 lg n and siftup at most lg n element comparisons. Note that in siftdown and
siftup we move whole nodes not elements. In effect, the handles to nodes will
always remain valid, and delete operations can be executed without problems.

A fix is emulated by involving three perfect binary heaps of the same height
h, determining which root is associated with the smallest element, making this
node the new root of a perfect binary heap of height h+1, and making the roots
of the other two perfect binary heaps the children of this new root. The old
subtrees of the detached root become perfect binary heaps of height h− 1. That
is, starting with three heaps of height h, one heap of height h+ 1 and two heaps
of height h−1 are created; this corresponds to the digit changes resulting from a
fix in the numeral system. After performing the fix on the heaps, the respective
changes have to be made in the auxiliary structure (lists of roots, digits, and
positions of high and low digits). The emulation of an unfix is a reverse of these
actions. Compared to a fix, the only new ingredient is that, when the root of a
perfect binary heap of height h + 1 is made the root of the two perfect binary
heaps of height h− 1, siftdown is necessary. Otherwise, it cannot be guaranteed
that the heap order is valid for the composed tree. Hence, a fix can be emulated
at O(1) worst-case cost, whereas an unfix has O(lg n) worst-case cost involving
at most 2 lg n element comparisons.

In insert , a node that is a perfect binary heap of size one is first added
to the collection. Thereafter, the other actions specified for an increment in
the numeral system are emulated. In effect, if a high or low digit is created,
the corresponding list is updated. The location of the desired fix can be easily
determined by accessing the first item in the list recording the positions of high
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digits. If the element in the inserted node is smaller than the current minimum,
the minimum pointer is updated to point to the new node. The worst-case cost of
insert is O(1) and it involves at most three element comparisons (one to compare
the new element with the minimum and two when performing a fix).

When deleting a node, it is important that we avoid any disturbance to the
numeral system and do not change the sizes of the heaps. Hence, we implement
delete by borrowing a node and using it to replace the deleted node in the asso-
ciated perfect binary heap. This approach guarantees that the numeral system
only has to support decrements of the least-significant digit. First, borrow per-
forms an unfix, and thereafter it removes a perfect binary heap of size one from
the data structure. Due to the cost of the unfix, the worst-case cost of borrow is
O(lg n) and it involves at most 2 lg n element comparisons.

By the aid of borrow , it is straightforward to implement delete. Assuming
that the borrowed node is different from the node to be deleted, the replacement
is done, and siftdown or siftup is executed depending on the element associated
with the replacement node. Because of this process, the root of the underlying
perfect binary heap may change. If this happens, we have to scan through the
roots of the heaps and update the pointer, in the item referring to this root,
to point to the new root instead. A deletion may also invalidate the minimum
pointer. If this happens, we have to scan all roots to determine the current
overall minimum and update the minimum pointer to point to this root. The
worst-case cost of all these operations is O(lg n). In total, the number of element
comparisons performed is at most 6 lg n; borrow requires at most 2 lg n, siftdown
(as well as siftup) requires at most 2 lg n, and the scan over all roots requires at
most 2 lg n element comparisons.

Remark 13. For perfect binary heaps, as for binomial trees [16], the parent-child
relationships can be represented using two pointers per node instead of three. In
accordance, the amount of extra space can be reduced from 3n+O(lg n) words
to 2n+O(lg n) words. ut

The above discussion can be summarized as follows.

Theorem 3. A priority queue that maintains an ordered collection of perfect
binary heaps guarantees O(1) worst-case cost per insert and O(lg n) worst-case
cost per delete, where n is the number of elements stored. This data structure
requires 2n+O(lg n) words of memory, in addition to the elements themselves.

Remark 14. Our focus has been on good worst-case performance. Alternatively,
more efficient amortized performance is achievable through lazy execution [17].
The idea is to maintain the roots of the perfect binary heaps in a doubly-linked
list, keep a pointer to the root associated with the current minimum, and let
delete do most of the work. In insert , a new node is added to the list of roots
and the minimum pointer is updated if necessary. In meld , the two root lists are
concatenated and the minimum pointer is set to point to the smaller of the two
minima. In borrow , a root not pointed to by the minimum pointer is borrowed
and its children (if any) are added to the root list. If there is only one tree, its
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root is borrowed, its two children are moved to the root list, and the minimum
pointer is updated to point to the child whose associated element is smaller.

Clearly, the worst-case cost of insert , borrow , and meld is O(1). In delete,
a consolidation is done: the perfect binary heaps of the same size are gathered
together using a temporary array indexed by height and thereafter a fix—as
described in Section 3—is performed as many times as possible. It is not difficult
to show that the cost of delete is Θ(n) in the worst case.

Nevertheless, the amortized costs are: O(1) per insert and meld , and O(lg n)
per borrow and delete, where n is the size of the considered priority queue. To
establish these bounds, we use a potential function that is the sum of the heights
of the heaps currently in the priority queue. The key observation is that a fix
decreases the potential by 1, insert increases it by 1, borrow increases it by
O(lg n), meld does not change the total potential, and delete involves O(lg n)
work that is not compensated by a potential reduction. ut

5 Regular Skew System

In this section, we reconsider the regular system discussed in [3]. The advantage
of the regular system is that it efficiently supports increments, decrements, and
additions. We modify this system to handle expensive digit changes. When this
modified regular system is used in our application, the performance of the pri-
ority queue developed matches, or even outperforms, that of the related priority
queues presented in [8, 10].

Recall that in the regular system a positive integer n is represented as a
string 〈d0, d1, . . . , d`−1〉 of digits, where

– di ∈ {0, 1, 2} for all i ∈ {0, 1, . . . , `− 1}, and d`−1 6= 0, and

– if di = 2 and dk = 2 and i < k, then dj = 0 for some j ∈ {i+ 1, . . . , k − 1}
(regularity condition).

Traditionally, the regular system employs perfect weights, i.e. the weight of digit
di is 2i. We, however, adapt the system to skew weights. Therefore, as in the
other skew binary systems, we have

– wi = 2i+1 − 1 for all i ∈ {0, 1, . . . , `− 1}, and

– the value of n is
∑`−1
i=0 diwi.

Moreover, we associate a variable bi with every digit di. This variable expresses
the amount of work left until the change at that digit is completed.

In a computer realization, we rely on a sparse representation that keeps all
non-zero digits together with their positions and variables in a doubly-linked list
in sorted order according to the positions. In addition, we maintain a doubly-
linked list for the positions of the positive bi’s and another for the positions of
the 2’s.
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5.1 Increments

To perform an increment, it would be natural to use the surplus unit supplied
by the increment for transferring the first dj = 2 (if it exists) to dj+1, by setting
dj ← 0 and increasing dj+1 by one. Such a transfer is exactly what is done
in the canonical skew system. One complication that arises in our application
is that the transfer of dj may have O(j) worst-case cost. To handle expensive
digit changes, the key idea is to delay the work to be done in an expensive digit
change and leave the delayed work for the upcoming operations (increments,
decrements, and additions). Hence, we perform digit changes incrementally and
keep track of the digits that are under an incremental change. Because of these
incremental changes, we have to allow more than one 2 in the representation.

We divide the work to be done in an expensive digit change into discrete
units, called bricks. When a digit dk is under an incremental change, i.e. when
bk > 0, dk is said to form a wall of bk bricks. Decreasing bk by one means that
we perform a constant amount of work in order to bring the incremental change
at dk forward, which can be viewed as removing a brick from that wall.

The increment algorithm works as follows. Let dj be the first 2 for which
bj = 0. If j is smaller than the position of the first wall, we transfer dj to dj+1;
a value of j + 1 bricks is associated with bj+1, and one brick is immediately
removed from dj+1 leaving j bricks to be removed by the upcoming operations.
Otherwise, d0 is increased by one, and one brick is removed from the first wall
if any. For this case, since d0 ∈ {0, 1} before the increment, d0 ∈ {1, 2} after the
increment. For both cases, the value of the number is increased by one.

Algorithm transfer(〈d0, d1, . . . , d`−1〉, j)

1: assert dj = 2
2: dj ← 0
3: increase dj+1 by 1
4: bj+1 ← j + 1

Remark 15. Since wi+1 = 2wi + 1, a transfer increases the value of the repre-
sented number by one. ut

Algorithm increment(〈d0, d1, . . . , d`−1〉)

1: let dk be the first digit for which bk > 0, if it exists
2: let dj be the first 2 for which bj = 0, if it exists
3: if dj exists and (dk does not exist or j < k)
4: transfer(〈d0, d1, . . . , d`−1〉, j)
5: reduce bj+1 by 1
6: else
7: increase d0 by 1
8: if dk exists
9: reduce bk by 1
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position i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

critical 0 d1 d3 d5 d7

digit di 2 0 1 0 1 0 1 0 1 1 0 2 1 1 0 1

variable bi 1 4 6 8

Fig. 2. The representation obtained by performing 100 000 increments in the regular
skew system starting from 0. All the walls are drawn in boxes.

Remark 16. Starting from 0 and performing 30 increments, the strings generated

are: 1, 2, 01, 11, 21, 02, 00 1 , 101, 201, 011, 111, 211, 021, 00 2 , 102, 100 1 , 200 1 ,

010 1 , 1101, 2101, 0201, 00 1 1, 1011, 2011, 0111, 1111, 2111, 0211, 00 2 1, and
1021. All walls are drawn in boxes. ut

Remark 17. In the algorithm described in [8], several units of leftover work are
to be performed per increment. Interestingly, in our case, it is enough to perform
only one unit of leftover work per operation. This stems from the fact that we
use skew weights instead of perfect weights. ut

To prove the correctness of our algorithms, we have to rely on stronger regu-
larity conditions than those of the standard regular system. Our first invariant
states that every 2 is immediately preceded by a 0, while it is possible to have
d0 = 2. The second invariant indicates that between every two 2’s there are at
least two 0’s. The third invariant states that every wall is immediately preceded
by a 0. The fourth invariant indicates that if a 2 is followed by a wall, there are
at least two 0’s between them. The fifth invariant indicates that every wall has
at least two preceding 0’s. Assume that dk is a wall. Let dj be a 0, such that
j < k − 1 and dj′ 6= 0 for all j′ ∈ {j + 1, . . . , k − 2}. In other words, dj is the
0 with the highest position that precedes the 0 at dk−1. By the fifth invariant,
such a 0 always exists. We call this 0 the critical 0 for the wall dk. The sixth
invariant states that the number of leftover bricks at a wall is not larger than
j + 1, where j is the position of the critical 0 for that wall, and even not larger
than j if this critical 0 is immediately preceded by a substring of the form 21∗.

More formally, the invariants maintained are:

(1) If dj = 2 and j > 0, then dj−1 = 0.
(2) If dj = 2, dk = 2, and j < k, then dj′ = 0 for some j′ ∈ {j + 1, . . . , k − 2}.
(3) If dk is a wall, then dk−1 = 0.
(4) If dj = 2, dk is a wall, and j < k, then dj′ = 0 for some j′ ∈ {j + 1, . . . , k − 2}.
(5) If dk is a wall, then di = 0 for some i ∈ {0, . . . , k − 2}.
(6) Let dj be the critical 0 for a wall dk. Then

(i) bk ≤ j + 1; moreover
(ii) bk ≤ j, if di = 2 and di′ = 1 for all i′ ∈ {i+ 1, . . . , j − 1}.
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Remark 18. Our intuition about the wall-breaking process is the following (for
a snapshot of this dynamic process, see Fig. 2):

– The first wall is visible for an increment if all the digits preceding that wall
are 0’s and 1’s. When a wall is visible, this particular increment will reduce
the number of bricks at that wall by 1.

– The configuration of the digits preceding a wall affects the number of bricks
remaining at that wall. In particular, the position of the critical 0, and
whether the critical 0 is immediately preceded by a substring of the form
21∗ or not, is used to bound the height of the wall. In accordance, this
prevents that two walls become adjacent.

– During the counting process, there will be enough configurations for every
wall being visible for increments. Specifically, when—or even before—the
critical 0 for the first wall disappears (all the digits preceding the first wall,
except its immediately preceding 0, are 1’s or 2’s), there are no bricks left
at this wall, i.e. the wall has been dismantled. ut

The aforementioned stronger regularity conditions imply that in any configu-
ration a digit is either 0, 1, or 2, and that no walls become adjacent. In addition,
our algorithms will never transfer a digit that is a 2 if it also forms a wall, i.e. no
walls are involved in creating other walls. Next, we show that the invariants are
retained after every increment if they were fulfilled before the operation; the
correctness of increment accordingly follows.

Consider the case where a digit dj is the first digit that equals 2, is not a wall,
precedes any wall, and j 6= 0. In such a case, a transfer is initiated at dj . Using
invariant (1), dj−1 = 0. After the operation, dj = 0 and dj+1 becomes a wall
with bj+1 = j. At this point, dj−1 is the critical 0 for the wall dj+1; this fulfils
all the invariants for this wall. A special case is when j = 0. For such a case, the
created wall d1 is immediately dismantled. Consider a digit dk = 2 that follows
dj . Using invariants (1) and (2), before the increment, there are two 0’s, one at
dk−1 and the other has a position in {j + 1, . . . , k − 2}. Whether dj+1 was 0 or
1 before the operation, it is straightforward to verify that all the invariants are
fulfilled for dk after the operation. The interesting case is when a digit dk ∈ {1, 2}
is a wall and dj+1 was the critical 0 for this wall before the operation. For such
a case, using invariant (6.ii) as dj = 2, we have bk ≤ j + 1. After the operation,
the critical 0 for the wall dk becomes dj . However, the validity of the invariants
still hold as the weaker bound of invariant (6.i) applies and is fulfilled. It is
straightforward to verify that all the other invariants are also retained.

Consider the case where dk is the first wall and that it precedes any 2. In such
a case, one brick is removed from the wall dk and d0 is increased by 1. Using
invariants (3) and (5), dk−1 = 0 and dj = 0 for some j ∈ {0, . . . , k − 2}. An
interesting case is when, before the increment, di was 1 for all i ∈ {0, . . . , j − 1},
and dj was the critical 0 for the wall dk. For such a case, using invariant (6.i),
bk ≤ j+1. After the operation, as d0 becomes 2, the stronger bound of invariant
(6.ii) applies and is fulfilled following the brick removal from dk, i.e. bk ≤ j.
Another interesting case is when, before the increment, d0 was the critical 0 for
the wall dk. For such a case, using invariant (6.i), bk ≤ 1. After the operation,
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d0 becomes 1, and as a result only one 0 precedes dk. Fortunately, one brick
must have been removed from the wall dk, dismantling the wall and saving our
invariants just on time. It is straightforward to verify that, even in the trivial
cases omitted, the invariants are also retained.

5.2 Decrements

In the regular skew system, we carry out decrements in the same way as in
the canonical skew system. To ensure that the amount of work left at the walls
satisfies our invariants, if the first non-zero digit was a wall, the wall is moved to
the preceding position and a brick is removed from it. The details are specified
in the following pseudo-code:

Algorithm decrement(〈d0, d1, . . . , d`−1〉)

1: assert 〈d0, d1, . . . , d`−1〉 is not empty
2: let dj be the first non-zero digit
3: if bj > 0
4: reduce bj by 1
5: decrease dj by 1
6: if j 6= 0
7: dj−1 ← 2; bj−1 ← bj ; bj ← 0

Let dj be the first non-zero digit before a decrement. First, consider the case
where j = 0, i.e. d0 was 1 or 2 before the operation. After the operation, d0
is decreased by one. It is straightforward to verify that all the invariants are
retained after the operation. Next, assume that j 6= 0. Consider the case where
dj was a wall before the operation. By invariant (6), bj ≤ j − 1 was valid before
the operation. Due to the brick removal, bj−1 ≤ j − 2 after the operation, and
invariant (6) is retained. Consider the case where dj was equal to 1 before the
operation, and dk was the following wall whose critical 0 was dj−1. (The case
where the critical 0 for dk comes after dj is trivial.) Using invariant (6.i), bk ≤ j
before the operation. After the operation, dj becomes the critical 0 for the wall
dk, and dj−1 becomes 2. In accordance, invariant (6.ii) applies for bk and is
fulfilled. Alternatively, if dj was equal to 2 before the operation, the critical 0 for
the following wall dk must come after dj , and invariant (6) trivially holds after
the operation. It is also clear that, whether dj was a wall or not, and whether it
was equal to 1 or 2, all the other invariants are retained.

5.3 Increments at Arbitrary Positions

Given a string 〈d0, d1, . . . , d`−1〉, our objective is to efficiently increase an arbi-
trary digit di by one. Compared to a normal increment, this general increment
involves more new cases which make the algorithm a bit more complicated. Also,
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the worst-case complexity of the operation becomes higher, namely O(i), even
though we still solve the special case i = 0 at O(1) worst-case cost.

A crucial difference between increment and arbitrary-increment is that, if
i > 0, we have no surplus unit to transfer a digit forward. Accordingly, we always
have to add one to digit di. To preserve regularity, we may need to perform up to
two digit transfers. To create the surplus needed for digit transfers, we perform
two decrement operations, and use the resulting surplus for such transfers. Since
we do not know in advance the number of the transfers that we perform, at the
end, we perform one increment for each surplus we have saved but not used.
The following corrective actions are necessary to reestablish our invariants.

If di is a wall, we dismantle this wall by removing all (at most i − 1) of its
bricks. If di = 2, we transfer di one position forward. Hereafter, we can assume
that di ∈ {0, 1}. At this point, let dj be the first 2 for which j > i and bj = 0. It
is time now that we increase di by one. If after increasing di its value becomes
2, we transfer the created 2 one position forward. Note that at most one of these
aforementioned two transfers is executed. If di+1 is a wall, we dismantle this
wall by removing all (at most i) of its bricks. This wall is either an original wall
even before the operation or has just been created by transferring a 2 from di
forward. At this point, let dk be the first wall for which k > i. Afterwards, we
perform the following steps that are quite similar to the increment algorithm of
Section 5.1. If j is smaller than k, we transfer the 2 at dj one position forward,
and remove the minimum of i + 2 and all the bricks from dj+1. If k is smaller
than j, we remove the minimum of i+ 1 and all the bricks from dk.

To sum up, at most a constant number of digits are changed in each incre-
ment. To find the walls and 2’s operated on, it may be necessary to scan the
linked lists, starting from the beginning, to the desired positions. To get there,
at most O(i) list items have to be visited. Also, the number of bricks removed
at each step is O(i). We conclude that the complexity of the algorithm is O(i)
in the worst case. This completes the description of the algorithm. All actions
are summarized in the enclosed pseudo-code.

To prove the correctness of the algorithm, we shall show that all the invariants
hold for every wall and for every 2 when considering the preceding digits for
each. For the purpose of our analyses, we split the pseudo-code into phase I
constituting lines 5 to 16, and phase II constituting lines 17 to 23. Consider the
effect of executing phase I: only di and di+1 may change, di will neither be a
2 nor a wall, and di+1 will not be a wall. There are three cases which result in
di+1 being a 2 after phase I.

– di was 1 and di+1 was 1: After phase I, di becomes a 0.
– di was 2 and di+1 was 1: After phase I, di becomes a 1. In such case, j = i+1.
– di was 0 and di+1 was 2: After phase I, di becomes a 1. In such case, j = i+1.

For the first case, the invariants are directly fulfilled for di+1 after phase I.
For the last two cases, we have to wait until phase II, when the 2 at di+1 is
transferred to di+2, for the invariants to hold.

In general, if j > i + 1, phase II of the algorithm is pretty similar to the
increment algorithm of Section 5.1. The only differences are the positions of the
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Algorithm arbitrary-increment(〈d0, d1, . . . , d`−1〉, i)

1: assert the value of 〈d0, d1, . . . , d`−1〉 is larger than 2
2: repeat 2 times
3: decrement(〈d0, d1, . . . , d`−1〉)
4: surplus ← 2
5: if bi > 0
6: reduce bi to 0
7: if di = 2
8: transfer(〈d0, d1, . . . , d`−1〉, i)
9: decrease surplus by 1
10: let dj be the first 2 for which j > i and bj = 0, if it exists
11: increase di by 1
12: if di = 2
13: transfer(〈d0, d1, . . . , d`−1〉, i)
14: decrease surplus by 1
15: if bi+1 > 0
16: reduce bi+1 to 0
17: let dk be the first digit for which k > i and bk > 0, if it exists
18: if dj exists and (dk does not exist or j < k)
19: transfer(〈d0, d1, . . . , d`−1〉, j)
20: decrease surplus by 1
21: reduce bj+1 by min {bj+1, i+ 2}
22: else if dk exists
23: reduce bk by min {bk, i+ 1}
24: repeat surplus times
25: increment(〈d0, d1, . . . , d`−1〉)

critical 0’s, and the number of bricks we remove from the walls. The same proof
of Section 5.1 implies the validity of the invariants for all the 2’s. What is left
to be shown is that invariant (6) is also satisfied for all the walls.

Consider the first wall dk for which i < k < j. If the critical 0 for dk was
following di+1, then it does not change after phase I, and hence all the invariants
hold for dk. If the critical 0 for dk was preceding di+1, then bk ≤ i + 1. This
means that by removing i+ 1 bricks this wall is dismantled. If the critical 0 for
dk was at di+1 and di was a 2, then bk ≤ i+ 1, and the wall is also dismantled.
If the critical 0 for dk was at di+1 and di was not a 2, then the critical 0 for dk
becomes at di or is still at di+1. Either way, invariant (6) still holds.

Back to the case where j = i+ 1. When the 2 at di+1 is transferred in phase
II, it results in a wall at di+2. However, we instantaneously dismantle this wall
by removing its i + 2 bricks. Alternatively, if i + 1 < j < k, then dj−1 or dj−2
is the critical 0 for the resulting wall at dj+1. In this case, bj+1 is initiated with
j+ 1, which is followed by removing i+ 2 bricks (we only need to remove one or
two bricks in this case). Accordingly, invariant (6) still holds.
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5.4 Additions

When an increment at any position can be carried out efficiently, a simple way
of implementing addition is to apply arbitrary-increment repeatedly. For every
digit di of the shorter string, starting from the least-significant digit, increment
the ith digit of the longer string di times. The correctness of this approach
directly follows from the correctness of arbitrary-increment.

Remark 19. An addition will destroy the longer of the two input strings. ut

Algorithm addition(〈d0, d1, . . . , dk−1〉, 〈e0, e1, . . . , e`−1〉)

1: assert k ≤ `
2: for i ∈ {0, 1, . . . , k − 1}
3: repeat di times
4: if bi > 0
5: reduce bi to 0
6: arbitrary-increment(〈e0, e1, . . . , e`−1〉, i)
7: return 〈e0, e1, . . . , e`−1〉

Assume that the representations of the given numbers are of length k and
`, and that k ≤ `. By Lemma 4 (see Section 5.5), the sum of the digits in the
shorter representation is at most k + 1. So, an addition of the two numbers
involves at most k+1 arbitrary increments. Each such increment only changes a
constant number of digits. Hence, the total number of digit changes performed is
proportional to the length of the shorter representation. At position i, both the
wall dismantling and the arbitrary increment have O(i) worst-case cost. Thus,
the worst-case cost of addition is O(k2).

5.5 Properties

The following lemma directly follows from the invariants maintained by the
operations.

Lemma 4. Let 〈d0, d1, . . . , d`−1〉 be a string of digits in the regular skew system.

The sum of the digits is at most `+ 1, i.e.
∑`−1
i=0 di ≤ `+ 1.

We can summarize the results proved for the regular skew system as follows.

Theorem 4. The regular skew system supports increments and decrements at
O(1) worst-case cost, and additions at O(k2) worst-case cost, where k denotes
the length of the shorter of the two strings added. The number of digit changes
involved is at most two for increments and decrements, and O(k) for additions.
The amount of space needed for representing a positive integer n while supporting
these modifications is O(lg n).
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6 Application Revisited

As earlier, we implement a priority queue as a forest of perfect binary heaps, and
use a numeral system to control the number and size of the heaps in the structure.
When the canonical skew system is in use, insert has logarithmic worst-case
cost, whereas borrow has O(1) worst-case cost. For the magical skew system,
the opposite is true: insert has O(1) worst-case cost and borrow has logarithmic
worst-case cost. In both cases, the reason for the logarithmic behaviour is that,
even though only a constant number of digit changes is made per operation, it
may be necessary to perform a siftdown operation for a large heap, and such
operation can be costly. In order to avoid this problem, we rely on the regular
skew system which allows incremental execution of siftdown operations.

In our implementation the basic components are: perfect binary heaps, an
auxiliary structure resembling the regular skew system keeping track of the
heaps, and a minimum pointer identifying the location of the current minimum.
The auxiliary structure comprises the data recording the digits, the positions of
the walls and 2’s, and the heights of the walls. The digit at position i denotes the
number of perfect binary heaps of size 2i+1− 1. Each digit should be associated
with a list of items referring to heaps of that particular size; every such list has
at most two items, and each item stores a pointer to the root of a heap. In a
brick removal, a siftdown process is advanced one level down a heap, or nothing
is done if the heap order has already been reestablished. To facilitate incremen-
tal execution of siftdown operations, each of the items associated with a digit
also stores a pointer to the node up to which the corresponding siftdown has
proceeded; this pointer may be null indicating that there is no ongoing siftdown
process. When this pointer is available, the process can be easily advanced, level
by level, until the bottom level is reached or the heap order is reestablished. In
addition, the path traversed by every ongoing siftdown is memorized by storing
the path traversed so far in binary form; we call this a bit trace. A 0-bit (1-bit)
at the index i of a bit trace reflects that the process continued in the direction
of the left (right) child at level i.

Remark 20. A suitable realization of a bit trace would be a single computer
word. Using logical bitwise operations and bit shifts, the bit at a specified index
can be easily fetched and updated at O(1) worst-case cost. This accounts for
O(lg n) words to be stored, at most one per heap. ut

In insert , the actions specified for an increment in the numeral system are
emulated. There are two possibilities to consider. The first possibility is that
the given node is used to combine two heaps, by making it the root of the
combined heap and making the roots of the two heaps the children of that
root. A siftdown process is initiated at the new root and advanced one level
downwards. This maintains the invariant that the root of any heap contains a
minimum element among those in that heap. The second possibility is that the
given node is inserted into the structure as a heap of size one. For such a case,
the siftdown process at the first wall (if any) is advanced one level downwards.
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When a siftdown is advanced, the direction to which the process proceeds is
recorded in the bit trace, by updating the bit corresponding to the current level.
Finally, the minimum pointer is updated if necessary. The worst-case cost of
insert is O(1), and at most three element comparisons are performed (two in
siftdown and one to check whether the minimum pointer is up to date or not).

In borrow , the actions specified for a decrement in the numeral system are
emulated. The numeral system dictates that the smallest heap is selected for
splitting. If the first non-zero digit is a 2 that forms a wall, of the two candidates,
the heap that has an ongoing siftdown process is selected. First, the ongoing
siftdown (if any) in the selected heap is advanced one level downwards. Normally,
the selected heap is split by detaching and returning its root, and moving the
heaps rooted at the children of the root (if any) to the preceding position. A
special case is when the root of the selected heap is associated with the minimum
of the priority queue. In such a case, this root is swapped either with another root
or with one of its two children, which is then detached and returned. A removal
of the root, or a change in one of its children, will not affect the siftdown process
possibly being in progress further down in the heap. Lastly, if the selected heap
had an ongoing siftdown, it should be possible to identify which of the two heaps
owns that process after the split. Here we need the bit trace. The existing bit
trace is updated to correspond to the root removal and is assigned to the new
owner. Clearly, the worst-case cost of borrow is O(1), and at most two element
comparisons are performed.

In accordance, delete can use this kind of borrowing and reestablish the
heap order by sifting the replacement node up or down. Naturally, the minimum
pointer has to be updated if the current minimum is being deleted. Compared
to our earlier solution, the only difference is that the affected heap may have
an incremental siftdown process in progress. We let delete finish this process
before handling the actual deletion. As before, the worst-case cost of delete
is O(lg n). By Lemma 4, the number of perfect binary heaps is bounded by
lg n + O(1). Therefore, in the worst case, delete involves at most 5 lg n + O(1)
element comparisons as a result of performing at most two siftdown operations
and one possible scan over the roots, or one siftup and one possible siftdown.

