
Thesis for the Master’s degree in Computer Science
Speciale for cand.scient graden i datalogi

Foundations of an adaptable

container library

Bo Simonsen

Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

bosim@diku.dk

November 2009

To my family and friends

Abstract: The STL is a collection of generic containers and algorithms;
the interfaces of those are specified in the C++ standard. The components
in the STL are written in such a way that they can be used directly in
application development. The CPH STL is an enhanced version of the STL;
the significant enhancement in the CPH STL is that it provides containers
with different trade-offs with respect to performance, space efficiency, and
safety.

This thesis is a complete design specification of the entire library. This
design specification consists of three parts: The first part is the specification
of the architecture of the library. Along with this specification, we define
the different concepts for individual components, but we provide no imple-
mentation details. The second part is a complete design for the vector

container. We introduce component frameworks for STL containers, which
gives a high degree of code reuse and flexibility from the user’s point of view.
In the third (and last) part we identify the problems related to the use of
component frameworks, and provide solutions to these problems.

The key contribution of this thesis is that the architecture and the de-
sign described can be used as a starting point for designing future generic
program libraries. Also, the problems related to the use of component frame-
works are recurring in context of the C++ programming language. Therefore
we expect that C++ programmers will find this part interesting as well.

Resumé: STL er en samling af generiske data strukturer og algoritmer.
Disse generiske data strukturer og algoritmer er implementeret s̊aledes at
de kan benyttes uden modifikationer i applikationsudvikling. CPH STL er
en forbedret udgave af STL. De nævneværdige forbedringer i CPH STL er
at der tilbydes generiske data strukturer med forskellige karakteristika med
hensyn til ydelse, plads effektivitet og sikkerhed.

Dette speciale er en komplet design specifikation for hele biblioteket.
Denne specifikation best̊ar af tre dele: Den første del er en specifikation af
arkitekturen for biblioteket. Sammen med denne specifikation definerer vi de
forskellige koncepter for de individuelle komponenter; denne del indeholder
ingen implementationsspecifikke detaljer. Den anden del er et komplet de-
sign for vector-containeren. Vi introducerer “component frameworks” for
STL. Disse frameworks giver os en høj grad af kode genbrug, samt fleksi-
bilitet for brugeren. I den tredie og sidste del identifiserer vi problemer der
er relateret til brugen af component frameworks, og vi giver løsninger til
disse problemer.

Specialets overordnede bidrag er at arkitekturen og designet kan bruges
som udgangspunkt for at designe nye versioner af generiske programbib-
lioteker. Problemerne relateret til component frameworks fremkommer ofte
i forbindelse med generisk programmering i C++. Derfor forventer vi at
udviklere af generisk programmel i C++ vil finde denne del interessant.

i

Preface

This document is my Master’s Thesis (Danish: speciale) in Computer Sci-
ence written under the supervision of Jyrki Katajainen at Department of
Computer Science at the University of Copenhagen. The main body of this
thesis consists of three papers:

1. Jyrki Katajainen and Bo Simonsen. Applying Design Patterns to Spec-
ify the Architecture of a Generic Program Library (2008).1

2. Jyrki Katajainen and Bo Simonsen. Adaptable Component Frame-
works: Using vector from the C++ Standard Library as an Example.
Proceedings of the 2009 ACM SIGPLAN Workshop on Generic Pro-

gramming, ACM (2009), 13–24.2

3. Bo Simonsen. Towards better usability of component frameworks.
CPH STL report 2009-6, Department of Computer Science, Univer-
sity of Copenhagen (2009).

Acknowledgements

I want to thank everybody who contributed to the CPH STL project; their
work gave me a starting point for developing the artifacts described in the
thesis. I want to thank my friends and family for giving me support and en-
couragement to complete this work. Especially, I want to thank my mother
for constantly supporting me and believing in me. Finally, but not least, I
want to thank my supervisor and co-author Jyrki Katajainen for supporting
me through my entire graduate study. Jyrki introduced me to many of the
subjects described in this thesis, and taught me all about scientific writing.
I really enjoyed the many hours we spent on writing the papers contained
in the thesis.

1 A revised version is in preparation with the title: “The Design and Description of a
Generic Program Library”.
2 An extended and revised version is submitted to the special issue of Journal of Functional
Programming on Generic Programming.

ii

Table of contents

Introduction . 1
1 Contributions . 2
2 Software availability . 2

Background . 4
3 Polymorphism . 4
4 C++ generic programming . 6
5 The STL . 14
6 Software patterns . 25
7 Design patterns . 30
References . 41

Papers . 44

Applying Design Patterns to Specify the Architecture of a Generic
Program Library . 44

Jyrki Katajainen and Bo Simonsen

Adaptable Component Frameworks: Using vector from the C++
Standard Library as an Example . 70

Jyrki Katajainen and Bo Simonsen

Towards better usability of component frameworks 102
Bo Simonsen

iii

Introduction

The CPH STL [6] is an algorithmic library providing the fundamental data
structures and algorithms described in most introductory textbooks on algo-
rithms. The high-level goal of the CPH STL project is to create an enhanced
version of the STL providing alternative versions of individual STL compo-
nents. The components have different trade-offs with respect to perfor-
mance, space-efficiency, and safety. In the beginning, the implementations
of data structures and algorithms were structured in the same way as the
implementations done by SGI [21] and GNU (libstdc++) [10].

We observed that much of the code for each individual container was iden-
tical, for example, iterators for most containers were copy-paste code. By
applying design patterns and generic programming techniques we reduced
the amount of code required for each container implementation significantly.
We did also decouple each container from its implementation, which gave
us the possibility of implementing several container interfaces for each un-
derlying data structure. This made it possible to implement both LEDA
interfaces and STL interfaces using the same underlying implementation of
a data structure.

We applied the strategy and the template-method design pattern ex-
haustively such that our containers were no longer implementations of data
structures but they became skeletons. We denote such skeleton a compo-

nent framework. The idea is that the user gives template arguments which
determine the resulting properties and behaviour of the container. These
template arguments are policies, which are small classes with a well-defined
interface and functionality. We provide several component frameworks, in-
cluding a framework for vector. Here the user is allowed to give a kernel and
an encapsulator to the framework by template arguments. The kernel deter-
mines the underlying data structure, e.g. a dynamic array or a hashed array
tree, and the encapsulator determines whether the container should provide
strong exception safety and referential integrity, just referential integrity, or
none of the mentioned properties.

Allowing the user to configure the framework results in some undesirable
usability issues. If the user does not desire the default configuration of the
framework, the user has to give far too many template arguments. Even if
the user just wants to change one template argument, he or she has to give all
template arguments to the framework in the worst case. We experimented
with C++ metaprogramming techniques to solve this problem, but several
changes to the containers were required. Also, the readability of the code
was reduced significantly. We wanted to maintain readability of the code,
and keep the changes to the library minimal, therefore we found that the

1

2

only solution was to design a language extension. Due to this language
extension the user only has to give the essential template arguments and
readability of the declaration is maintained.

We found another problem when introducing frameworks. A component
mismatch is likely to occur. That is because each component can only
interact with a subset of all available components. If a component A is given
to component B but B cannot accept A, the compiler will in the worst case
fill a small computer screen with error messages. These error messages are
not adequate at all, since they lack precision and readability. The upcoming
C++ standard (C++0x) contained, until July 2009, C++ concepts which is
a language feature that allow specification of requirements for types given
as template arguments. However, C++ concepts were rejected by the C++
standards committee; this means that they will not appear in the upcoming
C++ standard. Therefore we investigated other methods of verifying that
our component frameworks are configured properly.

The result of the work, described in this section, is documented in the
included papers.

1. Contributions

The significant contributions of this thesis are:

– We document the design and architecture of the CPH STL. That in-
cludes design problems and solutions relevant for all STL implementa-
tions and, in general, generic program libraries. It is known that such
problems (and their solutions), in context of the STL, are not docu-
mented at all. The methods described in this thesis could be used as
a starting point to build new generic program libraries or individual
components in existing generic program libraries.

– We evaluate the language features provided by the C++ programming
language for generic programming. We question whether C++ provides
good enough language support for building generic program libraries.
For example, we found that the tools provided by C++ are not sufficient
to support adaptivity, meaning that the library would automatically
select the best data structures and algorithms.

– We propose language features for C++ generic programming which solve
some of the problems encountered while developing CPH STL. That
includes a way of writing container declarations which improves the
readability. We implemented this language extension using a prepro-
cessor. Also, we propose that support for compile-time profiling should
be built into the language.

2. Software availability

The code relevant for our study can be found at the following locations:

3

– The code relevant for the paper “Applying Design Patterns to
Specify the Architecture of a Generic Program Library” can be
found at the following URL: http://www.cphstl.dk/Download/

CPHSTL-MiniRelease-120109.tgz.

– The code relevant for the paper “Adaptable Component Frameworks:
Using vector from the C++ Standard Library as an Example” can be
found in the CPH STL report 2009-4. The report is available at the
following URL: http://www.cphstl.dk/Source/Vector-framework/
Report/doc.pdf.

– The code relevant for the report “Towards better usability of compo-
nent frameworks” can be found in the online version of the report.
The report is available at the following URL: http://www.cphstl.dk/
Report/Better-Usability/better-usability.pdf.

A compressed zip file, containing all the code, can be found at the following
URL: http://bo.geekworld.dk/files/code/thesis-files.zip.

Background

In this chapter we will give some background on C++ generic programming,
the STL, and software patterns which include idioms and design patterns.
Many sources on C++ generic programming (for example [26, 1]) and the
STL (for example [17, 15]) can be found. We will only need a subset of the
terminology and techniques described in these sources, therefore we provide
a distilled version of the terminology and techniques relevant for this study.

The well-known design patterns specified in [9] can also be applied in
C++ generic programming. This is shown in [8], but only a subset of the
patterns used in the CPH STL are described there. We will describe the
generic structure of each design pattern relevant for our study. We will also
describe several programming techniques which can be classified as idioms.

3. Polymorphism

In computer programming, a high degree of code reuse has always been a
desirable property. Code reuse gives, among other things, good maintain-
ability since copy-paste code is almost non-existing. A high degree of code
reuse is usually obtained by packing individual peaces of code into small
components. These components are denoted classes which have a collection
of members (instances are denoted objects); a member in a class can be a
type, a function, or data in form of a variable.

In a typical design, several classes may have a subset of members in
common. Since one wants to, by all means, avoid copy-paste code most
languages provide a feature called inheritance. Inheritance means that a
class can inherit all members from one or more classes3. Let us study how
inheritance works by using an example. We want to design a system which
can store a collection of publications. These publications can be books, arti-
cles, theses, and so on. We could design classes for each kind of publication
containing the members: author, title, year, and so on. Instead, since we
want to maximize the amount of reused code, we use inheritance such that
we get a base class publication which contains the common members. The
code of such a system is shown below:

1 #include <string>
2 #include <iostream>
3 using namespace std;
4

3 Not all widespread programming languages have the feature of “multiple inheritance”,
for example, Java does not.

4

5

5 typedef enum {MSc = 0, PhD = 1, Lic = 2, Dr = 3} thesis_type;
6

7 class publication {
8 public:
9 publication(string _author, string _title, short _year) : author(

_author), title(_title), year(_year) { }
10 virtual void print() {
11 cout << "Author: " << (*this).author << endl;
12 cout << "Title: " << (*this).title << endl;
13 }
14 private:
15 string author;
16 string title;
17 short year;
18 };
19

20 class book : public publication {
21 public:
22 book(string _author, string _title, short _year, string _publisher

) : publication(_author, _title, _year), publisher(_publisher)
{ }

23 void print() {
24 cout << "Book" << endl;
25 publication::print();
26 cout << "Publisher: " << (*this).publisher << endl;
27 }
28 private:
29 string publisher;
30 };
31

32 class thesis : public publication {
33 public:
34 thesis(string _author, string _title, short _year, thesis_type

_type) : publication(_author, _title, _year), type(_type) { }
35

36 void print() {
37 if(type == MSc) {
38 cout << "Master’s Thesis" << endl;
39 }
40 else if(type == PhD) {
41 cout << "Ph.D. Thesis" << endl;
42 }
43 publication::print();
44 }
45 private:
46 thesis_type type;
47

48 };
49

50 void print_publications(publication** p, int n) {
51 for(int i = 0; i < n; i++) {
52 p[i]->print();

6

53 std::cout << "*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-**-*-*-*-*-*" <<
std::endl;

54 }
55 }
56

57 int main() {
58 book* b = new book("David Vandevoorde and Nicolai M. Josuttis", "C

++ templates", 2003, "Pearson Education Inc.");
59 thesis* t = new thesis("Bo Simonsen", "Foundations of an adaptable

 container library", 2009, MSc);
60 publication* publications[2];
61 publications[0] = dynamic_cast<publication*>(b);
62 publications[1] = dynamic_cast<publication*>(t);
63

64 print_publications(publications, 2);
65 }

What happens in this example is that we create two objects; one of the
type book and one of the type thesis. These two objects are stored in
an array, which type is the superclass publication. Since the two classes
are inherited from the same base class, such a cast is possible. The func-
tion print_publication does simply traverse the array and calls the print
member function of the objects. It may seem like that the print mem-
ber function of the publication class is called, but what really happens is
that the member functions of the subclasses, book and thesis, are called
depending on the actual type of the objects.

The concept which we use, when one type can be used like another type,
is polymorphism. When inheritance is used to achieve polymorphism we call
it dynamic polymorphism or run-time polymorphism since it requires that
elements are allocated at the heap which can only take place at run time.
In this thesis, we will study a different kind of polymorphism which is static

polymorphism or compile-time polymorphism. This kind of polymorphism is
realized in C++ using template-based programming which we will study in
the following section.

4. C++ generic programming

The principle of generic programming means to create programs that are
adaptable and general. Achieving the goal of adaptability and generality
requires, in most cases, that the programs do not rely on explicit types.
Instead, type parameters are used which are substituted with real types by
the compiler during the compilation. In the C++ programming language
these type parameters are denoted template parameters; the instances of
the template parameters are denoted template arguments [26]. All functions
and self-defined types (struct and class) may be declared with template
parameters. In other programming languages these type parameters have
different names, for example, in Haskell the type parameters are denoted
type variables [25].

7

Table 1. A function template and a class template.

A function template

1 template <typename T>
2 void fun(T const& t) {
3 ...
4 }
5

6 int main() {
7 int a = 5;
8 char b = ’a’;
9 fun(a);

10 fun(b);
11 }

A class template

1template <typename T>
2class my_class {
3public:
4my_class(T const& _t) {
5(*this).t = _t;
6}
7...
8private:
9T t;
10};
11

12int main() {
13my_class<int> a(5);
14my_class<char> b(’a’);
15}

4.1 Function and class templates

A class template is a class that is declared with one or more template pa-
rameters and respectively a function template is a function which is declared
with one or more template parameters. An example of a function template
and a class template is shown in Table 1.

The function template fun shown in the left part of Table 1 has one tem-
plate parameter T. Upon compilation of the program, two different versions
of fun are created by the compiler: fun<int> and fun<char>, i.e. T is sub-
stituted with the corresponding types. Notice that the template argument is
not given explicitly for fun but it is deduced from the type of the argument,
e.g. fun is called with variable a, the compiler knows that a is of type int,
hence int is given as template argument to fun. It is allowed to explicitly
give the template arguments, for example, fun<int>(a).

The class template my_class shown in the right part of Table 1 has
one member function, namely a parameterized constructor. Objects of this
class template can be created using this constructor. The class template
has one template parameter. In the example the class template is instanti-
ated two times with different template arguments which are int and char.
Since the template arguments are not the same, two different versions of
the class template will be generated by the compiler: my_class<int> and
my_class<char>. Notice that for class templates the template arguments
must be given explicitly (unlike the function templates where the template
arguments are deduced from the types of the arguments).

Both built-in types (int, char, and so on) and self-defined types can be
given as template arguments. In addition to types, a template argument can
also be a constant. These constants should be of a countable type which

8

exclude the types float, double, and self-defined types. The template
arguments are immutable, i.e. after they are given they cannot be changed.

A class template can take default template arguments which are template
arguments that are used, if the user did not explicitly give them. We will
demonstrate in the example below how this concept is applied. Within the
scope of the current C++ standard, function templates cannot take default
arguments but the upcoming revision of the C++ standard will allow function
templates to take default arguments.
Example 1. All STL containers take the following template arguments:
the type of the value (V) and the type of the allocator (A). However, the
user is only required to give the type of the value. The user can give the
type of the allocator but it is not required. This behaviour results in the
following C++ code, where the allocator has a default argument.

1 template<typename V,
2 typename A = std::allocator<V> >
3 class container {
4 ...
5 };

2

4.2 Specializations

An individual class template can exist in several versions, we may have
one version of the class template for one permutation of types (template
parameters may be intermixed), and another version of the class template
for another permutation of types. We call such a version a specialization.
We have, in general, two kinds of specializations:
Partial specialization: A specialization where template parameters and

explicit types are intermixed. This means that a subset of the template
parameters can be locked to specific template arguments, and the spe-
cialization is used if this subset of template arguments is given to the
class template. The remaining template parameters will be instanti-
ated to the respective arguments given by the user. An example of
partial specializations is shown in the right part of Table 2.

Full specialization: A specialization which consists exclusively of types.
This means that such a specialization is only used if the specified types
are given as template arguments. This kind of specialization is also
known as explicit specialization. An example of full specializations is
shown in the left part of Table 2.

If a permutation of types does not match a specialization the regular class
template is used. If no such class template exists, the compilation does not
succeed.

The concept of specialization makes the C++ programming language
strong with respect to generic programming. This concept can be used
to perform various optimizations, for example, generic containers and algo-
rithms can be specialized to achieve optimizations for some specific types

9

Table 2. A full specialization of a class template and a partial specialization of a class
template.

Full specializations

1 template <typename A, typename B>
2 class my_class {
3 ...
4 };
5

6 template <>
7 class my_class<int, bool> {
8 ...
9 };

10

11 template <>
12 class my_class<float, bool> {
13 ...
14 };

Partial specializations

15template <typename B>
16class my_class <int, B> {
17...
18};
19

20template <typename B>
21class my_class <float, B> {
22...
23};

(std::vector<bool> is a classic example, providing a bit vector instead of
a regular dynamic array). Another application of specializations is traits

classes which are classes that are used to deduce properties of types at com-
pile time. In Table 3, two examples of traits classes are shown; these class
templates are widely used in the development of CPH STL.

The first example, shown in the left column of Table 3, is a class template
called if_then_else, which consists of two partial specializations. This
class template is widely used in our library and its purpose is to perform
an if-then-else statement at compile time. The class template takes three
template arguments, a Boolean argument, and two types. If the Boolean
argument is true, the member type will be set to the first type argument,
and if the Boolean argument is false the member type will be set to the
second type argument. This behaviour is realized by the two specializations.
Often, we take advantage of that the Boolean argument can be the result of
an evaluation of an expression which takes place at compile time.

Example 2. Consider two template arguments X and Y. We select X if its
size is smaller than the size of Y, otherwise we select Y. The following example
realizes the desired behaviour:

1 typedef cphstl::if_then_else<sizeof(X) < sizeof(Y), X, Y>::type
2 selected_type;

2

The second example, shown in the right column of Table 3, is a regular
class template and a partial specialization. This class template is also highly
relevant for library development, since it checks whether two types are the
same at compile time. The specialization is used when the two types given
as template arguments are the same; it defines the member are_same to the

10

Table 3. The traits classes (a) cphstl::if then else and (b) cphstl::types.

(a)

1 template <bool, typename T,
typename U>

2 class if_then_else;
3

4 template <typename T, typename U>
5 class if_then_else<true, T, U> {
6 public:
7 typedef T type;
8 };
9

10 template <typename T, typename U>
11 class if_then_else<false, T, U> {
12 public:
13 typedef U type;
14 };

(b)

1template <typename X, typename
Y>

2class types {
3public:
4enum { are_same = 0 };
5};
6

7template <typename X>
8class types<X, X> {
9public:
10enum { are_same = 1 };
11};

constant one. If they are not the same, the regular class template will be
used, which defines the member are_same to the constant zero.

Example 3. The function template mystery takes two template argu-
ments. If the two types equals the first template argument is the return
type, otherwise the return type is a pair of the two types.

1 template <typename X, typename Y>
2 cphstl::if_then_else<cphstl::types<X, Y>::are_same,
3 X,
4 std::pair<X, Y> >
5 mystery(X const& x, Y const& y) {
6 ...
7 }

2

4.3 Operator overloading

In the set of programming languages considered imperative and widespread
it is quite rare to find a programming language which provides a language
feature for altering the meaning of operators. C++ is such a language, almost
every operator can be overloaded. The most common operators to override
are: +, -, ++, --, *, ==, !=, <, >, <=, >=, (). An operator can be overridden in
C++ by implementing a member function called operator postfixed by the
operand. Operator overloading can also be made using function templates.

Example 4. Reconsider the example given in Table 1. Here we define the
class my_class. We desire that we can write:

1 my_class<int> a(5);
2 my_class<int> b(7);

11

3 my_class<int> c = a + b;

We can implement an operator overloading for my_class, such that addition
is supported, in the following way.

1 template <typename T>
2 class my_class {
3 public:
4 my_class(T const&);
5 my_class operator+(my_class const& o) {
6 my_class tmp((*this).t);
7 tmp.t += o.t;
8 return tmp;
9 }

10 ...
11 };

The operator overloading could also be implemented as the function tem-
plate:

1 template <typename T>
2 my_class<T> operator+(my_class<T> const& x, my_class<T> const& y) {
3 ...
4 }

2

Operator overloading supports generic programming in C++, since it can
provide desired semantics for class types. For example, consider a function
template which computes the sum of all objects stored in an array. The
type stored in array is given to this function template as template argument.
With the presence of the addition operator (operator+) in my_class, we
can now give that function an array of my_class objects, and it will compute
the sum successfully. An array of a built-in type (int, char) can be accepted
by the same function template.

Several concepts in C++ programming rely on the possibility of operator
overloading. For example, a functor is a class which contains one operator,
operator(). An object of this class can be invoked like a regular function.
Consider an object x, the operator() is invoked by x(A), where A is the
list of arguments which operator() expects. Also, STL iterators are a result
of operator overloading, which we will see later.

A special operator is the conversion operator. We say that it is a special
operator, since it is not like the other operators. A usual operator is defined
for operands, but a conversion operator is defined for a type. When a
typecast from A to B is requested, and A provides a conversion operator
for type B, this conversion operator is invoked. This conversion operator
should, of course, return an object of type B. The example below shows how
the conversion operator can be implemented and used.

Example 5. Reconsider my_class one more time. We can define a conver-
sion operator, such that if an object of my_class is casted to T, the member
t is returned.

12

1 template <typename T>
2 class my_class {
3 public:
4 my_class(T const&);
5 my_class operator+(my_class const& o);
6 operator T() {
7 return (*this).t;
8 }
9 ...

10 private:
11 T t;
12 };
13

14 int main() {
15 my_class<int> a(5);
16 std::cout << static_cast<int>(a) << std::endl;
17 }

2

4.4 Template metaprogramming

The principle of metaprogramming is to write programs that write or modify
programs. A general interpretation of the C++ programming language is that
it is two languages: The standard language which is described in many text-
books which includes loops, functions, classes, and other language features
found in most imperative programming languages. This language is defined
to be everything which is evaluated at run time. The second language is the
template metaprogramming language, which consists of code that is eval-
uated at compile time. Additionally, the compiler directives (for example,
#define) belong to this language since they are processed at compile time.

We have already seen examples of the use of this language. Reconsider the
example given in Example 2. Here, we are using some information given by
the types to select the appropriate type. This code is executed at compile
time, hence this kind of code belongs to the template metaprogramming
language.

The existence of the template metaprogramming language allows us to
perform computations at compile time. We can also perform optimization
techniques like loop unrolling (see [26]) using this programming language. In
fact, the programming language is proven to be Turing complete [27, 5], such
that every computation which can be performed using a Turing machine [13]
can also be performed using the template metaprogramming language.

We will clarify how such computations can be performed at compile time
using the template metaprogramming language with the example shown
below. The syntax for writing these metaprograms is quite complicated, as
the reader can verify by examining the example. We believe that the D
programming language [7] has succeeded in creating a better way of writing
metaprogramming code, since that code is almost similar to the code one

13

would write for run-time computations (see Example 7). It would be a
benefit for C++ if the same behaviour existed [28].

Example 6. The nth Fibonacci number Fn for n ≥ 0 is defined by the
following recursive formula:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

The following C++ program will compute the 20th Fibonacci number at
compile time:

1 template <int N>
2 class fib {
3 public:
4 enum { result = fib<N-1>::result + fib<N-2>::result };
5 };
6

7 template <>
8 class fib<0> {
9 public:

10 enum { result = 0};
11 };
12

13 template <>
14 class fib<1> {
15 public:
16 enum { result = 1};
17 };
18

19 int main() {
20 int a = fib<20>::result; // a contains 6765
21 }

In this example we have a class template which is used when n ≥ 2 and two
full specializations which are used when n = 0 or n = 1. What happens
is that fib<20> will generate code for the classes fib<19> and fib<18>;
fib<18> will generate code for fib<17> and fib<16>. The code generation
continues in the same way until the specializations fib<0> and fib<1> are
reached. Notice, that the computation of each Fibonacci number is per-
formed once therefore the worst-case number of template instantiations is
Θ(n) for the nth Fibonacci number (unlike the naive recursive algorithm
which has exponential running time). 2

Example 7. In this example we will show how the D metaprogramming
language can be used for compile-time computation. The metaprogram
given in Example 6 can be implemented in the following way using the D
metaprogramming language:

1 template Fib(ulong n)
2 {

14

3 static if(n == 0 || n == 1) {
4 const Fib = n;
5 }
6 else {
7 const Fib = Fib!(n - 1) + Fib!(n - 2);
8 }
9 }

10

11 void main() {
12 const a = Fib!(20); // a contains 6765
13 }

Writing the same code in a regular imperative programming language, such
that the computation is performed at run time, will result in similar code.

2

5. The STL

The STL is a collection of generic algorithms and containers. The algorithms
and containers are written in such a way that they can be used for any type
that is given by the user. The iterators are the glue between the containers
and algorithms such that the algorithms can access the data stored in the
container. This is illustrated in Figure 1.

Generic

algorithms
ContainersIterators

Figure 1. The algorithms, iterators, and containers.

From the programmer’s point of view, the STL is a toolbox with reusable
algorithmic components which are ready to be used in application devel-
opment with no modifications. Let us consider an example of a program
where the components are used. The example below shows a generic al-
gorithm called random_vector which purpose is to generate a sequence of
distinct elements which are randomly selected.

1 #include <algorithm>
2 #include <vector>
3 #include <iostream>
4 #include <iterator>
5

6 template <typename T>
7 class random_number_generator {
8 public:
9 random_number_generator(T _max) : max(_max) {

15

10 srand(time(NULL));
11 }
12 T operator()() const {
13 T tmp = (rand() if(tmp == 0) {
14 return 1;
15 }
16 return tmp;
17 }
18 private:
19 T max;
20 };
21

22 template <typename I>
23 void random_vector(I start, I stop, std::size_t n) {
24 typedef typename std::iterator_traits<I>::value_type V;
25

26 random_number_generator<V> f(30);
27

28 std::generate_n(start, n, f);
29 std::sort(start, stop);
30

31 I end = std::unique(start, stop);
32

33 while(end != stop) {
34 int random_number = f();
35

36 I it = std::lower_bound(start, end, random_number);
37

38 if(*it != random_number) {
39 I new_it = end;
40 new_it++;
41 std::copy_backward(it, end, new_it);
42 end++;
43 *it = random_number;
44 }
45 }
46 }
47

48 int main() {
49 std::vector<int> v(10, 0);
50 random_vector(v.begin(), v.end(), 10);
51 ...
52 }

In this setting we have one container object of type vector storing objects
of type int. The container vector is a dynamic array; the difference be-
tween a vector and an ordinary array is that memory management is done
automatically and it is transparent to the user. The vector container is
constructed using a parameterized constructor which initializes the vector

to contain 10 elements with the value zero.

The random_vector generic algorithm is called using the iterators given

16

by the vector container (but other containers can be used as well). An
iterator pointing to the beginning of the sequence is obtained by the call to
begin() and an iterator pointing to the end element is obtained by the call
to end(). This element is located one element past the last element stored
in the container. We will now study the implementation of random_vector.
This generic algorithm uses five other generic algorithms to implement the
desired behaviour; these algorithms are:
generate_n calls the functor given as the third argument (f), n times (n is

given as the second argument) and stores the results in the container
where the iterator given as the first argument is the starting position.
The behaviour of the algorithm is illustrated in Figure 2(a).

sort rearranges the elements in the sequence enclosed by the iterators given
as arguments such that the elements appear in sorted order.

unique removes duplicates appearing consecutively in the sequence en-
closed by the iterators given as arguments. An iterator pointing to
the last element in the sequence is returned. The behaviour of the
algorithm is illustrated in Figure 2(b).

lower_bound searches the sequence enclosed by the iterators, given as the
first and second argument, for an element which is less than or equal
to the element given as the third argument. An iterator pointing to
the element found is returned.

copy_backward performs backward copying of the elements stored in the
sequence enclosed by the iterators, given as the first and second argu-
ment. The iterator given as third argument determines the starting
position of the resulting sequence. The concept of backward copying
means that the elements are copied in reverse order, such that the last
element is copied first. The behaviour of the algorithm is illustrated in
Figure 2(c).

We can now understand what happens in the random_vector generic
algorithm. We generate a sequence consisting of random numbers (by
generate_n and the functor random_number_generator which gives a ran-
dom number every time it is invoked), sort the sequence (by sort), and
remove the duplicate elements (by unique). After these actions the size of
the sequence may be less than n; we need exactly n elements, therefore we
may be forced to generate additional elements. This action happens in the
while loop. The while loop runs as long as the number of distinct elements
is less than n. Every time the loop runs we generate a new element, if the
element is not present in the sequence, the element is inserted into the se-
quence; the check is performed using lower_bound. The iterator given by
lower_bound points at the position where the new element should be in-
serted. The insertion is done by copying all elements (by copy_backward),
starting from the iterator given by lower_bound, one slot forward. After
the copying procedure, the generated element is copied to the slot which the
iterator given by lower_bound points to.

In the following subsections we will study the concepts of containers and
generic algorithms a bit closer.

17

(a)
n

f() f() f() f()

start

(b)

2 3

stop

2 3

return value

stop

11 1

start start

(c)

3 42

it end

new it

copy direction

Figure 2. Three algorithms: (a) generate n, (b) unique, and (c) copy backward.

5.1 Containers

A container is a class template, which stores a collection of objects which can
be updated dynamically using the member functions of the class template.
All containers in the STL provide, among other things, the following member
functions:

I insert(I pos, V const& v): Inserts an element v before the element
in the sequence which is pointed to by the iterator pos. We denote this
member function insert by locator.

void erase(I pos): Erases the element pointed to by the iterator pos.
We denote this member function erase by locator.

I begin(): Returns a mutable iterator4 pointing to the first element stored
in the container.

4 For ordered containers, this iterator can be used to violate the invariants of the data
structure. This seems like a mistake in the C++ standard.