Remark 21. It is possible to reduce the number of element comparisons per-
formed by delete to at most 3 lg n+O(1). The worst-case scenario occurs when
a siftdown operation is to be performed, while another siftdown is in progress.
In this case, the ongoing siftdown is first completed, but the second siftdown
is performed only partially, leaving the wall with the same height as before
the operation. Then, the number of element comparisons performed is at most
3 lg n + O(1); the two siftdown operations combined account for 2 lg n + O(1),
and the scan over the roots accounts for lg n+O(1). ut

In meld , the actions specified for an addition in the numeral system are emu-
lated. A transfer of two perfect binary heaps forward, using a surplus node bor-
rowed at the beginning of the addition, is done in the same manner as in insert .
Similarly, siftdown processes can be advanced as in insert . The only difference
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is that now several bricks are processed, instead of just one. The performance of
meld directly follows from the performance of the addition operation. Given two
priority queues of sizes m and n, m ≤ n, the worst-case cost of meld is O(lg2m).

Remark 22. The space optimization mentioned in Remark 13 is also applicable
here. Hence, the amount of extra space can be reduced to 2n+O(lg n) words. ut

The efficiency of the operations and the representation can be summarized
as follows.

Theorem 5. A meldable priority queue that maintains an ordered collection
of perfect binary heaps guarantees O(1) worst-case cost per insert and borrow,
O(lg n) worst-case cost per delete, and O(lg2m) worst-case cost per meld, where
n is the number of elements in the priority queue manipulated by delete and m
is the number of elements in the smaller of the two priority queues manipulated
by meld. A priority queue storing n elements requires 2n + O(lg n) words, in
addition to the space used by the elements themselves.

7 Conclusions

All the numeral systems discussed in this paper—canonical skew, magical skew,
and regular skew—support increments and decrements at O(1) worst-case cost,
and involve at most a constant number of digit changes per operation. In spite
of this, the efficiency of the data structures using the numeral systems varied
depending on the carry-propagation and borrowing mechanisms used. Hence, to
understand the actual behaviour in our application, a deeper investigation into
the properties of the numeral systems was necessary.

For the magical skew system, when proving the correctness of our algorithms,
we used an automaton. The state space of the modelling automaton was small,
and the states can be seen as forming an orbit. Increments were proved to move
along the states around this orbit. The system turned out to be extremely sensi-
tive. Therefore, we decided to implement decrements as the reverse of increments.
In the conference version of this paper [1], we relied on a general undo-logging
technique to implement decrements as the reverse of increments. This, however,
has the drawback that the amount of space used is proportional to the value of
the underlying number, which is exponential in the length of the representation.
In this version of the paper, we showed that the reversal approach works even if
the amount of space available is proportional to the length of the representation.

One drawback of the magical skew system is that it does not support addi-
tions efficiently. Simply, it is not known how to efficiently get from an arbitrary
configuration back to one of the configurations on the orbit. The invariants en-
forced by the canonical skew and regular skew systems are more relaxed, so
additions can be efficiently realized. The regular skew system supports additions
even more efficiently than the canonical skew system (O(k) versus O(`) digit
changes, where k and ` are the lengths of the added strings and k ≤ `).
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By implementing a priority queue as a forest of perfect binary heaps, we
provided two data structures that perform insert at O(1) worst-case cost and
delete at O(lg n) worst-case cost. There are several other ways of achieving the
same bounds; for example, one could use specialized data structures like a forest
of pennants [8] or a binomial queue [9, 13, 14]. The priority queue obtained using
the regular skew system supports borrow at O(1) worst-case cost and meld at
O(lg2m) worst-case cost, wherem is the number of elements stored in the smaller
of the two melded priority queues.

We conclude the paper with some open problems.

1. The array-based implementation of a binary heap supports delete with at
most 2 lg n element comparisons (or even less [7]). To perform insert at O(1)
worst-case cost, we increased the number of element comparisons performed
by delete to 6 lg n (Section 4) or 3 lg n (Section 6). How to reduce the number
of element comparisons performed by delete without making other operations
asymptotically slower?

2. We showed that all the following operations: insert , meld , and delete could
be performed at optimal asymptotic cost in the amortized sense. However,
our best data structure only supports meld at O(lg2m) worst-case cost,
where m is the number of elements stored in the smaller of the two melded
priority queues. In [9], the technique of data-structural bootstrapping was
used to speed up meld for (skew) binomial queues. In our case, the worst-
case cost of meld is still too large to apply this technique successfully. Can
the worst-case performance of meld be improved?

3. All known approaches to implement fast decrease, which decreases the value
stored at a given node, are based on heap-ordered binomial-tree-like struc-
tures. Is it really so that binary heaps are not competitive in this respect?

4. So far, we have not attempted to provide any evidence for the practical rele-
vance of the findings reported in this paper. How efficient are the described
data structures in practice?

5. We hope that our approach for designing numeral systems and related data
structures is relevant in other contexts. Are there other applications that
could be tackled with the developed numeral systems?
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We introduce a framework for reducing the number of element comparisons performed in priority-
queue operations. In particular, we give a priority queue which guarantees the worst-case cost
of O(1) per minimum finding and insertion, and the worst-case cost of O(log n) with at most

logn+ O(1) element comparisons per deletion, improving the bound of 2 logn+ O(1) known for
binomial queues. Here, n denotes the number of elements stored in the data structure prior to
the operation in question, and logn equals log2 (max {2, n}). As an immediate application of the
priority queue developed, we obtain a sorting algorithm that is optimally adaptive with respect to

the inversion measure of disorder, and that sorts a sequence having n elements and I inversions
with at most n log (I/n) +O(n) element comparisons.

Categories and Subject Descriptors: E.1 [Data Structures]: Lists, stacks, and queues; E.2
[Data Storage Representations]: Linked representations; F.2.2 [Analysis of Algorithms

and Problem Complexity]: Sorting and searching

Additional Key Words and Phrases: Priority queues, heaps, meticulous analysis, constant factors

1. INTRODUCTION

One of the major research issues in the field of theoretical computer science is the
comparison complexity of computational problems. In this article, we consider pri-
ority queues (called heaps in some texts) that have an O(1) cost for insert, with
an attempt to reduce the number of element comparisons involved in delete-min.
Binary heaps [Williams 1964] are therefore excluded, following from the fact that
log log n ± O(1) element comparisons are necessary and sufficient for inserting an
element into a heap of size n [Gonnet and Munro 1986]. Gonnet and Munro (cor-
rected by Carlsson [1991]) also showed that log n+log∗ n±O(1) element comparisons
are necessary and sufficient for deleting a minimum element from a binary heap.
In the literature, several priority queues have been proposed that achieve a cost

of O(1) per find-min and insert, and a cost of O(log n) per delete-min and delete.
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Examples of priority queues that achieve these bounds, in the amortized sense, are
binomial queues [Brown 1978; Vuillemin 1978] (called binomial heaps in [Cormen
et al. 2001]) and pairing heaps [Fredman et al. 1986; Iacono 2000]. The same
efficiency can be achieved in the worst case with a special implementation of a
binomial queue (see, for example, [Carlsson et al. 1988]). For binomial queues,
guaranteeing a cost of O(1) per insert, 2 log n−O(1) is a lower bound and 2 log n+
O(1) an upper bound on the number of element comparisons performed by delete-
min and delete. In Section 2, we review how binomial trees are employed in binomial
queues and prove the aforementioned lower and upper bounds for binomial queues.

In Section 3, we present our framework for structuring priority queues. We apply
the framework in two different ways to reduce the number of element comparisons
performed in priority-queue operations. In Section 4, we give a structure, called a
two-tier binomial queue, that guarantees the worst-case cost of O(1) per find-min
and insert, and the worst-case cost of O(log n) with at most log n + O(log log n)
element comparisons per delete-min and delete. In Section 5, we describe a refined
priority queue, called a multipartite binomial queue, by which the better bound of
at most log n + O(1) element comparisons per delete-min and delete is achieved.
This is an improvement over the log n+O(log log n) bound presented in the confer-
ence version of this article [Elmasry 2004]. In Section 6, we show as an application
of the framework that, by using a multipartite binomial queue in adaptive heapsort
[Levcopoulos and Petersson 1993], we obtain a sorting algorithm that is optimally
adaptive with respect to the inversions measure of disorder, and that sorts a se-
quence having n elements and I inversions with at most n log(I/n)+O(n) element
comparisons. This is the first priority-queue-based sorting algorithm having these
properties. In Section 7, we conclude by discussing which other data structures
could be used in our framework as a substitute for binomial trees.

2. BINOMIAL QUEUES

A binomial tree [Brown 1978; Schönhage et al. 1976; Vuillemin 1978] is a rooted,
ordered tree defined recursively as follows. A binomial tree of rank 0 is a single
node. For r > 0, a binomial tree of rank r comprises the root and its r binomial
subtrees of rank 0, 1, . . . , r − 1 in this order. We call the root of the subtree of
rank 0 the oldest child and the root of the subtree of rank r− 1 the youngest child.
It follows directly from the definition that the size of a binomial tree is always a
power of two, and that the rank of a tree of size 2r is r.

A binomial tree can be implemented using the child-sibling representation, where
every node has three pointers: one pointing to its youngest child, one to its closest
younger sibling, and one to its closest older sibling. The children of a node are
kept in a circular, doubly-linked list, called the child list ; so one of the sibling
pointers of the youngest child points to the oldest child, and vice versa. Unused
child pointers have the value null. In addition, each node should store the rank
of the maximal subtree rooted at it. To facilitate the delete operation, every node
should have space for a parent pointer. The parent pointer is set only if the node is
the youngest child of its parent, otherwise its value is null. To distinguish the root
from the other nodes, its parent pointer is set to point to a fixed sentinel.
The children of a node can be sequentially accessed by traversing the child list

ACM Transactions on Algorithms, Vol. , No. , 2008.



Multipartite Priority Queues · 45

Sentinel

11
0

12
2

42
0

115
1

120
0

Fig. 1. A binomial queue storing integers {11, 12, 42, 115, 120}. Each node of a binomial tree has

space for seven fields: parent pointer, element, rank, extra pointer (needed later on), older-sibling
pointer, younger-sibling pointer, and youngest-child pointer. The nonstandard features are the
component sentinel and parent pointers that are only valid for the youngest children.

from youngest to oldest (or vice versa, if the oldest child is first accessed via the
youngest child). It should be pointed out that with respect to the parent pointers
our representation is nonstandard. An argument for why one parent pointer per
child list is enough, and why we can afford to visit all younger siblings of a node
to get to its parent, is given in Lemma 4.1. In our representation each node has a
constant number of pointers pointing to it, and it knows from which nodes these
pointers come. Because of this, it is possible to detach any node by updating a
constant number of pointers.
In its standard form, a binomial queue is a forest of binomial trees with at most

one tree of any given rank (see Figure 1). In addition, the trees are kept heap
ordered, that is the element stored at every node is no greater than the elements
stored at the children of that node. The sibling pointers of the roots are reused
to keep the trees in a circular, doubly-linked list, called the root list, where the
binomial trees appear in increasing order of rank.
Two heap-ordered trees can be linked together by making the root of the tree

that stores the larger element the youngest child of the other root. Later on, we
refer to this as a join. If the two joined trees are binomial trees of the same rank
r, the resulting tree is a binomial tree of rank r + 1. A split is the inverse of a
join, where the subtree rooted at the youngest child of the root is unlinked from
the given tree. A join involves a single element comparison, and both a join and a
split have a cost of O(1).
The operations for a binomial queue B can be implemented as follows.

B.find-min(). The root storing a minimum element is accessed and that element
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is returned. The other operations are given the obligation to maintain a pointer to
the location of the current minimum.

B.insert(e). A new node storing element e is constructed and then added to the
forest as a tree of rank 0. If this results in two trees of rank 0, successive joins are
performed until no two trees have the same rank. Furthermore, the pointer to the
location of the current minimum is updated if necessary.

B.delete-min(). The root storing an overall minimum element is removed, thus
leaving all the subtrees of that node as independent trees. In the set of trees
containing the new trees and the previous trees held in the binomial queue, all
trees of equal rank are joined until no two trees of the same rank remain. The root
storing a new minimum element is then found by scanning the current roots, and
the pointer to the location of the current minimum is updated.

B.delete(x). The binomial tree containing node x is traversed upwards starting
from x, the current node is swapped with its parent, and this is repeated until the
root of the tree is reached. Note that nodes are swapped by detaching them from
their corresponding child lists and attaching them back in each others place. Since
whole nodes are swapped, pointers to the nodes from the outside remain valid.
Lastly, the root is removed as in a delete-min operation.

For a binomial queue storing n elements, the worst-case cost per find-min is O(1)
and that per insert, delete-min, and delete is O(log n). The amortized bound on the
number of element comparisons is two per insert and 2 log n+O(1) per delete-min.
To show that the bound is tight for delete-min (and delete), consider a binomial
queue of size n which is one less than a power of two, an operation sequence which
consists of pairs of delete-min and insert, and a situation where the element to be
deleted is always stored at the root of the tree of largest rank. Every delete-min
operation in such a sequence requires ⌊log n⌋ element comparisons for joining the
trees of equal rank and ⌊log n⌋ element comparisons for finding the root that stores
a new minimum element.
To achieve the worst-case cost of O(1) for an insert operation, all the necessary

joins cannot be performed at once. Instead, a constant number of joins can be done
in connection with each insertion, and the execution of the other joins is delayed for
forthcoming insert operations. To facilitate this, a logarithmic number of pointers
to joins in process is maintained on a stack. More closely, each pointer points to
a root in the root list; the rank of the tree pointed to should be the same as the
rank of its neighbor. In one join step, the pointer at the top of the stack is popped,
the two roots are removed from the root list, the corresponding trees are joined,
and the root of the resulting tree is put in the place of the two. If there exists
another tree of the same rank as the resulting tree, a pointer indicating this pair
is pushed onto the stack; thereby, a preference is given for joins involving small
trees. In an insert operation a new node is created and added to the root list. If
the given element is smaller than the current minimum, the pointer indicating the
location of a minimum element is updated to point to the newly created node. If
there exists another tree of rank 0, a pointer to this pair of trees is pushed onto the
stack. After this, a constant number of join steps is executed. If one join is done
in connection with every insert operation, the on-going joins are already disjoint
and there is always space for new elements (for a similar treatment, see [Carlsson
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et al. 1988] or [Clancy and Knuth 1977, p. 53 ff.]). Analogously with an observation
made in [Carlsson et al. 1988], the size of the stack can be reduced dramatically if
two joins are executed in connection with every insert operation, instead of one.

Since there are at most two trees of any given rank, the number of element
comparisons performed by a delete-min and delete operation is never larger than
3 log n. In fact, a tighter analysis shows that the number of trees is bounded by
⌊log n⌋+ 1. The argument is that insert, delete-min, and delete operations can be
shown to maintain the invariant that any rank occupying two trees is preceded by
a rank occupying no tree, possibly having a sequence of ranks occupying one tree
in between (for a similar proof, see [Clancy and Knuth 1977; Kaplan et al. 2002]).
In other words, the number of element comparisons is only at most 2 log n + O(1)
per delete-min and delete. An alternative way of achieving the same worst-case
bounds, two element comparisons per insert and 2 log n+O(1) element comparisons
per delete-min/delete, is described in [Driscoll et al. 1988].

3. THE FRAMEWORK

For the binomial queues, there are two major tasks that contribute to the mul-
tiplicative factor of two in the bound on the number of element comparisons for
delete-min. The first is the join of trees of equal rank, and the second is the main-
tenance of the pointer to the location of a minimum element. The key idea of our
framework is to reduce the number of element comparisons involved in finding a
new minimum element after the joins.
This is achieved by implementing the original queue as a binomial queue, while

having an upper store forming another priority queue that only contains pointers to
those elements stored at the roots of the binomial trees of the original queue. The
minimum element referred to by this upper store is, therefore, an overall minimum
element. The size of the upper store is O(log n) and every delete-min operation
requires O(log log n) comparisons for this queue. The challenge is how to maintain
the upper store and how to efficiently implement the priority-queue operations
on the lower store (original queue) to reduce the work to be done at the upper
store, achieving the claimed bounds. If the delete-min operation is implemented
the same way as that of standard binomial queues, there would be a logarithmic
number of new roots that need to be inserted at the upper store. Hence, a new
implementation of the delete-min operation, that does not alter the current roots
of the trees, is introduced. To realize this idea, we compose a priority queue using
three components which themselves are priority queues, described next.

(1) The lower store is a priority queue which stores at least half of the n ele-
ments. This store is implemented as a collection of separate structures storing
the elements in individual compartments. Each element is stored only once,
and there is no relation between elements held in different structures. A spe-
cial requirement for delete-min and delete is that they only modify one of the
structures and as well retain the size of this structure. In addition to the normal
priority-queue operations, structure borrowing should be supported, in which
a structure or part of a structure is released from the lower store (and moved
to the reservoir if this becomes empty). As to the complexity requirements,
find-min and insert should have a cost of O(1), and delete-min and delete a
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cost of O(log n). Moreover, structure borrowing should have a cost of O(1).

(2) The upper store is a priority queue which stores references to the m structures
held in the lower store and uses the current minimum of each structure as the
priority. The purpose of the upper store is to provide fast access to an overall
minimum element stored at the lower store. The requirement is that find-min
and insert have a cost of O(1), and delete-min and delete a cost of O(logm).

(3) The reservoir is a special priority queue which supports find-min, delete-min,
and delete, but not insert. It contains those elements that are not in the
lower store. Whenever a compartment, together with the associated element,
is deleted from the lower store as a result of a delete-min or delete operation,
a compartment is borrowed from the reservoir. Using this borrowed compart-
ment, the structure that lost a compartment is readjusted to have the same
size as before the deletion. Again, find-min should have a cost of O(1), and
delete-min and delete a cost of O(log n), where n is the number of all elements
stored. Moreover, compartment borrowing should have a cost of O(1).

To get from a compartment in the lower store to its counterpart in the upper store
and vice versa, the corresponding compartments are linked together by pointers.
Moreover, to distinguish whether a compartment is in the reservoir or not, we
assume that each structure has extra information indicating the component in which
it is held, and that this information can be easily reached from each compartment.
Let I be an implementation-independent framework interface for a priority queue.

Using the priority-queue operations provided for the components, the priority-queue
operations for I can be realized as follows.

I.find-min(). A minimum element is either in the lower store or in the reservoir,
so it can be found by lower-store find-min, which relies on upper-store find-min,
and by reservoir find-min. The smaller of these two elements is returned.

I.insert(e). The element e is inserted into the lower store using lower-store insert,
which may invoke the operations provided for the upper store.

I.delete-min(). First, if the reservoir is empty, a group of elements is moved from
the lower store to the reservoir using structure borrowing. Second, lower-store find-
min and reservoir find-min are invoked to determine in which component an overall
minimum element lies. Depending on the outcome, lower-store, either delete-min
or reservoir delete-min is invoked. If an element is to be removed from the lower
store, a compartment with the associated element is borrowed from the reservoir
to retain the size of the modified lower-store structure. Depending on the changes
made in the lower store, it may be necessary to update the upper store as well.

I.delete(x). If the reservoir is empty, it is refilled using structure borrowing from
the lower store. The extra information, associated with the structure in which com-
partment x is stored, is accessed. If the compartment is in the reservoir, reservoir
delete is invoked; otherwise, lower-store delete is invoked. In lower-store delete,
a compartment is borrowed from the reservoir to retain the size of the modified
structure. If necessary, the upper store is updated as well.

Assume now that the given complexity requirements are fulfilled. Since a lower-
store find-min operation and a reservoir find-min operation have a cost of O(1),
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a find-min operation has a cost of O(1). The efficiency of an insert operation is
directly related to that of the lower-store and upper-store insert operations, that
is, the cost of an insert operation is O(1). In a delete-min operation the cost
of the find-min and insert operations invoked is only O(1). Also, compartment
borrowing and structure borrowing have a cost of O(1). Let n denote the number
of elements stored, and let Dℓ(n), Du(n), and Dr(n) be the functions expressing the
complexity of lower-store delete-min, upper-store delete-min, and reservoir delete-
min, respectively. Hence, the complexity of a delete-min operation is bounded above
by max {Dℓ(n) +Du(n), Dr(n)}+O(1). As to the efficiency of a delete operation,
there is a similar dependency on the efficiency of lower-store delete, upper-store
delete, and reservoir delete. The number of element comparisons performed will be
analyzed after the actual realization of the components is detailed.

4. TWO-TIER BINOMIAL QUEUES

Our first realization of the framework uses binomial queues, in the form described
in Section 2, as the basic structure. Because of the close interrelation between the
upper store and lower store during the execution of different operations, we call the
data structure a two-tier binomial queue. Its components and their implementations
are the following.

(1) The lower store is implemented as a binomial queue storing the major part of
the elements.

(2) The upper store is implemented as another binomial queue that stores pointers
to the roots of the binomial trees of the lower store, but the upper store may
also store pointers to earlier roots that are currently either in the reservoir or
internal nodes in the lower store.

(3) The reservoir is a single tree, which is binomial at the time of its creation.

The fields of the nodes stored at the lower store and the reservoir are identical, and
each node is linked to the corresponding node in the upper store; if no counterpart
in the upper store exists, the link has the value null. Also, we use the convention
that the parent pointer of the root of the reservoir points to a reservoir sentinel,
whereas for the trees held in the lower store the parent pointers of the roots point
to a lower-store sentinel. This way we can easily distinguish the component of a
root. Instead of compartments and structures, nodes and subtrees are borrowed
by exchanging references to these objects. We refer to these operations as node
borrowing and tree borrowing.

If there are n elements in total, the size of the upper store is O(log n). Therefore,
at the upper store, delete-min and delete require O(log log n) element comparisons.
The challenge is to maintain the upper store and to implement the priority-queue
operations for the lower store such that the work done in the upper store is reduced.
If in the lower store the removal of a root is implemented in the standard way, there
might be a logarithmic number of new roots, and we need to insert a pointer to each
of these roots into the upper store. Possibly, some of the new subtrees have to be
joined with the existing trees, which again may cascade a large number of deletions
to the upper store. Hence, as required, a new implementation of the removal of a
root is introduced that alters only one of the lower-store trees.
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Next, we show how different priority-queue operations may be handled. We
describe and analyze the operations for the reservoir, the upper store, and the
lower store in this order.

4.1 Reservoir operations

To borrow a node from the tree of the reservoir, the oldest child of the root is
detached (or the root itself, if it does not have any children), making the children
of the detached node the oldest children of the root in the same order. Due to
the circularity of the child list, the oldest child and its neighboring nodes can be
accessed by following a few pointers. So, the oldest child can be detached from the
child list at a cost of O(1). Similarly, two child lists can be appended at a cost of
O(1). To sum up, the total cost of node borrowing is O(1).
A find-min operation simply returns the element stored at the root of the reser-

voir. Thus, the worst-case cost of a find-min operation is O(1).
In a delete-min operation, the root of the tree of the reservoir is removed and the

subtrees rooted at its children are repeatedly joined by processing the children of
the root from oldest to youngest. In other words, every subtree is joined with that
tree resulting from the joins of the subtrees rooted at older children. In a delete
operation, the given node is repeatedly swapped with its parent until the root is
reached, the root is removed, and the subtrees of the removed root are repeatedly
joined. In both delete-min and delete, when the removed node has a counterpart
in the upper store, the counterpart is deleted as well.
For the analysis, the invariants proved in the following lemmas are crucial. For

a node x in a rooted tree, let Ax be the set of ancestors of x, including x itself; let
Cx be the number of all the siblings of x that are younger than x, including x; and
let Dx be

∑

y∈Ax

Cy.

Lemma 4.1. For any node x in a binomial tree of rank r, Dx ≤ r + 1.

Proof. The proof is by induction. Clearly, the claim is true for a tree consisting
of a single node. Assume that the claim is true for two trees T1 and T2 of rank
r−1. Without loss of generality, assume that the root of T2 becomes the root after
T1 and T2 are joined together. For every node x in T1, Dx increases by one due to
the new root. For every node x in T2, except the root, Dx increases by one because
the only ancestor of x that gets a new younger sibling is the child of the new root.
The claim follows from the induction assumption.

Lemma 4.2. Starting with a binomial tree of rank r in the reservoir, for any
node x, Dx never gets larger than r + 1 during the life-span of this tree.

Proof. By Lemma 4.1, the initial tree fulfils the claim. Node borrowing modifies
the tree in the reservoir by removing the oldest child of the root and moving all
its children one level up. For every node x that is a descendant of the oldest child
of the root, Dx will decrease by one. For all other nodes the value remains the
same. Hence, if the claim was true before borrowing, it must also be true after this
operation.
Each delete-min and delete operation removes the root of the tree in the reservoir,

and repeatedly joins the resulting subtrees. Due to the removal of the root, for every
node x, Dx decreases by one. Moreover, since the subtrees are made separate, if
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there are j subtrees in all, for any node x in the subtree rooted at the ith oldest
child (or simply the ith subtree), i ∈ {1, . . . , j}, Dx decreases by j − i. Except for
the root, a join increases Dx by one for every other node x in the subtrees involved.
Therefore, since a node x in the ith subtree is involved in j− i+1 joins (except the
oldest subtree that is involved in j− 1 joins), Dx may increase at most by j− i+1.
To sum up, for every node x, Dx may only decrease or stay the same. Hence, if the
claim was true before the root removal, it must also be valid after the operation.

Corollary 4.3. During the life-span of the tree held in the reservoir, starting
with a binomial tree of rank r, the root of the tree has at most r children.

Proof. Let y be the root of the tree held in the reservoir. Let dy denote the
number of children of y, and x the oldest child of y. Clearly, Dx = dy + 1. By
Lemma 4.2, Dx ≤ r + 1 all the time, and thus dy ≤ r.

The complexity of a delete-min and delete operation is directly related to the
number of children of the root, and the complexity of a delete operation is also
related to the length of the Dx-path for the node x being deleted. If the rank of the
tree in the reservoir was initially r, by Corollary 4.3 the number of children of the
root is always smaller than or equal to r, and by Lemma 4.2 the length of the Dx-
path is bounded by r. During the life-span of the tree held in the reservoir, there is
another binomial tree in the lower store whose rank is at least r (see Section 4.3).
Thus, if n denotes the number of elements stored, then r < log n. The update of
the upper store, if at all necessary, has an extra cost of O(log log n). Hence, the
worst-case cost of a delete-min and delete operation is O(log n) and the number of
element comparisons performed is at most log n+O(log log n).

4.2 Upper-store operations

The upper store is a worst-case efficient binomial queue storing pointers to some of
the nodes held in the other two components. In addition to the standard priority-
queue operations, it has to support lazy deletions where nodes are marked to be
deleted instead of being removed immediately (the use of lazy deletions and actual
deletions will be explained in Section 4.3). An unmarked node points to a root of a
tree stored at the lower store, and every root has a counterpart in the upper store.
A marked node points to either an internal node held in the lower store or to a
node held in the reservoir. Therefore, a node in the upper store is marked when
its counterpart becomes a nonroot in the lower store. It should also be possible to
unmark a node when the node pointed to by the stored pointer becomes a root.

To provide worst-case efficient lazy deletions, we use the global-rebuilding tech-
nique adopted from [Overmars and van Leeuwen 1981]. When the number of un-
marked nodes becomes m0/2, where m0 is the current size of the upper store, we
start building a new upper store. The work is distributed over the forthcoming
m0/4 upper-store operations. Both the old structure and new structure are kept
operational and used in parallel. All new nodes are inserted into the new structure,
and all old nodes being deleted are removed from their respective structures. Since
the old structure does not need to handle insertions, the trees there can be emptied
as in the reservoir by detaching the oldest child of the root in question, or the root
itself if it does not have any children. If there are several trees left, if possible, a
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tree whose root does not contain the current minimum is selected as the target of
each detachment. In connection with each of the next at most m0/4 upper-store
operations, four nodes are detached from the old structure; if a node is unmarked,
it is inserted into the new structure; otherwise, it is released and in its counterpart
in the lower store, the pointer to the upper store is given the value null. When
the old structure becomes empty, it is dismissed and thereafter the new structure
is used alone. During the m0/4 operations, at most m0/4 nodes can be deleted or
marked to be deleted, and since there were m0/2 unmarked nodes in the beginning,
at least half of the nodes are unmarked in the new structure. Therefore, at any
point in time, we are constructing at most one new structure. We emphasize that
each node can only exist in one structure, and whole nodes are moved from one
structure to the other so that pointers from the outside remain valid.
Since the cost of each detachment and insertion is O(1), the reorganization only

adds a constant additive term to the cost of all upper-store operations. A find-min
operation may need to consult both the old and new upper stores; its worst-case
cost is still O(1). The actual cost of marking and unmarking is clearly O(1). If m
denotes the number of unmarked nodes currently stored, the total number of nodes
stored is Θ(m). Therefore, each delete-min and delete operation has worst-case
cost O(logm) and performs at most 2 logm+O(1) element comparisons.