18

I end(): Returns a mutable iterator pointing to the element which is
located one position past the end.

size_type size(): Returns the number of elements stored in the con-
tainer.

size_type max_size(): Returns the maximum number of elements the
container can store.

Additionally, all containers provide a parameterized constructor, a copy
constructor, a destructor, and a = operator. Each container provides addi-
tional member functions which may differ from the other containers. The
STL provides the following containers (the template parameters C and A are
the comparator and allocator respectively; we will describe these later):

list<V, A> is a doubly-linked list storing elements of type V; list allows
all modifying operations (insert and erase by locator, insert and erase
in the front or the end) to be done in O(1) worst-case time. Iteration
can only be done sequentially, by starting in either the beginning or
the end; advancing the iterator one step takes O(1) worst-case time. A
typical implementation of list is illustrated in Figure 3(a) .

vector<V, A> is a dynamic array storing elements of type V; vector pro-
vides O(1) amortized time for the operations insert and erase in the
end, O(n) worst-case time for insert and erase in the middle and the
beginning, and random access in O(1) worst-case time (n denoting the
number of elements stored). The vector class provides the operator
[] that works as ordinary array indexing. The data stored in the con-
tainer must be in a contiguous memory segment, which excludes all
other implementation alternatives. The doubling array [4] (where the
capacity is doubled when an expansion is needed) is the most typi-
cal implementation; such a data structure is illustrated in Figure 3(b)
where four elements are inserted into the container.

set<K, C, A> is an ordered collection of unique elements of type K. All
modifying operations, with a few exceptions, take O(lg n) worst-case
time; the exceptions include insert by locator and erase by locator
which take O(1) amortized time. Because the elements are ordered
set provides additional member functions including lower_bound,
upper_bound, find, insert(V const&), and erase(V const&); these
operations take O(lg n) worst-case time. The container provides se-
quential iteration like list, however advancing the iterator takes O(1)
amortized time. A typical implementation is a binary search tree,
like the one illustrated in Figure 3(c). Because of the amortized time
bounds for insert by locator and erase by locator the only possible
implementation is a red-black tree [12].

multiset<K, C, A> is similar to set, except multiple elements of type K

with the same value are allowed.

map<K, V, C, A> stores a collection of unique keys of type K. Each key
has a value associated of type V. The map container is similar to set,
but the actual value stored is the pair 〈K , V〉.

19

(a)

v1 v2 v3

l.begin()

l.end()

(b)

copy
allocate and

copy
allocate and

v1 v1 v2 v1 v2 v3 v4

(c)

> v1< v1

v1

s.end()

s.begin()

vmin vmax

(d)

v1 v2 v4 v5 v6 v7v3

Iterator

End
iterator

a fixed-size node

directory

Deque

User space

Start
iterator

d.begin()
d.end()

Figure 3. Typical implementations of (a) list, (b) vector, (c) set, and (d) deque.

20

multimap<K, V, C, A> is similar to map but allows several elements with
the same key.

deque<V, A> is a double-ended queue. This data structure offers the same
guarantees as vector (including random access), but it also offers O(1)
amortized cost for insertion and deletion in the beginning of the se-
quence. A typical implementation of deque (described, for example, in
[16]) is illustrated in Figure 3(d).

5.2 Iterators

An iterator is a class template providing pointer semantics, meaning that
it can be used in the same way as a pointer by the operators ++, *, and so
on. An iterator is a generalization of a pointer, meaning that it points to an
element, and it provides member functions for altering and retrieving that
element. Also, it provides member functions for advancing and comparing
positions.

As we learned earlier, by studying the containers, the iterators are created
by the containers. We saw that each container can create a mutable iterator

(with begin() and end()), which is an iterator which allows modifications
of the element pointed to by the iterator. Each container can also create an
immutable iterator which is an iterator that prohibit any modification of the
element pointed to by the iterator. Each container can also create a reverse

iterator which is a special kind of iterator, where each advance operation
is negated such that ++ means -- and -- means ++. Also rbegin() and
rend() have the opposite meanings, rbegin() gives --end() and rend()

gives --begin().
Most containers provide bidirectional iterators which means that the iter-

ators can move one step forward or one step backward with one advance op-
eration. The containers vector and deque provide random-access iterators

which allow the iterator to be advanced an arbitrary number of positions.
In the example below, we will show how iterators are used.

Example 8. Several programming languages (for example, Haskell and
Python) provide a function called zip which works as follows: zip is given
two sequences; it takes one element from the first sequence and one element
from the second sequence and creates a pair of these elements. It continues
until the end of one of the sequences is reached.

We want to implement zip in C++; the example below shows the use of
zip in Haskell:

1 Prelude> zip [1,2,3,4] [’a’, ’b’, ’c’]
2 [(1,’a’),(2,’b’),(3,’c’)]

Below is an implementation of zip in C++ (we return a vector of the zipped
elements):

1 template <typename I, typename J>
2 std::vector<std::pair<typename I::value_type, typename J::value_type

>

21

3 zip(I begin_c1, I end_c1, J begin_c2, J end_c2) {
4 typedef std::pair<typename I::value_type, typename J::value_type>

pair_type;
5 typedef std::vector<pair_type> result_type;
6 result_type result;
7 I i = begin_c1;
8 J j = begin_c2;
9 while(i != end_c1 && j != end_c2) {

10 result.push_back(pair_type(*i, *j));
11 ++i;
12 ++j;
13 }
14 return result;
15 }

As the reader can verify, the way iterators are used is identical to the way
regular pointers are used. 2

5.3 Algorithms

A generic algorithm is a function template which performs operations on
a container or a sequence (or an array). In general there are two different
types of algorithms: mutating algorithms which may make modifications to
the data stored and non-mutating algorithms which read the data stored
and make no modifications. Each algorithm is specified in the C++ stan-
dard. This specification usually consists of preconditions, invariants, and
postconditions. Included in this specification is also the time-complexity
requirements of each algorithm. The library developers have the freedom to
implement an arbitrary algorithm, as long as it satisfies the time-complexity
requirements given and, of course, satisfies the invariants. The same applies
to the implementations of the containers.

To clarify how the algorithms work, we will study the most simple of all
generic algorithms included in the STL.

Generic algorithm 1. The code given below is a full implementation of
the swap algorithm. The purpose of this algorithm is to swap the two values
given as arguments; the arguments are references to the values:

1 template <typename T>
2 void swap(T& a, T& b) {
3 T c = a;
4 a = b;
5 b = c;
6 }

Since the arguments are references, the changes will be propagated to the
scope of the calling function. 2

The collection of algorithms in the STL is large; below is a description of
some selected algorithms (several versions of each individual algorithm may
be available):

22

Generic algorithm 2.
template <typename I, typename O, typename F>

O transform(I s, I e, O o, F f);

For each element x in the sequence enclosed by the iterators s and e, the
functor f is invoked with x as argument. The result is stored in the sequence
starting from o. Figure 4(a) shows how transform works. This algorithm is
similar to the map higher-order function found in many functional program-
ming languages. 2

Generic algorithm 3.
template <typename I, typename O, typename F>

O remove_if_copy(I s, I e, O o, F f);

For each element x in the sequence enclosed by the iterators s and e, the
functor f is invoked with x as argument. If f(x) is true, x is copied to the
other sequence starting from o. Figure 4(b) shows how remove_if_copy

works. This algorithm is similar to the filter higher-order function found
in many functional programming languages. 2

(a)

o

f(x)

s e

x y z f(y) f(z)

(b)

os e

x y z yx z

f(y) == true
f(z) == true

f(x) == true

Figure 4. The algorithms (a) transform and (b) remove if copy.

The next algorithm is not classified as an algorithm in the C++ standard
(it is part of the numerics library), but according to our definition of an
algorithm it is also a generic algorithm.

Generic algorithm 4.
template <typename I, typename T, typename F>

T accumulate(I s, I e, T init, F f);

Let a denote an accumulator, initialized to init. For each element x in

23

the sequence, enclosed by the iterators s and e, a = f(a, x) is computed.
Below is an example which shows how the factorial function can be computed
using accumulate.

1 int array[] = {2, 3, 4, 5, 6};
2 std::cout << std::accumulate(array, array+5, 1, std::multiplies<int

>());

This code is equivalent to the following C++ code:

1 std::multiplies<int> f;
2 int a = 1;
3 for(int i = 0; i < 5; ++i) {
4 a = f(a, array[i]);
5 }
6 std::cout << a;

This algorithm is similar to the foldl higher-order function found in for
example Haskell, and reduce found in Python. 2

5.4 Other components

The memory management and ordering of elements are decoupled from the
containers and algorithms in order to obtain the highest degree of genericity
and flexibility. This decoupling introduced two new concepts: an allocator
and a comparator. An allocator is a class template containing member
functions for memory allocation and deallocation. A comparator is a class
template containing one member function, which is invoked every time a
container or an algorithm performs a comparison between two elements.
The allocator is given as template argument to a container. Likewise for
the comparator but some containers do not accept a comparator (e.g. list,
however some member functions in list require a comparator, for example,
sort) because the elements are not ordered.

Typically std::allocator is used as an allocator, but several other al-
ternatives exist. For example, Boost [2] provides a pool allocator, where
an object pool is used to serve allocation requests, which can improve per-
formance when many deallocations and allocations take place. Also a block
allocator has been implemented [18], which allocates a large amount of mem-
ory which is used to serve allocation requests. This can speed up allocations
of small memory portions. The user can design his or her own allocators by
implementing a class with the members required by the C++ standard.

Regarding the comparator, std::less is typically used. If std::less is
invoked with two elements x and y, it will return x < y. The comparator
std::greater will perform x > y. The fact that comparison is decoupled
from the containers is especially relevant for ordered containers (the as-
sociative containers set, map, multiset, and multimap), and for generic
algorithms which rely on ordering (sort, binary_search, lower_bound,
upper_bound, and so on). That is because the user can specify an arbitrary
ordering.

24

A stack A queue A priority queue

s.push s.pop

q.push

q.pop

v0

v1

v2

v3

v0 v1 v2 v3

v1 v2

v3

pq.push

pq.pop

> v1∧ > v2

v0

> v0> v0

Figure 5. The three adaptors in the STL.

We will see several examples on the use of comparators and allocators in
the papers included in this thesis.

5.5 Adaptors

In addition to containers, the STL also provides a number of adaptors.
An adaptor is realized by a container, but an adaptor provides a differ-
ent interface and it provides a restricted subset of the member functions
found in the container. The STL provides three adaptors stack, queue,
and priority_queue; these concepts are known from the introductory text-
books on data structures, see Figure 5 for illustration. We will now describe
each adaptor with respect to their use:

stack<V, R> is a stack storing elements of type V. The stack is realized
using the container of type R. A stack can be realized by list, deque,
or vector. The class template stack provides, among other things,
three member functions which allow the user to modify it: top which
gives the top element, pop which removes the top element, and push

which inserts a new element at the top.

queue<V, R> is a queue storing elements of type V. Like stack, queue

gets the realizing container as template argument R. Similar to stack,
queue provides push and pop, but push appends an element to the
end, and pop erases the element stored at the beginning. The class
template queue allows the user to get the element at the beginning by
the member function front and the element at the end by the member
function back.

priority_queue<V, R, C> implements a priority queue storing elements
of type V, and realized by the container of type R. The comparator of
type C is used to compare the elements. This adaptor provides push,
pop and top. These member functions can be realized by the generic

25

algorithms push_heap and pop_heap; the implementation of which are
given, for example, in [4].

6. Software patterns

In algorithm theory, many hard computational problems exist. These prob-
lems are hard since they cannot be solved (computationally) in polynomial
time; hence they are classified as NP-hard problems [4]. Sometimes it is
enough to just provide approximate solutions to these computational prob-
lems, therefore several approximation algorithms and heuristics for several
problems have been found. An approximation algorithm finds a solution
within a provable error bound in polynomial time, and a heuristic has no
such error bound.

Also, in software design several hard problems exist. That is especially
the case when the software designer seeks the highest degree of reusability
and flexibility regarding the resulting design. A software pattern identifies
a recurring problem within a domain, and provides a skeleton of a solution.
One can say that software patterns are similar to approximation algorithms
(or heuristics), since they give approximate solutions to certain design prob-
lems. In general, software patterns are classified in three different categories
[20]: architectural patterns, design patterns and idioms.

A software architectural pattern [3] provides solutions to a high-level de-
sign problem. These patterns define an organization of software components
consisting of several classes. When specifying the software architecture for
a system, some properties might be more desirable than others. The cata-
logue of architectural patterns gives software designers an overview of the
weaknesses and strengths of using each pattern, so that the designer can
choose the one which fits the requirements of the system.

Example 9. In network design, the OSI model [24] is widely used. The OSI
model divides the process of communication on a network into several layers
(top down): the application, presentation, session, transport, network, data
link, and physical layers. When the user wants to transmit a packet, he or
she communicates with the application layer, which propagates the infor-
mation to the layers below, until the packet is transmitted by the physical
layer. When a packet arrives the process is reversed.

An example of the use of this model is the TCP/IP protocol5. The clear
advantage of using such a layered architecture in this respect is that the
layers are interchangeable. This means that any transmitting media can be
used with this protocol (Ethernet, Wireless Ethernet, and so on); it just
requires that the bottom layers are changed. 2

A design pattern provides solutions to a design problem, within the scope
of one or a few software components, consisting of a few classes. The dif-
ference between a design pattern and an architectural pattern is that the

5 A general interpretation is that the TCP/IP protocol consists of four layers: link, in-
ternet, transport and application layers.

26

apply patterns refactor

Initial
implementation

Figure 6. The CPH STL development process model.

architectural patterns are solutions for system-wide problems, whereas the
design patterns are more low level, since only a few classes are involved in
the solutions.

Example 10. We have already seen one design pattern, namely the iter-
ator design pattern. The iterator design pattern is defined by its intention
“Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation”. This pattern has been ap-
plied in the STL in order to obtain a unified way of traversing the elements
stored in a container. As we have seen in the earlier section on the STL, the
implementations of the containers are very different, so such mechanism is
needed to provide transparency for the user and the generic algorithms with
respect to traversal. This transparency means that the generic algorithms
can operate on any container disregarding the underlying representation. 2

An idiom is a solution to a low-level design problem. An idiom is a pro-
gramming technique for creating constructions, which are not build into the
language. A classic example of an idiom is swapping two values. A construc-
tion for performing this action is actually build into the C++ programming
language by the generic swap algorithm, which we saw earlier. However, in
some languages it may not be built in.

We have widely adopted idioms and design patterns into the development
of the library components in the CPH STL. Since these are very important
we will describe some relevant idioms and design patterns in the following
sections. The process model, of how the development of library components
was performed, is illustrated in Figure 6.

6.1 The pimpl idiom

The first idiom which we address is informally known as the the pimpl idiom,
which is short for “pointer to implementation” [23]. We found it relevant to
apply this idiom when implementing container decorators (or views), which

27

are similar to the adaptors, as we described in the section on the STL. The
difference is that the container decorators provide the same interface as the
container. Each decorator keeps an instance of the container, and their
purpose is to provide different representation or a subset of the data stored
in the container.

One problem with these decorators is that the container may be copy
constructed inside the decorator. This means that the elements are stored
twice. We wanted to avoid this; therefore we applied the pimpl idiom so that
the decorator keeps a pointer to the container. The skeleton of a container
decorator is shown below:

1 template <typename C>
2 class decorator {
3 public:
4 typedef typename C::size_type size_type;
5 ...
6 decorator(C const& _c) {
7 (*this).c = &_c;
8 }
9

10 size_type size() {
11 return (*(*this).c).size();
12 }
13 private:
14 C* c;
15 };

The original purpose of the pimpl idiom [23] was to avoid recompilation
when implementing programs (especially libraries) which relied on dynamic
polymorphism. However in the context of generic program libraries, avoiding
copy construction is more applicable.

6.2 The CRTP idiom

Most programmers may have encountered problems when using inheritance
in C++ programming. A well-known problem occurs in the following sce-
nario: Consider a base class Base, and several classes which inherit from
this class. Let us denote one of these Derived. The class Base should store
a member of Derived. Since we have several derived classes, we cannot
use an explicit type, neither the type of the base class without using type
casting.

The Curiously Recurring Template Pattern (CRTP) [26], which we denote
the CRTP idiom, describes how to implement the scenario mentioned above
in an elegant way that does not involve any type casting. The idea of this
idiom is to let the derived class give the type of itself to the base class such
that the base class can use the type of the derived class. A skeleton of this
kind of use of the CRTP idiom is shown below:

1 template <typename D>
2 class Base {

28

3 public:
4 ...
5 private:
6 D* derived_instance;
7 };
8 class Derived : public Base<Derived> {
9 public:

10 ...
11 };

We found this idiom relevant when constructing node classes, for exam-
ple, for binary search trees. A node for any kind of binary search tree needs
to have left, right, and parent pointers. To design a base class contain-
ing these pointers becomes hard since the type of the pointers should be
the derived class e.g. avl_tree_node, red_black_tree_node. We use the
CRTP idiom to solve this problem. The relevant lines of our node base and
sub classes look like this (more details can be found in [22]):

1 template <typename V, typename N>
2 class tree_node {
3 protected:
4 typedef N node_type;
5 node_type* _left;
6 node_type* _right;
7 node_type* _parent;
8 };
9

10 template <typename V>
11 class avl_tree_node : public tree_node<V, avl_tree_node<V> > {
12 public:
13 ...
14 };

6.3 The overriding idiom

So far we have seen some examples of how to obtain polymorphism by
template-based programming. We have seen how class templates can ac-
cept other class templates. A recurring construction in the CPH STL is
that some class template A accepts another class template B and calls to A

may be propagated to B. This is shown in the example below:

1 class B {
2 public:
3 void member1() { ... }
4 void member2() { ... }
5 };
6 template <typename C = B>
7 class A {
8 public:
9 void member1() { c.member1(); }

10 void member2() { ... }

29

11 void member3() { ... }
12 private:
13 C c;
14 }

This construction is in some way similar to inheritance. In some cases it
is relevant for us to provide a default member function in A if B does not
provide one. In our current example, this means that A should have a default
member function for member1 if B does not provide member1.

The overriding idiom allows us to do such check. We use the SFINAE
(substitution failure is not an error) principle, which allows us to perform
check of class members without causing a compiler error. The code given
below is a skeleton for making such checks:

1 template <typename U>
2 class has_member4 {
3 public:
4 typedef char NotFound;
5 struct Found { char x[2]; };
6 template <void (U::*)()>
7 struct TestIt ;
8

9 template <class T>
10 static Found Test(TestIt<&T::member4>*);
11 template <class T>
12 static NotFound Test(...);
13

14 enum { positive = (sizeof(Test<U>(0)) == sizeof(Found)) };
15 };
16 template <typename C = B>
17 class A {
18 public:
19 ...
20 private:
21 void member4_dispatch(cphstl::int2type<0>) {
22 /* default implementation; C has no member4 */
23 }
24 void member4_dispatch(cphstl::int2type<1>) {
25 /* C has member4, let us call that */
26 c.member4();
27 }
28 public:
29 void member4() {
30 member4_dispatch(cphstl::int2type<has_member4<C>::positive>());
31 }
32 private:
33 C c;
34 }

The has_member4 class template checks if the class given as template argu-
ment has the member function void member4(). We use a technique called

30

tag dispatching6 to call the appropriate member function.
We use this idiom to realize the concept of flexible interfaces, which means

if the underlying data structure does not provide an implementation, a de-
fault is used7. The current C++ programming language does not provide a
more elegant solution to implement flexible interfaces, however a solution
based on C++ concepts is more elegant.

7. Design patterns

The structure of the design patterns discussed in [9] is realized by dynamic
polymorphism. Most patterns introduce flexibility such that the relationship
between the classes is not explicitly defined. The implicit relationship means
that one class in the setting can accept another class drawn from a set of
possible classes, denoted S. In [9], this implicit relationship is implemented
using inheritance, such that all classes in S inherit from a base class, which
we denote Base; the constructor of the accepting class requires an instance
of Base.

Our desire is to apply the design patterns, but in a generic setting. This
means that a class drawn from the set S is given to the accepting class as
template argument. We have only found one paper [8] which describes how
this can be implemented for a subset of the design patterns given in [9].
We think that most of the constructions given in [8] are too complicated.
Since we prefer simpler constructions, we will in this section, describe the
structure of the design patterns in a generic setting.

The generic versions of the design patterns are not directly equivalent
to the conventional versions. In the conventional form, the design patterns
provide type safety, meaning that it is verified at compile time whether the
relationship between the classes match, simply because of the use of base
classes. We have no such mechanism in a generic setting; C++ concepts [11]
provide such a mechanism, but since it will not be included in the language
yet, the generic versions of the design patterns may be unattractive in some
domains.

7.1 Generic bridge

We have already discussed the elements of the STL. In addition to the STL
there are several other algorithmic libraries. LEDA [14] is in the algorithm
community a highly-respected library that provides generic implementations
of data structures and algorithms in a wide area, ranging from computational
geometry to classic data structures and algorithms.

The main difference between the STL and LEDA is that in LEDA the
algorithms and data structures are not decoupled from each other. This

6 This technique is explained in our paper on the CPH STL architecture which is included
in this thesis.
7 This concept is explained in our paper on component frameworks which is also included
in this thesis.

31

-impl: I

+method1()
impl.method1()

+method1()

Implementation1

+method1()

Implementation2

Abstraction

I=Implementation1

Figure 7. The generic version of the bridge design pattern.

means that, for example, the graph algorithms are located in the graph
container. Another difference is that some LEDA containers take an imple-

mentation parameter, which gives the user the opportunity to specify which
data structure that will be used for realizing a container.

This means that LEDA provides several containers and each container
can be realized by several possible data structures. The bridge design pat-
tern allows such constructions to be implemented without code duplication.
The bridge design pattern is defined by its intention which is as follows “De-
couple an abstraction from its implementation so that the two can vary
independently”.

The generic version of the bridge design pattern is illustrated in Fig-
ure 7. The class Abstraction accepts the type of the implementation as
parameter. The default implementation used is Implementation1, how-
ever Implementation2 can also be used by explicitly passing this class as
template argument I. The abstraction class will forward the calls of mem-
ber functions to the corresponding member functions in the implementation
class.

This pattern is widely used in the CPH STL. We use it exhaustively to
decouple containers (abstract data types) from their implementations (data
structures). The CPH STL is similar to LEDA in this respect. We will
discuss this use in depth later.

32

-p1: P1

-p2: P2

+method1()

}

count = 0;
while (p1()) {

+operator()() : bool

+method(int)+method(int)

+operator()() : bool

p2.method(count);
count++;

Customizable

First Policy1 First Policy2

Second Policy1 Second Policy2

P2=Second Policy1

P1=First Policy1

Figure 8. The generic version of the strategy design pattern.

7.2 Generic strategy

We have already seen one application of the strategy design pattern, namely
the comparator in the STL. Recall that the comparator is used for contain-
ers and algorithms which perform operations that are based on an order-
ing. For example, the sort algorithm accepts a comparator such that if
std::less<V> is given the elements are sorted in increasing order, and if
std::greater<V> is given the elements are sorted in decreasing order; V

denotes the type of the values stored in the sequence. According to pattern
terminology each comparator is a strategy; we define the strategy design

pattern by the following intention “Define a family of strategies, encapsulate
each one, and make them interchangeable”.

The generic version of the strategy pattern is denoted a policy [26].
The difference between a strategy and a policy is that a strategy
can be changed at run time and a policy can be changed at com-
pile time. The generic version of the strategy design pattern is illus-
trated in Figure 8. The class Customizable accepts two classes given
as template arguments. The template parameter P1 accepts the classes
First_policy1 or First_policy2; the template parameter P2 accepts the
classes Second_policy1 or Second_policy2. The classes given by template
arguments are used in the member function denoted method1 to perform
some computation.

33

Decorator

-decoree: D

+method1()

+method2()

/* replace functionality */

/* extend functionality */

decoree.method2();

+method2() +method2()

+method1()

Decoree1

+method1()

Decoree2

D=Decoree1

Figure 9. The generic version of the decorator design pattern.

This pattern has been widely applied to the components in the CPH
STL. Most of our containers take customization parameters, for example, a
storage policy which states how the data should be stored. We will discuss
the use of policies in depth in the papers included in this thesis.

7.3 Generic decorator

Sometimes it may be necessary to extend the functionality or alter the be-
haviour of existing classes. The straight forward solution to implement such
an extension would be to take a copy of the existing code and modify it. But
because of code reusability considerations we desire a more refined solution.
This design problem is specified by the decorator design pattern, and it is
defined by its intention “Define additional responsibilities to a set of objects
or replace functionalities of a set of objects”.

The structure (illustrated in Figure 9) is similar to the bridge pattern.
The main difference is that a decorator extends or replaces functionality.
This means that some implementation can be done in the scope of the dec-
orator class. The alternative structure (illustrated in Figure 10) is based on
inheritance; this structure is given in [8]. This approach might be good for
large classes, in order to obtain a high degree of code reusability. However,
inheritance can be problematic, for example, the current C++ standard does
not allow inheritance of constructors and operator=.

In the CPH STL, we have designed several container and iterator decora-
tors (denoted custom iterators and container views). These are used to mod-

34

Decorator

+method1()

+method2()

/* replace functionality */

/* extend functionality */

D::method2();

D=Decoree1

Figure 10. An alternative generic version of the decorator design pattern. The class
Decoree1 is illustrated in Figure 9.

ify the representation of data in several different ways, without modifying the
data stored in the underlying container. For example, transform_view im-
plements the generic algorithm transform, but the elements are not copied
or modified. A view provides the same semantics as a regular container, but
with no modifying operations. This means that iterators can be obtained
by begin() and end(). When these member functions are invoked a smart
iterator is returned instead of a regular iterator. This iterator returns the
transformed value of the element of which the iterator points to when the *

operator is invoked. The transformed value is generated using the functor
given to transform_view (like transform also accepts a functor).

7.4 Generic adaptor

During our study of the STL we learned that the STL provides several
adaptors. These adaptors are using existing data structures to realize an
abstract data type. Adaptors are not just relevant for the STL, it is common
in most libraries, for example, LEDA is designed in such a way that the user
uses pointers to elements to locate the elements stored in the containers.
However LEDA provides STL adaptors such that the user can get STL
compatible iterators and in that way use the STL generic algorithms on
LEDA containers. The observation that adaptors are recurring has turned
it into a design pattern, denoted the adaptor design pattern, which is defined
by the following intention “Convert the interface of a class into another
interface expected by specific clients. Adaptor lets classes work together
that could not otherwise be possible because of incompatible interfaces”.

The idea of an adaptor is to design an interface which uses an existing
interface to obtain the functionality required by the desired interface. The
generic version of the adaptor design pattern is shown in Figure 11. The
class Adaptor accepts a class as template argument. This class contains the
interface which is used to realize the adaptor. We denote such a class an
adaptee. In the setting, given in Figure 11, the adaptee is denoted Adaptee1.

35

-adaptee: A

+method1()
adaptee.M1()

+M1()

Adaptor Adaptee1

A=Adaptee1

Figure 11. The generic version of the adaptor design pattern.

The calls to the member functions in Adaptor will be propagated to the
corresponding member functions in Adaptee1.

We use adaptors widely in the CPH STL. After we decoupled the contain-
ers and the realizators (data structures) we noticed that we could provide
support for LEDA interfaces, using our existing realizators [19]. All these
interfaces are nothing but adaptors for the existing realizators.

7.5 Generic abstract factory

When designing flexible software components with loose coupling, it is desir-
able that the relationship between the components becomes implicit. Con-
sider a cross-platform software system containing classes for GUI (Graphical
User Interface), printing, I/O, and so on. We do not want to check every
time which operating system we are using in order to select the right classes.
The abstract factory design pattern deals with this kind of problem, and it is
defined by its intention “Provide an interface for creating families of related
or dependent objects without specifying their concrete classes”.

The generic version of the abstract factory design pattern is illustrated
in Figure 12. In this setting, we define a concrete_factory class for each
family of types. In this particular example we have two different fami-
lies namely A and B, containing two classes each. If factory is given
concrete_factoryA, classes of family A are created, symmetrically for fam-
ily B.

The abstract factory design pattern is applied in the vector component
framework. In the CPH STL, a vector stores a collection of segments.
These segments can either store the value directly in the array or store
pointers to objects containing the value. The encapsulator determines which
kind of storage mechanism that is used. A kernel organizes the segments;
because of code reuse we want just one kernel class for every data structure.
We applied the abstract factory design pattern to allow that objects can be
created for the different kinds of storage mechanisms. Below is the relevant
code for the direct_encapsulator and indirect_encapsulator classes.

1 namespace cphstl {

36

ProductA 1

ProductA 2

ProductB 1

ProductB 2

concrete factoryA

+create prod 1()

concrete factoryB

typedef product1 : ProductA 1
typedef product2 : ProductA 2

typedef product1 : ProductB 1
typedef product2 : ProductB 2

return new product1();
typedef typename C::product1 product1;

: typename C::product1*

+create prod 2()

: typename C::product2*

Factory

C

Figure 12. The generic version of the abstract factory design pattern.

2 template <typename V, typename A>
3 class direct_encapsulator {
4 private:
5 typedef direct_encapsulator<V, A> this_type;
6 public:
7 typedef this_type slot_type;
8 typedef this_type* segment_type;
9 ...

10 };
11

12 template <typename V, typename A>
13 class indirect_encapsulator {
14 private:
15 typedef indirect_encapsulator<V, A> this_type;
16 public:
17 typedef this_type* slot_type;
18 typedef this_type** segment_type;
19 ...
20 };
21 }

The kernel uses the type segment_type to determine the type of the
segments and the type of the directory containing segments. The type
slot_type is used by the kernel to determine the type of each element
stored in the vector.

37

7.6 Generic proxy

Several programming languages provide a language feature called lazy eval-

uation. This concept means that computation is performed when it is
needed. Haskell provides lazy evaluation which makes it possible to create
infinite lists. For example, the Haskell program below provides the function
fib_list which returns an infinite list of Fibonacci numbers:

1 fib :: Int -> Int
2 fib 0 = 1
3 fib 1 = 1
4 fib n = fib (n-1) + fib (n-2)
5

6 fib_list :: [Int]
7 fib_list = map fib [1..]

If the user tries to print the value of fib_list, the program will never
terminate successfully. However, if we just take the first n elements from
the list (by take), it will terminate successfully.

Most imperative programming languages (for example, C++ and Java)
have no direct support for lazy evaluation, but with some constructions we
can obtain a similar behaviour. Consider a program operating on a collection
of files. These files are represented by classes, which are opened and read
when the program starts. This can result in an undesired delay at program
start. This problem can be solved by introducing a proxy class for each
file, such that every file is opened and read at the point of time when that
file is used. Solutions to similar problems are generalized to be a pattern,
namely the proxy design pattern, which is defined by the following intention
“Provide a surrogate or placeholder for another object to control access to
it”.

In the CPH STL, we have applied this pattern to solve a problem re-
garding strong exception safety. Each container must have a variant which
provides the strong exception safety guarantee, meaning that a container op-
eration either completes or throws an exception and the container remains
in the same state as before the exception was thrown. According to the
specification given in the C++ standard, swap must not throw an exception.
Since the allocators and comparators are swapped when the containers are
swapped, an exception may be thrown.