4.3 Lower-store operations

A find-min operation invokes upper-store find-min and then follows the received
pointer to a root storing the minimum element. Clearly, its worst-case cost is O(1).
An insert operation is accomplished in a worst-case efficient manner, as described
in Section 2. Once a new node is inserted in the lower store, a corresponding node
is inserted in the upper store. As a result of joins, some roots of trees in the lower
store are linked to other roots, so the corresponding pointers should be deleted
from the upper store. Instead of using upper-store delete, lazy deletion is applied.
The worst-case cost of each join is O(1) and that of each lazy deletion is also O(1).
Since each insert only performs a constant number of joins and lazy deletions, its
worst-case cost is O(1).
Prior to each delete-min and delete operation, it is checked whether a reservoir

refill is necessary. If the reservoir is empty, a tree of highest rank is taken from
the lower store. If the tree is of rank 0, it is moved to the reservoir and the
corresponding pointer is deleted from the upper store. This special case where
n = 1 can be handled at a cost of O(1). In the normal case, the tree taken is
split into two halves, and the subtree rooted at the youngest child is moved to the
reservoir. The other half is kept in the lower store. However, if after the split the
lower store contains another tree of the same rank as the remaining half, the two
trees are joined and the pointer to the root of the loser tree is to be deleted from
the upper store. Again, lazy deletion is applied. A join has a cost of O(1) and
involves one element comparison. As shown, each lazy deletion has a cost of O(1),
including also some element comparisons. Thus, the total cost of tree borrowing is
O(1).
In a delete-min operation, after a possible reservoir refill, the root storing a

minimum element is removed and a node from the reservoir is borrowed. Then seen
as a tree of rank 0, this node is repeatedly joined with the subtrees of the removed
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root. This results in a new binomial tree of the same size as before the deletion. In
the upper store, a pointer to the new root of the resulting tree is inserted and the
pointer to the old root is deleted (using an actual, not a lazy, deletion). However, if
the pointer to the new root already exists in the upper store, the upper-store node
containing this pointer is simply unmarked. In a delete operation, after a possible
reservoir refill, the given node is swapped to the root as in a delete operation for a
binomial queue, after which the root is deleted as in a delete-min operation.

As analyzed earlier, tree borrowing and node borrowing have the worst-case
cost of O(1). The, at most, ⌊log n⌋ joins executed have the worst-case cost of
O(log n), and the number of element comparisons performed is at most log n. The
upper-store update has an additional cost of O(log log n), including O(log log n)
element comparisons. To summarize, the worst-case cost of a delete-min operation
is O(log n) and the number of element comparisons performed is at most log n +
O(log log n). Since in a binomial tree of size n the length of any Dx-path is never
longer than ⌊log n⌋+1, node swapping has worst-case cost O(log n), but involves no
element comparisons. Therefore, the complexity of a delete operation is the same
as that of a delete-min operation.

4.4 Summing up the results

Using the components described and the complexity bounds derived, the efficiency
of our priority-queue operations can be summed up as follows.

Theorem 4.4. Let n be the number of elements stored in the data structure
prior to each operation. A two-tier binomial queue guarantees the worst-case cost
of O(1) per find-min and insert, and the worst-case cost of O(log n) with at most
log n+O(log log n) element comparisons per delete-min and delete.

The bound on the number of element comparisons for delete-min and delete
can be further reduced. Instead of having two levels of priority queues, we can
have several. At each level except the highest, delete-min and delete operations
are carried out as in our earlier lower store, relying on a reservoir; and at each
level except the lowest, lazy deletions are carried out as in our earlier upper store.
Except for the highest level, the constant factor in the logarithm term expressing
the number of element comparisons performed per delete-min or delete is one.
Therefore, the total number of element comparisons performed in all levels is at
most log n+log log n+. . .+O(log(k) n), where log(k) denotes the logarithm function
applied k times and k is a constant representing the number of levels. An insertion
of a new element would result in a constant number of insertions and lazy deletions
per level. Hence, the number of levels should be a fixed constant to achieve a
constant cost for insertions.

5. MULTIPARTITE BINOMIAL QUEUES

In this section we present a refinement of a two-tier binomial queue, called a mul-
tipartite binomial queue. Instead of three components, the new data structure
consists of five components (for an illustration, see Figure 2): main store, insert
buffer, floating tree, upper store, and reservoir. The first three components replace
the earlier lower store. The insert buffer is used for handling all insertions, the
main store is used for storing the main bulk of elements, and the floating tree, if
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Fig. 2. A multipartite binomial queue storing 19 integers. Prefix-minimum pointers are indicated
with dashed lines. No floating tree exists. Binomial trees are drawn in a schematic form (for

details, see Figure 1).

any, is used when moving elements from the insert buffer to the main store, so the
insert buffer remains small compared to the main store. The upper store facilitates
fast access to a minimum element in the main store. Finally, the reservoir provides
nodes when deletions are to be carried out in any of the first three components.
The main store is maintained as a standard binomial queue containing at most

one binomial tree of each rank. The root storing the current minimum is indicated
by a pointer from the upper store. The insert buffer is also a binomial queue, but
it is maintained in a worst-case efficient manner. A separate pointer indicates the
root containing the current minimum in the insert buffer. The floating tree, if any,
is a binomial tree having the same rank as the smallest tree in the main store.
At any point, let h denote the rank of the largest tree in the main store. We

impose the following rank invariant : The ranks of all trees in the insert buffer are
between 0 and ⌈h/2⌉, and the ranks of all trees in the main store are between ⌈h/2⌉
and h.
The upper store is implemented as a circular, doubly-linked list, having one node

corresponding to each tree held in the main store. Each such node contains a pointer
to the root of a tree that stores the minimum element among those elements stored
in the trees of a lower rank, including the corresponding tree itself. We call these
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pointers the prefix-minimum pointers. The technique of prefix-minimum pointers
has earlier been used, for example, in [Elmasry 2002; 2003a; 2003b].

A reservoir is still in use and all the reservoir operations are performed as previ-
ously described, but to refill it, a tree is borrowed from the insert buffer (if there
is more than one tree, that tree whose root stores the current minimum should
not be borrowed), and if the insert buffer is empty, a tree, is borrowed from the
main store. One possibility is to borrow the tree of the second-highest rank from
the main store, and update the prefix-minimum pointer of the tree of the highest
rank. If there is only one tree in the two components (i.e., insert buffer and main
store) altogether, we split this tree by cutting off the subtree rooted at the youngest
child of the root, and move this subtree to the reservoir. From this and our earlier
analysis (see Section 4.3), it follows that the worst-case cost of tree borrowing is
O(1).
All insert operations are directed to the insert buffer and executed in a manner

similar to insertion in a worst-case efficient binomial queue. The only difference is
when a tree of rank ⌈h/2⌉+ 1 is produced in the insert buffer as a result of a join
following an insertion. In such a case, the just created tree is split into two halves
and the half rooted at the youngest child becomes a floating tree; the other half
stays in the insert buffer. Tree borrowing is accomplished in a similar manner as
in a reservoir refill, at the worst-case cost of O(1) (see Section 4.3). Note that this
form of tree borrowing retains our rank invariant and does not affect the validity
of the minimum pointer maintained in the insert buffer.
If the rank of the smallest tree in the main store is larger than ⌈h/2⌉, the floating

tree ceases to exist and is moved to the main store. Otherwise, the floating tree
is united with the main store using the standard union algorithm (see, for exam-
ple, [Cormen et al. 2001, Chapter 19]). However, the uniting process is executed
incrementally by distributing the work over the forthcoming h − ⌈h/2⌉ + 1 modi-
fying operations either insertions or deletions. In connection with every modifying
operation, one join is performed by uniting the floating tree with the smallest tree
of the main store; that is, joins make the floating tree larger. Once there remains
no other tree of the same rank as the floating tree, the uniting process is complete
and the floating tree becomes part of the main store. The position of the latest
embedded floating tree is recalled to support the main-store find-min operation.

After moving the floating tree to the main store, the references of the prefix-
minimum pointers may be incorrect so these have to be fixed, again incrementally,
one pointer per operation starting from pointers corresponding to trees of lower
rank. The facts that there should have been at least ⌈h/2⌉+1 insertions performed
since another floating tree would have been moved from the insert buffer (as indi-
cated by Lemma 5.1 to follow) and that at most ⌊h/2⌋+1 element comparisons are
required to finish the joins and fix the prefix-minimum pointers ensure that each
uniting process will be finished before a new floating tree will be generated. In
other words, there will be at most one floating tree at a time. It follows that an
insert operation will have a worst-case cost of O(1).

Lemma 5.1. After a floating tree is generated, at least ⌈h/2⌉+1 insertions must
be performed before another floating tree is generated.

Proof. Consider the insert buffer before the insertion that caused a floating tree
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to be generated. Because of the way the joins are performed (preference is given
to joins involving small trees), there must be two trees of rank ⌈h/2⌉ and at most
one tree of any other smaller rank. After the insertion, one of the two trees of rank
⌈h/2⌉ becomes the floating tree. For the same scenario to be produced again, at
least another ⌈h/2⌉ joins must be executed, starting by joining two trees of rank
0, then two of rank 1, and so on until producing another tree of rank ⌈h/2⌉. Since
we are performing one join per insertion, the number of necessary insertions is at
least ⌈h/2⌉. The next insertion would result in producing another floating tree. It
is straightforward to verify that any other scenario will require more insertions to
produce the second floating tree. It is also worth mentioning that tree borrowing
may only increase the number of necessary joins to produce a floating tree.

An upper-store find-min operation provides a minimum element in the main
store. This is done by comparing the element stored at the node pointed to by the
prefix-minimum pointer associated with the root of the tree of highest rank and the
element stored at the root of the latest floating tree moved to the main store. The
current minimum of the main store must be in one of these two positions. In a find-
min operation, the four components storing elements, namely main store, reservoir,
floating tree, and insert buffer, need to be consulted. Therefore, the worst-case cost
of a find-min operation is O(1).
Deletion from the reservoir is implemented as before with at most log n + O(1)

element comparisons. Deletion from the insert buffer is performed in the same way
as that of the worst-case efficient binomial queue. Because of the rank invariant,
the largest rank of a tree in the insert buffer is at most ⌈h/2⌉, and each insert-buffer
deletion only requires at most 2⌈h/2⌉ + O(1), which is at most h + O(1) element
comparisons. The key idea of the deletion operation for the main store is to balance
the work done in the main store and the upper store. After using a worst-case cost
of O(r) and at most r+O(1) element comparisons to readjust a tree of rank r in the
main store using node borrowing and repeated joins (as discussed in Section 4.3),
only log n − r + O(1) element comparisons are used for maintaining of the upper
store. To delete a pointer corresponding to a tree of rank r from the upper store,
the pointer in question is found by a sequential scan and thereafter removed, and
the prefix-minimum pointers for all trees of higher rank are updated. The total
cost is proportional to log n and one element comparison per higher-rank tree is
necessary, meaning at most log n− r +O(1) element comparisons. When the root
of a tree of rank r is changed (which can happen because of node borrowing), the
prefix-minimum pointers can be updated in a similar manner. To summarize, the
worst-case cost of main-store delete-min and delete operations is O(log n) with at
most log n+O(1) element comparisons.
Each delete-min operation performs the following four tasks: (1) refill the reser-

voir if necessary; (2) execute one step of the incremental uniting process if nec-
essary; (3) determine in which component an overall minimum element is stored;
and (4) invoke the corresponding delete-min operation provided for this component.
According to our earlier analysis, even with the overheads caused by the first three
tasks, each of the components storing elements supports a delete-min operation at
the worst-case cost of O(log n), including at most log n+O(1) element comparisons.
In a delete operation, the root is consulted to determine which of the delete
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operations provided for the components storing elements should be invoked. In
each of the components, excluding the upper store, the deletion strategy relying on
node borrowing, explained Section 4.3, is applied. The traversal to the root has
worst-case cost O(log n), but even with this and other overheads, a delete operation
has worst-case cost O(log n) and performs at most log n+O(1) element comparisons.
To show that the rank invariant is maintained, two observations are important.

First, the only way for the highest rank of a tree in the main store, h, to increase is
when the floating tree is joined with such a tree. This can only happen when there
are no other trees in the main store, which ensures that, even if ⌈h/2⌉ may increase,
there is no need to move trees from the main store to the insert buffer to maintain
the rank invariant. Second, the only way for h to decrease is when a subtree of the
tree of rank h is moved to the reservoir by a tree borrowing operation. The way
in which tree borrowing is implemented ensures that this can only happen when
the tree of rank h in the main store is the only tree in the whole data structure.
Therefore, even if ⌈h/2⌉ may decrease, there is no need to move trees from the
insert buffer to the main store to maintain the rank invariant. To conclude, we
have proved the following theorem.

Theorem 5.2. Let n be the number of elements stored in the data structure
prior to each priority-queue operation. A multipartite binomial queue guarantees
the worst-case cost of O(1) per find-min and insert, and the worst-case cost of
O(log n) with at most log n+O(1) element comparisons per delete-min and delete.

6. APPLICATION: ADAPTIVE HEAPSORT

A sorting algorithm is adaptive if it can sort all input sequences and perform partic-
ularly well for sequences having a high degree of existing order. The cost consumed
is allowed to increase with the amount of disorder in the input. In the litera-
ture many adaptive sorting algorithms have been proposed and many measures of
disorder considered (for a survey, see [Estivill-Castro and Wood 1992] or [Moffat
and Petersson 1992]). In this section we consider adaptive heapsort, introduced
by Levcopoulos and Petersson [1993], which is one of the simplest adaptive sort-
ing algorithms. As in [Levcopoulos and Petersson 1993], we assume that all input
elements are distinct.
At the commencement of adaptive heapsort a Cartesian tree is built from the in-

put sequence. Given a sequence X = 〈x1, . . . , xn〉, the corresponding Cartesian tree
[Vuillemin 1980] is a binary tree whose root stores element xi = min {x1, . . . , xn},
the left subtree of the root is the Cartesian tree for sequence 〈x1, . . . , xi−1〉, and the
right subtree is the Cartesian tree for sequence 〈xi+1, . . . , xn〉. After building the
Cartesian tree, a priority queue is initialized by inserting the element stored at the
root of the Cartesian tree into it. In each of the following n iterations, a minimum
element stored in the priority queue is returned and deleted, the elements stored at
the children of the node that contained the deleted element are retrieved from the
Cartesian tree, and the retrieved elements are inserted into the priority queue.

The total cost of the algorithm is dominated by the cost of the n insertions
and n minimum deletions; the cost involved in building [Gabow et al. 1984] and
querying the Cartesian tree is linear. The basic idea of the algorithm is that only
those elements that can be the minimum of the remaining elements are kept in the

ACM Transactions on Algorithms, Vol. , No. , 2008.



58 · Amr Elmasry, Claus Jensen, and Jyrki Katajainen

priority queue, not all elements. Levcopoulos and Petersson [1993] showed that
when element xi is deleted, the number of elements in the priority queue is no
greater than ⌊|Cross(xi)|/2⌋+ 2, where

Cross(xi) =
{

j | j ∈ {1, . . . , n} and min {xj , xj+1} < xi < max {xj , xj+1}
}

.

Levcopoulos and Petersson [1993, Corollary 20] showed that adaptive heapsort is
optimally adaptive with respect to Osc, Inv , and several other measures of disorder.
For a sequence X = 〈x1, x2, . . . , xn〉 of length n, the measures Osc and Inv are
defined as

Osc(X) =
n
∑

i=1

|Cross(xi)|,

Inv(X) =
∣

∣

{

(i, j) | i ∈ {1, 2, . . . , n− 1}, j ∈ {i+ 1, . . . , n}, and xi > xj

}
∣

∣.

The optimality with respect to the Inv measure, which measures the number of pairs
of elements that are in wrong order, follows from the fact that Osc(X) ≤ 4Inv(X)
for any sequence X [Levcopoulos and Petersson 1993].
Implicitly, Levcopoulos and Petersson showed (see also an earlier version of their

paper, published in [Petersson 1990]) that, using an advanced implementation of
binary-heap operations, the cost of adaptive heapsort is proportional to

n
∑

i=1

(

log |Cross(xi)|+ 2 log log |Cross(xi)|
)

+O(n),

and that this is an upper bound on the number of element comparisons performed.
Using a multipartite binomial queue instead of a binary heap, we get rid of the
log log term and achieve the bound

n
∑

i=1

log |Cross(xi)|+O(n).

Because the geometric mean is never larger than the arithmetic mean, it follows
that our version is optimally adaptive with respect to the measure Osc, and per-
forms at most n log

(

Osc(X)/n
)

+ O(n) element comparisons when sorting a se-
quence X of length n. The bounds for the measure Inv immediately follow: The
cost is O

(

n log
(

Inv(X)/n
))

and the number of element comparisons performed is

n log
(

Inv(X)/n
)

+ O(n). Other adaptive sorting algorithms that guarantee the
same bounds are based on insertionsort or mergesort [Elmasry and Fredman 2003;
2008].

7. CONCLUDING REMARKS

We provided a general framework for improving the efficiency of priority-queue
operations with respect to the number of comparisons performed. Essentially, we
showed that it is possible to get below the 2 log n barrier on the number of compari-
sons performed per delete-min and delete, while keeping the cost of find-min and
insert constant. From the information-theoretic lower bound for sorting, it follows
that the worst-case efficiency of insert and delete-min cannot be improved much.

ACM Transactions on Algorithms, Vol. , No. , 2008.



Multipartite Priority Queues · 59

The primitives on which our framework relies are tree joining, tree splitting,
lazy deleting, and node borrowing, all of which have the worst-case cost of O(1).
However, it is not strictly necessary to support node borrowing with this efficiency.
It would be enough if this operation had worst-case cost O(log n), including no more
than O(1) element comparisons. Our priority queues could be modified, without
affecting the complexity bounds derived, to use this weak version of node borrowing.

We used binomial trees as the basic building blocks in our priority queues. The
main drawback of binomial trees is their high space consumption. Each node should
store four pointers, a rank, and an element. Assuming that a pointer and an integer
can be stored each in one word, a multipartite binomial queue uses 5n + O(log n)
words, in addition to the n elements. However, if the child list is doubly linked, but
not circular, and if the unused pointer of the younger sibling is reused as a parent
pointer, as in [Kaplan and Tarjan 1999; 2008], the space bound could be improved
to 4n+O(log n). Observe that after this change only weak node borrowing can be
supported. In order to support lazy deletion, one extra pointer per node is needed,
so a two-tier binomial queue requires additional n+O(log n) words of storage.

A navigation pile proposed by Katajainen and Vitale [2003], supports weak node
borrowing (refer to the second-ancestor technique described in the original paper).
All external references can be kept valid if the compartments of the elements are
kept fixed, the leaves store pointers to the elements, and the elements point back
to the leaves. Furthermore, if pointers are used for expressing parent-child rela-
tionships, tree joining and tree splitting become easy. With the aforementioned
modification relying on weak node borrowing, pointer-based navigation piles could
substitute for binomial trees in our framework. A navigation pile is a binary tree,
and thus three parent-child pointers per node are required. With the standard trick
(see, for example [Tarjan 1983, Section 4.1]), where the parent and children pointers
are made circular, only two pointers per node are needed to indicate parent-child
relationships. Taking into account the single pointer stored at each branch and the
additional pointer to keep external references valid, the space overhead would be
4n+O(log n) words.

By bucketing a group of elements into one node, the space overhead of any of
the aforesaid data structures can be improved to (1 + ǫ)n words, for any fixed
real number ǫ > 0. If (log n)-bucketing is used, as proposed in [Driscoll et al.
1988], the comparison complexity of delete/delete-min will increase by an additional
log n factor, but with O(1)-size buckets this increase can be reduced to an additive
constant. However, this optimization is dangerous, since it makes element moves
necessary and it may be possible to lose the validity of external references. To avoid
this complication, the bucketing technique has to be combined with the handle
technique [Cormen et al. 2001, Section 6.5], whereby the space overhead becomes
(2 + ǫ)n words. Further improvements to the space complexity of various data
structures, including priority queues, are suggested in [Brönnimann et al. 2007].

The aforementioned space bounds should be compared to the bound achievable
for a dynamic binary heap which can be realized using Θ(

√
n) extra space [Brodnik

et al. 1999; Katajainen and Mortensen 2001]. However, a dynamic binary heap does
not keep external references valid, and thus cannot support delete operations. To
keep external references valid, a heap could store pointers to the elements instead,
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and the elements could point back to the respective nodes in the heap. Each time
a pointer in the heap is moved, the corresponding pointer from the element to
heap should be updated as well. The references from the outside can refer to those
elements which are not moved. After this modification, the space consumption
would be 2n+ O(

√
n) words. Recall, however, that a binary heap cannot support

insertions at a cost of O(1).
It would be interesting to see which data structure performs best in practice when

external references to compartments inside the data structure are to be supported.
In particular, it remains to be experimented which data structure should be used
when developing an industry-strength priority queue for a program library. It is
too early to make any firm conclusions whether our framework would be useful for
such a task. To unravel the practical utility of our framework, further investigations
would be necessary.
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1 Introduction

In this paper we study (min-)heaps which store a collection of elements and
support the following operations:

find-min(H): Return the location of a minimum element held in heap H .
insert(H , p): Insert the element at location p into heap H .
extract(H): Extract an unspecified element from heap H and return the

location of that element.
decrease(H , p, e): Replace the element at location p in heap H with element

e, which must be no greater than the element earlier located at p.
delete(H , p): Remove the element at location p from heap H .
meld(H1, H2): Create a new heap containing all the elements held in heaps

H1 and H2, and return that heap. This operation destroys H1 and H2.

Observe that delete-min(H), which removes the current minimum of heap
H , can be accomplished by invoking find -min and thereafter delete with the
location returned by find-min. In the heaps studied, the location abstraction
is realized by storing elements in nodes, moving nodes around inside a data
structure by updating pointers (without changing positions of the nodes), and
passing pointers to these nodes. (For more information about the location
abstraction, see e.g. [14, Section 2.4.4].) Please note that extract is a non-
standard operation, not supported by earlier data structures, but in our
experience [6,7,9] it is useful in data-structural transformations.

The research reported in this paper is a continuation of our earlier work
aiming to reduce the number of element comparisons performed in heap
operations. In [9], we described how the comparison complexity of heap op-
erations can be improved using a multi-component data structure which is
maintained by moving nodes from one component to another. In a technical
report [6], we were able to add decrease having the worst-case cost of O(1)
to the operation repertoire. Unfortunately, the resulting data structure was
complicated. In this paper we make the data structure simpler and more ele-
gant by utilizing the connection between number systems and data structures
(see, for example, [18]).

It should be emphasized that we make no claims about the practical util-
ity of the data structures considered; the main motivation for our study is
theoretical. More precisely, we are interested in the comparison complexity of
heap operations. We assume the availability of the standard set of primitive
operations, including memory allocation and memory deallocation functions,
as defined, for example, in the C programming language [17]. Since the run-
ning time of an algorithm may vary depending on the duration of individual
primitive operations executed, we use the term cost to denote the sum of
the total number of primitive operations, element constructions, element de-
structions, and element comparisons executed.

For the data structures considered our basic requirement is that the worst-
case cost of find-min, insert , and decrease is O(1). Given this constraint, our
goal is to reduce the number of element comparisons involved in delete, and
to keep the data structure meldable. Binary heaps [21] are to be excluded
based on the fact that lg lgn − O(1) element comparisons are necessary for
inserting an element into a heap of size n [13]. (Here, n denotes the number of
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elements stored in the data structure prior to the operation in question, and
lg n equals log2(max {2, n}).) Also, pairing heaps [11] are excluded because
they cannot guarantee decrease at a cost of O(1) [10]. There exist several
heaps that achieve a cost of O(1) for find-min, insert , and decrease ; and a
cost of O(lg n) for delete. Fibonacci heaps [12] and thin heaps [16] achieve
these bounds in the amortized sense. Run-relaxed heaps [5], fat heaps [15,16],
and the meldable heaps described in [1] achieve these bounds in the worst
case. When these data structures are extended to support meld , in addition
to the other operations, the performance of meld is as follows: Fibonacci
heaps and thin heaps achieve the amortized cost of O(1), run-relaxed heaps
and fat heaps can achieve the worst-case cost of O(min {lgm, lgn}), and
meldable priority queues achieve the worst-case cost of O(1), m and n being
the sizes of the data structures melded.

For all the aforementioned heaps guaranteeing a cost of O(1) for find -
min and insert , the number of element comparisons performed by delete
is at least 2 lgn − O(1), and this is true even in the amortized sense (for
binomial heaps [20], on which many of the above data structures are based,
this is proved in [6,9]). Run-relaxed heaps have the worst-case upper bound
of 3 lgn+ O(1) on the number of element comparisons performed by delete
(see Section 3). According to our analysis, the corresponding bound for fat
heaps is 4 log3 n+O(1) ≈ 2.53 lgn+O(1).

Like a binomial heap [20] (see also [4, Chapter 19]), a run-relaxed heap
[5] is composed of a logarithmic number of binomial trees, but in these trees
there can be a logarithmic number of heap-order violations. In this paper we
present a new adaptation of run-relaxed heaps, called a two-tier relaxed heap.
In Section 2, we start by discussing the connection between number systems
and data structures; among other things, we show that it is advantageous
to use a zeroless representation of a binomial heap which guarantees that a
non-empty heap always contains at least one binomial tree of size one. In
Section 3, we give a brief review of the implementation of heap operations
on run-relaxed heaps. In Section 4, we describe our data structure and prove
that it guarantees the worst-case cost of O(1) for find-min, insert , extract ,
and decrease; the worst-case cost of O(lg n) with at most lgn+3 lg lg n+O(1)
element comparisons for delete; and the worst-case cost of O(min {lgm, lg n})
for meld . In Section 5, we conclude the paper with a few final remarks.

2 Number systems and binomial heaps

In order to perform delete efficiently, it is important that an unspecified
node can be extracted from a heap so that no more than O(1) structural
changes (node removals or pointer updates) are made to the data structure.
In this section we describe how to realize extract (and insert). We rely on
the observation that, in a binomial heap (and in a run-relaxed heap), there
is a close connection between the sizes of the binomial trees of the heap and
the number representation of the current size of the heap.

A binomial tree [20] is a rooted, ordered tree defined recursively as follows:
A binomial tree of rank 0 is a single node; for r > 0, a binomial tree of rank
r consists of the root and its r binomial subtrees of ranks 0, 1, . . . , r − 1
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connected to the root in that order. We denote the root of the subtree of
rank 0 the smallest child and the root of the subtree of rank r− 1 the largest
child. The size of a binomial tree is always a power of two, and the rank of a
tree of size 2r is r.

Each node of a binomial tree stores an element drawn from a totally
ordered set. Binomial trees are maintained heap-ordered meaning that the
element stored at a node is no greater than the elements stored at the children
of that node. As any multiary tree, a binomial tree can be implemented using
the child-sibling representation. At each node, in addition to an element,
space is reserved for a rank and four pointers: a child pointer, a parent pointer,
and two sibling pointers. The children of a node are kept in a doubly-linked
list, called the child list, and the child pointer points to the largest child. If
a node has no children or sibling, the corresponding pointer has the value
null. As for parent pointers, we want to emphasize that our representation is
non-standard. If a node is a root, its parent pointer points to the node itself;
and if a node is the largest child of its parent, the parent can be accessed via
the parent pointer. For all other nodes the parent pointer has the value null.
The advantage of maintaining parent pointers only for the largest children
is that each node has a constant in-degree and it stores pointers back to all
referring nodes, which enables the detachment of a node at a cost of O(1).