A solution to the problem described above is to introduce an allocator
proxy and a comparator proxy, which provide the same member functions
as their corresponding real subjects, but they store instances of the real
subjects as pointers. An elementary operation, like swapping a pointer,
cannot fail. The code for the comparator proxy is partly shown below (the
allocator proxy is similar):

1 namespace cphstl {
2 template <typename C>
3 class comparator_proxy {
4 public:

38

5 typedef typename C::first_argument_type first_argument_type;
6 typedef typename C::second_argument_type second_argument_type;
7 comparator_proxy(C const& c = C()) {
8 (*this).c = new C(c);
9 }

10 comparator_proxy(comparator_proxy&);
11 comparator_proxy operator=(comparator_proxy const&);
12 comparator_proxy operator=(C const& c);
13 ~comparator_proxy() {
14 delete (*this).c;
15 }
16 bool operator()(first_argument_type const& t1,
17 second_argument_type const& t2) const {
18 return (*(*this).c).operator()(t1, t2);
19 }
20 C subject() const {
21 return *((*this).c);
22 }
23 private:
24 C* c;
25 };
26 }

7.7 Generic template method

We discussed the allocator concept earlier. Each container accepts an al-
locator which contains member functions for memory management (for ex-
ample, allocation and deallocation). Some may argue that the allocator
is just a policy or a strategy. We believe the allocator is more than that,
since the code of the container is written without code for memory manage-
ment. That code is moved to the allocator, which provides simple functions,
like allocate and deallocate. The container uses these member functions
without knowledge of how memory is allocated. This design is an applica-
tion of the template-method design pattern, which intention is the following
“Define the skeleton of an algorithm in an operation, deferring some steps to
policies. Template method lets policies redefine certain steps of an algorithm
without changing the algorithm’s structure”.

One may say that this pattern extends the strategy design pattern, by
allowing a family of operations to be encapsulated into classes. The generic
version of the template-method design pattern is illustrated in Figure 13.
The Skeleton class accepts a policy class, given as template argument. The
policy class contains a collection of operations; this collection of operations
defines the variable functionality within the context of the Skeleton class;
hence the Skeleton class contains the code which is independent of the
possible policy classes. The operations within the Skeleton class should now
be composed by the operations defined in the policy classes. An alternative
structure based on template-based inheritance can be found in [8].

The kernel concept in our paper on component frameworks is the result of

39

-pol: P

+method1()
pol.M1();

Skeleton

pol.M2();

....

+M1()

+M2()

+M1()

+M2()

Policy1 Policy2

P=Policy1

Figure 13. The generic version of the template-method design pattern.

our use of the template method design pattern. We will study this concept
by using the following example. The insert by locator member function of
the framework is defined by the following code (k denotes the kernel object,
and f denotes the factory8 object):

1 iterator insert(iterator pos, value_type const& v) {
2 (*this).k.grow(1);
3

4 (*this).f.create(v, (*this).k.access((*this).k.size()), (*this).k.
size());

5

6 if (pos.first != (*this).k.size()) {
7 (*this).block_copy_backward(pos.first, (*this).k.size(), 1);
8 }
9

10 (*this).k.size((*this).k.size() + 1);
11 return concrete_iterator(pos.first, (*this).s);
12 }

What happens in this member function is the following. First, we call grow
in the kernel to request capacity for one additional element. The contract
between the kernel and the framework is that either is the call successful and
one extra slot is available or an exception is thrown. Afterwards, the element
is constructed using the access member function which maps a logical index

8 The factory should not be confused with the abstract factory design pattern, see the
paper on component frameworks for details.

40

to a physical address. Finally the elements are copied by backward copying
and the size is adjusted. As the observant reader may notice, we make no
assumptions of how the underlying data structure is organized.

41

References

[1] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied, Addison-Wesley (2001).
[2] Boost Community, Boost C++ libraries, Website accessible at http://www.boost.org

(1999–2008).
[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns, John Wiley &
Sons Ltd. (1996).

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd Edition, The MIT Press (2001).

[5] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and

Applications, Addison-Wesley (2000).
[6] Department of Computer Science, University of Copenhagen, The CPH STL, Website

accessible at http://www.cphstl.dk/ (2000–2009).
[7] Digital Mars, D programming language, Website accessible at http://www.

digitalmars.com/d/ (1999–2009).
[8] A. Duret-Lutz, T. Géraud, and A. Demaille, Design patterns for generic program-

ming in C++, Proceedings of the 6th Conference on USENIX Conference on Object-

Oriented Technologies and Systems, USENIX Association (2001), 189–202.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley (1995).
[10] GNU, libstdc++, Website accessible at http://gcc.gnu.org/onlinedocs/libstdc+

+/ (1999-2008).
[11] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lumsdaine, Concepts:

Linguistic support for generic programming in C++, SIGPLAN Notices 41, 10 (2006),
291–310.

[12] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts, A new representation
for linear lists, Proceedings of the 9th Annual ACM Symposium on the Theory of

Computing, ACM (1977), 49–60.
[13] H. R. Lewis and C. H. Papadimitriou, Elements of the theory of computation, 2nd Edi-

tion, Prentice-Hall International, Inc. (1998).
[14] K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and Geometric

Computing, Cambridge University Press (2000).
[15] S. Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard

Template Library, Addison-Wesley Longman Ltd. (2001).
[16] B. B. Mortensen, The deque class in the Copenhagen STL: First attempt, CPH STL

report 2001-4, Department of Computer Science, University of Copenhagen (2001).
[17] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference Guide: C++ Pro-

gramming with the Standard Template Library, 2nd Edition, Addison-Wesley (2001).
[18] J. M. L. Muñoz, A Custom Block Allocator for Speeding Up VC++ STL, Webpage

accessible at http://www.codeproject.com/KB/stl/blockallocator.aspx (2006).
[19] M. Neidhardt, Extending the CPH STL with LEDA APIs, Technical report, Depart-

ment of Computer Science, University of Copenhagen (2009).
[20] G. Rode, Evaluating software design patterns, Master’s Thesis, Department of Com-

puter Science, University of Copenhagen (2008).
[21] Silicon Graphics, Inc., Standard template library programmer’s guide, Website acces-

sible at http://www.sgi.com/tech/stl/ (1993–2004).
[22] B. Simonsen, A framework for implementing associative containers, CPH STL report

2009-3, Department of Computer Science, University of Copenhagen (2009).
[23] H. Sutter, Pimpls — Beauty marks you can depend on, C++ report 10, 5 (1998).

(Available at http://www.gotw.ca/publications/mill04.htm.)
[24] A. S. Tanenbaum, Computer Networks, 4th Edition, Prentice Hall PTR (2002).
[25] S. Thomson, Haskell: The Craft of Functional Programming, 2nd Edition, Addison-

Wesley (1999).
[26] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

42

Wesley (2003).
[27] T. L. Veldhuizen, C++ templates are Turing complete, Technical report, Indiana

University, Computer Science (2003).
[28] M. Zalewski, Private communication (2009).

43

Applying Design Patterns to

Specify the Architecture of a

Generic Program Library1

Jyrki Katajainen and Bo Simonsen

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

{jyrki,bosim}@diku.dk

Abstract. The standard template library (STL), now part of the C++ standard
library, ships with every standard-compliant C++ compiler. In this paper, we apply
design patterns to specify the structure of the CPH STL, which is a special edition
of the STL developed at the University of Copenhagen. Three design patterns
have had significant influence on the structure of the library: bridge, strategy, and
iterator. With the use of design patterns we obtain a high-quality design with many
desirable characteristics including simplicity, ease of maintenance, loose coupling,
extensibility, and reusability. Because of a high degree of parameterization, the
usability of components becomes a central issue and we propose a solution that
may be of independent interest for developers of other template libraries.

Keywords. Generic programming, design patterns, program libraries

1 Partially supported by the Danish Natural Science Research Council under contract
272-05-0272 (project “Generic programming—algorithms and tools”).

44

Table of contents

1 Introduction . 46
2 Bridges and realizations . 49
3 Strategies and policies . 53
4 Abstract and concrete iterators . 56
5 Reflections . 58
6 Language limitations . 61
7 Related work . 63
8 Concluding remarks . 65
References . 67

45

46

1. Introduction

In 1985, in his influential paper [43], Naur advocated that one should see
programming as theory building. On a software project, developers build
up in their minds a theory, a certain kind of insight of the system under con-
struction, and at the same time bind this theory to their code. Naur adapted
this notion of theory from Ryle [48]. In modern software-development lit-
erature, the theory is called a software architecture [15], a conceptual model
[24], a common vision [32], and a domain model [23]. In spite of these dif-
ferent names, it is commonly accepted that the same theory should underlie
design, implementation, and team communication. Often it is also impor-
tant to communicate the theory, or parts of it, to the user of the system
developed.

In this paper, we specify the theory behind a generic program library,
namely the Copenhagen standard template library (CPH STL) [19]. This
library is an enhanced edition of the STL [51], which has become a part
of the C++ standard library [14]. The STL is organized around three fun-
damental concepts: containers, algorithms, and iterators. A container is
implemented as a class template, i.e. as a class parameterized with a type,
an integral constant, a function, or a mixture of these. A container repre-
sents a dynamic collection of objects and supports a certain set of operations
for the manipulation of these objects. The container classes specified in the
current C++ standard include list, vector, deque, set, multiset, map, and
multimap. In the STL, an algorithm is implemented as a function template,
i.e. as a function parameterized like a class template. An iterator is imple-
mented as a class template and is used as an interface between algorithms
and containers.

Instead of just providing one implementation for each individual com-
ponent, the CPH STL provides several alternative implementations with
different performance and safety characteristics. Also, the library provides
some extended functionality in the form of new components. The develop-
ment of the CPH STL has been used as a reality exercise when training
software developers. The first prototypes of the components, available when
we started this work, were independent packages programmed by groups of
one to three people. Often the groups worked independently of each others
and there was a small amount of shared code across the packages. To elim-
inate redundant code and to increase code reuse, refactoring of the whole
library was inevitable. In accordance with Naur’s writings, we found it ne-
cessary to specify the theory behind the library in order to facilitate the
development of the next versions of the components.

According to Stepanov [42, Foreword], the principal designer and the
original implementor of the STL, the cornerstones of the design of the STL
were:

– generic programming,

– efficiency,

– von Neumann computational model, and

47

– value semantics.
Most of these fundamentals are still valid for the CPH STL, so let us look
at them one at the time.

In the context of the C++ programming language [14], generic program-
ming means programming with function and class templates. In other
words, individual components can take type arguments as well as value argu-
ments; type arguments are expanded at compile time and value arguments
at run time. Stepanov advocated [42, Foreword] that generic programming
is more than just programming with templates by saying that the objective
of generic programming “is to develop a taxonomy of algorithms, data struc-
tures, memory allocation mechanisms, and other software artifacts in a way
that allows the highest level of reuse, modularity, and usability”. The STL
is the most well-known application of generic programming in this extended
meaning.

The development of generic library components is challenging since a
component should work efficiently for arbitrarily many types that can be
provided as arguments. In practice, a generic component can be made as
efficient as its non-generic counterpart by letting the compiler generate a
separate instance of the generic component for every permutation of type
arguments. A generic component can be faster than a corresponding hand-
coded component since generic code can permit some new form of inlining
that would not be possible otherwise. A generic component can also be
slower since the compiler can miss some optimization opportunities. In case
of generic source code, a good optimizing compiler is a prerequisite for the
generation of efficient target code.

The classical von-Neumann architecture consists of a processor and a one-
dimensional memory that can be accessed in unit time. In other words, the
architecture defines both a model of computation and a model of cost. Much
of our code is designed with this architecture in mind although we have also
investigated other computer architectures. These include LRU-cache model
[12], ideal-cache model [47], two-level memory model [44], superscalar pro-
cessor model [41], and multi-core processor model [22]. The main conclusion
one can draw from these investigations is that many of the components in
the STL have to be rewritten if one wants to take full advantage of the
facilities provided by these architectures.

In the STL, containers operate on value semantics (also called copy se-
mantics). Every time an element is inserted into a container, a copy of that
element is taken and this copy is hereafter owned by the container. If a
user requires pointer semantics (also called reference semantics), handles
to elements are to be stored instead. For efficiency reasons, sometimes it
may be relevant to rely on move semantics [30] where containers take over
the ownership of elements. In most cases value semantics works fine, but
we have found that it is a hindrance to the reuse of components. A typical
problem occurs when a container is implemented using two or more com-
ponents and when an element is moved from one of these components to
another. Because of such a move, references to elements stored in the con-

48

tainer can be kept valid only if the components store handles to elements,
and if elements are not moved physically.

In the CPH STL, kernels for node-based containers rely on move semantics
which will allow a high degree of reuse without loss of efficiency. In other
words, the interfaces of the kernels are similar to those used in textbooks on
algorithms and data structures (compare [17]), where memory management
is moved almost completely outside the kernels.

Example 1. Let N denote the type of nodes. A node-based kernel built on
move semantics supports, among other things, the operations:

N∗ begin() const ;
void insert(N∗) ;
void erase(N∗) ;

Let r be a node-based kernel r.begin returns a pointer to the node storing
the first element of r, r.insert takes a pointer to a node and inserts that
node into r, and r.erase takes a pointer to a node and removes that node
from r. A node can be in one kernel at a time, and after an insert the kernel
owns the given node. An erase removes the given node from the internal
structure of the kernel and releases the ownership; thereafter that node can
be freed or moved to another kernel of the same type. 2

Already in the original design of the STL, design patterns were used
although this connection has often been left implicit in earlier writings. The
seminal book on design patterns [26] was written at the same time as the STL
was developed. That is, they are both based on the same heritage. In the
traditional approach, design patterns rely on dynamic binding. In the STL,
however, design patterns rely on static binding. Generic design patterns are
discussed, for example, in [21, 53]. We decided to make the use of design
patterns explicit since they enable us to describe the architectural concepts
of the CPH STL in a clean way. Also, they provide a natural way to explain
how components can be customized and reused. This description should
make the genericity and flexibility of the library obvious for the reader.

We expect our readers to be developers, testers, maintainers, and users of
the C++ standard library and other program libraries. We assume that the
reader is familiar with generic programming as it is exercised in C++ (see,
for example [18, Chapter 6]), and design patterns as described in [26]. Brief
descriptions of the design patterns relevant for this paper are given in Table
1.

We have organized the main body of the text in accord with design pat-
terns: bridge (Section 2), strategy (Section 3), and iterator (Section 4). We
reflect on our design in Section 5, discuss missing language features that
would have simplified the development in Section 6, and compare the design
to some related work in Section 7. Finally, we offer a few concluding remarks
in Section 8.

49

Table 1. Design patterns relevant for this study. The descriptions are taken from [26, 21]
and modified so that they apply both to inheritance-based dynamic binding and template-
based static binding.

Pattern Description

Adapter Convert the interface of a class into another interface expected
by specific clients. Adapter lets classes work together that could
not otherwise be possible because of incompatible interfaces.

Bridge Decouple an abstraction from its implementation so that the
two can vary independently.

Decorator Define additional responsibilities to a set of objects or replace
functionalities of a set of objects.

Facade Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsys-
tem easier to use.

Iterator Provide a way to access the elements of an aggregate object
without exposing its underlying representation.

Proxy Provide a surrogate or placeholder for another object to control
access to it.

Strategy Define a family of strategies, encapsulate each one, and make
them interchangeable. This lets the strategy vary indepen-
dently from clients that use it.

2. Bridges and realizations

One mission of the CPH STL project is to design alternative versions of
individual STL components. This means that there can be several kernels,
which implement the same container. As an example, set and multiset

can both be implemented using an AVL tree [4] or a red-black tree [29].
Also, there can be several interfaces using the same kernel. For example,
the containers provided by LEDA [39] can be implemented using CPH STL
kernels.