Two heap-ordered binomial trees of the same rank can be linked together
by making the root that stores the larger element the largest child of the
other root. We refer to this as a join. A split is the inverse of a join, where
the subtree rooted at the largest child of the root is unlinked from the given
binomial tree. A join involves a single comparison, and both a join and a
split have the worst-case cost of O(1).

A binomial heap is composed of at most a logarithmic number of bino-
mial trees, the roots of which are kept in a doubly-linked list, called the
root list, in increasing rank order. For binomial heaps, four different number
representations are relevant:

Binary representation:

n =

⌊lg n⌋∑

i=0

di2
i, where di ∈ {0, 1} for all i ∈ {0, 1, . . . , ⌊lg n⌋}.

Redundant representation:

n =

⌊lg n⌋∑

i=0

di2
i, where di ∈ {0, 1, 2} for all i ∈ {0, 1, . . . , ⌊lgn⌋}.

Skew representation:

n =

⌊lg(n+1)⌋∑

i=0

di(2
i+1 − 1), where every di ∈ {0, 1}, except that the lowest

non-zero digit di may also be 2.
Zeroless representation:

n =

k∑

i=0

di2
i, where k ∈ {−1, 0, . . . , ⌊lgn⌋} and di ∈ {1, 2, 3, 4} for all

i ∈ {0, . . . , k}. If k = −1, this means that the heap is empty.
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For each representation, the heap of size n contains di binomial trees of size
2i, or di skew binomial trees of size 2i+1 − 1 (for the definition of a skew
binomial tree, see [2]).

Now insert can be realized elegantly by imitating increments in the under-
lying number system. The worst-case efficiency of insert is directly related to
how far a carry has to be propagated. If the binary representation is used as
in [4, Chapter 19], insert has the worst-case cost of Θ(lg n). If the redundant
representation is used as, for example, in [6,9], insert has the worst-case cost
of O(1). And as shown in [2], the same holds true if the skew representation
is used. The overall strategy is to perform at most one join in connection
with each insertion, and execute delayed joins (if any) in connection with
forthcoming insert operations.

Using the zeroless representation (see [3, p. 56 ff.] and [15]), both insert
and extract can be supported at the worst-case cost of O(1). To achieve
this, pointers to every carry (digit 4 which corresponds to four consecutive
binomial trees of the same rank) and every borrow (digit 1) are kept on a
stack in rank order with the smallest rank on top. When a carry/borrow stack
is available, increments and decrements can be performed as follows:

1. Fix the topmost carry or borrow if the stack is not empty.
2. Add or subtract one as desired.
3. If the least significant digit becomes 4 or 1, push a pointer to this carry

or borrow onto the stack.

To fix a carry, the digit 4 is changed to 2 and the next higher digit is
increased by 1. Analogously, to fix a borrow, the digit 1 is changed to 3 and
the next higher digit is decreased by 1. After every such change, the top of
the carry/borrow stack is popped and, if a fix creates a new carry or borrow,
an appropriate pointer is pushed onto the stack. Observe that carries and
borrows at the highest order position require special handling. If the most
significant digit is 4, fixing it produces 1 at the new highest order position,
but a pointer to this digit is not pushed onto the carry/borrow stack. A
transition from 2 to 1 is also possible, but 1 at the highest order position is
never considered to be a borrow. In terms of binomial trees, fixing a carry
means that a join is made, which produces a binomial tree whose rank is one
higher; and fixing a borrow means that a split is made, which produces two
binomial trees whose rank is one lower.

A sequence of digits 〈di, di+1, . . . , dj〉, each drawn from the set {1, 2, 3, 4},
is called a 4-block (1-block) if di = 4 (di = 1), dj = 4 (dj = 1), and any
other digit between di and dj is different from 4 (1). A regular zeroless
representation satisfies the property that in any 4-block among the digits
between the two endpoints there is a digit other than 3, and in any 1-block
among the digits between the two endpoints there is a digit other than 2,
except when the 1-block ends with the most significant digit. The correctness
of insert and extract can be proved by showing that both operations maintain
the representation regular (for a similar treatment, see [3, p. 56ff.] or [15]).
Since our algorithms are different from those discussed in the earlier sources,
their correctness is proved in the following lemma.

Lemma 1 Each insert and extract keeps the zeroless representation regular.
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Table 1 Changes made to the representation at the different steps. We use “–” to
indicate that the digit does not exist and “©x ” that x is the most significant digit.

Step Before After Remark
dj dj+1 dj dj+1

Fix carry dj ©4 – 2 1
4 ©x , x ∈ {1, 2, 3} 2 x+ 1
4 1 2 2
4 2 2 3
4 3 2 4 Case I
4 4 or ©4 Not possible

Fix borrow dj 1 ©1 3 –
1 ©x , x ∈ {2, 3, 4} 3 x− 1
1 1 Not possible
1 2 3 1 Case II
1 3 3 2
1 4 3 3

Increase d0 – – 1 –
(i.e. j = 0) ©x , x ∈ {1, 2, 3} – x+ 1 –

1 x or ©x Not possible
2 x or ©x 3 x
3 x or ©x 4 x Case III

4 or ©4 – or x or ©x Not possible

Decrease d0 ©1 – – –
(i.e. j = 0) ©x , x ∈ {2, 3} – x− 1 –

1 x or ©x Not possible
2 x or ©x 1 x Case IV
3 x or ©x 2 x

4 or ©4 – or x or ©x Not possible

Proof The condition is that the representation is regular before each oper-
ation, and the task is to show that the same holds true after the operation.
Table 1 depicts the changes made to the representation at the different steps
of the insert and extract algorithms. The cases given without a remark are
trivially seen to keep the representation regular because either no new blocks
are introduced or some blocks just cease to exist. Because of the regularity of
the initial representation, or because of the fix performed just before an incre-
ment or a decrement, some of the cases are impossible. It is straightforward
to verify that the regularity is preserved in the remaining cases.

Case I: The first digit of the 4-block (if any) starting with dj is moved to
the next higher position. By the regularity of the initial representation,
the 4-block must contain a digit other than 3 since dj+1 was 3.

Case II: This is similar to Case I, but now the first digit of a 1-block (if any)
is moved to the next higher position. By the regularity condition, one of
the digits in the old 1-block makes the new 1-block valid.

Case III: Before the increment, d1 (x) cannot be 4 because a fix would have
removed this carry. If d1 ∈ {1, 2}, it makes the 4-block created (if any)
valid. The case d1 = 3 is a bit more involved. If before the increment no
fixing was necessary, the new value of d0 (4) does not start a 4-block and
the representation remains regular. Otherwise, some digit dj , j ≥ 0, has
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just been fixed. If dj = 4 before the fix, dj = 2 after the fix, which makes
the 4-block (if any) starting with d0 valid. If dj = 1 and dj+1 ∈ {2, 3}
before the fix, dj+1 ∈ {1, 2} after the fix, which makes the 4-block (if any)
starting with d0 valid. If dj = 1 and dj+1 = 4 before the fix, and if dj+1

did not start a 4-block, d0 does not start a 4-block and the representation
remains regular. Finally, if dj = 1 and dj+1 = 4 before the fix, and if dj+1

started a 4-block, this 4-block contained a digit other than 3 making the
4-block starting with d0 valid. That is, the representation remains regular
because of the fix performed just prior to the increment.

Case IV: This is symmetric to Case III, but now a 1-block may be created.
The regularity is shown to be preserved as above. ⊓⊔

To sum up, insert is carried out by doing at most one join or split de-
pending on the contents of the carry/borrow stack, and injecting a new node
as a binomial tree of rank 0 into the root list. Correspondingly, after a join
or split, if any, extract ejects one binomial tree from the root list. Due to the
regular zeroless representation, we can be sure that the rank of every ejected
binomial tree is 0, i.e. it is a single node. However, if the ejected node contains
the current minimum and the heap is not empty, another node is extracted,
and the node extracted first is inserted back into the data structure. Clearly,
insert and extract are accomplished at the worst-case cost of O(1).

3 Run-relaxed heaps

Since we use modified run-relaxed heaps as the basic building blocks of two-
tier relaxed heaps, we describe the details of run-relaxed heaps, including
our modifications, in this section. However, we still assume that the reader
is familiar with the original paper by Driscoll et al. [5].

A relaxed binomial tree [5] is an almost heap-ordered binomial tree where
some nodes are denoted active, indicating that the element stored at that
node may be smaller than the element stored at the parent of that node.
Nodes are made active by decrease regardless of whether a heap-order viola-
tion is actually introduced. A touched node remains active until the potential
heap-order violation is explicitly removed. From the definition, it directly
follows that a root cannot be active. A singleton is an active node whose
immediate siblings are not active. A run is a maximal sequence of two or
more active nodes that are consecutive siblings.

A run-relaxed heap is a collection of relaxed binomial trees. Let τ denote
the number of trees in such a collection and λ the number of active nodes
in the entire collection. In the original version of a run-relaxed heap [5], an
invariant is maintained that τ ≤ ⌊lgn⌋ + 1 and λ ≤ ⌊lg n⌋ after every heap
operation, where n denotes the number of elements stored. For run-relaxed
heaps relying on different number representations almost the same bounds
can be shown to hold.

Lemma 2 In a run-relaxed heap of size n, relying on the binary, redundant,
or zeroless representation, the rank of a tree can never be higher than ⌊lgn⌋.
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Proof Let the highest rank be r. None of the trees can be larger than the
size of the whole heap, i.e. 2r ≤ n. Thus, since r is an integer, r ≤ ⌊lgn⌋. ⊓⊔

Corollary 1 Let τ denote the number of relaxed binomial trees in a run-
relaxed heap of size n relying on the regular zeroless representation. It must
be that τ ≤ 3⌊lgn⌋+O(1).

Proof Since there are at most 4 trees at each rank, by the previous lemma
4(⌊lgn⌋ + 1) would be a trivial upper bound for the number of trees. The
tighter bound follows since in the regular zeroless representation in every
4-block there is a digit other than 3. ⊓⊔

To keep track of the active nodes, a run-singleton structure is maintained
as described in [5]. All singletons are kept in a singleton table, which is a re-
sizable array accessed by rank. In particular, this table must be implemented
in such a way that growing and shrinking at the tail is possible at the worst-
case cost of O(1), which is achievable, for example, by doubling, halving, and
incremental copying. Each entry of the singleton table corresponds to a rank;
pointers to singletons rooting a tree of this rank are kept in a list. For each
entry of the singleton table that has more than one singleton, a counterpart
is kept in a pair list. The last active node of each run is kept in a run list. All
lists are doubly linked, and each active node should have a pointer to its oc-
currence in a list (if any). The bookkeeping details are quite straightforward
so we will not repeat them here. The fundamental operations supported are
an addition of a new active node, a removal of a given active node, and a
removal of at least one active node if λ becomes too large. The cost of each
of these operations is O(1) in the worst case.

Two types of transformations are used when removing active nodes: single-
ton transformations are used for combining singletons and run transforma-
tions are used for making runs shorter. A pictorial description of the transfor-
mations is given in the appendix. Compared to the original transformations
given in [5], our new contribution is that the transformations can be made to
work even if the parent pointers are only maintained for the largest children.
The transformations give us a mechanism to bound λ from above.

Lemma 3 Let λ denote the number of active nodes in a run-relaxed heap
of size n relying on the binary, redundant, or zeroless representation. If λ >
⌊lgn⌋, the transformations can be applied to reduce λ by at least one.

Proof Presume that λ > ⌊lg n⌋. If none of the run transformations or the
singleton transformations applies, there must be at least ⌊lgn⌋+1 singletons
rooting subtrees of different ranks. This is impossible, and the presumption
must be wrong, because of the following two facts:

1. The highest rank can be at most ⌊lg n⌋ by the previous lemma.
2. The root of a tree of rank ⌊lg n⌋ cannot be active. ⊓⊔

The rationale behind the transformations is that, when there are more
than ⌊lgn⌋ active nodes, there must be at least one pair of singletons that root
a subtree of the same rank, or there is a run of two or more neighbouring
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active nodes. In both cases, it is possible to apply the transformations—
a constant number of singleton transformations or a constant number of
run transformations—to reduce the number of active nodes by at least one.
The worst-case cost of performing any of the transformations is O(1). One
application of the transformations together with all necessary changes to the
run-singleton structure is referred to as a λ-reduction.

To keep track of the trees in our modification of a run-relaxed heap, a root
list and a carry/borrow stack are maintained and the representation is kept
zeroless as described in Section 2. Each relaxed binomial tree is represented
as a binomial tree, but to support the transformations used for reducing
the number of active nodes each node stores an additional pointer to its
occurrence in the run-singleton structure. The occurrence pointer of every
non-active node has the value null; for a node that is active and in a run,
but not the last in the run, the pointer is set to point to a fixed sentinel. To
support our two-tier relaxed heap, each node should store yet another pointer
to its counterpart held at the upper store, and vice versa (see Section 4).

In the root list, the relaxed binomial trees of the same rank are maintained
in sorted order according to the elements stored at the roots. Recall that
there are at most four trees per rank. Since in our data structure each heap
operation only modifies a constant number of trees, the cost of maintaining
the sorted order within each rank is O(1) per operation. The significant
consequence of this ordering is that delete only has to consider one root per
rank when finding a minimum element stored at the roots.

Let us now consider how the heap operations are implemented. A reader
familiar with the original paper by Driscoll et al. [5] should be aware that
we have made modifications to their implementations of heap operations to
adapt them for our purposes.

A minimum element is stored at one of the roots or at one of the active
nodes. To facilitate a fast find-min, a pointer to the node storing a minimum
element is maintained. When such a pointer is available, find -min can be
accomplished at the worst-case cost ofO(1). Observe that in [5] such a pointer
was not maintained resulting in find -min having logarithmic cost.

An insertion is performed as described in Section 2. Additionally, if the
inserted element is smaller than the current minimum, the pointer indicating
the location of a minimum element is updated. On the basis of this, insert
has the worst-case cost of O(1). In [5] a completely different method for
achieving the same bound was described.

An extraction is performed as described in Section 2, so extract has the
worst-case cost of O(1). In [5] a borrowing technique was described which
could be used to implement extract having logarithmic cost.

In decrease, after making the element replacement, the corresponding
node is made active, an occurrence is inserted into the run-singleton struc-
ture, and a single λ-reduction is performed if the number of active nodes is
larger than ⌊lg n⌋. Moreover, if the given element is smaller than the current
minimum, the pointer indicating the location of a minimum element is cor-
rected to point to the decreased node. All these actions have the worst-case
cost of O(1). Compared to [5], we make the decreased node unconditionally
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active, since the decreased node does not necessarily have a parent pointer
facilitating a fast check whether a heap-order violation is introduced or not.

In delete we want to make as few structural changes as possible so we
rely on extract to get a replacement for the deleted node. Let x be the node
extracted and z the node to be deleted. (Recall that x only contains the
current minimum if the heap is of size one.) Deletion has two cases depending
on whether one of the roots or one of the internal nodes is to be removed.

Assume that z is a root. If x and z are the same node, that node is al-
ready removed and no other structural changes are necessary. Otherwise, the
tree rooted at z is repeatedly split until the tree rooted at z has rank 0, and
then z is removed. In these splits all active children of z are retained active,
but they are temporarily removed from the run-singleton structure (since the
structure of runs may change). After this the tree of rank 0 rooted at the
extracted node x and the subtrees rooted at the children of z are repeatedly
joined by processing the trees in increasing order of rank. The active nodes
temporarily removed are added back to the run-singleton structure. The re-
sulting tree replaces the tree rooted at z in the root list. If z contained the
current minimum, all roots containing the smallest element of each rank and
active nodes are scanned to update the pointer indicating the location of a
minimum element. Singletons are found by scanning through all lists in the
singleton table. Runs are found by accessing their last node via the run list
and following the sibling pointers until a non-active node is reached. It would
be possible to remove all active children of z, but when delete is embedded
into our two-tier relaxed heap, it would be too expensive to remove many
active nodes in the course of a single delete operation.

The computational cost of deleting a root is dominated by the repeated
splits, the repeated joins, and the scan of all minimum candidates. In each
of these steps a logarithmic number of nodes is visited, so the total cost is
O(lg n). Splits and the actions on the run-singleton structure do not involve
any element comparisons. In total, joins may involve at most ⌊lg n⌋ element
comparisons. If the number of active nodes is larger than ⌊lg(n−1)⌋ (the size
of the heap is now one smaller), a single λ-reduction is performed involving
O(1) element comparisons. To find the minimum of 2⌊lgn⌋+ 1 elements, at
most 2⌊lgn⌋ element comparisons are needed. To summarize, this form of
delete performs at most 3 lgn+O(1) element comparisons.

Assume now that z is an internal node. Also in this case the tree rooted at
z is repeatedly split, and after removing z the tree of rank 0 rooted at x and
the subtrees of the children of z are repeatedly joined. As earlier all active
children of z are retained active. The resulting tree is put in the place of the
subtree rooted earlier at z. If z was active or if x becomes the root of the
resulting subtree, the new root of the subtree is made active. If z contained
the current minimum, the pointer to the location of a minimum element
is updated. Finally, the number of active nodes is reduced, if necessary, by
performing a λ-reduction once or twice (once because one new node may
become active and possibly once more because of the decrement of n, since
the difference between ⌊lg n⌋ and ⌊lg(n− 1)⌋ can be one).

Similar to the case of deleting a root, the deletion of an internal node
has the worst-case cost of O(lg n). If z did not contain the current minimum,
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only at most lgn + O(1) element comparisons are done; at most ⌊lg n⌋ due
to joins and O(1) due to λ-reductions. However, if z contained the current
minimum, at most 2⌊lgn⌋ additional element comparisons may be necessary.
That is, the total number of element comparisons performed is bounded by
3 lgn+O(1). To sum up, each delete has the worst-case cost of O(lg n) and
requires at most 3 lgn+O(1) element comparisons.

In [5] a description of meld was not given, but it is relatively easy to
accomplish meld in a manner similar to the one described in Section 4.

4 Two-tier relaxed heaps

A two-tier relaxed heap is composed of two components: the lower store and
the upper store (see Figure 1). The lower store stores the actual elements of
the heap. The reason for introducing the upper store is to avoid the scan over
all minimum candidates when updating the pointer to the location of a min-
imum element; pointers to minimum candidates are kept in a heap instead.
Actually, both components are realized as run-relaxed heaps modified to use
the zeroless representation as discussed in Section 3.

4.1 Upper-store operations

The upper store is a modified run-relaxed heap storing pointers to all roots
of the trees held in the lower store, pointers to all active nodes held in the
lower store, and pointers to some earlier roots and active nodes. In addition
to find -min , insert , extract , decrease, and delete, it should be possible to
mark nodes to be deleted and to unmark nodes if they reappear at the upper
store before being deleted. Lazy deletions are necessary at the upper store
when, at the lower store, a join is done or an active node is made non-active
by a λ-reduction. In both situations, a normal upper-store deletion would
be too expensive. The algorithms maintain the following invariant: for each
marked node whose pointer refers to a node y in the lower store, in the same
tree there is another node x such that the element stored at x is no greater
than the element stored at y.

To provide worst-case efficient lazy deletions, we adopt the global-rebuild-
ing technique from [19]. When the number of unmarked nodes becomes equal
to m0/2, where m0 is the current size of the upper store, we start building a
new upper store. The work is distributed over the forthcoming m0/4 upper-
store operations. In spite of the reorganization, both the old structure and
the new structure are kept operational and used in parallel. All insertions
and extractions are handled by the new upper store, and all decreases, dele-
tions, markings, and unmarkings by the respective upper stores. The heap
operations are realized as described earlier with the following exceptions. In
delete the replacement node is taken from the new upper store. In decrease
a complication is that one should know the component in which the given
node lies. (This issue was discussed in depth in [15].) To facilitate this, each
node includes a bit indicating its component. This information is enough to
access the right run-singleton structure. Each time a node is moved from the
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Old upper store

• •

•

•

•

New upper store

• • •

Lower storeRuns
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14

12 37

42

•

•

Fig. 1 A two-tier relaxed heap storing 12 integers. The relaxed binomial trees are
drawn in schematic form and active nodes are drawn in grey. At the upper store a
global rebuilding is in progress.

old upper store to the new upper store and vice versa, its component bit is
simply flipped.

After initiating a reorganization, in connection with each of the next at
most m0/4 upper-store operations, four nodes are extracted from the old
structure; if the node under consideration is unmarked, it is inserted into the
new structure; otherwise, it is released and at its counterpart in the lower
store the pointer to the upper store is given the value null. Since the old upper
store does not handle any insertions, each heap operation decreases its size
by four. When the old structure becomes empty, it is dismissed and the new
structure is used alone. During them0/4 heap operations at mostm0/4 nodes
are extracted, deleted, or marked to be deleted, and since there were m0/2
unmarked nodes in the beginning, at least half of the nodes are unmarked in
the new structure. Thus, at any point in time, we are constructing at most
one new structure. We emphasize that each node only exists in one structure
and that nodes are moved around by updating pointers, so pointers from the
outside remain valid.

Given that the cost of each extract and insert is O(1), the reorganization
only incurs an additive cost of O(1) to all upper-store operations. A find-min
has to consult both the old and the new upper stores, but its worst-case cost
is still O(1). The cost of marking and unmarking is clearly O(1). If m denotes
the total number of unmarked nodes currently stored, at any point during
the rebuilding process the total number of nodes stored is Θ(m). Therefore,
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since in both structures delete is handled normally, except that it may take
part in reorganizations, it has the worst-case cost of O(lgm) and requires at
most 3 lgm+O(1) element comparisons.

Let n be the number of elements in the lower store. The number of trees
in the lower store is at most 3⌊lgn⌋+O(1), and the number of active nodes is
at most ⌊lgn⌋. At all times at most a constant fraction of the nodes stored at
the upper store can be marked to be deleted. Hence, the number of pointers is
O(lg n). That is, at the upper store the worst-case cost of delete is O(lg lgn),
including at most 3 lg lgn+O(1) element comparisons.

4.2 Lower-store operations

The lower store is a run-relaxed heap storing all the elements. Minimum
finding relies on the upper store; an overall minimum element is either in
one of the roots or in one of the active nodes held in the lower store. The
counterparts of the minimum candidates are stored at the upper-store, so
communication between the lower store and the upper store is necessary
each time a root or an active node is added or removed, but not when an
active node becomes a root.

An insertion is carried out as described in Section 3, but insert requires
three modifications in places where communication between the lower store
and upper store is necessary. First, in each join the counterpart of the loser
tree must be lazily deleted from the upper store. Second, in each split a
counterpart of the tree rooted at the largest child of the earlier root is in-
serted into the upper store, if it is not there already. Third, after inserting
a new node its counterpart must be added to the upper store. After these
modifications, the worst-case cost of insert is still O(1).

In comparison with decrease described in Section 3, three modifications
are necessary. First, each time a new active node is created, insert has to be
invoked at the upper store. Second, each time an active node is removed by
a λ-reduction, the counterpart must be lazily deleted from the upper store.
Third, when the node whose value is to be decreased is a root or an active
node, decrease has to be invoked at the upper store as well. If an active node
becomes a root due to a λ-reduction, no change at the upper store is required.
After these modifications, the worst-case cost of decrease is still O(1).

An extraction is done as described in Section 3, but again the upper store
must be synchronized accordingly. Let x be the node extracted from the lower
store and let u be its counterpart at the upper store. Since the deletion of
u may be too expensive, an extract is performed at the upper store as well.
Let v be the node extracted from the (new) upper store and let y be its
counterpart at the lower store. If we are so lucky that u and v are the same
node, we are done; u is released and x is returned. Otherwise, if u and v are
not the same node, there are two cases depending on the contents of nodes
x and y (for an illustration, see Figure 2).

Case I: If the element stored at x is no smaller than that stored at y, the
pointer at u is set to point to y (instead of x) and decrease is invoked on
u at the upper store. At the end, v is released and x is returned.
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Case I: If the element stored at x is no smaller than that stored at y, the pointer
at u is set to point to y and decrease is invoked on u at the upper store.
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2 7
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Case II: If the element stored at x is smaller than that stored at y, the nodes x
and y are swapped, and decrease is invoked on x at the lower store.
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Fig. 2 Illustration of the syncronization between the upper store and the lower
store when extracting an element from a two-tier relaxed heap. Only the trees
worked with are drawn.
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Case II: If the element stored at x is smaller than that stored at y, the nodes
x and y are swapped, and decrease is invoked on x at the lower store. Since
u still points to x, no change is necessary at the upper store, other than
those caused by decrease. In this case, v is released and y is returned.

When swapping x and y no elements are moved, but the nodes are detached
from and reattached into the lower store by updating pointers, which retains
the integrity of all references. Also, even if u and v can come from a different
component, decrease operations are handled correctly since at the upper
store the nodes know the component in which they lie. Since decrease has
the worst-case cost of O(1) both at the upper and the lower store, extract
has a total cost of O(1).

Deletion is done as described in Section 3, except that scanning for a new
minimum can be omitted because minimum finding is handled by the upper
store. When extracting a node its counterpart is kept at the upper store and
no decrease operation is necessary, since the extracted node is put back into
the lower store. As a consequence of extract , lazy deletions and/or insertions
may be necessary at the upper store. As a consequence of delete, a removal
of a root or an active node will invoke delete at the upper store, and an
insertion of a new root or a new active node will invoke insert at the upper
store. A λ-reduction may invoke one or two lazy deletions (a λ-reduction can
make up to two active nodes non-active) and at most one insertion at the
upper store. In total, lazy deletions and insertions have the worst-case cost of
O(1). Also extract has the worst-case cost of O(1). At most one real upper-
store deletion will be necessary, which has the worst-case cost of O(lg lgn)
and includes at most 3 lg lg n + O(1) element comparisons. Joins performed
at the lower store incur at most ⌊lgn⌋ element comparisons, whereas the
scan of a new minimum is avoided saving up to 2⌊lgn⌋ element comparisons.
Therefore, delete has the worst-case cost of O(lg n) and performs at most
lg n+ 3 lg lgn+O(1) element comparisons.

4.3 Operations on a two-tier relaxed heap

In a two-tier relaxed heap the heap operations are realized by invoking the
operations available at its components: find-min invokes that provided for
the upper store; and insert , extract , decrease, and delete invoke the corres-
ponding operations provided for the lower store. Next we take a closer look
at meld which heavily relies on the fact that the sizes of both the upper
store and the run-singleton structure of the lower store are logarithmically
bounded in the number of elements stored.

Consider a meld operation where two two-tier relaxed heaps, H1 and H2,
are to be melded. Without loss of generality, we assume that the maximum
rank r of H1 is smaller than or equal to the maximum rank of H2. At first
the carry/borrow stack of H2 is repeatedly popped and carries/borrows are
fixed until the index of the topmost carry/borrow is larger than r or the stack
becomes empty. Thereafter the roots of H1 are inserted into H2 in order of
increasing rank. For each rank, the trees are joined until two or three trees are
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left and carries are propagated forward. When rank r is reached, a fix-add-
push step is performed at rank r+1 for every carry produced at rank r. The
counterparts of the roots and active nodes in the upper store of H1 are added
to the upper store ofH2. The runs ofH1 are traversed and the active nodes in
these runs are inserted into the run-singleton structure of H2. The singletons
of H1 are traversed and the active nodes are inserted into the run-singleton
structure of H2. The operation is completed by performing λ-reductions in
H2 until the number of active nodes is under the permitted bound. Finally,
the upper store and run-singleton structure of H1 are destroyed.

It can easily be shown by induction that during melding at each rank the
incoming carry can be at most 5. The carry/borrow stack is popped at most
O(r) times, and each fix has a cost of O(1). At most 3r+O(1) new trees are
added to the lower store of H2, and at most O(r) joins are performed. When
melding H1 into H2, O(r) insertions into and lazy deletions from the upper
store of H2 may be necessary. The cost of each of these operations is O(1).
Each of the at most r insertions into the run-singleton structure has a cost
of O(1). Clearly, the number of λ-reductions performed is bounded by O(r),
and each has a cost of O(1). Finally, at most O(r) nodes have to be visited in
order to destroy the nodes in the upper store and run-singleton structure of
H1, for a cost of O(1) per node. When the respective sizes of H1 and H2 are
m and n, it must be that r is O(min {lgm, lgn}). Therefore, the worst-case
cost of meld is O(min {lgm, lg n}).

The following theorem summarizes the main result of the paper.

Theorem 1 Let n be the number of elements in the heap prior to each oper-
ation. A two-tier relaxed heap guarantees the worst-case cost of O(1) for find -
min, insert, extract, and decrease; and the worst-case cost of O(lg n) with
at most lgn + 3 lg lgn + O(1) element comparisons for delete. The worst-
case cost is O(min {lgm, lgn}) for meld , where m and n are the number of
elements in the two heaps melded.

5 Concluding remarks

We described an adaptation of run-relaxed heaps which provides heap oper-
ations that are almost optimal with respect to the number of element com-
parisons performed. It is possible to use other heap structures than run-
relaxed heaps as the building blocks in our two-tier framework. The data
structure could be simplified by substituting run-relaxed heaps with less
complicated structures like thin heaps [16] or fat heaps [15,16]. However,
this would have a consequence on the comparison complexity of delete. For
example, for fat heaps the worst-case bound on the number of element com-
parisons performed by delete becomes 2 log3 n+ o(lg n) ≈ 1.27 lgn+ o(lg n).

The two-tier approach used in this paper can be extended quite easily
to three or more tiers. Using k levels of heaps, for a fixed constant k > 2,
the number of element comparisons performed by delete would reduce to

lg n + lg lgn + . . . + O(lg(k) n), where lg(k) denotes the logarithm function
applied k times. For a description on how this can be realized, see [6,9].
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As to the comparison complexity of heap operations, three questions are
left open.

1. Is it possible or not to achieve a bound of lg n+O(1) element comparisons
per delete when efficient decrease is to be supported? Note that the worst-
case bound of lg n+O(1) is achievable [6,9] if decrease is allowed to have
logarithmic cost.

2. Can global rebuilding performed at the upper store be eliminated so that
the constant number of element comparisons performed by insert , extract ,
and decrease is reduced?

3. What is the lowest number of element comparisons performed by delete
under the constraint that all other heap operations, including meld , are
required to have the worst-case cost of O(1)?

Significant simplifications are called for to obtain a practical data struc-
ture that supports find -min , insert , extract , decrease, delete, and meld at
optimal or near-optimal worst-case cost. We leave the challenge of devising
such a data structure for the reader.

Acknowledgements We thank the anonymous referees for their constructive
comments that improved the presentation of this paper.

Appendix

In this appendix a pictorial description of the transformations applied in a
λ-reduction is given. In a singleton transformation two singletons x and y are
given, and in a run transformation the last active node z of a run is given. In
the following only the relevant nodes for each transformation are drawn, all
active nodes are drawn in grey, and element [p] denotes the element stored at
node p. Dashed lines are connections to nodes that may not exist.

Singleton transformation I: Both x and y are the last children of their par-
ents p and q, respectively. Assume that element [p] ≤ element [q] and that
element [x] ≤ element [y]. (There are three other cases which are similar.)
Note that this transformation works even if x and/or y are part of a run.
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Singleton transformation II: y is the last child of its parent q and q is the
right sibling of x. (The case where the parent of x is the right sibling of
y is symmetric.) Assume that element [x] ≤ element [y]. (The case where
element [x] > element [y] is similar.)

a

b x

r

q

r+1

c

d e y

r

a

b q

r

x

r+1

c

e d y

r

Singleton transformation III: x (or y) is not the last child of its parent, and
the last child of its right sibling is not active.
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Run transformation I: z is the last child of its parent. Assume that element [d]
≤ element [p] and element [d] ≤ element [z]. (There are three other cases
which are similar.)
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Run transformation II: z is not the last child of its parent. For the right
sibling of z, one or both of its two largest children may also be active.
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Abstract

We give a priority queue that guarantees the worst-
case cost of Θ(1) per minimum finding, insertion, and
decrease; and the worst-case cost of Θ(lg n) with at
most lg n + O(

√
lg n) element comparisons per dele-

tion. Here, n denotes the number of elements stored
in the data structure prior to the operation in ques-
tion, and lg n is a shorthand for max {1, log2 n}. In
contrast to a run-relaxed heap, which allows heap-
order violations, our priority queue relies on struc-
tural violations. By mimicking a priority queue that
allows heap-order violations with one that only al-
lows structural violations, we improve the bound on
the number of element comparisons per deletion to
lg n+O(lg lg n).

Keywords: Data structures, priority queues, binomial
queues, relaxed heaps, meticulous analysis, constant
factors

1 Introduction

In this paper we study priority queues that are ef-
ficient in the worst-case sense. A priority queue is
a data structure that stores a dynamic collection of
elements and supports the standard set of operations
for the manipulation of these elements: find -min,
insert , decrease[-key ], delete-min, and delete. We will
not repeat the basic definitions concerning priority
queues, but refer to any textbook on data structures
and algorithms [see, for instance, (Cormen, Leiserson,
Rivest & Stein 2001)].

There are two ways of relaxing a binomial queue
(Brown 1978, Vuillemin 1978) to support decrease at
a cost of O(1). In run-relaxed heaps (Driscoll, Gabow,
Shrairman & Tarjan 1988) heap-order violations are
allowed. In a min-heap, a heap-order violation means
that a node stores an element that is smaller than the
element stored at its parent. A separate structure is
maintained to keep track of all such violations. In
Fibonacci heaps (Fredman & Tarjan 1987) and thin
heaps (Kaplan & Tarjan 1999) structural violations
are allowed. A structural violation means that a node
has lost one or more of its subtrees. Kaplan & Tarjan
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(1999) posed the question whether these two appar-
ently different notions of a violation are equivalent in
power.

Asymptotically, the computational power of the
two approaches is known to be equivalent since fat
heaps can be implemented using both types of viola-
tions (Kaplan & Tarjan 1999). To facilitate a more
detailed comparison of data structures, it is natural
to consider the number of element comparisons per-
formed by different priority-queue operations since
often these determine the computational costs when
maintaining priority queues. A framework for reduc-
ing the number of element comparisons performed
by delete-min and delete is introduced in a compan-
ion paper (Elmasry, Jensen & Katajainen 2004) [see
also (Elmasry, Jensen & Katajainen 2006)]. The re-
sults presented in that paper are complemented in the
present paper.

Let n denote the number of elements stored in
the data structure prior to the operation in question.
For both Fibonacci heaps (Fredman & Tarjan 1987)
and thin heaps (Kaplan & Tarjan 1999), the bound
on the number of element comparisons performed by
delete-min and delete is 2 logΦ n+O(1) in the amor-
tized sense, where Φ is the golden ratio. This bound
can be reduced to logΦ n + O(lg lg n) using the two-
tier framework described in (Elmasry 2004, Elmasry
et al. 2004) (logΦ n ≈ 1.44 lg n). For run-relaxed
heaps (Driscoll et al. 1988) this bound is 3 lg n+O(1)
in the worst case [as analysed in (Elmasry et al. 2004,
Elmasry et al. 2006)], and the bound can be im-
proved to lg n + O(lg lg n) using the two-tier frame-
work (Elmasry et al. 2004, Elmasry et al. 2006). For
fat heaps (Kaplan, Shafrir, & Tarjan 2002, Kaplan &
Tarjan 1999) the corresponding bounds without and
with the two-tier framework are 4 log3 n + O(1) and
2 log3 n+O(lg lg n), respectively (2 log3 n ≈ 1.27 lg n).

In this paper we introduce a new priority-queue
structure, named a two-tier pruned binomial queue,
which supports all the standard priority-queue op-
erations at the asymptotic optimal cost: find -min,
insert , and decrease at the worst-case cost of Θ(1);
and delete-min and delete at the worst-case cost of
Θ(lg n). We only allow structural violations, and not
heap-order violations, to the binomial-queue struc-
ture. We are able to prove the worst-case bound of
lg n + O(

√
lg n) on the number of element compari-

sons performed by delete-min and delete. Without
the two-tier framework the number of element com-
parisons would be bounded above by 2 lg n+O(

√
lg n).

In a two-tier pruned binomial queue, structural
violations are applied in a straightforward way, but
the analysis implies some room for improvement. In
an attempt to answer the question posed by Kaplan
and Tarjan, we show that the notion of structural vio-
lations is as powerful as that of heap-order violations
in the case of relaxed heaps. Accordingly, we improve
the bound on the number of element comparisons per



delete-min and delete to lg n + O(lg lg n). This is
done by mimicking a two-tier relaxed heap described
in (Elmasry et al. 2006) with a pruned version that
only allows structural violations.

2 Two-tier pruned binomial queues

We use relaxed binomial trees (Driscoll et al. 1988)
that rely on structural violations instead of heap-
order violations as our basic building blocks. The
trees, which we call pruned binomial trees, are heap-
ordered and binomial, but a node does not necessar-
ily have all its subtrees. Let τ denote the number of
trees in any collection of trees, and let λ denote the
number of missing subtrees in the entire collection
of trees. A pruned binomial queue is a collection of
pruned binomial trees where at all times both τ and
λ are logarithmic in the number of elements stored.

Analogously to binomial trees, the rank of a
pruned binomial tree is defined to be the same as
the degree of its root, which is equal to the number
of real children plus the number of lost children. For
a pruned binomial tree, we let its capacity denote the
number of nodes stored in a corresponding binomial
tree where no subtrees are missing. The total capacity
of a pruned binomial queue is the sum of the capaci-
ties of its trees. In a pruned binomial queue, there is a
close connection between the capacities of the pruned
binomial trees stored and the number representation
of the total capacity. If the number representing the
total capacity consists of digits d0, d1, up to dk−1,
the data structure stores di pruned binomial trees of
capacity 2i for each i ∈ {0, 1, . . . , k − 1}. In the num-
ber system used by us, digits di are allowed to be 0,
1, or 2. In an abstract form, a data structure that
keeps track of the trees can be seen as a counter rep-
resenting a number in this redundant number system.
To allow increments and decrements at any digit at
constant cost, we use a regular counter discussed, for
example, in (Brodal 1996, Kaplan et al. 2002).

Following the guidelines given in (Elmasry 2004,
Elmasry et al. 2004), our data structure has two
main components, an upper store and a lower store,
and both are implemented as pruned binomial queues
with some minor variations. Our objective is to im-
plement the priority queue storing the elements as
the lower store, while having an upper store forming
another priority queue that only contains pointers to
the elements stored at the roots of the trees of the
original queue. The minimum indicated by the upper
store is, therefore, an overall minimum element.

We describe the data structure in four parts. First,
we review the internals of a regular counter to be
used for maintaining the references to the trees in a
pruned binomial queue. Second, we give the details of
a pruned binomial queue, but we still assume that the
reader is familiar with a run-relaxed heap (Driscoll
et al. 1988), from which many of the ideas are bor-
rowed. Third, we show how the upper store of a two-
tier pruned binomial queue is implemented. Fourth,
we describe how a pruned binomial queue held in the
upper store has to be modified so that it can be used
in the lower store.

2.1 Guides for maintaining regular counters

Let d be a non-negative integer. In a redundant binary
system, d is represented as a sequence of digits d0, d1,

. . . , dk−1 such that d =
∑k−1

i=0 di · 2i, where d0 is the
least significant digit, dk−1 the most significant digit,
and di ∈ {0, 1, 2} for all i ∈ {0, 1, . . . , k − 1}. The
redundant binary representation of d is said to be
regular if any digit 2 is preceded by a digit 0, possibly
having a sequence of 1’s in between. A digit sequence

block
︷ ︸︸ ︷

i i -1 i -2

2 1 1 1 0

iboxes

forward pointers

digits

Figure 1: Illustration of a guide.

of the form 01α2, where α ∈ {0, 1, . . . , k − 2}, is called
a block. That is, every digit 2 must be part of a block,
but there can be digits, 0’s and 1’s, that are not part
of a block. The digit 2 that ends a block is called the
leader of that block.

Assuming that the representation of d in the re-
dundant binary system is d0, d1, . . . , dk−1, the fol-
lowing operations should be supported efficiently:

Fix up di if di = 2. Propagate the carry to the next
digit, i.e. carry out the assignments di ← 0;
di+1 ← di+1 + 1.

Increase di by one if di ∈ {0, 1}. Calculate d+ 2i.

Decrease di by one if di ∈ {1, 2}. Calculate d−2i.
Note that, if di = 0, a decrement need not be sup-
ported. Also, if di = 2, an increment can be done by
fixing up di before increasing it.

In a pruned binomial queue, the data structure
keeping track of the pruned binomial trees stored can
be seen as a regular counter maintained under these
operations. Brodal (1996) described a data structure,
called a guide, that can be used to implement a regu-
lar counter such that the worst-case cost of each of
the operations is O(1). In a worst-case efficient bino-
mial queue [see, e.g. (Elmasry et al. 2004)] the root
list can be seen to represent a regular counter that
only allows increments at the digit d0. In such case,
a stack is used as a guide. A general guide is needed
to make it possible to increase or decrease any digit
at the worst-case cost of O(1). Next we briefly review
the functionality of a general guide.

To represent a counter, a resizable array is used.
In particular, a guide must be implemented in such a
way that growing and shrinking at the tail is possible
at the worst-case cost of O(1), which is achievable, for
example, by doubling, halving, and incremental copy-
ing [see also (Brodnik, Carlsson, Demaine, Munro &
Sedgewick 1999, Katajainen & Mortensen 2001)]. We
let each priority-queue operation maintain a pointer
to the last entry in use and initiate reorganization
whenever necessary. In our application, the ith en-
try of a guide stores a list of up to two references to
nodes of degree i. That is, the number of non-null
references corresponds to digit di.

In addition to a list of nodes, the ith entry stores
a forward pointer which points to the next leader dj ,
j > i, if di is part of a block. To make it possible
to destroy a block at a cost of O(1), forward pointers
are made indirect: for each digit its forward pointer
points to a box that contains the index of the corres-
ponding leader. All members of a block must point
to the same box. Furthermore, a box can be grounded
meaning that a digit pointing to it is no longer part
of a block. The data structure is illustrated in Figure
1. Initially, a counter must have the value zero, which
can be represented by a single 0 letting the forward
pointer point to a grounded box.

Let us now consider how the counter operations
can be realized.
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Fix up di. There are three cases depending on the
state of di+1. If di+1 = 0 and di+1 is not part
of a block, assign di+1 ← 1 and ground the box
associated with di. If di+1 = 0 and di+1 is part
of a block, assign di+1 ← 1, ground the box as-
sociated with di, and extend the following block
to include di as its first member. If di+1 = 1,
ground the box associated with di and start a
new block having two members di and di+1.

Increase di by one if di = 0. If di is not part of a
block, increase di by one. If di is part of a block,
fix up the leader of that block. This will destroy
the block, so after this di can be increased by
one, keeping it outside a block.

Increase di by one if di = 1. If di is not part of a
block, increase di by one and immediately after-
wards fix up di. If di is part of a block, fix up
the leader of that block, increase di by one, and
fix up di. Both cases can create a new block of
length two.

Decrease di by one if di = 1. If di is not part of a
block, decrease di by one. If di is part of a block,
fix up the leader of that block, which destroys
the block, and thereafter decrease di by one.

Decrease di by one if di = 2. Ground the box as-
sociated with di and assign di ← 1.

By routine inspection, one can see that all these modi-
fications keep the counter regular. Also, in the worst
case at most two 2’s need to be fixed up per increment
and decrement.

2.2 Pruned binomial queues

A pruned binomial tree can be represented in the
same way as a normal binomial tree [see, e.g. (Cormen
et al. 2001)]; each node stores an element, a degree, a
parent pointer, a child pointer, and two sibling point-
ers. To support the two-tier framework, the nodes
should store yet another pointer to link a node in the
lower store to its counterpart in the upper store, and
vice versa. The basic tool used in our algorithms is
a join procedure [called the binomial-link procedure
in (Cormen et al. 2001)], where two subtrees of the
same rank are linked together. The inverse of a join
is called a split.

As a result of decrease, a node may loose one of its
subtrees. To technically handle the lost subtrees, we
use phantom nodes as placeholders for the subtrees
cut off. A phantom node can be treated as if it stores
an extremely large element ∞. A phantom node has
the same associated information as the other nodes;
its degree field indicates the rank of the lost subtree
and its child pointer points to the node itself to dis-
tinguish it from real nodes. A run is a maximal se-
quence of two or more neighbouring phantom nodes.
A singleton is a phantom node that is not in a run.
When two pruned subtrees rooted at phantom nodes
of the same degree are joined, one phantom node is
released and the other becomes the result of the join
and its degree is increased by one. If a phantom node
becomes a root, it is simply released.

Formally, a pruned binomial queue is defined as
follows. It is a collection of pruned binomial trees
where the number of phantom nodes is no larger than
⌈lg n⌉ + 1, n being the number of elements stored,
and the total capacity of all trees is maintained as a
regular counter. The following properties of a pruned
binomial queue, which follow from the definition, are
important for our analysis.

Lemma 1 In a pruned binomial queue storing n
elements, the rank of a tree can never be higher than
2 lg n+O(1).

Proof : Let the highest rank be k. The root of a tree
of rank k has subtrees of rank 0, 1, . . . , k− 1. In the
worst-case scenario the ⌈lg n⌉+ 1 phantom nodes are
used as placeholders for the subtrees of the highest
rank. The n elements occupy one node each, taking
up a total of at most ⌊lg n⌋ + 1 subtrees. Thus, the
highest rank k cannot be larger than 2 lg n+O(1). 2

Lemma 2 In a pruned binomial queue storing n
elements, a node can never have more than lg n +
O(
√
lg n) real children.

Proof : The basic idea of the proof is to consider a
tree whose root has k + 2 real children (k to be de-
termined), and to replace some of its actual subtrees
with phantom nodes such that:

• The number of the subtrees rooted at a phantom
node is ⌈lg n⌉+ 1.

• The number of real nodes is at most n.

• The value of k is maximized.

To maximize k, the children of the root of the chosen
tree should be real nodes. Moreover, we should use
the phantom nodes as placeholders for the largest j+1
subtrees of the children of the root, 2j−1 < n ≤ 2j ,
i.e. j = ⌈lg n⌉. The largest such subtrees are: one
binomial tree of rank k, two of rank k − 1, three of
rank k − 2, and so forth.

Let h be the largest integer satisfying 1 + 2 +
3 + ... + h ≤ j + 1. Clearly, h = Θ(

√
j). In or-

der to maximize k, the number of nodes covered

by missing subtrees culminates to
∑h

i=1 i2
k−i+1 =

2k+2 − h2k−h+1 − 2k−h+2. The total capacity of the
whole tree is 2k+2 nodes, and of these at most n
can be real nodes. Now the tree can only exist if
h2k−h+1 +2k−h+2 ≤ n. When k ≥ lg n+h, the num-
ber of the real nodes is larger than n, which means
that such tree cannot exist. 2

Lemma 3 A pruned binomial queue storing n elem-
ents can never contain more than lg n + O(

√
lg n)

trees.

Proof : The proof is similar to that of Lemma 2. 2

A run-relaxed heap (Driscoll et al. 1988) is a col-
lection of almost heap-ordered binomial trees where
there may be at most ⌊lg n⌋ heap-order violations be-
tween a node and its parent. A node is called active
if it may be the case that the element stored at that
node is smaller than the element stored at the parent
of that node. There is a close correspondence be-
tween active nodes in a run-relaxed heap and phan-
tom nodes in a pruned binomial queue. Therefore,
many of the techniques used for the manipulation of
run-relaxed heaps can be reused for the manipulation
of pruned binomial queues.

To keep track of the trees in a pruned bino-
mial queue, references to them are held in a tree
guide, in which each tree appears under its respec-
tive rank. To keep track of the phantom nodes, a
run-singleton structure is maintained as described in
(Driscoll et al. 1988), so we will not repeat the book-
keeping details here. The fundamental operations
supported by the run-singleton structure are an ad-
dition of a new phantom node, a removal of a given
phantom node, and a removal of at least one arbi-
trary phantom node. The cost of all these operations
is O(1) in the worst case.
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To support the transformations used for reducing
the number of phantom nodes, when there are too
many of them, each phantom node should have space
for a pointer to the corresponding object, if any, in
the run-singleton structure. A pictorial description of
the transformations needed is given in the appendix.
For further details, we refer to the description of the
corresponding transformations for run-relaxed heaps
given in (Driscoll et al. 1988). The rationale behind
the transformations is that, when there are more than
⌈lg n⌉+ 1 phantom nodes, there must be at least one
pair of phantom nodes that root a subtree of the
same rank, or a run of two or more neighbouring
phantom nodes. When this is the case, it is possible
to apply the transformations—a constant number of
singleton transformations or run transformations—to
reduce the number of phantom nodes by at least one.
The cost of performing any of the transformations is
O(1) in the worst case. Later on, an application of the
transformations together will all necessary changes to
the run-singleton structure is called a λ-reduction.

The fact that the number of phantom nodes can
be kept logarithmic in the number of elements stored
is shown in the following lemma.

Lemma 4 Let λ denote the number of phantom
nodes. If λ > ⌈lg n⌉ + 1, the transformations can
be applied to reduce λ by at least one.

Proof : The proof is by contradiction. Let us make the
presumption that λ ≥ ⌈lg n⌉+2 and that none of the
transformations applies. Since none of the singleton
transformations applies, none of the singletons have
the same degree. Hence, there must be a phantom
node rooting a subtree whose rank r is at least λ− 1.
A root cannot be a phantom node, so there must be
a real node x that has this phantom node as its child.
Since none of the run transformations applies, there
are no runs. Hence, the sibling of the phantom node
must be a real node; the subtree rooted at this real
node is of rank r−1. For all i ∈ {0, 1, . . . , r − 2}, there
is at most one phantom node rooting a subtree of that
rank. These missing subtrees can cover at most 2r−1−
1 nodes. The total capacity of the subtree rooted at
node x is 2r+1 nodes, and the missing subtrees of
ranks 0, 1, . . . , r can cover at most 2r + 2r−1 − 1 of
the nodes. Hence, the subtree rooted at node x must
store at least 2r+1−2r−2r−1+1 = 2r−1+1 elements.
If λ ≥ ⌈lg n⌉+ 2, this accounts for at least 2⌈lgn⌉ + 1
elements, which is impossible since there are only n
elements. 2

2.3 Upper-store operations

The lower store contains elements and the upper store
contains pointers to the roots of the trees in the lower
store, as well as possibly pointers to some former roots
lazily deleted. The number of pointers held in the up-
per store is never larger than 2 lg n + O(

√
lg n). For

the sake of clarity, we use m to denote the size of
the upper store, and we call the pointers manipu-
lated items. Of course, in item comparisons the elem-
ents stored at the roots pointed to in the lower store
are compared. Let us now consider how the priority-
queue operations are implemented in the upper store.

To facilitate a fast find -min, a pointer to the node
storing the current minimum is maintained. When
such a pointer is available, find -min can be easily ac-
complished at a cost of O(1).

In insert , a new node is created, the given item is
placed into this node, and the least significant digit
of the tree guide is increased to get the new tree of
rank 0 into the structure. If the given item is smaller
than the current minimum, the pointer indicating the

location of the current minimum is updated to point
to the newly created node. Clearly, the worst-case
cost of insert is O(1).

A decrease is performed by reusing some of the
techniques described in (Driscoll et al. 1988). First,
the item at the given node is replaced. Second, if
the given node is not a root, the subtree rooted at
that node is detached, a phantom node is put as its
placeholder, and the detached subtree is added to the
tree guide as a new tree. Third, if the new item is
smaller than the current minimum, the pointer to the
location of the current minimum is updated to point
to the given node instead. At last, a λ-reduction is
performed, if necessary. The cost of all this work is
O(1) in the worst case.

In delete-min, there are two cases depending on
whether the degree of the root to be deleted is 0 or
not.

Case 1 The root to be deleted has degree 0. In
this case the root is released, the least signifi-
cant digit of the tree guide is decreased to re-
flect this change, and a λ-reduction is performed
once (since the difference between ⌈lg n⌉+1 and
⌈lg(n− 1)⌉+ 1 can be one).

Case 2 The root to be deleted has degree greater
than 0. In this case the root is released and
a phantom node is repeatedly joined with the
subtrees of the released root. More specifically,
the phantom node is joined with the subtree of
rank 0, the resulting tree is then joined with the
next subtree of rank 1, and so on until the result-
ing tree is joined with the subtree of the highest
rank. If before a join a subtree is rooted at a
phantom node, the phantom node is temporarily
removed from the run-singleton structure, and
added back again after the join. This is neces-
sary since the structure of runs may be changed
by the joins. In the tree guide a reference to the
old root is replaced by a reference to the root of
the tree created by the joins. If after these modi-
fications the number of phantom nodes is too
large, a λ-reduction is performed once or twice
(once because of the potential difference between
⌈lg n⌉+1 and ⌈lg(n− 1)⌉+1, and once more be-
cause of the new phantom node introduced).

After both cases, all roots are scanned through to up-
date the pointer pointing to the location of the current
minimum.

The computational cost of delete-min is domi-
nated by the joins and the scan, both having a cost
of O(lgm). Everything else has a cost of O(1). By
Lemma 2, repeated joins may involve lgm+O(

√
lgm)

item comparisons, and by Lemma 3, a scan visits at
most lgm + O(

√
lgm) trees, so the total number of

item comparisons is at most 2 lgm+O(
√
lgm).

If the given node is a root, delete is similar to
delete-min. If the given node is not a root, the sub-
tree rooted at that node is detached and the node is
released. The subtrees of the released node are re-
peatedly joined with a phantom node as above, after
which the detached subtree is replaced by the result-
ing tree. Due to the new phantom node, at most two
λ-reductions may be necessary to get the number of
phantom nodes below the threshold. As delete-min,
delete has the worst-case cost of O(lgm) and performs
at most 2 lgm+O(

√
lgm) item comparisons.

In addition to the above operations, it should be
possible to mark nodes to be deleted and to unmark
nodes if they reappear at the upper store before be-
ing deleted. Lazy deletions are necessary at the upper
store when, in the lower store, a join is done as a con-
sequence of an insertion, or a λ-reduction is performed
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that involves the root of a tree. In both situations, a
normal upper-store deletion would be too expensive.

To support lazy deletions efficiently, we adopt the
global-rebuilding technique described in (Overmars
& van Leeuwen 1981). When the number of un-
marked nodes becomes equal to m0/2, where m0 is
the current size of the upper store, we start building
a new upper store. The work is distributed over the
forthcoming m0/4 upper-store operations (modifying
operations including insertions, decreases, deletions,
markings, and unmarkings). In spite of reorganiza-
tion, both the old structure and the new structure are
kept operational and used in parallel. New nodes are
inserted into the new structure, and old nodes being
deleted are removed from their respective structures.

In addition to the tree guide, which is used as nor-
mally, we maintain a separate buffer that can con-
tain up to two trees of rank 0. Initially, the buffer is
empty. It is quite easy to extend the priority-queue
operations to handle these extra trees of rank 0. De-
pending on the state of the buffer and the guide, every
rebuilding step does the following:

Case 1 a) In the buffer or in the guide there is a tree
of rank 0 (i.e. a node) that does not contain the
current minimum or b) there is only one node
left in the old structure. In both cases that node
is removed from the old structure. If the node is
not marked to be deleted, it is inserted into the
new structure. Otherwise, the node is released
and, in its counterpart in the lower store, the
pointer to the upper store is given the value null.

Case 2 a) In the buffer or in the guide there is no
tree of rank 0 or b) there is only one tree of rank
0 that contains the current minimum, but it is
not the only tree left in the old structure. In
both cases the tree of rank 0 (if any) is moved
from the guide to the buffer, if it is not there
already, and thereafter in the guide a tree of the
smallest rank is split into two halves. If after
the split the root of the lifted half is a phantom
node, it is released and its occurrence is removed
from the run-singleton structure. Also, if after
the split the guide contains two trees of rank 0,
one of them is moved to the buffer.

There can simultaneously be three trees of rank 0,
two in the buffer and one in the guide. This is done
in order to keep the pointer to the location of the
current minimum valid during reorganization.