The interface of each container is implemented as a bridge class, the de-
sign of which is based on the bridge design pattern [26]. The intention of
this design pattern is to decouple an abstraction from its implementation,
which in our context means that the kernel, which realizes the container,
is decoupled from the interface. We will hereafter denote the kernel as a
realization. The addition of the bridge class provides flexibility such that
it is easy to change the realization of a container. Our bridges are not just
wrappers that delegate the work to realizations, but we allow new mem-
ber functions to be implemented within the bridge class so that realization
classes can be kept minimal.

Example 2. Many bridge classes provide the member function clear which
empties a container. Often it can be implemented at the bridge by deleting

50

(a)

Bridge
kernel: Realization*

operationA()
operationB()
operationC()

Realization

operationA()
operationB()

Realization 1

operationA()
operationB()

Realization 2

operationA()
operationB()

(b)

Abstraction
implementor: T

operationA()
operationB()
operationC()

Implementation 1

operationA()
operationB()

Implementation 2

operationA()
operationB()

T = Implementation 1

(c)

Realization

operationA()
operationB()

Decorator

operationB()
operationC()

R = Realization

Figure 1. (a) The conventional bridge pattern, (b) the generic bridge pattern, and (c)
the generic decorator pattern.

all the elements one by one, i.e. by calling erase(begin(), end()). This
is just the required behaviour since the member functions begin and end

return iterators to the first and past-the-end elements of the container, and
erase deletes all the elements within the half-open range specified by the
given iterators. 2

As illustrated in Figure 1(a), in its conventional form the bridge pattern
[26] uses inheritance to obtain a unified type for the realizations. This unified
type is an abstract class which is a base class for each realization class. A
bridge stores a pointer to an object of this unified type. Because of dynamic
binding, the responsibility of creating such an object can be moved outside
the bridge.

Our design uses the generic bridge pattern as illustrated in Figure 1(b).
In our design the realization is given as a type argument, so we do not have
a unified type. Compared to the solution based on inheritance, the member
functions common to the bridge and realization have to be provided in both;
at the bridge the work is just delegated to the realization. This means more
code, but it makes the interface explicit.

51

An alternative design is based on the generic decorator pattern [21] illus-
trated in Figure 1(c). Given two classes X and Y, Y inherits all the members
of X, Y can add new functionality by providing new members and extend
old functionality by overriding inherited members. In the generic decorator
pattern, X is given to Y as a type argument. In our context, X would be the
realization class and Y the container class. This design was rejected because
the realization can provide member functions which will become visible in
the container, but the container should provide a specific interface, which the
realization is not allowed to extend. This is a real problem, since a realiza-
tion can be used to implement several interfaces, e.g. both LEDA and STL
interfaces. The problem can be solved using private inheritance, but then
the decorator will become identical to our bridge, where some functionality
is in the bridge and some is delegated to the realization.

In addition to supporting several data structures, our desire is to provide
three types of realizations for each container: one that is optimized for
speed, one that is space efficient, and one that is safe [35]. In Figure 2,
the set and vector bridge classes, and some of their realization classes and
customization classes are shown. A realization can be parameterized with a
customization parameter (or parameters) in order to obtain some desirable
properties. For example, a red-black tree is parameterized with the type
of nodes to achieve different space efficiency: six, five, or four words per
element, excluding the space reserved by the element itself. In a similar way,
a dynamic array is parameterized with the type of array entries, i.e. instead
of using the type of elements directly this type is encapsulated in a class.

Example 3. In the CPH STL, the type parameter list for set is as follows:

template <

typename V ,
typename C = std : :less<V>,
typename A = std : :allocator<V>,
typename R = std : :set<V , C , A>,
typename I = typename R : :iterator,
typename J = typename R : :const_iterator

>

class set ;

Here V is the type of the elements stored, C the type of the comparator used
in element comparisons, A the type of the allocator used for reserving and
freeing memory, R the type of the realization, I the type of the mutable
iterator, and J the type of the immutable iterator. Because of the default
type parameters, it is possible to use cphstl::set in the same way as
std::set. 2

Example 4. Assume that V denotes the type of the elements and let u be
an object of type V. A user of the CPH STL can employ the set bridge class
with the AVL tree as the underlying realization in the following way:

typedef std : :less<V> C ;
typedef std : :allocator<V> A ;
typedef cphstl : :avl_tree_node<V> N ;

52

set

std::set (default)

red-black tree

6-node (default)

5-node

4-node

succinct red-black tree

list chunk (default)

array chunk

safe red-black tree 6-node

AVL tree AVL-tree node

vector

std::vector (default)

dynamic array dummy entry

safe dynamic array dynamic array entry

levelwise-allocated pile dummy entry

Figure 2. Two bridge classes, some of their realization classes and customization classes.

typedef cphstl : :identity_functor<V> F ;
typedef cphstl : :avl_tree<V , V , F , C , A , N , false> R ;
typedef cphstl : :node_iterator<N , false> I ;
typedef cphstl : :node_iterator<N , true> J ;
typedef cphstl : :set<V , C , A , R , I , J> B ;
B s ;
s .insert(u) ;

2

In the original design of the STL the adapter design pattern was used;
stack, queue, and priority_queue are adaptors to existing containers.
We upgraded these adaptors to full-fledged containers. After this upgrade,
these containers are used in the same way as the corresponding adaptors
only when default type parameters are in use. On the other hand, these
containers provide increased flexibility and extended functionality, like full
iterator support, and the use of these components is unified with the use of
the other containers.

Example 5. Assume that V denotes the type of the elements and A the
type of the allocator. Furthermore, assume that u and v are objects of
type V. The following code extract shows the difference between the use of
cphstl::stack and std::stack.

53

typedef cphstl : :list_based_stack<V , A> R ;
typedef cphstl : :stack<V , A , R> S ;
typedef S : :const_iterator J ;

S s ;
s .push(u) ;
s .push(v) ;
for(J p = s .begin() ; p != s .end() ; ++p) {
std : :cout << ∗p << std : :endl ;
}

std : :stack<V , std : :list<V , A> > r ;
r .push(u) ;
r .push(v) ;
std : :stack<V , std : :list<V , A> > t(r) ;
while(!t .empty()) {
std : :cout << t .top() << std : :endl ;
t .pop() ;
}

With cphstl::stack it is possible to traverse the elements without modify-
ing the container, whereas with std::stack providing no iterator support
a copy of the container has to be taken. 2

Even though we abolished the original container adaptors from the CPH
STL, the container adaptor—or better, container decorator—concept can
still be useful for the users of our library. In the literature, this issue is
discussed under the names container adaptors and views (see, for example,
[25, 45]). Such decorators provide much of the same functionality as views
in relational databases. The idea is to store the data only once and provide
transformed views of the same data that the users can operate on. This way
programs may become more readable and easier to maintain. Within the
library we have found use for container decorators when providing different
traversal mechanisms for dynamically changing containers much like in [25].

3. Strategies and policies

The strategy pattern was already used in the original design of the STL. In
the literature strategies are sometimes referred to as policies [53, 6]. Specif-
ically, a policy is a strategy that is selected at compile time. The purpose
of a policy class is to customize the behavior of another class. In the STL,
allocator and comparator classes given to container classes can be seen as
policies.

Example 6. For cphstl::meldable_priority_queue class template,
which is a CPH STL extension, the second type parameter specified is
the type of the comparator used in element comparisons. If the elements
stored are of type V and std::less<V> is the type of the given comparator,
the elements will be organized in max-heap order. On the other hand, if
std::greater<V> is the type of the given comparator, the elements will be

54

organized in min-heap order. Instead of using these predefined functors, the
user can also rely on his or her own comparator. 2

In our design, policy classes are widely used as customization parameters.
In addition to the element type, bridge and realization classes take policy
classes as type arguments. One can even say that the realization is a policy
itself. The iterator class is given to the bridge class as a policy to make it
possible to visit the elements in a container in a specific order. Furthermore,
many realization classes accept a storage policy which specifies how the data
is stored and manipulated. The reason for customizing the realization class
with a storage policy is to provide different time-space trade-offs. Currently,
our red-black tree implementation accepts several storage policies, which
can be used to reduce space requirements from six words per element to
four words per element.

Example 7. Let V denote the type of the elements stored. In the CPH
STL, the storage policy defining AVL-tree nodes has the following interface:

template <typename V>
class avl_tree_node {
public :

typedef V value_type;
typedef avl_tree_node<V> node_type;

private :
node_type∗ _parent;
node_type∗ _left;
node_type∗ _right;
node_type∗ _prev;
node_type∗ _next;
short _balance;
value_type _data;

public :
node_type∗& parent() ;
node_type∗& left() ;
node_type∗& right() ;
short& balance() ;
node_type∗ predecessor() const ;
node_type∗& predecessor() ;
node_type∗ successor() const ;
node_type∗& successor() ;
value_type const& content() const ;
value_type& content() ;
};

The member functions predecessor, successor, and content come in
two versions. This is the normal idiom for writing get and set methods
in C++. The immutable version is used for reading (get) and the mutable
version for writing (set). The two versions are needed to guarantee const

correctness when these functions are called (by the iterator operations). If
only one version is provided, as for parent, left, right, balance, the same
member function is used for both reading and writing. 2

55

In the literature, even more aggressive use of policies is encouraged (see,
for example, [5, 8]). In [8] a method is described to untangle the searching
and balancing of binary search trees and to encapsulate them into policy
classes. A balancing policy defines how the search tree is restructured after
a modifying operation, and a search policy defines how searching is done, for
example, whether to search for an element with a specific key or a specific
rank. In this way the same realization can implement both a red-black tree
[29] and a splay tree [50] by changing these two policies and the underlying
storage policy.

Policy-based design has several advantages including avoidance of redun-
dant code, simplification of maintenance, larger flexibility for the library
user, and smaller parts of the code to test. There are of course also dis-
advantages including lack of overview concerning the code, configuration
difficulties because of possible component mismatch. There can be some
efficiency problems as well, because it can be difficult for the compiler to
optimize policy-based code. Despite of these disadvantages, we prefer policy-
based design because of the flexibility provided.

Example 8. Policies together with simple template metaprogramming can
also be used for performance tuning as discussed, for example, in [18, Section
10.12]. We have observed that update operations for vector based on a
dynamic array are slow when elements being manipulated are expensive to
copy, which is often the case for user-defined types. This inefficiency is due to
relocations of elements, involving elements constructions and destructions.
A faster behaviour can be obtained by letting the array store pointers to
elements instead. Depending on the type of elements one of these realizations
can be selected at compile time.

template <typename V , typename A>
class dynamic_array_selector {
public :

typedef cphstl : :dynamic_array_entry<V> D ;
typedef cphstl : :safe_dynamic_array<V , A , D> Q ;
typedef cphstl : :dummy_entry<V> E ;
typedef cphstl : :dynamic_array<V , A , E> R ;
typedef typename cphstl : :if_then_else<cphstl : :type<V>::is_class, Q ←֓

, R>::type realization;
};

template <

typename V ,
typename A = std : :allocator<V>,
typename R = typename dynamic_array_selector<V , A>::realization,
. . .

>

class vector {
. . .

};
2

56

4. Abstract and concrete iterators

In the STL, iterators are the glue between containers and generic algorithms.
An iterator is an object that points to another object, and provides the same
semantics as a regular pointer. An iterator can be used to locate an element
in a container, for example, when deleting an element. It can also be used to
traverse the elements in a container or part of a container. According to the
iterator design pattern [26], the iterator should provide this functionality
without exposing the underlying representation of the container to the user.

An iterator is called a bidirectional iterator if it can move one step forward
and one step backward with one iterator operation (++, --), and a random-
access iterator if it is possible to move the iterator an arbitrary number
of positions in either directions, no matter where the iterator is pointing
to. Of the STL container classes, list, map, multimap, set, and multiset

must support bidirectional iterators, and deque and vector random-access
iterators.

Our design for iterators is layered: we have concrete iterators at the im-
plementation level and abstract iterators at the interface level. A concrete
iterator can iterate over the elements stored in a realization. An abstract
iterator encapsulates the concrete iterator and provides the member func-
tions which are relevant for the user in order to access the elements in the
underlying container.

There are four kinds of classes involved in our overall design: bridge, it-
erator, realization, and storage classes. The bridge is responsible for cre-
ating abstract iterators from concrete iterators, and for converting con-
crete iterators to abstract iterators. It has member types iterator and
const_iterator, and member functions begin and end, whose work is del-
egated to the realization. The iterator class defines an interface for accessing
and traversing elements; the interface is specified in the C++ standard [14,
Chapter 24]. The storage class determines the behaviour of the iterator by
providing the member functions which the iterator uses to do the actual
work.

To make the conversion between concrete and abstract iterators possible,
each abstract iterator class must provide a conversion operator which con-
verts an abstract iterator to a concrete iterator, and a parameterized con-
structor which creates an abstract iterator from a concrete iterator. These
two member functions are declared as private, but the bridge classes need
access to these member functions. To allow this, all bridge classes must be
friends of an abstract iterator. The friend declarations make the intercon-
nections between components explicit.

This construction makes the conversion between concrete iterators and
abstract iterators completely transparent, because when a conversion from
an abstract iterator to a concrete iterator is requested, e.g. when the bridge
passes an iterator to the realization, the conversion operator is invoked auto-
matically. Symmetrically, when a concrete iterator is to be converted to an
abstract iterator, e.g. when the realization passes an iterator to the bridge,

57

Table 2. The member functions which each node class should provide.

Function prototype Description

node_type* successor() const Return a pointer to the next node
node_type* predecessor() const Return a pointer the previous node
value_type const& content()

const

Return a const reference to the
element stored at the node

value_type& content() Return a reference to the element
stored at the node

the parameterized constructor of the abstract iterator is invoked from the
bridge.

In order to separate the friend declarations from the iterator, the proxy
design pattern could be applied by inserting a proxy class between the bridge
class and the iterator class; in context of the proxy pattern, to control access
to the private members of the iterator. This means that friends should be
defined inside the proxy class, and the conversion operator and parameter-
ized constructor should be moved to the proxy class. Now the proxy should
be a friend of the iterator. We avoided this construction since it complicates
the design.

We have observed that two kinds of iterators are sufficient to implement
iterators for all STL containers. A node iterator provides a bidirectional
iteration mechanism and an entry iterator a random-access iteration mech-
anism. These iterator classes are predefined in the CPH STL, but the user
can design his or her own iterator classes (and the corresponding storage
policies), and instantiate any of the bridge classes with these class tem-
plates.

The node iterator is suitable for the realization of containers which rely
on nodes, i.e. class templates list, set, multiset, map, and multimap. The
node_iterator class takes two type arguments: the type of the node N and
a Boolean constant is_const. The Boolean constant specifies whether the
iterator to be implemented is const_iterator or iterator [7]. The node
iterator uses the member functions defined in the node class (see Table 2)
to implement the increment (operator++), decrement (operator--), and
dereferencing (operator* and operator->) operators.

Example 9. The following friend template inside the node_iterator class
template gives set access to the private members of node_iterator:

template <typename V , typename C , typename A , typename R>
class set ;
. . .
template <typename N , bool is_const = false>

class node_iterator {
template <typename V , typename C , typename A , typename R>
friend class cphstl : :set ;
. . .

58

Table 3. The member functions which each entry class should provide.

Function prototype Description

entry_type*

advance(difference_type n)

const

Return a pointer to the entry lo-
cated n positions from the current
position

difference_type

distance(entry_type* p) const

Return the distance between p and
the current position

value_type const& content()

const

Return a const reference to the
element stored at the entry

value_type& content() Return a reference to the element
stored at the entry

};

Because the bridge classes are forward declared, the node-iterator file does
not need to include the files where the bridge classes are defined. 2

The entry iterator is suitable for realizing iterators for the container
classes vector and deque. An entry is a location in an array together
with the operations provided, which makes it a storage policy. Some of the
operations are iterator related (see Table 3). The entry iterator takes two
type arguments: the type of the entry E and a Boolean constant is_const.
The entry iterator is based on the same principles as the node iterator, but
the member functions which the iterator (and thereby the entry) provides
are different because of the random-access property.

Every standard-conforming container should come with immutable and
mutable iterators providing forward and backward iteration mechanisms,
and also reverse versions of these iterators traversing the container in the
opposite direction. Applications may, however, require more advanced ways
of iterating over the elements. To do this, iterators coming under the names
custom iterators [10], smart iterators [11], and iterator adaptors [1] have
been proposed in the literature. Even an attempt is made to standardize
these components [2]. Our parameterization allows any of these parameter-
ized iterators to be made the native iterator of a container. On the other
hand, iterators of any of our containers can be given as an argument for
these parameterized iterators, so the same container can provide several it-
eration orderings at the same time. That is, these constructions complement
each others and are an interesting addition to the toolbox of the users of
our library.

5. Reflections

In this section we reflect on our design. An overview of selected components
related to set, using an AVL tree as its realization, is shown in Figure 3.
For other containers the big picture is similar.

59

cphstl::set
typedef iterator: I
typedef const_iterator: J
kernel: R

begin() const: const_iterator
end() const: const_iterator
begin(): iterator
end(): iterator

V
C = std::less<V>
A = std::allocator<V>
R = std::set<V, C, A>
I = typename R::iterator
J = typename R::const_iterator

cphstl::node_iterator
typedef node_type: N
position: N*

operator++(): node_iterator&
operator--(): node_iterator&
operator++(int): node_iterator
operator--(int): node_iterator
operator*(): N::value_type&
operator->(): N::value_type*
operator N*()
node_iterator(N*)

N
is_const: bool = false

cphstl::avl_tree
typedef key_type: K
typedef value_type: V

begin() const: N const*
end() const: N const*
begin(): N*
end(): N*

K
V = K
F = cphstl::identity_functor<V>
C = std::less<K>
A = std::allocator<V>
N = cphstl::avl_tree_node<V>
is_bag: bool = false

cphstl::avl_tree_node
typedef value_type: V

successor() const: avl_tree_node*
predecessor() const: avl_tree_node*
content() const : V const&
content(): V&

V

Figure 3. An overview of selected components related to set.

To evaluate the quality of our design we considered the desirable char-
acteristics discussed in [37] and [38, Chapter 5]. We are doing well in the
following areas:

Simplicity: Whenever we had to make a design decision, we aimed at
achieving simplicity. We have consciously avoided the use of inher-
itance and advanced template metaprogramming. Furthermore, we
avoided solutions which would result in extra classes with no function-
ality but only describing structure. For example, we rejected the usage
of the proxy pattern in our iterator design.

Ease of maintenance: Much of the functionality provided by containers
can be implemented at bridge classes. This means that we avoid redun-
dant code in realization classes, and these can be kept minimal. Also,
we have a high degree of code reuse in the scope of iterators. Since
most container classes use the same kind of storage policy, we can im-
plement the iterator classes by using a small well-defined interface in
the storage policy.

Loose coupling: Due to the addition of bridge classes, we made the cou-
pling between the interfaces and their implementations looser. We also
decoupled the data structure from the traversal mechanism, since the
iterators are given to the bridges as policies.

Extensibility: It is relatively easy for the user to change the realization of

60

a container. Furthermore, the user can customize the data structures
by implementing new storage policies. It is also possible for the user
to design new iterator classes either by extending predefined iterators
or by implementing new iterator classes.

Reusability: We can produce several different interfaces which use the
same realizations. For example, we can use the realizations to im-
plement both STL and LEDA interfaces.

Efficiency: Already the first implementation of the STL, written by
Stepanov and his collaborators [51], provided components with good
performance; some even outdid most of their hand-crafted competition.
This was a deciding factor for integrating the STL into the C++ stan-
dard library [52]. All our data structures require linear space, linear
on the number of elements currently stored, and versions optimized
for speed rely on data structures known to provide the best practical
performance and to fulfil the strict complexity requirements specified
in the C++ standard.

Robustness: For safe versions of our data structures, iterators and refer-
ences to elements stored inside a data structure are required to stay
valid at all times, and all operations are required to provide the strong
guarantee of exception safety. In other words, if an exception is thrown,
the data structure being manipulated remains in the state in which it
was before the operation started. In spite of these strong guarantees,
the complexity requirements specified in the C++ standard can still be
fulfilled [34].

On the other hand, our infrastructure has obvious disadvantages.

Usability: Because of the increased flexibility from the library user’s point
of view a lot of type arguments has to be given to bridge classes in
order to use the containers, if the user is not satisfied with default
realizations. For example, the user needs to provide the same type
arguments for both the bridge and realization classes.

Stratification: To do any customization, the user needs to be aware of
both the interface and implementation levels. So it is not enough to
work at one level of abstraction at a time.

When constructing software, compromises are to be made on contradicting
objectives. In our case several contradicting objectives were unavoidable:
extensibility versus usability, extensibility versus stratification, reusability
versus simplicity, and reusability versus usability. Within our design we
focused on maximizing extensibility and reusability, but the price we had to
pay was decreased usability and less stringent stratification.

These drawbacks are serious so we experimented with possible solutions.
A considerable improvement in usability is achieved by allowing named type
arguments in the declarations of bridges, letting the user supply the argu-
ments in arbitrary order, and deducing the arguments not specified from
the defaults. In order to implement this idea, we considered using advanced
metaprogramming techniques like in [3], but due to language limitations we

61

found this approach unsatisfactory. We came to the conclusion that it would
be better to rely on a preprocessor that can process named type arguments
and substitute the remaining type arguments by their defaults. This idea is
further elaborated in the following example.

Example 10. In declarations we desire the following syntax where the use
of ! is borrowed from the D programming language [20]:

cphstl : :set!<V = int , N = my_node, R = cphstl : :avl_tree> s ;
cphstl : :set!<V = char, A = my_allocator<V> > t ;

A preprocessor should translate this code to the following:

cphstl : :set<int , std : :less<int>, std : :allocator<int>, cphstl : : ←֓
avl_tree<int , int , cphstl : :identity_functor<int>, std : :less<int ←֓
>, std : :allocator<int>, my_node<int>, false>, cphstl : : ←֓
node_iterator<my_node, false>, cphstl : :node_iterator<my_node, ←֓
true> > s ;

cphstl : :set<char, std : :less<char>, my_allocator<char>, std : :set<char ←֓
, std : :less<char>, my_allocator<char> >, std : :set<char, std : : ←֓
less<char>, my_allocator<char> >::iterator, std : :set<char, std : : ←֓
less<char>, my_allocator<char> >::const_iterator> t ;

The preprocessor uses the named type arguments given between the sym-
bols !< and >. Naturally, the symbol pairs can be nested. The preprocessor
substitutes each type argument by either the one given or the default, which
is defined in a table provided as input for the preprocessor or, alternatively,
generated automatically but scanning through all include files. When the
type arguments are given explicitly between the symbols < and >, no sub-
stitution takes place. 2

6. Language limitations

We discuss language features that would have made the development of the
library easier. Many of the features are proposed to be included in the next
C++ standard, known as C++0x [31].

In our current implementation, appropriate bridge classes are friends of
every abstract iterator class. That is, the friend declarations are needed,
but their number is limited. It would be desirable to be able to remove the
list of friend declarations and define the class given as a type argument as
friend. For example, by adding an extra type parameter B, denoting the
bridge, the code for node_iterator would look as

template <typename B , typename N , bool is_const = false>

class node_iterator {
. . .
friend class B ; // ERROR: not allowed

}

Unfortunately, this construction is not allowed by the current C++ standard
[14], but it is proposed to be included in the future version of C++ [40].

A minor problem with the iterator construction was found, for exam-

62

ple, in the insert member function of set. In the realization class the
return type of this member function is std::pair<N*, bool> and in the
bridge class the corresponding return type is std::pair<I, bool>. When
the realization returns a pair of type std::pair<N*, bool> to the bridge,
it will try to construct a pair of type std::pair<I, bool> using the pa-
rameterized constructor of std::pair. The parameterized constructor of
node_iterator will now be invoked in the constructor of std::pair, but
the construction should take place in the bridge (recall the bridge is a friend
of the iterator). This gives a compilation error. An attempt to solve this
problem was to split the pair inside the bridge, but it requires knowledge of
type N*, and the bridge does not have that knowledge. It only knows the
realization type, and it cannot assume that the realization has member type
N, since it is not part of the C++ standard. The best solution right now is to
let std::pair be a friend of the iterator class, until the new C++ standard
is accepted which provides the auto keyword [33]. This keyword acts as a
placeholder for a type until it is deduced, i.e. it gives access to types which
are not known.

When the bridge pattern is used in conjunction with inheritance, there is
a natural restriction on which classes can be accepted as realizations, since
they all have a common base class. When templates are used, any types will
be accepted as type arguments and it is not possible to add any requirements
specifying acceptable types. In case of a component mismatch, the user
of the library may get a cryptic error message from the compiler. Here
static assertions [36] and concepts [28], planned additions to the existing
C++ standard, will come to our rescue and let us specify such requirements
explicitly.

The implementation of all STL container classes set, multiset, map, and
multimap can base on the same underlying data structure. One difference is
that a collection of type set and multiset store elements, and a collection
of type map and multimap (key, satellite data) pairs. Another difference is
that a collection of type multiset and multimap can contain duplicates,
whereas in a collection of type set and map elements are unique. These
differences can be communicated to the realization using type parameters:
a functor F which translates elements into keys, and a Boolean constant
is_bag which tells whether duplicates are allowed. For some member func-
tions the behaviour varies depending on the value of is_bag. We need to
make a partial specialization of these member functions, but this is not al-
lowed by the current C++ standard; the standard requires that the whole
class is specialized. A way of circumventing this rule is to rely on a member
function overloading; in the literature the technique is called tag dispatching.
The idea is to construct a type from a Boolean constant and use this type
as a tag for overloaded member functions [6, Section 2.4]. We prefer that
a Boolean constant could be used directly to specialize a member function
instead of this workaround.
Example 11. This example shows how tag dispatching is used for special-
izing the insert member function in the AVL tree:

63

template <

typename K ,
typename V = K ,
typename F = cphstl : :identity_functor<V>,
typename C = std : :less<K>,
typename A = std : :allocator<V>,
typename N = cphstl : :avl_tree_node<V>,
bool is_bag = false

>

class avl_tree {
protected:
std : :pair<N∗ , bool> insert_dispatch(N∗ , cphstl : :bool2type<false>);
N∗ insert_dispatch(N∗ , cphstl : :bool2type<true>);

public :
typedef typename cphstl : :if_then_else<is_bag, N∗ , std : :pair<N∗ , ←֓

bool> >::type return_type;

return_type insert(N∗ x) {
return insert_dispatch(x , cphstl : :bool2type<is_bag>()) ;
}
};

2

7. Related work

In this section, we briefly compare our design to the designs provided in other
libraries. In our survey, we only focus on facilities related to the vector and
set container classes. We look inside GNU libstdc++, SGI STL, Boost,
and LEDA.

The GNU standard C++ library [27] is included in GNU C/C++ compiler.
The version of libstdc++ used for this evaluation was release 4.2.3. Itera-
tors for vector are built using the class template normal_iterator, which
wraps a pointer and has the same operators as a regular pointer. The it-
erator object is constructed from a pointer, the type of which is given as a
type argument. Each operator of the iterator simply applies the same oper-
ator to its pointer. This construction is only usable for pointers to arrays.
The set container class is designed as a bridge class, but the realization is
hard-coded to be a red-black tree. The iterators (immutable and mutable
iterators) for the red-black tree are defined explicitly as structs, which im-
plies that the encapsulation of the data member is not handled properly.
Since iterators are defined explicitly as class members inside each container
class, the amount of reuse is low.

The SGI STL [49] is included in the SGI C++ compiler environment. The
vector class template does not provide an iterator, but it defines the iterator
to be a pointer to an element of the type provided as a type argument.
This yields several problems with respect to iterator validity, and it is not
possible to extend the iterator without writing an entirely new iterator. The
implementation of set is fixed to be a red-black tree. The iterators for set

64

are implemented as one class, which takes two type arguments such that
immutable and mutable iterators are implemented within the same class [7].
The iterator is implemented as a struct so every data member is public,
and encapsulation is not handled properly.

The Boost library [13] provides a mechanism for constructing iterators
with less code than creating entire iterators from scratch. Since this library
provides generic add-ons, not a full implementation of the STL, the itera-
tor construction provided cannot rely on the underlying container like our
construction. The Boost iterator construction is divided into three parts:
the iterator facade, iterator adaptor, and specifier. The iterator facade pro-
vides the interface defined for iterators in the C++ standard. The operators
delegate their work to the member functions defined in subclasses. This is
similar to the node iterator which uses the node class to do the actual work.
The iterator adaptor defines the interface which each specifier should im-
plement. The adaptor class inherits the iterator operators from the facade
class. The specifier is the class which should be implemented in order to
make it possible to iterate over the data stored in a container. According to
our terminology, the specifier class inherits abstract iterator operations from
the iterator adaptor class and provides concrete iterator operations that are
used in the implementation of the abstract iterator operations. The con-
crete iterator operations are defined to be private, since they are only used
by the abstract iterator operations. The abstract iterator operations are
defined to be public, because they should be accessible to the user. The
CPH STL iterator construction and the Boost iterator construction have a
lot in common, but to reduce redundant code, the CPH STL construction
is bound to containers. However, we found it confusing that in the specifier
class, abstract iterator operations and concrete iterator operations are not
segregated from each other.

In the algorithm research community, LEDA [39] is a highly-respected
library of data structures and algorithms, which provides tools for solving
geometric and graph-theoretic problems. LEDA has containers like the STL.
The user operates with so-called items to access the elements stored in a
container. The item class is defined for each container, e.g. for a dictionary
d, the d.lookup member function returns an object of type dic_item. The
user can get the key (satellite data) stored inside the item by invoking the
d.key (d.inf) member function with the item as its argument. In our
terminology, items are similar to concrete iterators. Unlike the STL, not all
containers provide a traversal mechanism; some do like the list container.
For a list l one can use l.succ(item) to get the item to the next element.
Notice that the succ member function is located in the container, not in
the item as in the STL. Containers, which do not provide the succ member
function, provide an iteration mechanism forall(p, d), which performs a
complete traversal of d such that p refers to the current item. LEDA has
some bridge classes, for which it is possible to give the implementation as
a type argument. A dictionary using an AVL tree can be created using
the statement: dictionary<string, int, avl_tree> d. Unfortunately,

65

LEDA has some limitations. It is not possible for the user to define their
own items, i.e. storage policies, and the separation between algorithms and
containers has not taken place, but many general-purpose algorithms are
defined as member functions inside the containers.

8. Concluding remarks

In generic programming, the vision is to create software artifacts in a way
that allows the highest level of reuse, modularity, and usability. The de-
sign patterns used to specify the architecture of the library are themselves
reusable artifacts. Even though other developers may not be able to use
exactly the same patterns, a broad spectrum of design patterns is available,
and can be used for designing and building complex systems like generic pro-
gram libraries. The components provided by our library are created to be
reusable. On the other hand, our inspection of other STL implementations
revealed that at the level of source code reuse was not the best possible.
We are not the first to make this observation [9], but still this is surprising
since these implementations are widely used and available on almost every
computer with a C++ compiler. As to reuse, with our design we moved one
step forward by removing some redundant code in the implementation of
iterators. The same class template is used for realizing both immutable and
mutable iterators, and only two iterator classes are needed for sustaining all
bridge classes, not one per bridge class.