It is crucial for the correctness of priority-queue
operations that the guide is kept regular all the time.
It is straightforward to see that this is the case. If
the least significant digit of the guide is non-zero, it
can never be part of a block. Thus, a decrement does
not involve any joins and an increment can involve
at most one join. Additionally, observe that when
splitting a tree of the smallest rank the corresponding
decrement at the guide can be done without any joins.
(If di = 1 and di is part of a block, the block can just
be made one shorter. A new block of length two is
created unless a tree is moved to the buffer.)

With this strategy, a tree of sizem0 can be emptied
by performing at most c · m0 rebuilding steps, for
a positive integer c, provided that reorganization is
spread over at most ⌈d ·m0⌉ modifying operations, for
a non-negative real number d. The following lemma
shows that, for d = 1/4 and for any m0 > 0, c = 4
will be a valid choice.

Lemma 5 To empty a pruned binomial queue storing
n elements, at most 2n+ ⌈lg n⌉+2N rebuilding steps
have to be performed, provided that reorganization is
spread over N modifying operations.

Proof : Let us perceive the given pruned binomial
queue as a graph having k nodes and ℓ edges, each
connecting a node to its parent. Since the given data
structure is a forest of trees, the graph has at most
k − 1 edges. In the beginning, the pruned binomial
queue has n real nodes and at most ⌈lg n⌉+ 1 phan-
tom nodes. Therefore, for the corresponding graph,
k ≤ n+ ⌈lg n⌉+ 1 and ℓ ≤ n+ ⌈lg n⌉. We let n and ℓ
vary during reorganization, and note that the process
terminates when n = 0 and ℓ = 0.

To see that each rebuilding step makes progress,
observe that at each step either a real node is re-
moved, meaning that n becomes one smaller, or a
tree is split, meaning that ℓ becomes one smaller.
That is, to ensure progress it is important that the
associated decrements at the tree guide do no involve
any joins. Hence, after at most 2n+ ⌈lg n⌉ rebuilding
steps the data structure must be empty, provided that
no other operations are executed. However, the data
structure allows priority-queue operations, including
markings and unmarkings, to be executed simultane-
ously with reorganization, but only operations creat-
ing new real nodes (insert) or modifying the linkage of
nodes (insert , decrease, delete-min, and delete) can
interfere with reorganization.

Of the modifying operations, only insert creates
new real nodes. When the least significant digit of the
tree guide is increased, at most one join will be neces-
sary. That is, insert can increase both n and ℓ by one.
A decrease may introduce a new phantom node, but
an old edge is reused when connecting this phantom
node to the structure. When the detached subtree is
made into a separate tree, an increment at the tree
guide may involve up to two joins, meaning that ℓ is
increased by at most two. A deletion may introduce
a new phantom node in place of the removed node,
and the linkage between nodes may change, but the
total number of edges remains the same or becomes
smaller due to joins involving missing subtrees. It
may happen that the node to be deleted roots a tree
of rank 0, but in this case no joins are necessary in
connection with a decrement done at the tree guide.
The removal of a real node is just advantageous for
reorganization. After decrease, delete-min, or delete,
one or two λ-reductions may be done, but these will
reduce the number of phantom nodes and will not in-
crease the number of edges. (For run transformation
I—see the appendix—an increment at the tree guide
may involve up to two joins, but this is compensated
for the two edges discarded.) 2

In connection with each of the next at most m0/4
upper-store operations, 4 ·c rebuilding steps are to be
executed. When the old structure becomes empty, it
is dismissed and thereafter the new structure is used
alone. During the m0/4 operations at most m0/4
nodes can be deleted or marked to be deleted, and
since there were m0/2 unmarked nodes in the begin-
ning, at least half of the nodes are unmarked in the
new structure. Therefore, at any point in time, we
are constructing at most one new structure. We em-
phasize that each node can only exist in one structure
and whole nodes are moved from one structure to the
other, so that pointers from the outside remain valid.

A tree of rank 0, which does not contain the cur-
rent minimum or is the only tree left, can be detached
from the old pruned binomial queue at a cost of O(1).
Similarly, a node can be inserted into the new pruned
binomial queue at a cost of O(1). A marked node
can also be released and its counterpart updated at
a cost of O(1). Also, a split has the worst-case cost
of O(1). From these observations, it follows that re-
organization only increases the cost of all modifying
operations by an additive term of O(1).

Each find -min has to consult both the old struc-
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ture and the new structure, but its worst-case cost
is still O(1). The cost of markings and unmarkings
is clearly O(1), even if they take part in reorgani-
zation. If mu denotes the total number of unmarked
nodes currently stored, at any point in time, the total
number of nodes stored is Θ(mu), and during reorga-
nization m0 = Θ(mu). In both structures, the effi-
ciency of delete-min and delete depends on their cur-
rent sizes which must be O(mu). Since delete-min
and delete are handled normally, except that they
may take part in reorganization, each of them has
the worst-case cost of O(lgmu) and performs at most
2 lgmu +O(

√
lgmu) item comparisons.

2.4 Lower-store operations

Since the lower store is also a pruned binomial queue,
most parts of the algorithms are similar to those al-
ready described for the upper store. In the lower
store, find -min relies on find -min provided by the up-
per store. An insertion is performed in the same way
as in the upper store, but a counterpart of the new
root is also inserted into the upper store. In connec-
tion with each join (which may be necessary when an
entry in the tree guide is increased) the pointer point-
ing to the root of the loser tree is lazily deleted from
the upper store. Also, decrease is otherwise identical
to that provided by the upper store, but the insertion
of the cut subtree and the λ-reduction may gener-
ate lazy deletions at the upper store. Additionally, it
may be necessary to insert a counterpart for the cut
subtree into the upper store. If decrease involves a
root, this operation is propagated to the upper store
as well. Minimum deletion and deletion are also simi-
lar to the operations provided by the upper store, but
the pointer to the old root might be deleted from the
upper store and a pointer to the new root might be
added to the upper store. In a λ-reduction, it may
be necessary to move a tree in the tree guide, which
may involve joins that again generate lazy deletions.
In connection with decrease, delete-min, and delete,
it is not always necessary to insert a counterpart of
the created root into the upper store, because the
counterpart exists but is marked. In this case, the
counterpart is unmarked and decrease is invoked at
the upper store if unmarking was caused by decrease.

Because at the upper store at most O(1) inser-
tions, decreases, markings, and unmarkings are done
per lower-store operation, and because each of these
operations can be carried out at the worst-case cost
of O(1), these upper-store operations do not affect
the resource bounds in the lower store, except by an
additive term of O(1). The main advantage of the
upper store is that both in delete-min and delete
the scan of the roots is avoided. Instead, an old
pointer is possibly removed from the upper store and
a new pointer is possibly inserted into the upper
store. By Lemma 3, the lower store holds at most
lg n + O(

√
lg n) trees, and because of global rebuild-

ing the number of pointers held in the upper store can
be doubled. Therefore, the size of the upper store is
bounded by 2 lg n + O(

√
lg n). The upper-store op-

erations increase the cost of delete-min and delete in
the lower store by an additive term of O(lg lg n).

The following theorem summarizes the result of
this section.

Theorem 1 Let n be the number of elements stored
in the data structure prior to each priority-queue op-
eration. A two-tier pruned binomial queue guaran-
tees the worst-case cost of O(1) per find -min, insert,
and decrease; and the worst-case cost of O(lg n) with
at most lg n + O(

√
lg n) element comparisons per

delete-min and delete.

3 Mimicking heap-order violations

The analysis of the two-tier pruned binomial queues
reveals (cf. the proof of Lemma 2) that phantom
nodes can root a missing subtree that is too large
compared to the number of elements stored. In a
run-relaxed heap, which relies on heap-order viola-
tions, this is avoided by keeping the trees binomial
at all times. In this section we show that a run-
relaxed heap (Driscoll et al. 1988) and a two-tier re-
laxed heap (Elmasry et al. 2006) can be mimicked by
another priority queue that only allows structural vio-
lations. The key observation enabling this mimicry is
that a relaxed heap would allow two subtrees of the
same rank that are rooted at violation nodes to be
exchanged without affecting the cost and correctness
of priority-queue operations.

Let Q be a priority queue that has a binomial
structure and relies on heap-order violations. We
mimic Q with another priority queue Q′ which re-
lies on structural violations. A crucial difference be-
tween Q and Q′ is that, if in Q a subtree is rooted
at a violation node, in Q′ the corresponding subtree
is detached from its parent and the place of the root
of the detached subtree is taken by a phantom node.
All cut subtrees are maintained in a shadow structure
that consists of a resizable array where the rth entry
stores a pointer to a list of cut subtrees of rank r.
While performing different priority-queue operations,
we maintain an invariant that the number of phantom
nodes of degree r is the same as the number of trees
of rank r in the shadow structure. Otherwise, Q′ has
the same components as Q:

• The main structure contains the trees whose
roots are not violation nodes.

• The upper store consists of a single pointer or
another priority queue storing pointers to nodes
held in the main structure and the shadow struc-
ture.

• The run-singleton structure stores references to
phantom nodes held in the main structure or in
the shadow structure. That is, the run-singleton
structure is shared by the two other structures.

In general, all priority-queue operations are exe-
cuted as for a pruned binomial queue, but now we en-
sure that the shadow invariant is maintained. When
two missing subtrees of rank r—represented by phan-
tom nodes of degree r—are joined, one of the phantom
nodes is released, the degree of the other phantom
node is increased by one, and in the shadow struc-
ture two trees of rank r are joined. When a phantom
node becomes a root, the phantom node is released, a
tree of the same rank is taken from the shadow struc-
ture and moved to the main structure, and the root
of the moved tree is given the place of the phantom
node. If a phantom node is involved in a join with
a tree rooted at a real node, the phantom node be-
comes a child of that real node, and no changes are
made in the shadow structure. To relate a tree held
in the shadow structure with the run-singleton struc-
ture, we start from a phantom node and locate a tree
of the same rank in the shadow structure using the
resizable array. Clearly, the overhead of maintaining
and accessing the shadow structure is a constant per
operation.

Because insert only involves the trees held in the
main structure, it is not necessary to consider the
trees held in the shadow structure. Also, find -min is
straightforward since it operates with the pointer(s)
available at the upper store without making any chan-
ges to the data structure. If decrease involves a root
held either in the main structure or in the shadow
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structure, the change is propagated to the upper
store. Otherwise, a subtree is cut off, a phantom node
is put in the place of the root of the cut subtree, the
cut subtree is moved to the appropriate list of the re-
sizable array in the shadow structure, and the upper
store is updated accordingly.

Compared to a pruned binomial queue, a new in-
gredient is an operation borrow which allows us to
remove an arbitrary real node at a logarithmic cost
from a run-relaxed heap (Driscoll et al. 1988) and at a
constant cost from its adaptation relying on the zero-
less number representation (Elmasry et al. 2006). In
a pruned binomial queue, borrow can be implemented
in an analogous manner, but instead of a guide we use
an implementation of a regular counter, described in
(Kaplan et al. 2002), which is suited for the zero-
less number representation. In particular, in connec-
tion with a deletion it is not necessary to replace the
deleted node with a phantom node, but a real node
can be borrowed instead. This is important since a
phantom node used by a deletion would not have a
counterpart in the shadow structure. In delete, if the
borrowed node becomes the root of the new subtree
and a potential violation is introduced, the subtree
is cut off and moved to the appropriate list of the
resizable array in the shadow structure.

When the above description is combined with the
analysis of a two-tier relaxed heap given in (Elmasry
et al. 2006), we get the following theorem.

Theorem 2 Let n be the number of elements stored
in the data structure prior to each priority-queue op-
eration. There exists a priority queue that only relies
on structural violations and guarantees the worst-case
cost of O(1) per find -min, insert, and decrease; and
the worst-case cost of O(lg n) with at most lg n +
O(lg lg n) element comparisons per delete-min and
delete.

4 Conclusions

We gave two priority queues that support decrease
and rely on structural violations. For the first priority
queue, we allow structural violations in a straightfor-
ward manner. This priority queue achieves the worst-
case bound of lg n+O(

√
lg n) element comparisons per

deletion. For the second priority queue, we only allow
structural violations in a weaker manner by keeping
an implicit relation between the cut subtrees and the
holes left after the cuts. This priority queue achieves
lg n+O(lg lg n) element comparisons per deletion.

Though we were able to achieve better bounds
with the latter approach, the difference was only in
the lower-order terms. It is still interesting whether
the two types of violations, heap-order violations
and structural violations, are in a one-to-one cor-
respondence or not. Another interesting question is
whether it is possible or not to achieve a bound of
lg n + O(1) element comparisons per deletion, when
we allow decrease. Note that the worst-case bound of
lg n+O(1) is achieved in (Elmasry et al. 2004), when
decrease is not allowed.

Appendix

In this appendix, a pictorial description of the trans-
formations applied in a λ-reduction is given. In a
singleton transformation two singletons x and y are
given, and in a run transformation the last phantom
node z of a run is given. In the following only the
relevant nodes for each transformation are drawn, all
phantom nodes are drawn in grey, and element [p] de-
notes the element stored at node p.

Singleton transformation I Both x and y are the
last children of their parents p and q, respec-
tively. Name the nodes such that element [p] 6>
element [q]. Observe that this transformation
works even if x and/or y are part of a run.
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Singleton transformation II The parent of y is
the right sibling of x, and y is the last child of its
parent.
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Singleton transformation III The given node x is
not the last child of its parent and the last child
of the right sibling of x is not a phantom node.

p

Bk

x

Bk

s

Bk

c
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p

Bk x

Bk
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c
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Run transformation I The given node z is the last
child of its parent. After the transformation the
earlier subtree rooted at the parent of z is seen
as a separate tree.
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z

Bk
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Run transformation II The given node z is not
a last child. This transformation works even if
some children of the right sibling of z are phan-
tom nodes.
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A note on meldable heaps relying on

data-structural bootstrapping∗

Claus Jensen

The Royal Library, Postbox 2149, 1016 Copenhagen K, Denmark

Abstract. We introduce a meldable heap which guarantees the worst-case cost of
O(1) for find -min , insert , and meld with at most 0, 3, and 3 element comparisons
for the respective operations; and the worst-case cost of O(lg n) with at most 3 lgn+
O(1) element comparisons for delete. Our data structure is asymptotically optimal
and nearly constant-factor optimal with respect to the comparison complexity of
all the meldable-heap operations. Furthermore, the data structure is also simple
and elegant.

1. Introduction

A (min-)heap is a data structure which stores a collection of elements and
supports the following operations:

find -min(Q): Return the reference of the node containing a minimum elem-
ent held in heap Q.

insert(Q, p): Insert the node (storing an element) pointed to by p into heap
Q.

delete(p): Remove the node pointed to by p from the heap in which it resides.

meld(Q1, Q2): Move the nodes from one heap into the other and return a
reference to that heap.

It is easy to see that the deletion of the minimum element can be accom-
plished by invoking find -min, followed by delete given the reference returned
by find -min . Throughout this paper we use m and n to denote the number
of elements stored in a data structure prior to an operation and lg n as a
shorthand for log2(max {2, n}).

As our model of computation, we use the word RAM. It would be possible,
with some modifications, to realize our data structure on a pointer machine.
However, when using a word-RAM model the data structure and the oper-
ations are simpler and more elegant. The term cost is used to denote the
sum of instructions and element comparisons performed.

We want to obtain a data structure where the operations find -min, insert ,
and meld have worst-case constant cost, and using this as a base we want to
minimize the comparison complexity of delete. In the amortized sense a cost

∗Partially supported by the Danish Natural Science Research Council under contract
09-060411 (project Generic programming—algorithms and tools).

CPH STL Report 2009-2, March 2009. Revised May 2011.
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Table 1. The worst-case comparison complexity of heap operations for selected data
structures. For all structures find -min, insert , and meld have O(1) worst-case cost. Ob-
serve that the constant factors are not proved in some of the original sources, but are
derived by us.

Source delete-min delete

[1] 7 lgn+O(1) 7 lgn+O(1)
[2] 4 lgn+O(1) not supported

this paper 3 lgn+O(1) 3 lgn+O(1)
[9] 2.5 lgn+O(1) 2.5 lgn+O(1)
[8] 2 lgn+O(1) 2 lgn+O(1)

of O(1) for find -min, insert , and meld ; and a cost of O(lg n) for delete is
achieved by binomial heaps1, Fibonacci heaps [10], thin heaps [12], and thick
heaps (one-step heaps) [12, 11]. The same worst-case bounds are achieved
by the meldable heaps described in [1], [2], and [8], see Table 1.

Given the comparison-based lower bound for sorting, it follows that delete
has to perform at least lg n − O(1) element comparisons, if find -min and
insert only perform O(1) element comparisons. Furthermore, in [1] it is
shown that if meld can be performed at the worst-case cost of o(n) then
delete cannot be performed at the worst-case cost of o(lg n).

In this paper we present a meldable heap which is a binomial heap trans-
formed using data-structural bootstrapping. We obtain an good bound for
the worst-case comparison complexity of delete given that the heap oper-
ations find -min , insert , and meld have a worst-case constant cost. Observe
that there exist other data structures [8, 9] that obtain slightly better worst-
case comparison complexity for delete . However, these data structures are
advanced and mainly of theoretical interest. We reuse some of the tech-
niques described in [2], [14], and [5], but our focus is on good constant
factors and a simple data structure. In Section 2, we describe a modified bi-
nomial heap that supports insert at the worst-case cost of O(1) and meld at
the worst-case cost of O(lg n). In Section 3, we describe how to transform
a binomial heap supporting meld at the worst-case cost of O(lg n) into a
heap that supports melding at the worst-case cost of O(1) and we prove the
worst-case cost of O(1) for find -min, insert , and meld ; and the worst-case
cost of O(lg n) with at most 3 lg n + O(1) element comparisons for delete.
In Section 4, we conclude the paper with some final remarks.

2. Binomial heaps

In this section, we give a description of binomial heaps. However, be aware
that the binomial heaps described here are different from the standard bi-
nomial heaps described in most textbooks.

A binomial tree [15] is an ordered tree defined recursively as follows: A
binomial tree of rank 0 is a single node; for ranks higher than 0, a binomial

1 This result is folklore; it can be achieved by applying lazy melding to binomial heaps
[15] as in Fibonacci heaps [10].
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tree of rank r consists of the root and its r subtrees of rank 0, 1, . . . , r − 1
connected to the root in that order. Given a root of a tree, we denote the
root of the subtree of rank 0 the smallest child and the root of the subtree
of rank r− 1 the largest child. The size of a binomial tree is always a power
of two, and the rank of a tree of size 2r is r.

A node in a binomial tree contains an element, a rank, a parent pointer,
a child pointer, and two sibling pointers. The child pointer of each node
points to its largest child if it exists. The children of a node are kept in
a child list, which is implemented as a doubly-linked list using the sibling
pointers. If a node is a root, the parent pointer points to the heap in which
the node resides. Furthermore, the right-sibling pointer of a root points to
the root itself.

The binomial trees used by us are heap ordered which means that the
element stored at a node is no greater than the elements stored at the
children of that node. If two heap-ordered binomial trees have the same
rank, they can be linked together by making the root that stores the non-
smaller element the largest child of the other root. We call this linking
of trees a join. A join involves a single element comparison and has the
worst-case cost of O(1).

The binomial heap is a collection of a logarithmic number of binomial
trees storing n elements. To obtain a strict bound on the number of trees
τ , we maintain the invariant τ ≤ ⌊lg n⌋+ 1. A similar approach is used for
run-relaxed heaps [5].

Lemma 1. In a binomial heap of size n, the rank of a tree can never be

higher than ⌊lg n⌋.

Proof. Let the highest rank be k. None of the trees can be larger than the
size of the whole heap, i.e. 2k ≤ n. Since k is an integer, k ≤ ⌊lg n⌋. 2 2

The roots of the trees in the binomial heap are maintained using a data
structure, adopted from [5], which we call a root store. The central structure
is a resizable array which supports growing and shrinking at the tail at worst-
case constant cost; this can be obtained, for example, by doubling, halving,
and incremental copying. Each entry in this resizable array corresponds
to a rank. For each entry (rank) there exists a rank list (doubly-linked)
containing pointers to the roots of trees having this rank. Each root uses
its left-sibling pointer as a back pointer to its corresponding item in the
rank list. For each entry of the resizable array that has more than one root,
a pointer to this entry is kept in a pair list (doubly-linked). An entry of
the resizable array contains a pointer to the beginning of a rank list and a
pointer to an item in the pair list if one exist.

The root of a tree of arbitrary rank is inserted into the root store using
add . This operation inserts an item pointing to the given root into the
corresponding rank list, sets the back pointer of the root to point to that
item, and updates the pair list if necessary. If τ > ⌊lg n⌋ + 1, add uses the
pair list to find two trees of the same rank which it removes from the rank
list. It then performs a join of the two trees followed by an insert of the
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new tree into the corresponding rank list, after which it updates the pair
list if necessary. A tree is removed from the root store using subtract , which
removes the item in the rank list referred to by the back pointer of the given
root and updates the pair list if necessary. Both add and subtract have the
worst-case cost of O(1). In connection with each add it may be necessary
to perform a single element comparison.

In the following, the binomial-heap operations are described and their
worst-case bounds are analysed.

The candidates for a minimum element are stored at the roots of the
binomial trees. A fast find -min is obtained by maintaining a minimum

pointer to the node containing a minimum element. Thus find -min can be
accomplished at the worst-case cost of O(1) using no element comparisons.

When inserting an element, the node containing the element is treated as
a tree with rank 0 and added to the root store using add . The element of
the inserted node and the element of the node pointed to by the minimum
pointer are compared and the minimum pointer is updated if necessary.
From our earlier analysis, add has the worst-case cost of O(1) and at most
one element comparison is performed. Checking the minimum pointer has
the worst-case cost of O(1) and at most one element comparison is per-
formed. Therefore insert has the the worst-case cost of O(1) and at most
two element comparisons are performed.

A delete is performed in the following way. A root is deleted by subtract-
ing it from the root store, unlinking its subroots and adding them to the
root store. If the node to be deleted is not a root, the node is swapped
with its parent until it becomes a root, the old root is subtracted from the
root store, and the subroots of the new root are unlinked and added to the
root store. Furthermore, a scan of all roots is performed and the minimum
pointer is updated if necessary. The operation of swapping a node until it
becomes a root has the worst-case cost of O(lg n). A subtract has the worst-
case cost of O(1). Both the unlinking and addition of a subroot have the
worst-case cost of O(1) and at most one element comparison is performed
in connection with each addition. By Lemma 1, a root can have at most
lg n subroots which means that at most lg n element comparisons are per-
formed when adding the roots to the root store. A scan of all roots has the
worst-case cost of O(lg n) and requires at most lg n element comparisons.
To sum up, each delete has the worst-case cost of O(lg n) and requires at
most 2 lg n+O(1) element comparisons.

In meld , two binomial heaps Q1 and Q2 are to be melded. Without loss of
generality, we assume that the number of trees in Q1 is smaller than or equal
to that in Q2. The root store of Q1 is emptied using subtract ; after each
subtract the removed tree is added to the root store of Q2 using add . The
elements of the nodes pointed to by the minimum pointer of Q1 and Q2 are
compared and the minimum pointer of Q2 is updated if necessary. When all
trees have been removed from Q1, the root store of Q1 is released. When the
respective sizes of Q1 and Q2 are m and n, the number of trees moved is at
most min {lgm, lg n}+1. In connection with every add at most one element
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Figure 1. A simplified view of the transformed heap.

comparison is performed, and both add and subtract have the worst-case
cost of O(1). Finding the minimum pointer has the worst-case cost of O(1)
and at most one element comparison is performed. Therefore, the worst-
case cost of meld is O(min {lgm, lg n}) and at most min {lgm, lg n}+O(1)
element comparisons are performed.

3. Transformation of heaps

We now describe how the binomial heap can be modified to support themeld

operation at a constant cost using a transformation called data-structural

bootstrapping [3, 4, 2, 14]. We use the structural abstraction technique of
data-structural bootstrapping which bootstrap efficient data structures from
less efficient data structures. Observe that in the heap context bootstrapping
results in a structure where heaps contain heaps.

The transformed heap is represented by a binomial heap (as described
in Section 2) containing one node. This node stores a pair which contains
a reference to a node storing an element and a reference to a heap storing
pairs. There is a back reference from the element node to the pair and from
the heap to the pair. The back reference indicates that the pair is the owner
of the element node and the heap. The element of a pair is no greater than
any element stored within the heap of that pair. Furthermore, the order of
the pairs within a heap is based on the elements associated with the pairs.

In the following the heap operations are described; Figure 2 describes the
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find -min(Q):
if Q = ∅

return nil

(x, R) ← minimum[Q]
return x

insert(Q, x):
p ← construct pair

if Q = ∅
p ← (x, nil)
owner [x] ← p

insert(Q, p)
minimum[Q] ← (x, nil)
return

(y, R) ← q ← minimum[Q]
if R = nil

R ← construct heap

owner [R] ← (y, R)
if element [x] < element [y]

p ← (y, nil)
owner [y] ← p

insert(R, p)
owner [x] ← q

minimum[Q] ← (x, R)
else

p ← (x, nil)
owner [x] ← p

insert(R, p)
minimum[Q] ← (y, R)

delete(x):
(x, R) ← p ← owner [x]
Q ← parent [root(p)]
if owner [Q] = nil and R = ∅

delete(p)
owner [x] ← nil

elseif owner [Q] = nil and R 6= ∅
(z, S) ← q ← find -min(R)
delete(q)
T ← meld(R, S)
p ← (z, T )
owner [z] ← p

owner [T ] ← p

else

delete(p)
(z, Q) ← q ← owner [Q]
T ← meld(Q, R)
q ← (z, T )
owner [T ] ← q

meld(Q, R):
if Q = ∅

return R

if R = ∅
return Q

(x, S) ← minimum[Q]
(y, T ) ← minimum[R]
if element [x] < element [y]

p ← (y, T )
insert(S, p)
minimum[Q] ← (x, S)

else

p ← (x, S)
insert(T , p)
minimum[Q] ← (y, T )

return Q

Figure 2. This pseudo code implements our heap operations. We use property maps in
our interaction with objects, so an attribute is accessed using the attribute name followed
by the name of the object in square brackets. The construct operation creates a new
object. Given a node, the root operation returns the root of the tree in which the given
node resides. Observe that we rely on automatic garbage collection.

same operations using pseudo code.
LetQ refer to the transformed heap given to the user. A minimum element

is found within the pair (x, R) of Q where the element referenced by x is no
greater than any element withinR and thereby within the whole transformed
heap. To reach x, a constant number of pointers has to be followed and
therefore find -min(Q) can be accomplished at the worst-case cost of O(1)
using no element comparisons.

In insert(Q, x), if the element referred to by x is smaller than the current
minimum element referred to by y in the pair (y, R) of Q, x replaces y in this
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pair and a new pair containing y and a reference to an empty heap is inserted
into R. Otherwise, a pair containing x and an empty heap is inserted into R.
On the basis of the above description and our earlier analysis, insert(Q, x)
has the worst-case cost of O(1) and at most three element comparisons are
performed, one when checking for a possible new minimum and two when
inserting a pair into R.

In delete(x), let x be a reference to the element to be deleted, (x, R) the
pair containing x, and Q the heap containing this pair. Let us next consider
the three cases of delete.

Case 1: Q is not owned by a pair and R is empty. The pair (x, R) is
destroyed.

Case 2: Q is not owned by a pair and R is non-empty. A find -min(R) is
performed. Let (z, S) be the pair returned by find -min(R). Now this
pair is deleted from the heap R, the heaps R and S are melded using
meld(R, S), after which z and a reference to the melded heap forms
the new pair replacing the pair (x, R).

Case 3: Q is owned by a pair. Let the pair owning Q be (z, Q). The pair
(x, R) is deleted from Q, the heaps Q and R are melded using meld(Q,
R), after which z and a reference to the melded heap forms the new
pair replacing the pair (z, Q).

The cost of delete(x) is dominated by the cost of the binomial-heap op-
erations find -min , delete, and meld . Therefore, delete(x) has the worst-
case cost of O(lg n) and the number of element comparisons performed is
3 lg n + O(1), of which O(1) are performed by find -min, 2 lg n + O(1) by
delete, and lg n+O(1) by meld .

In meld(Q, R), the new minimum element is found by comparing the
(minimum) element of the two pairs representing the two bootstrapped
heaps. The pair referring to the non-smaller element is inserted into the
heap of the other pair. The meld(Q, R) operation has the worst-case cost
of O(1) and at most three element comparisons are performed, one when
determining the new minimum and two during insert .

The following theorem summarizes the main result of the paper.

Theorem 1. Let n be the number of elements in the heap prior to each

operation. Our heap guarantees the worst-case cost of O(1) for find -min,

insert, and meld with at most 0, 3, and 3 element comparisons for the

respective operations; and the worst-case cost of O(lg n) with at most 3 lg n+
O(1) element comparisons for delete.

4. Concluding remarks

We have described how data-structural bootstrapping can be used to trans-
form a binomial heap supporting the meld operation at the worst-case cost
of O(lg n) into a heap that supports melding at the worst-case cost of O(1),
and with a delete operation having the worst-case cost of O(lg n) and per-
forming at most 3 lg n + O(1) element comparisons. Binomial heaps have



102 Claus Jensen

only been used as an example and other data structures like weak queues [6]
and navigation piles [13] could, with some modifications, have been used in-
stead. Other implementations of binomial heaps could also have been used;
for example, the binomial heap described in [7]. To obtain the same compari-
son bounds as our heap implementation using other data structures as the
basic component, it is important that the data structure used can perform
the three operations find -min, delete, and meld using at most 3 lg n+O(1)
element comparisons in total, as these operations are the essential part of
the delete operation in the bootstrapped heap.

Looking at the comparison complexity of heap operations, the following
open questions still remain.

1. Is it possible to achieve a bound of lg n + O(1) element comparisons
per delete when meld is required to have a constant cost? Note that,
if meld is allowed to have a logarithmic cost, the worst-case bound of
lg n+O(1) is achievable using the approach described in [7].

2. Given that decrease is added to the collection of operations and defined
as follows:

decrease(p, v): Replace the element stored at the node pointed to by p

with element v, given that the new element is no greater than the
old element.

What would be the lowest possible number of element comparisons
performed by delete Assuming that all other operations were required
to have the worst-case cost of O(1)?
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Abstract. We introduce a new number system that we call the strictly-
regular system, which efficiently supports the operations: digit-increment,
digit-decrement, cut, concatenate, and add. Compared to other number
systems, the strictly-regular system has distinguishable properties. It is
superior to the regular system for its efficient support to decrements,
and superior to the extended-regular system for being more compact by
using three symbols instead of four. To demonstrate the applicability of
the new number system, we modify Brodal’s meldable priority queues
making deletion require at most 2 lgn+O(1) element comparisons (im-
proving the bound from 7 lgn + O(1)) while maintaining the efficiency
and the asymptotic time bounds for all operations.

1 Introduction

Number systems are powerful tools of the trade when designing worst-case-
efficient data structures. As far as we know, their usage was first discussed in
the seminar notes by Clancy and Knuth [1]. Early examples of data structures
relying on number systems include finger search trees [2] and binomial queues
[3]. For a survey, see [4, Chapter 9]. The problem with the normal binary number
representation is that a single increment or decrement may change all the digits
in the original representation. In the corresponding data structure, this may give
rise to many changes that would result in weak worst-case performance.

The characteristics of a positional number system N are determined by the
constraints imposed on the digits and the weights corresponding to them. Let
rep(d,N ) = 〈d0, d1, . . . , dr−1〉 be the sequence of digits representing a positive
integer d in N . (An empty sequence can be used to represent zero.) By conven-
tion, d0 is the least-significant digit and dr−1 6= 0 is the most-significant digit.
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The value of d in N is val(d,N ) =
∑r−1

i=0 di · wi, where wi is the weight cor-
responding to di. As a shorthand, we write rep(d) for rep(d,N ) and val(d) for
val(d,N ). In a redundant number system, it is possible to have val(d) = val(d′)
while rep(d) 6= rep(d′). In a b-ary number system, wi = bi.

A sequence of digits is said to be valid in N if all the constraints imposed by
N are satisfied. Let d and d′ be two numbers where rep(d) = 〈d0, d1, . . . , dr−1〉
and rep(d′) =

〈
d′0, d

′
1, . . . , d

′
r′−1

〉
are valid. The following operations are defined.

increment(d, i): Assert that i ∈ {0, 1, . . . , r}. Perform ++di resulting in d′, i.e.
val(d′) = val(d) + wi. Make d′ valid without changing its value.

decrement(d, i): Assert that i ∈ {0, 1, . . . , r − 1}. Perform --di resulting in d′,
i.e. val(d′) = val(d)− wi. Make d′ valid without changing its value.

cut(d, i): Cut rep(d) into two valid sequences having the same value as the
numbers corresponding to 〈d0, d1, . . . , di−1〉 and 〈di, di+1, . . . , dr−1〉.

concatenate(d, d′): Concatenate rep(d) and rep(d′) into one valid sequence that
has the same value as

〈
d0, d1, . . . , dr−1, d

′
0, d
′
1, . . . , d

′
r′−1

〉
.

add(d, d′): Construct a valid sequence d′′ such that val(d′′) = val(d) + val(d′).

One should think that a corresponding data structure contains di components
of rank i, where the meaning of rank is application specific. A component of rank
i has size si ≤ wi. If si = wi, we see the component as perfect. In general, the
size of a structure corresponding to a sequence of digits need not be unique.

The regular system [1], called the segmented system in [4], comprises the
digits {0, 1, 2} with the constraint that every 2 is preceded by a 0 possibly having
any number of 1’s in between. Using the syntax for regular expressions (see, for
example, [5, Section 3.3]), every regular sequence is of the form

(
0 | 1 | 01∗2

)∗
.

The regular system allows for the increment of any digit with O(1) digit changes
[1, 6], a fact that can be used to modify binomial queues to accomplish insert
at O(1) worst-case cost. Brodal [7] used a zeroless variant of the regular system,
comprising the digits {1, 2, 3}, to ensure that the sizes of his trees are exponential
with respect to their ranks. For further examples of structures that use the
regular system, see [8, 9]. To be able to perform decrements with O(1) digit
changes, an extension was proposed in [1, 6]. Such an extended-regular system
comprises the digits {0, 1, 2, 3} with the constraint that every 3 is preceded by a 0
or 1 possibly having any number of 2’s in between, and that every 0 is preceded
by a 2 or 3 possibly having any number of 1’s in between. For examples of
structures that use the extended-regular system, see [6, 10, 11].

In this paper, we introduce a number system that we call the strictly-regular
system. It uses the digits {0, 1, 2} and allows for both increments and decrements
with O(1) digit changes. The strictly-regular system contains less redundancy
and is more compact, achieving better constant factors while supporting a larger
repertoire of operations. We expect the new system to be useful in several other
contexts in addition to the applications we mention here.

Utilizing the strictly-regular system, we introduce the strictly-regular trees.
Such trees provide efficient support for adding a new subtree to the root, detach-
ing an existing one, cutting and concatenating lists of children. We show that
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Table 1: Known results on the worst-case comparison complexity of priority-
queue operations when decrease is not considered and find -min has O(1) cost.
Here n and m denote the sizes of priority queues.

Source insert delete meld

[12] O(1) lgn+O(1) –

[11] O(1) lgn+O(lg lgn) O(lg(min {n,m}))
[7] (see Section 3.1) O(1) 7 lgn+O(1) O(1)

[13] O(1) 3 lgn+O(1) O(1)

this paper O(1) 2 lgn+O(1) O(1)

the number of children of any node in a strictly-regular tree is bounded by lg n,
where n is the number of descendants of such node.

A priority queue is a fundamental data structure which stores a dynamic col-
lection of elements and efficiently supports the operations find -min, insert , and
delete. A meldable priority queue also supports the operation meld efficiently. As
a principal application of our number system, we implement an efficient meld-
able priority queue. Our best upper bound is 2 lg n+O(1) element comparisons
per delete, which is achieved by modifying the priority queue described in [7].
Table 1 summarizes the related known results.

The paper is organized as follows. We introduce the number system in Section
2, study the application to meldable priority queues in Section 3, and discuss
the applicability of the number system to other data structures in Section 4.

2 The Number System

Similar to the redundant binary system, in our system any digit di must be 0,
1, or 2. We call 0 and 2 extreme digits. We say that the representation is strictly
regular if the sequence from the least-significant to the most-significant digit is of
the form

(
1+ | 01∗2

)∗(
ε | 01+

)
. In other words, such a sequence is a combination

of zero or more interleaved 1+ and 01∗2 blocks, which may be followed by at
most one 01+ block. We use wi = 2i, implying that the weighted value of a 2 at
position i is equivalent to that of a 1 at position i+ 1.

2.1 Properties

An important property that distinguishes our number system from other systems
is what we call the compactness property, which is defined in the next lemma.

Lemma 1. For any strictly-regular sequence,
∑r−1

i=0 di is either r − 1 or r.

Proof. The sum of the digits in a 01∗2 block or a 1∗ block equals the number of
digits in the block, and the sum of the digits in the possibly trailing 01+ block
is one less than the number of digits in that block. ut
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Note that the sum of digits
∑r−1

i=0 di for a positive integer in the regular
system is between 1 and r; in the zeroless system, where di ∈ {1, 2, . . . h}, the
sum of digits is between r and h · r; and in the zeroless regular representation,
where di ∈ {1, 2, 3} [7], the sum of digits is between r and 2r.

An important property, essential for designing data structures with expo-
nential size in terms of their rank, is what we call the exponentiality property.
Assume si ≥ θi/c and s0 = 1, for fixed real constants θ > 1 and c > 0. A number

system has such property if for each valid sequence
∑r−1

i=0 di ·si ≥ θr/c−1 holds.

Lemma 2. For the strictly-regular system, the exponentiality property holds by
setting θ = c = Φ, where Φ is the golden ratio.

Proof. Consider a sequence of digits in a strictly-regular representation, and
think about di = 2 as two 1’s at position i. It is straightforward to verify that
there exists a distinct 1 whose position is at least i, for every i from 0 to r − 2.
In other words, we have

∑r−1
i=0 di ·si ≥

∑r−2
i=0 si. Substituting with si ≥ Φi−1 and

s0 = 1, we obtain
∑r−1

i=0 di · si ≥ 1 +
∑r−3

i=0 Φ
i ≥ Φr−1 − 1. ut

The exponentiality property holds for any zeroless system by setting θ = 2
and c = 1. The property also holds for any θ when dr−1 ≥ θ; this idea was used
in [8], by imposing dr−1 ≥ 2, to ensure that the size of a tree of rank r is at least
2r. On the other hand, the property does not hold for the regular system.

2.2 Operations

It is convenient to use the following subroutines that change two digits but not
the value of the underlying number.

fix -carry(d, i): Assert that di ≥ 2. Perform di ← di − 2 and di+1 ← di+1 + 1.
fix -borrow(d, i): Assert that di ≤ 1. Perform di+1 ← di+1 − 1 and di ← di + 2.

Temporarily, a digit can become a 3 due to ++di or fix -borrow , but we always
eliminate such a violation before completing the operations. We demonstrate in
Algorithm increment (decrement) how to implement the operation in question
with at most one fix -carry (fix -borrow), which implies Theorem 1. The correct-
ness of the algorithms follows from the case analysis of Table 2.

Theorem 1. Given a strictly-regular representation of d, increment(d, i) and
decrement(d, i) incur at most three digit changes.

Algorithm increment(d, i)

1: ++di
2: Let db be the first extreme digit before di, db ∈ {0, 2, undefined}
3: Let da be the first extreme digit after di, da ∈ {0, 2, undefined}
4: if di = 3 or (di = 2 and db 6= 0)
5: fix -carry(d, i)
6: else if da = 2
7: fix -carry(d, a)
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Algorithm decrement(d, i)

1: Let db be the first extreme digit before di, db ∈ {0, 2, undefined}
2: Let da be the first extreme digit after di, da ∈ {0, 2, undefined}
3: if di = 0 or (di = 1 and db = 0 and i 6= r − 1)
4: fix -borrow(d, i)
5: else if da = 0
6: fix -borrow(d, a)
7: --di

By maintaining pointers to all extreme digits in a circular doubly-linked list,
the extreme digits are readily available when increments and decrements are
carried out at either end of a sequence.

Corollary 1. Let 〈d0, d1, . . . , dr−1〉 be a strictly-regular representation of d. If
such sequence is implemented as two circular doubly-linked lists, one storing all
the digits and another all extreme digits, any of the operations increment(d, 0),
increment(d, r − 1), increment(d, r), decrement(d, 0), and decrement(d, r − 1)
can be executed at O(1) worst-case cost.

Theorem 2. Let 〈d0, d1, . . . , dr−1〉 and
〈
d′0, d

′
1, . . . , d

′
r′−1

〉
be strictly-regular rep-

resentations of d and d′. The operations cut(d, i) and concatenate(d, d′) can be
executed with O(1) digit changes. Assuming without loss of generality that r ≤ r′,
add(d, d′) can be executed at O(r) worst-case cost including at most r carries.

Proof. Consider the two sequences resulting from a cut. The first sequence is
strictly regular and requires no changes. The second sequence may have a pre-
ceding 1∗2 block followed by a strictly-regular subsequence. In such case, we
perform a fix -carry on the 2 ending such block to reestablish strict regularity.
A catenation requires a fix only if rep(d) ends with a 01+ block and rep(d′) is
not equal to 1+. In such case, we perform a fix -borrow on the first 0 of rep(d′).
An addition is implemented by adding the digits of one sequence to the other
starting from the least-significant digit, simultaneously updating the pointers
to the extreme digits in the other sequence, while maintaining strict regularity.
Since each increment propagates at most one fix -carry , the bounds follow. ut

2.3 Strictly-Regular Trees

We recursively define a strictly-regular tree such that every subtree is as well a
strictly-regular tree. For every node x in such a tree

– the rank, in brief rank(x), is equal to the number of the children of x;
– the cardinality sequence, in which entry i records the number of children of

rank i, is strictly regular.

The next lemma directly follows from the definitions and Lemma 1.
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Table 2: di is displayed in bold. da is the first extreme digit after di, k is a
positive integer, α denotes any combination of 1+ and 01∗2 blocks, and ω any
combination of 1+ and 01∗2 blocks followed by at most one 01+ block.

(a) Case analysis for increment(d, i).

Initial configuration Action Final configuration

α01∗2 di ← 3; fix -carry(d, i) α01∗11

α01∗21kω di ← 3; fix -carry(d, i) α01∗121k−1ω

α01∗201∗2ω di ← 3; fix -carry(d, i) α01∗111∗2ω

α01∗201k di ← 3; fix -carry(d, i) α01∗111k

α1 di ← 2; fix -carry(d, i) α01

α11kω di ← 2; fix -carry(d, i) α021k−1ω

α101∗2ω di ← 2; fix -carry(d, i) α011∗2ω

α101k di ← 2; fix -carry(d, i) α011k

α01∗11∗2 di ← 2; fix -carry(d, a) α01∗21∗01

α01∗11∗21kω di ← 2; fix -carry(d, a) α01∗21∗021k−1ω

α01∗11∗201∗2ω di ← 2; fix -carry(d, a) α01∗21∗011∗2ω

α01∗11∗201k di ← 2; fix -carry(d, a) α01∗21∗011k

α01∗2 di ← 1; fix -carry(d, a) α11∗01

α01∗21kω di ← 1; fix -carry(d, a) α11∗021k−1ω

α01∗201∗2ω di ← 1; fix -carry(d, a) α11∗011∗2ω

α01∗201k di ← 1; fix -carry(d, a) α11∗011k

α01∗11∗ di ← 2 α01∗21∗

ω0 di ← 1 ω1

α01k di ← 1 α11k

(b) Case analysis for decrement(d, i).

Initial configuration Action Final configuration

α02ω fix -borrow(d, i); di ← 1 α11ω

α01k2ω fix -borrow(d, i); di ← 1 α101k−12ω

α01k fix -borrow(d, i); di ← 1 α101k−1

α01∗12ω fix -borrow(d, i); di ← 2 α01∗21ω

α01∗11k2ω fix -borrow(d, i); di ← 2 α01∗201k−12ω

α01∗11k fix -borrow(d, i); di ← 2 α01∗201k−1

α11∗02ω fix -borrow(d, a); di ← 0 α01∗21ω

α11∗01k2ω fix -borrow(d, a); di ← 0 α01∗201k−12ω

α11∗01k fix -borrow(d, a); di ← 0 α01∗201k−1

α01∗21∗02ω fix -borrow(d, a); di ← 1 α01∗11∗21ω

α01∗21∗01k2ω fix -borrow(d, a); di ← 1 α01∗11∗201k−12ω

α01∗21∗01k fix -borrow(d, a) ; di ← 1 α01∗11∗201k−1

α11∗ di ← 0 α01∗

α01∗1 di ← 0 α01∗

α01∗21∗ di ← 1 α01∗11∗
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Lemma 3. Let 〈d0, d1, . . . dr−1〉 be the cardinality sequence of a node x in a
strictly-regular tree. If the last block of this sequence is a 01+ block, then rank(x) =
r − 1; otherwise, rank(x) = r.

The next lemma illustrates the exponentiality property for such trees.

Lemma 4. A strictly-regular tree of rank r has at least 2r nodes.

Proof. The proof is by induction. The claim is clearly true for nodes of rank
0. Assume the hypothesis is true for all the subtrees of a node x with rank r.
Let y be the child of x with the largest rank. From Lemma 3, if the last block
of the cardinality sequence of x is a 01+ block, then rank(x) = rank(y). Using
induction, the number of nodes of y’s subtree is at least 2r, and the lemma
follows. Otherwise, the cardinality sequence of x only contains 01∗2 and 1+

blocks. We conclude that there exists a distinct subtree of x whose rank is at
least i, for every i from 0 to r − 1. Again using induction, the size of the tree
rooted at x must be at least 1 +

∑r−1
i=0 2i = 2r. ut

The operations that we would like to efficiently support include: adding a
subtree whose root has rank at most r to the children of x; detaching a subtree
from the children of x; splitting the sequence of the children of x, those having the
highest ranks and the others; and concatenating a strictly-regular subsequence
of trees, whose smallest rank equals r, to the children of x.

In accordance, we need to support implementations corresponding to the
subroutines fix -carry and fix -borrow . For these, we use link and unlink .

link(T1, T2): Assert that the roots of T1 and T2 have the same rank. Make one
root the child of the other, and increase the rank of the surviving root by 1.

unlink(T ): Detach a child with the largest rank from the root of tree T . If T has
rank r, the resulting two trees will have ranks either r− 1, r− 1 or r− 1, r.

Subroutine fix -carry(d, i), which converts two consecutive digits di = 2 and
di+1 = q to 0, q + 1 is realizable by subroutine link . Subroutine fix -borrow(d, i),
which converts two consecutive digits di = 0 and di+1 = q to 2, q−1 is realizable
by subroutine unlink that results in two trees of equal rank. However, unlinking
a tree of rank r may result in one tree of rank r−1 and another of rank r. In such
case, a fix -borrow corresponds to converting the two digits 0, q to 1, q. For this
scenario, as for Table 2(b), it is also easy to show that all the cases following a
decrement lead to a strictly-regular sequence. We leave the details for the reader
to verify.

3 Application: Meldable Priority Queues

Our motivation is to investigate the worst-case bound for the number of element
comparisons performed by delete under the assumption that find -min, insert ,
and meld have O(1) worst-case cost. From the comparison-based lower bound
for sorting, we know that if find -min and insert only involve O(1) element com-
parisons, delete has to perform at least lg n−O(1) element comparisons, where
n is the number of elements stored prior to the operation.
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3.1 Brodal’s Meldable Priority Queues

Our development is based on the priority queue presented in [7]. In this section,
we describe this data structure. We also analyse the constant factor in the bound
on the number of element comparisons performed by delete, since the original
analysis was only asymptotic.

The construction in [7] is based on two key ideas. First, insert is supported
at O(1) worst-case cost. Second, meld is reduced to insert by allowing a priority
queue to store other priority queues inside it. To make this possible, the whole
data structure is a tree having two types of nodes: �-nodes (read: square or
type-I nodes) and �-nodes (read: circle or type-II nodes). Each node stores a
locator to an element, which is a representative of the descendants of the node;
the representative has the smallest element among those of its descendants.

Each node has a non-negative integer rank. A node of rank 0 has no �-
children. For an integer r > 0, the �-children of a node of rank r have ranks
from 0 to r − 1. Each node can have at most one �-child and that child can
be of arbitrary rank. The number of �-children is restricted to be at least one
and at most three per rank. More precisely, the regularity constraint posed is
that the cardinality sequence is of the form

(
1 | 2 | 12∗3

)∗
. This regular number

system allows for increasing the least significant digit at O(1) worst-case cost.
In addition, because of the zeroless property, the size of a subtree of rank r is
at least 2r and the number of children of its root is at most 2r. The rank of the
root is required to be zero. So, if the tree holds more than one element, the other
elements are held in the subtree rooted at the �-child of the root.

To represent such multi-way tree, the standard child-sibling representation
can be used. Each node stores its rank as an integer, its type as a Boolean, a
pointer to its parent, a pointer to its sibling, and a pointer to its �-child having
the highest rank. The children of a node are kept in a circular singly-linked
list containing the �-children in rank order and the �-child after the �-child
of the highest rank; the �-child is further connected to the �-child of rank 0.
Additionally, each node stores a pointer to a linked list, which holds pointers
to the first �-node in every group of three consecutive nodes of the same rank
corresponding to a 3 in the cardinality sequence.

A basic subroutine used in the manipulation of these trees is link . For node
u, let element(u) denote the element associated with u. Let u and v be two
nodes of the same rank such that element(u) ≤ element(v). Now, link makes
v a �-child of u. This increases the rank of u by one. Note that link has O(1)
worst-case cost and performs one element comparison.

The minimum element is readily found by accessing the root of the tree, so
find -min is easily accomplished at O(1) worst-case cost.

When inserting a new element, a node is created. The new element and
those associated with the root and its �-child are compared; the two smallest
among the three are associated with the root and its �-child, and the largest is
associated with the created node. Hereafter, the new node is added as a �-child
of rank 0 to the �-child of the root. Since the cardinality sequence of that node
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was regular before the insertion, only O(1) structural changes are necessary to
restore the regularity constraint. That is, insert has O(1) worst-case cost.

To meld two trees, the elements associated with the root and its �-child are
taken from both trees and these four elements are sorted. The largest element is
associated with a �-child of the root of one tree. Let T be that tree, and let S
be the other tree. The two smallest elements are then associated with the root
of S and its �-child. Accordingly, the other two elements are associated with
the root of T and its �-child. Subsequently, T is added as a rank-0 �-child to
the �-child of the root of S. So, also meld has O(1) worst-case cost.

When deleting an element, the corresponding node is located and made the
current node. If the current node is the root, the element associated with the �-
child of the root is swapped with that associated with the root, and the �-child
of the root is made the current node. On the other hand, if the current node
is a �-node, the elements associated with the current node and its parent are
swapped until a �-node is reached. Therefore, both cases reduce to a situation
where a �-node is to be removed.

Assume that we are removing a �-node z. The actual removal involves finding
a node that holds the smallest element among the elements associated with the
children of z (call this node x), and finding a node that has the highest rank
among the children of x and z (call this node y). To reestablish the regularity
constraint, z is removed, x is promoted into its place, y is detached from its
children, and all the children previously under x and y, plus y itself, are moved
under x. This is done by performing repeated linkings until the number of nodes
of the same rank is one or two. The rank of x is updated accordingly.

In the whole deletion process O(lg n) nodes are handled and O(1) work is
done per node, so the total cost of delete is O(lg n). To analyse the number
of element comparisons performed, we point out that a node with rank r can
have up to 2r �-children (not 3r as stated in [7]). Hence, finding the smallest
element associated with a node requires up to 2 lg n+O(1) element comparisons,
and reducing the number of children from 6 lg n + O(1) to lg n + O(1) involves
5 lg n + O(1) element comparisons (each link requires one). To see that this
bound is possible, consider the addition of four numbers 1, 1232k, 2222k, and
1232k (where the least significant digits are listed first), which gives 1211k+12.

Our discussion so far can be summarized as follows.

Theorem 3. Brodal’s meldable priority queue, as described in [7], supports find -
min, insert, and meld at O(1) worst-case cost, and delete at O(lg n) worst-case
cost including at most 7 lg n+O(1) element comparisons.

3.2 Our Improvement

Consider a simple mixed scheme, in which the number system used for the
children of �-nodes is perfect, following the pattern 1∗, and that used for the
children of �-nodes is regular. This implies that the �-nodes form binomial trees
[3]. After this modification, the bounds for insert and meld remain the same if
we rely on the delayed melding strategy. However, since each node has at most
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lg n + O(1) children, the bound for delete would be better than that reported
in Theorem 3. Such an implementation of delete has three bottlenecks: finding
the minimum, executing a delayed meld , and adding the �-children of a �-node
to another node. In this mixed system, each of these three procedures requires
at most lg n + O(1) element comparisons. Accordingly, delete involves at most
3 lg n+O(1) element comparisons. Still, the question is how to do better!

The major change we make is to use the strictly-regular system instead of
the zeroless regular system. We carry out find -min, insert , and meld similar to
[7]. We use subroutine merge to combine two trees. Let y and y′ be the roots
of these trees, and let r and r′ be their respective ranks where r ≤ r′. We
show how to merge the two trees at O(r) worst-case cost using O(1) element
comparisons. For this, we have to locate the nodes representing the extreme
digits closest to r in the cardinality sequence of y′. Consequently, by Theorems
1 and 2, a cut or an increment at that rank is done at O(1) worst-case cost. If
element(y′) ≤ element(y), add y as a �-child of y′, update the rank of y′ and
stop. Otherwise, cut the �-children of y′ at r. Let the two resulting sublists be
C and D, C containing the nodes of lower rank. Then, concatenate the lists
representing the sequence of the �-children of y and the sequence D. We regard
y′ together with the �-children in C and y′’s earlier �-child as one tree whose
root y′ is a �-node. Finally, place this tree under y and update the rank of y.

Now we show how to improve delete. If the node to be deleted is the root, we
swap the elements associated with the root and its �-child, and let that �-node
be the node z to be deleted. If the node to be deleted is a �-node, we repeatedly
swap the elements associated with this node and its parent until the current
node is a �-node (Case 1) or the rank of the current node is the same as that of
its parent (Case 2). When the process stops, the current node z is to be deleted.

Case 1: z is a �-node. Let x denote the node that contains the smallest element
among the children of z (if any). We remove z, lift x into its place, and make
x into a �-node. Next, we move all the other �-children of z under x by
performing an addition operation, and update the rank of x. Since z and x
may each have had a �-child, there may be two �-children around. In such
case, merge such two subtrees and make the root of the resulting tree the
�-child of x.

Case 2: z is a �-node. Let p be the parent of z. We remove z and move its
�-children to p by performing an addition operation. As rank(p) = rank(z)
before the addition, rank(p) = rank(z) or rank(z) + 1 after the addition. If
rank(p) = rank(z) + 1, to ensure that rank(p) remains the same as before
the operation, we detach the child of p that has the highest rank and merge
the subtree rooted at it with the subtrees rooted at the �-children of p and z
(there could be up to two such subtrees), and make the root of the resulting
tree the �-child of p.

Let r be the maximum rank of a node in the tree under consideration. Climb-
ing up the tree to locate a node z has O(r) cost, since after every step the new
current node has a larger rank. In Case 1, a �-node is deleted at O(r) cost in-
volving at most r element comparisons when finding its smallest child. In Cases
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1 and 2, the addition of the �-children of two nodes has O(r) cost and requires
at most r element comparisons. Additionally, applying the merge operation on
two trees (Case 1) or three trees (Case 2) has O(r) cost and requires O(1) elem-
ent comparisons. Thus, the total cost is O(r) and at most 2r + O(1) element
comparisons are performed. Using Lemma 4, r ≤ lg n, and the claim follows.

In summary, our data structure improves the original data structure in two
ways. First, by Lemma 4, the new system reduces the maximum number of
children a node can have from 2 lg n to lg n. Second, the new system breaks the
bottleneck resulting from delayed melding, since two subtrees can be merged with
O(1) element comparisons. The above discussion implies the following theorem.

Theorem 4. Let n denote the number of elements stored in the data structure
prior to a deletion. There exists a priority queue that supports find -min, insert,
and meld at O(1) worst-case cost, and delete at O(lg n) worst-case cost including
at most 2 lg n+O(1) element comparisons.

4 Other Applications

Historically, it is interesting to note that in early papers a number system sup-
porting increments and decrements of an arbitrary digit was constructed by
putting two regular systems back to back, i.e. di ∈ {0, 1, 2, 3, 4, 5}. It is rel-
atively easy to prove the correctness of this system. This approach was used
in [14] for constructing catenable deques, in [9] for constructing catenable fin-
ger search trees, and in [8] for constructing meldable priority queues. (In [8],
di ∈ {2, 3, 4, 5, 6, 7} is imposed, since an extra constraint that di ≥ 2 was required
to facilitate the violation reductions and to guarantee the exponentiality prop-
erty.) Later on, it was realized that the extended-regular system, di ∈ {0, 1, 2, 3},
could be utilized for the same purpose (see, for example, [6]). The strictly-regular
system may be employed in applications where these more extensive number sys-
tems have been used earlier. This replacement, when possible, would have two
important consequences:

1. The underlying data structures become simpler.
2. The operations supported may become a constant factor faster.

While surveying papers that presented potential applications to the new num-
ber system, we found that, even though our number system may be applied, there
were situations where other approaches would be more favourable. For example,
the relaxed heap described in [11] relies on the zeroless extended-regular system
to support increments and decrements. Naturally, the strictly-regular system
could be used instead, and this would reduce the number of trees that have to
be maintained. However, the approach of using a two-tier structure as described
in [11] makes the reduction in the number of trees insignificant since the amount
of work done is proportional to the logarithm of the number of trees. Also, a
fat heap [6] uses the extended-regular binary system for keeping track of the
potential violation nodes and the extended-regular ternary system for keeping
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track of the trees in the structure. However, we discovered that a priority queue
with the same functionality and efficiency can be implemented with simpler tools
without using number systems at all. The reader is warned: number systems are
powerful tools but they should not be applied haphazardly.

Up till now we have ignored the cost of accessing the extreme digits in the
vicinity of a given digit. When dealing with the regular or the extended-regular
systems this can be done at O(1) cost by using the guides described in [8]. In
contrary, for our number system, accessing the extreme digits in the vicinity of
any digit does not seem to be doable at O(1) cost. However, the special case of
accessing the first and last extreme digits is soluble at O(1) cost.

In some applications, like fat heaps [6] and the priority queues described
in [8], the underlying number system is ternary. We have not found a satisfac-
tory solution to extend the strictly-regular system to handle ternary numbers
efficiently; it is an open question whether such an extension exists.
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Abstract

We introduce two data-structural transformations to construct double-
ended priority queues from priority queues. To apply our transformations
the priority queues exploited must support the extraction of an unspecified
element, in addition to the standard priority-queue operations. With
the first transformation we obtain a double-ended priority queue which
guarantees the worst-case cost of O(1) for find -min, find -max , insert ,
extract ; and the worst-case cost of O(lg n) with at most lg n+O(1) element
comparisons for delete . With the second transformation we get a meldable
double-ended priority queue which guarantees the worst-case cost of O(1)
for find -min, find -max , insert , extract ; the worst-case cost of O(lg n) with
at most lgn+O(lg lg n) element comparisons for delete ; and the worst-case
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1 Introduction

In this paper, we study efficient realizations of data structures that can be
used to maintain a collection of double-ended priority queues. The fundamental
operations to be supported include find-min, find-max , insert , and delete. For
single-ended priority queues only find-min or find-max is supported. A (double-
ended) priority queue is called meldable if it also supports operation meld . Even
though the data-structural transformations to be presented are fully general,
our main focus is on the comparison complexity of double-ended priority-queue
operations. Throughout this paper we use m and n to denote the number of
elements stored in a data structure prior to an operation and lg n as a shorthand
for log2(max {2, n}). Many data structures [2, 3, 5, 7, 8, 9, 10, 11, 17, 18, 19, 20,
21, 23, 24, 25] have been proposed for the realization of a double-ended priority
queue, but none of them achieve lg n+ o(lg n) element comparisons per delete,
if find-min, find-max , and insert must have the worst-case cost of O(1).

We use the word RAM as our model of computation as defined in [15].
We assume the availability of instructions found in contemporary computers,
including built-in functions for allocating and freeing memory. We use the
term cost to denote the sum of instructions, element constructions, element
destructions, and element comparisons performed.

When defining a (double-ended) priority queue, we use the locator abstrac-
tion discussed in [14]. A locator is a mechanism for maintaining the association
between an element and its current position in a data structure. A locator fol-
lows its element even if the element changes its position inside the data structure.

Our goal is to develop realizations of a double-ended priority queue that
support the following operations:

find-min(Q) (find -max (Q)). Return a locator to an element that, of all elem-
ents in double-ended priority queue Q, has a minimum (maximum) value.
If Q is empty, return a null locator.

insert(Q, p). Add an element with locator p to double-ended priority queue Q.

extract(Q). Extract an unspecified element from double-ended priority queue Q
and return a locator to that element. If Q is empty, return a null locator.

delete(Q, p). Remove the element with locator p from double-ended priority
queue Q (without destroying the element).

Of these operations, extract is non-standard, but we are confident that it is use-
ful, for example, for data-structural transformations. The following operations
may also be provided.

meld(Q, R). Move all elements from double-ended priority queues Q and R to
a new double-ended priority queue S, destroy Q and R, and return S.

decrease(Q, p, x) (increase(Q, p, x)). Replace the element with locator p by
element x, which should not be greater (smaller) than the old element.

120



Any double-ended priority queue can be used for sorting (say, a set of size n).
So if find -min (find -max ) and insert have a cost of O(1), delete must perform
at least lgn − O(1) element comparisons in the worst case in the decision-tree
model. Similarly, as observed in [21], if find-min (find -max ) and insert have a
cost of O(1), increase (decrease) must perform at least lg n−O(1) element com-
parisons in the worst case. Recall, however, that single-ended priority queues
can support find-min, insert , and decrease (or find-max , insert , and increase)
at the worst-case cost of O(1) (see, for example, [6]).

1.1 Previous approaches

Most realizations of a (meldable) double-ended priority queue—but not all—use
two priority queues, minimum priority queue Qmin and maximum priority queue
Qmax , that contain the minimum and maximum candidates, respectively. The
approaches to guarantee that a minimum element is in Qmin and a maximum
element in Qmax can be classified into three main categories [10]: dual corres-
pondence, total correspondence, and leaf correspondence. The correspondence
between two elements can be maintained implicitly, as done in many implicit or
space-efficient data structures, or explicitly relying on pointers.

In the dual correspondence approach a copy of each element is kept both in
Qmin and Qmax , and clone pointers are maintained between the corresponding
copies. Using this approach Brodal [5] showed that find -min , find -max , in-
sert , and meld can be realized at the worst-case cost of O(1), and delete at
the worst-case cost of O(lg n). Asymptotically, Brodal’s double-ended priority
queue is optimal with respect to all operations. However, as pointed out by
Cho and Sahni [9], Brodal’s double-ended priority queue uses almost twice as
much space as his single-ended priority queue, and the leading constant in the
bound on the complexity of delete is high (according to our analysis the number
of element comparisons performed in the worst case is at least 4 lgn−O(1) for
the priority queue and 8 lgn−O(1) for the double-ended priority queue).

In the total correspondence approach, both Qmin and Qmax contain ⌊n/2⌋
elements and, if n is odd, one element is kept outside these structures. Every
element x in Qmin has a twin y in Qmax , x is no greater than y, and there
is a twin pointer from x to y and vice versa. Both Chong and Sahni [10] and
Makris et al. [21] showed that with this approach the space efficiency of Brodal’s
data structure can be improved. Now the elements are stored only once so the
amount of extra space used is nearly cut in half. The results reported in [10, 21]
are rephrased in Table 1 (on p. 123).

A third possibility is to employ the leaf correspondence approach, where
only the elements stored at the leaves of the data structures used for realizing
Qmin and Qmax have their corresponding twins. This approach is less general
and requires that some type of tree is used to represent the two priority queues.
Chong and Sahni [10] showed that Brodal’s data structure could be customized
to rely on the leaf correspondence as well, but the worst-case complexity of
delete is still about twice as high as that in the original priority queue.

In addition to these general transformations, several ad-hoc modifications of
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existing priority queues have been proposed. These modifications inherit their
properties, like the operation repertoire and the space requirements, directly
from the modified priority queue. Most notably, many of the double-ended
priority queues proposed do not support general delete, meld , nor insert at the
worst-case cost of O(1). Even when such priority queues can be modified to
provide insert at the worst-case cost of O(1), as shown by Alstrup et al. [1],
delete would perform Θ(lgn) additional element comparisons as a result.

1.2 Efficient priority queues

Our data-structural transformations are general, but to obtain our best results
we rely on our earlier work on efficient priority queues [12, 13]. Our main goal
in these two earlier papers was to reduce the number of element comparisons
performed by delete without sacrificing the asymptotic bounds for the other
supported operations. In this paper, we use these priority queues as building
blocks to achieve the same goal for double-ended priority queues.

Both our data-structural transformations require that the priority queues
used support extract , which extracts an unspecified element from the given pri-
ority queue and returns a locator to that element. This operation is used for
moving elements from one priority queue to another and for reconstructing a
priority queue incrementally. Many existing priority queues can be easily ex-
tended to support extract . When this is not immediately possible, the borrowing
technique presented in [12, 13] may be employed.

The performance of the priority queues described in [12, 13] is summarized
in the following lemmas.

Lemma 1 [12] There exists a priority queue that supports find-min, insert,

and extract at the worst-case cost of O(1); and delete at the worst-case cost of

O(lg n) including at most lgn+O(1) element comparisons.

Lemma 2 [13] There exists a meldable priority queue that supports find-min,

insert, extract, and decrease at the worst-case cost of O(1); delete at the worst-

case cost of O(lg n) including at most lg n+O(lg lg n) element comparisons; and

meld at the worst-case cost of O(min {lgm, lgn}).

1.3 Our results

In this paper, we present two transformations that show how priority queues
can be employed to obtain double-ended priority queues. With our first trans-
formation we obtain a data structure for which all fundamental operations are
nearly optimal with respect to the number of element comparisons performed.
With our second transformation we obtain a data structure that also supports
meld .

In our first transformation we divide the elements into three collections con-
taining elements smaller than, equal to, and greater than a partitioning elem-
ent. It turns out to be cheaper to maintain a single partitioning element than
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Table 1: Complexity of general transformations from priority queues to double-
ended priority queues. Here Cn

op denotes the worst-case cost of double-ended
priority-queue operation op for a given problem size n, and cnop the corresponding
cost of the priority-queue operation op. Throughout the paper, we assume that
functions cnop are non-decreasing and smooth, i.e. that for non-negative integers
m and n, m ≤ n ≤ 2m, cmop ≤ cnop ≤ O(1)·cmop . Naturally, if c

n
find-max = cnfind-min ,

then Cn
find-max = Cn

find -min .

Reference

Complexity
[10, 21] This paper, Section 2 This paper, Section 3

Cn

find-min
c
n/2

find-min
+ O(1) 2 · cn

find-min
+ O(1) c

n/2

find-min
+ O(1)

Cn

insert
2 · c

n/2

insert
+ O(1) O(1) · cnextract + O(1) ·

cninsert + O(1)

2 · c
n/2

insert
+ O(1)

Cn
extract Not supported

O(1) · cnextract + O(1) ·

cninsert + O(1)

2 · c
n/2

extract
+ 2 · c

n/2

decrease
+

O(1)

Cn

delete
2 · c

n/2

delete
+ 2 ·

c
n/2

insert
+ O(1)

cn
delete

+ O(1) · cnextract +

O(1) · cninsert + O(1)

c
n/2

delete
+c

n/2

extract
+c

n/2

insert
+

2 · c
n/2

decrease
+ O(1)

Cm,n

meld
2 · c

⌈m/2⌉,n/2

meld
+ 2 ·

c
m/2

insert
+ O(1)

Not supported
2 · c

⌈m/2⌉,n/2

meld
+ 2 · c

m/2

insert
+

O(1)

extra
space

n + O(1) words (4/3)n elements
O(lg n) words
3n bits

n + O(1) words
n bits

to maintain many twin relationships as done in the correspondence-based ap-
proaches. When developing this transformation we were inspired by the priority
queue described in [22], where a related partitioning scheme is used. The way
we implement partitioning allows efficient deamortization; in accordance our
bounds are worst-case rather than amortized in contrast to the bounds derived
in [22]. Our second transformation combines the total correspondence approach
with an efficient priority queue supporting decrease. This seems to be a new
application of priority queues supporting fast decrease .

The complexity bounds attained are summarized in Table 1. The main
difference between the earlier results and our results is that the leading constant
in the cost of delete is reduced from two to one, provided that the priority queues
used support insert , extract , and decrease at the worst-case cost of O(1). By
constructing double-ended priority queues from the priority queues mentioned
in Lemmas 1 and 2, respectively, we get the following theorems.

Theorem 1 There exists a double-ended priority queue that supports find-min,

find-max, insert, and extract at the worst-case cost of O(1); and delete at the

worst-case cost of O(lg n) including at most lg n+O(1) element comparisons.
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Theorem 2 There exists a meldable double-ended priority queue that supports

find-min, find-max, insert, and extract at the worst-case cost of O(1); delete
at the worst-case cost of O(lg n) including at most lg n + O(lg lg n) element

comparisons; and meld at the worst-case cost of O(min {lgm, lgn}).

2 Pivot-based partitioning

In this section we show how a double-ended priority queue, call it Q, can be
constructed with the help of three priority queues Qmin , Qmid , and Qmax . The
basic idea is to maintain a special pivot element and use it to partition the
elements held in Q into three candidate collections: Qmin holding the elements
smaller than pivot , Qmid those equal to pivot , and Qmax those larger than pivot .
Note that, even if the priority queues are meldable, the resulting double-ended
priority queue cannot provide meld efficiently.

To illustrate the general idea, let us first consider a realization that guaran-
tees good amortized performance for all modifying operations (insert , extract ,
and delete). We divide the execution of the operations into phases. Each phase
consists of max {1, ⌊n0/2⌋} modifying operations, if at the beginning of a phase
the data structure stored n0 elements (initially, n0 = 0). At the end of each
phase, a restructuring is done by partitioning the elements using the median
element as pivot . That way we ensure that at any given time—except if there
are no elements in Q—the minimum (maximum) element is in Qmin (Qmax )
or, if it is empty, in Qmid . Thus all operations of a phase can be performed
correctly.

Now it is straightforward to carry out the double-ended priority-queue op-
erations by relying on the priority-queue operations.

find-min(Q) (find -max (Q)). If Qmin (Qmax ) is non-empty, the minimum (max-
imum) of Qmin (Qmax ) is returned; otherwise, the minimum of Qmid is
returned.

insert(Q, p). If the element with locator p is smaller than, equal to, or greater
than pivot , the element is inserted into Qmin , Qmid , or Qmax , respectively.

extract(Q). If Qmin is non-empty, an element is extracted from Qmin ; otherwise,
an element is extracted from Qmid .

delete(Q, p). Depending on in which component Qmin , Qmid , or Qmax the elem-
ent with locator p is stored, the element is removed from that component.
To implement this efficiently, we assume that each node of the priority
queues is augmented by an extra field that gives the name of the compo-
nent in which that node is stored.

A more detailed description of the operations on Q is given in Figure 1.
After each modifying operation it is checked whether the end of a phase is

reached, and if this is the case, a partitioning is carried out. To perform the
partitioning efficiently, all the current elements are copied to a temporary array
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find-min(Q): // find-max (Q) is similar
if size(Qmin) = 0

return find-min(Qmid )
return find -min(Qmin)

insert(Q, p):
if p.element() < pivot

insert(Qmin , p)
else if pivot < p.element()

insert(Qmax , p)
else

insert(Qmid , p)
count++

if count ≥ ⌊n0/2⌋
reorganize(Q)

extract(Q):
p← extract(Qmin)
if p = null

p← extract(Qmid )
count++

if count ≥ ⌊n0/2⌋
reorganize(Q)

return p

delete(Q, p):
R← component (Q, p)
delete(R, p)
count++

if count ≥ ⌊n0/2⌋
reorganize(Q)

reorganize(Q):
n0 ← size(Q)
count ← 0
construct an empty priority queue P
allocate an element array A of size n0

i← 1
for R ∈ {Qmin , Qmid , Qmax}

for j ∈ {1, . . . , size(R)}
p← extract(R)
A[i++]← p.element()
insert(P , p)

pivot ← selection(A[1:n0], ⌈n0/2⌉)
destroy A
for i ∈ {1, . . . , n0}

p← extract(P )
if p.element() < pivot

insert(Qmin , p)
else if pivot < p.element()

insert(Qmax , p)
else

insert(Qmid , p)

Figure 1: This pseudo-code implements the amortized scheme. The subroutine
component(Q, p) is assumed to return the component of Q in which the element
with locator p is stored.

A. This is done by employing extract to repeatedly remove elements from Q.
Each element is copied to A and temporarily inserted into another data structure
P for later use. We chose to implement P as a priority queue to reuse the same
structure of the nodes as Q. A linear-time selection algorithm [4] is then used
to set pivot to the value of the median element in array A. Actually, we rely on
a space-efficient variant of the standard prune-and-search algorithm described
in [16, Section 3.6]. For an input of size n, the extra space used by this variant
is O(lg n) words. After partitioning, A is destroyed, and Q is reconstructed
by repeatedly re-extracting the elements from the temporary structure P and
inserting them into Q (using the new pivot).

Assuming that priority-queue operations insert and extract have a cost of
O(1), the restructuring done at the end of a phase has the worst-case cost
of O(n0). So a single modifying operation can be expensive, but when the
reorganization work is amortized over the max {1, ⌊n0/2⌋} operations executed
in a phase, the amortized cost is only O(1) per modifying operation.

Next we consider how we can get rid of the amortization. In our deamor-
tization strategy, each phase consists of max {1, ⌊n0/4⌋} modifying operations.
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We maintain the following size invariant : If at the beginning of a phase there
are n0 elements in total, the size of Qmin (Qmax ) plus the size of Qmid is at
least max {1, ⌊n0/4⌋}. This guarantees that the minimum (maximum) element
is in Qmin (Qmax ) or, if it is empty, in Qmid . Throughout each phase, three
subphases are performed in sequence; each subphase consists of about equally
many modifying operations.

In the first subphase, the n0 elements in Q at the beginning of the phase are
to be incrementally copied to A. To facilitate this, we employ a supplementary
data structure P that has the same form as Q and is composed of three com-
ponents Pmin , Pmid , and Pmax . Accompanying each modifying operation, an
adequate number of elements is copied from Q to A. This is accomplished by
extracting an element from Q, copying the element to A, and inserting the node
into P using the same pivot as in Q. An insert directly adds the given element
to P without copying it to A, and a delete copies the deleted element to A only
if that element is in Q. At the end of this subphase, A stores copies of all the
elements that were in Q at the beginning of the phase, and all the elements that
should be in the double-ended priority queue are now in P leaving Q empty.

In the second subphase the median of the elements of A is found. That is,
the selection is based on the contents of Q at the beginning of the phase. In
this subphase the modifying operations are executed normally, except that they
are performed on P , while they incrementally take part in the selection process.
Each modifying operation takes its own share of the work such that the whole
selection process is finished before reaching the end of this subphase.

The third subphase is reserved for clean-up. Each modifying operation car-
ries out its share of the work such that the whole clean-up process is finished
before the end of the phase. First, A is destroyed by gradually destructing the
elements copied and freeing the space after that. Second, all elements held in P
are moved to Q. When moving the elements, extract and insert are used, and
the median found in the second subphase is used as the partitioning element.

As to find -min , the current minimum can be found from one of the priority
queues Qmin (Qmid if Qmin is empty) or Pmin (Pmid if Pmin is empty). Hence,
find-min (similarly for find-max ) can still be carried out efficiently.

Even if the median found is exact for A, it is only an approximate median
for the whole collection at the end of a phase. Since after freezing the contents
of A at most max {1, ⌊n0/4⌋} elements are added to or removed from the data
structure, it is easy to verify that the size invariant holds for the next phase.

Let us now analyse the space requirements of the deamortized construction.
Let n denote the present size of the double-ended priority queue, and n0 the
size of A. The worst case is when all the operations performed during the phase
are deletions, and hence n may be equal to 3n0/4. That is, the array can never
have more than 4n/3 elements. In addition to array A, the selection routine
requires a work area of O(lg n) words and each node has to store 3 bits to record
the component (Qmin , Qmid , Qmax , Pmin , Pmid , or Pmax ) the node is in.

For the deamortized scheme, it is straightforward to derive the bounds given
in Table 1. By combining the results derived for the transformation (Table 1)
with the bounds known for the priority queues (Lemma 1), the bounds of The-

126



orem 1 are obtained.

3 Total correspondence

In this section we describe how an efficient meldable priority queue supporting
extract and decrease can be utilized in the realization of a meldable double-
ended priority queue Q. We use Qmin to denote the minimum priority queue of
Q (supporting find -min and decrease) and Qmax the maximum priority queue
of Q (supporting find-max and increase). We rely on the total correspondence
approach, where each of Qmin and Qmax contains ⌊n/2⌋ elements, with the
possibility of having one element outside these structures. To perform delete

efficiently, instead of using two priority-queue delete operations as in [10, 21],
we use only one delete and employ extract that may be followed by decrease

and increase.
Each element stored in Qmin has a twin in Qmax . To maintain the twin

relationships and to access twins fast, we assume that each node of the priority
queues allows an attachment of one more pointer, a twin pointer. The element
that has no twin is called a singleton. Using these concepts, the double-ended
priority-queue operations on Q can be performed as follows (a more detailed
description of the operations is given in Figure 2):

find-min(Q) (find -max (Q)). If Qmin (Qmax ) is empty or the singleton of Q is
smaller (greater) than the minimum (maximum) element of Qmin (Qmax ),
the singleton is returned; otherwise, the minimum (maximum) of Qmin

(Qmax ) is returned.

insert(Q, p). If Q has no singleton, the element with locator p is made the
singleton of Q and nothing else is done. If Q has a singleton and the given
element is smaller than the singleton, the element is inserted into Qmin

and the singleton is inserted into Qmax ; otherwise, the element is inserted
into Qmax and the singleton is inserted into Qmin . Finally, the element
and the singleton are made twins of each other.

extract(Q). If Q has a singleton, it is extracted and nothing else is done. If Q
has no singleton, an element is extracted from Qmin . If Qmin was non-
empty, an element is also extracted from Qmax . The element extracted
from Qmax is made the new singleton, and the element extracted from
Qmin is returned. Before this the twins of the two extracted elements are
made twins of each other and their positions are swapped if necessary, and
the order in Qmin and Qmax is restored by decreasing and increasing the
swapped elements (if any).

delete(Q, p). If the element to be deleted is the singleton of Q, the singleton is
removed and nothing else is done. If Q has a singleton, the element with
locator p is removed from its component, the singleton is inserted into that
component, and the singleton and the twin of the removed element are
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find-min(Q): // find-max (Q) is similar
s← singleton(Q)
t← find-min(Qmin)
if t = null or

(s 6= null and s.element() < t.element())
return s

return t
insert(Q, p):

s← singleton(Q)
if s = null

make-singleton(Q, p)
return

if p.element() < s.element()
insert(Qmin , p)
insert(Qmax , s)

else

insert(Qmin , s)
insert(Qmax , p)

make-twins(p, s)
make-singleton(Q,null)

extract(Q):
s← singleton(Q)
if s 6= null

make-singleton(Q, null)
return s

else

p← extract(Qmin)
if p 6= null

q ← extract(Qmax )
r ← twin(p)
t← twin(q)
make-twins(r, t)
swap-twins-if -necessary(Q, t)
make-singleton(Q, q)

return p

swap-twins-if -necessary(Q, s): // s in Qmin

t← twin(s)
if t.element() < s.element()

swap(s, t)
decrease(Qmin , t, t.element())
increase(Qmax , s, s.element())

delete(Q, p):
s← singleton(Q)
if p = s

make-singleton(Q,null)
return

P ← component (Q, p)
t← twin(p)
T ← component (Q, t)
if s = null

q ← extract(T )
s← twin(q)
make-singleton(Q, q)

else

insert(P, s)
make-singleton(Q,null)

make-twins(s, t)
if P = Qmin

swap-twins-if -necessary(Q, s)
else

swap-twins-if -necessary(Q, t)
delete(P , p)

meld(Q, R):
q ← singleton(Q)
r ← singleton(R)
if q 6= null and r = null

make-singleton(S, q)
else if q = null and r 6= null

make-singleton(S, r)
else

make-singleton(S, null)
if q 6= null

if q.element() < r.element()
insert(Qmin , q)
insert(Qmax , r)

else

insert(Qmin , r)
insert(Qmax , q)

make-twins(q, r)
Smin ← meld(Qmin , Rmin)
Smax ← meld(Qmax , Rmax )
return S

Figure 2: This pseudo-code implements our second data-structural transforma-
tion. The subroutines used are assumed to have the following effects: twin(p)
returns a locator to the twin of the element with locator p; make-twins(p, q) as-
signs the twin pointers between the elements with locators p and q; singleton(Q)
returns a locator to the singleton of Q; make-singleton(Q, p) makes the elem-
ent with locator p the singleton of Q and sets the twin pointer of p to null ;
swap(p, q) puts the element with locator p in place of the element with locator
q, and vice versa; and component(Q, p) returns the component of Q, in which
the element with locator p is stored. One way of implementing component is
to attach to each node of Q a bit indicating whether that node is in Qmin or
Qmax , and let insert update these bits.
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made twins of each other. As in extract the two twins are swapped and the
order in Qmin and Qmax is restored if necessary. On the other hand, if Q
has no singleton, the element with locator p is removed, another element
is extracted from the component of its twin, the extracted element is made
the new singleton, and, if necessary, the twin of the extracted element and
the twin of the removed element are swapped and the order in Qmin and
Qmax is restored as above.

meld(Q, R). Let S denote the outcome of this operation. Without loss of gen-
erality, assume that the size of Q is smaller than or equal to that of R.
If Q and R together have exactly one singleton, this element becomes the
singleton of S. If they have two singletons, these are compared, the non-
greater is inserted into Qmin , the non-smaller is inserted into Qmax , and
the inserted elements are made twins of each other. After these prepara-
tions, Qmin and Rmin are melded to become Smin , and Qmax and Rmax

are melded to become Smax .

It is straightforward to verify that the above implementation achieves the
bounds of Table 1. By combining the results of Table 1 with the bounds known
for the priority queues (Lemma 2), the bounds of Theorem 2 are obtained.

4 Conclusions

We conclude the paper with four open problems, the solution of which would
improve the results presented in this paper.

1. One drawback of our first transformation is the extra space used for elem-
ents, and the extra element constructions and destructions performed
when copying elements. The reason for copying elements instead of point-
ers is that some elements may be deleted during the selection process.
It would be interesting to know whether the selection problem could be
solved at linear cost when the input is allowed to be modified during the
computation.

2. Our realization of a double-ended priority queue using the priority queues
introduced in [12] works on a pointer machine, but the meldable version
using the priority queues introduced in [13] relies on the capabilities of a
RAM. This is in contrast with Brodal’s data structure [5] which works on
a pointer machine. Therefore, it is natural to ask whether random access
could be avoided.

3. To obtain meld having the worst-case cost of O(1), the price paid by
Brodal [6] is a more expensive delete. It is unknown whethermeld could be
implemented at the worst-case cost of O(1) such that at most lgn+o(lgn)
element comparisons are performed per delete.

4. If for a meldable double-ended priority queue meld is allowed to have the
worst-case cost of O(min {lgm, lg n}), it is still relevant to ask whether
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delete can be accomplished at logarithmic cost with at most lg n + O(1)
element comparisons.
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