The design patterns applied by us can be considered standard; we con-
sciously avoided using exotic patterns and complicated techniques so that it
would be easier for our developers and users to understand the overall design.
The bridge pattern has been used in earlier implementations of the STL, but
full advantage of the pattern has not be taken. In several places we tried
to attain loose coupling between components, for example, between bridges
and iterators and between realizations and their customizations. These good
design principles are reusable and applicable in the development of other
program libraries.

As to modularity, the bridge design pattern creates a solid foundation for
a layered software architecture [15, 23]. At the moment, four conceptual
layers exist: application layer, decorator layer (container, algorithm, and
iterator decorators), interface layer (bridges, algorithms, and iterators), and
implementation layer (realizations and policies). One of our problems is that
all these layers are visible for a general user, but the library is extendible
at each layer. Contrary to earlier implementations of the STL, our iterator
design supports stringent encapsulation as required by the iterator pattern.
The cost of getting the design right is a bit more complicated code. However,
when C++0x becomes reality, it will be easier to realize our design. This is
because of the possibility to declare a type argument as a friend and to
manipulate objects whose types are not known.

Because of heavy reliance on templates, usability is an issue that has to be

66

addressed. Due to language limitations and inadequate compiler support,
the development of components relying on policy-based design is tedious.
Moreover, the use of such components can be difficult because of a potential
mismatch between type parameters and type arguments. With the concepts
to be provided by C++0x, we will obtain the possibility of specifying the
types which are accepted as arguments. This enables the compiler to detect
component mismatches, which simplifies both the development and use of
components—and improves the usability in general.

It is well-known that in C++ template metaprogramming has its short-
comings; sometimes it can be cumbersome to write generic code and the
resulting code can have poor readability. This problem triggered the fun-
damental idea of creating a C++ preprocessor which supports named type
arguments in declarations. Named type arguments would not solve our prob-
lem as such; a more advanced deduction mechanism is required, too. We
leave the further development of this idea for the programming-language re-
search community. One of the challenges is to integrate the use of concepts
with our preprocessing framework.

We aimed at an orthogonal and a simple design. Our evaluation of the
design was analytical and heuristic, and we concentrated on a few key char-
acteristics. It would be interesting to try to verify the quality of the design
empirically. We plan to conduct a study on the suitability of our design for
forthcoming refactoring work. In such a study, it would relevant to investi-
gate quantitatively how high the code reuse is, and qualitatively how easy it
is to maintain and extend the library. As far as we know, only a few studies
[46, 16] have been conducted on the usability of program libraries.

Software availability

The programs discussed in this study are accessible via the home page of
the CPH STL project [19].

Acknowledgements

We thank the members of the CPH STL development team; this paper
was built on their shoulders. We have directly benefited from the work
of Johannes Serup (queue and stack); Tina A. G. Andersen, Ulrik Schou
Jørgensen, Mads D. Kristensen, and Claus Ullerlund (dynamic array); Filip
Bruman, Daniel P. Larsen, and Christian Wolfgang (levelwise-allocated
pile); Stephan Lynge (AVL tree); Hervé Brönnimann (red-black tree); Claus
René Jensen and Finn Krog (succinct red-black tree); Jørgen T. Haahr and
Frej Soya (safe red-black tree); Dirk Hasselbalch and Sune Sloth Simonsen
(binomial heap). Also, we thank Christian Heide Damm, Kenny Erleben,
Klaus Byskov Hoffmann, and Claus Jensen for commenting a preliminary
version of this paper; and Kasper Hornbæk for fruitful discussions.

67

References

[1] D. Abrahams and J. Siek, Policy adaptors and the Boost iterator adaptor library,
Proceedings of the 2nd Workshop on C++ Template Programming (2001).

[2] D. Abrahams, J. Siek, and T. Witt, Iterator facade and adaptor, Document number
N1641, The C++ Standards Committee (2004).

[3] D. Abrahams and D. Wallin, The Boost Parameter Library, Web document available
at http://www.boost.org/doc (2005).

[4] G. M. Adel’son-Vel’skĭı and E. M. Landis, An algorithm for the organization of
information, Soviet Mathematics 3, 5 (1962), 1259–1263.

[5] A. Alexandrescu, Generic<Programming>: A Policy-Based basic string Imple-
mentation, C++ Expert Forum, Available at http://www.cuj.com/experts/1096/

toc.htm (2001).
[6] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied, Addison-Wesley (2001).
[7] M. Austern, Defining iterators and const iterators, C/C++ Users Journal 19, 1 (2001),

74–79.
[8] M. H. Austern, B. Stroustrup, M. Thorup, and J. Wilkinson, Untangling the balanc-

ing and searching of balanced binary search trees, Software—Practice and Experience
33, 13 (2003), 1273–1298.

[9] H. A. Basit, D. C. Rajapakse, and S. Jarzabek, Beyond templates: A study of clones
in the STL and some general implications, Proceedings of the 27th International
Conference on Software Engineering, ACM Press (2005), 451–459.

[10] C. Baus and T. Becker, Custom iterators for the STL, Proceedings of the 1st Workshop
on C++ Template Programming (2000).

[11] T. Becker, Smart iterators and STL, C/C++ Users Journal 16, 9 (1998), 39–45.
[12] J. Bojesen, Managing memory hierarchies, Master’s thesis, Department of Computer

Science, University of Copenhagen (2000).
[13] Boost Community, Boost C++ libraries, Website accessible at http://www.boost.org

(1999–2008).
[14] British Standards Institute, The C++ Standard: Incorporating Technical Corrigendum

1, BS ISO/IEC 14882:2003, John Wiley and Sons, Ltd. (2003).
[15] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns, John Wiley &
Sons Ltd. (1996).

[16] S. Clarke and C. Becker, Using the cognitive dimensions framework to measure the
usability of a class library, Proceedings of the 15th Workshop of the Psychology of
Programming Interest Group, Keele University (2003).

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd Edition, The MIT Press (2001).

[18] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley (2000).

[19] Department of Computer Science, University of Copenhagen, The CPH STL, Website
accessible at http://cphstl.dk/ (2000–2008).

[20] Digital Mars, D programming language, Website accessible at http://www.

digitalmars.com/d/ (1999–2008).
[21] A. Duret-Lutz, T. Géraud, and A. Demaille, Design patterns for generic programming

in C++, Proceedings of the 6th Conference on USENIX Conference on Object-Oriented
Technologies and Systems, The USENIX Association (2001), 189–202.

[22] K. Egdø, A software transactional memory library for C++, Master’s thesis, Depart-
ment of Computer Science, University of Copenhagen (2008).

[23] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,
Addison-Wesley (2004).

[24] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley (1997).
[25] E. Gamess, D. R. Musser, and A. J. Sánchez-Rúız, Complete traversals and their

implementation using the standard template library, CLEI Electronic Journal 1, 2

68

(1998).
[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley (1995).
[27] GNU, libstdc++, Website accessible at http://gcc.gnu.org/onlinedocs/libstdc+

+/ (1999-2008).
[28] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lumsdaine, Concepts:

Linguistic support for generic programming in C++, SIGPLAN Notices 41, 10 (2006),
291–310.

[29] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts, A new representation
for linear lists, Proceedings of the 9th Annual ACM Symposium on the Theory of
Computing, ACM (1977), 49–60.

[30] H. E. Hinnant, P. Dimov, and D. Abrahams, A proposal to add move semantics sup-
port to the C++ language, Document number N1377, The C++ Standards Committee
(2002).

[31] ISO/IEC, Working draft: Standard for programming language C++, Document num-
ber N2798, The C++ Standards Committee (2008).

[32] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process,
Addison-Wesley (1999).

[33] J. Järvi, B. Stroustrup, and G. D. Reis, Deducing the type of variable from its initial-
izer expression (rev. 4), Document number N1984, The C++ Standards Committee
(2006).

[34] J. Katajainen, Making operations on standard-library containers strongly exception
safe, Proceedings of the 3rd DIKU-IST Joint Workshop on Foundations of Software.
Report 07/07, Department of Computer Science, University of Copenhagen (2007),
158–169.

[35] J. Katajainen, Stronger guarantees for standard-library containers, Algorithm Engi-
neering. Oberwolfach report 25/2007, Mathematisches Forchungsinstitut Oberwolfach
(2007), 31–35.

[36] R. Klarer, J. Maddock, B. Dawes, and H. Hinnant, Proposal to add static assertions to
the core language (rev. 3), Document number N1720, The C++ Standards Committee
(2004).

[37] T. Korson and J. McGregor, Technical criteria for the specification and evaluation
of object-oriented libraries, Software Engineering Journal 7, 2 (1992), 85–94.

[38] S. McConnell, Code Complete, 2nd Edition, Microsoft Press (2004).
[39] K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and Geometric

Computing, Cambridge University Press (2000).
[40] W. M. Miller, Extended friend declarations (rev. 3), Document number N1791,

The C++ Standards Committee (2005).
[41] S. Mortensen, Refining the pure-C cost model, Master’s thesis, Department of Com-

puter Science, University of Copenhagen (2001).
[42] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference Guide: C++ Pro-

gramming with the Standard Template Library, 2nd Edition, Addison-Wesley (2001).
[43] P. Naur, Programming as theory building, Microprocessing and Microprogramming

15, 5 (1985), 253–261.
[44] J. H. Olsen and S. C. Skov, Cache-oblivious algorithms in practice, Master’s thesis,

Department of Computer Science, University of Copenhagen (2002).
[45] G. Powell and M. Weiser, Container adaptors, Technical report SC 99-41, Konrad-

Zuse-Zentrum für Informationstechnik Berlin (1999).
[46] K. Rodden and A. Blackwell, Class libraries: A challenge for programming usability

research, Proceedings of the 14th Workshop of the Psychology of Programming Interest
Group, Brunel University (2002), 186–195.

[47] F. Rønn, Cache-oblivious searching and sorting, Master’s thesis, Department of Com-
puter Science, University of Copenhagen (2003).

[48] G. Ryle, The Concept of Mind, The University of Chicago Press (1949).
[49] Silicon Graphics, Inc., Standard template library programmer’s guide, Website acces-

sible at http://www.sgi.com/tech/stl/ (1993–2004).

69

[50] D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, Journal of the
ACM 32 (1985), 652–686.

[51] A. Stepanov and M. Lee, The standard template library, Technical report 95-
11(R.1), Hewlett-Packard Laboratories (1995).

[52] B. Stroustrup, Private communication (2006).
[53] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

Wesley (2003).

Adaptable Component

Frameworks:

Using vector from the C++

Standard Library as an Example 1

Jyrki Katajainen and Bo Simonsen

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

{jyrki,bosim}@diku.dk

Abstract. The CPH STL is a special edition of the STL, the containers and al-
gorithms part of the C++ standard library. The specification of the generic compo-
nents of the STL is given in the C++ standard. Any implementation of the STL,
e.g. the one that ships with your standard-compliant C++ compiler, should provide
at least one realization for each container that has the specified characteristics with
respect to performance and safety. In the CPH STL project, our goal is to provide
several alternative realizations for each STL container. For example, for associative
containers we can provide almost any kind of balanced search tree. Also, we do
provide safe and compact versions of each container. To ease the maintenance of
this large collection of implementations, we have developed component frameworks
for the STL containers. In this paper, we describe the design and implementation
of a component framework for vector, which is undoubtedly the most used con-
tainer of the C++ standard library. In particular, we specify the details of a vector
implementation that is safe with respect to referential integrity and strong excep-
tion safety. Additionally, we report the experiences and lessons learnt from the
development of component frameworks which we hope to be of benefit to persons
engaged in the design and implementation of generic software libraries.

Keywords Generic Programming, C++ Standard Library, STL, Robustness, Effi-

ciency

c© 2009 ACM. This is the author’s version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in Proceed-

ings of the ACM SIGPLAN Workshop on Generic Programming, http://doi.acm.org/10.1145/

1596614.1596618.

Reprinted from WGP’09,, Proceedings of the ACM SIGPLAN Workshop on Generic Program-

ming, August 30, 2009, Edinburgh, Scotland, UK., pp. 13–24.

1 Partially supported by the Danish Natural Science Research Council under contract
272-05-0272 (project “Generic programming—algorithms and tools”).

70

Table of contents

1 Introduction . 72
1.1 Standard-compliant vector and relevant extensions 73
1.2 Outline of the present paper . 75

2 Decomposition . 77
3 Kernels . 79

3.1 Dynamic array . 81
3.2 Hashed array tree . 82
3.3 Levelwise-allocated pile . 83

4 Proxies . 84
4.1 Referential integrity . 84
4.2 Strong exception safety . 85
4.3 Iterators . 87

5 Benchmarks . 88
6 Reusability . 89
7 Adaptivity . 92

7.1 Overriding default implementations . 92
7.2 Selecting the fastest copy algorithm . 94
7.3 Selecting the best-suited encapsulation policy 95

8 Adaptability . 96
9 Conclusions . 97
References . 99

71

72

1. Introduction

The design and implementation of the standard-library vector has a great
pedagogical value when illustrating the use of various programming language
facilities and programming techniques. For example, in his recent textbook
[39], Stroustrup devotes three of the 27 chapters (115 pages or about 9% of
the whole book) to a vector implementation that is roughly equivalent to
the standard-library vector. However, textbooks have seldom enough space
to describe a complete vector implementation. The book on the standard
template library (STL) by Plauger et al. [29] is an interesting exception;
their complete vector implementation consists of 365 logical lines of code
(LOC), excluding the partial specialization for Boolean elements, which is
even longer than the primary class template. (Observe that in our use of
the LOC metric we ignore comment lines and lines with a single parenthesis,
and we calculate long statements as single lines.) For other complete im-
plementations, we refer to the source code shipped with your C++ compiler
and the documentation of the Silicon Graphics Inc. implementation of the
STL [35].

This work is part of the Copenhagen STL (CPH STL) project initiated
in 2000 [13]. The goal in this project is to

– provide an enhanced edition of the STL, i.e. the containers and algo-
rithms part of the C++ standard library [9, 19];

– study and analyse existing specifications for and implementations of
the STL to determine the best approaches to optimization;

– place the programs developed in the public domain and make them
freely available on the Internet;

– provide benchmark results to give library users better grounds for as-
sessing the quality of different STL components; and

– carry out experimental algorithmic research.
The architecture of the CPH STL is described in [22]. Two important tools
used when describing the foundations of the library are C++ concepts [15]
and design patterns [14]. In this paper we use these tools in an informal way;
for a pathway to a more formal treatment, we refer to the above-mentioned
papers and the references mentioned therein.

The STL is organized around three fundamental concepts: containers,
iterators, and algorithms. Containers are class templates that provide it-
erators, and algorithms are function templates that work for various kinds
of iterators. It is this decoupling of algorithms and containers, and type
parameterization in general, that makes the components of the STL so flex-
ible. In the modern literature on C++ design (see, for example, the book by
Alexandrescu [2]), it is advocated that even a greater degree of flexibility
is achieved by parameterizing generic components with policies which are
classes or class templates describing configurable behaviour. The paradigm
is referred to as policy-based design. According to our terminology, a com-
ponent framework is a skeleton of a software component which is to be filled
in with implementation-specific details in the form of policies.

73

In this paper, we describe the design and implementation of a component
framework for the vector container, we report the experiences and lessons
learnt from its development, and we evaluate the efficiency of the existing
realizations. In total, 15+ developers have been involved in the development
of vector in the CPH STL. Some of the progress reports have been published
on the project website [21, 24].

1.1 Standard-compliant vector and relevant extensions

A vector stores a sequence of elements such that elements can be accessed
by their indices and also by their iterators at constant cost. Compared to
an array, whose size is fixed (at compile time or at run-time), the size of
a vector can vary and memory management is handled automatically. In
the computing literature, this data structure has been discussed under many
names, including dynamic array [16, 33], dynamic table [11], extendible ar-
ray [32], extensible array [8], flexible array (term used in Algol 68), growable
array [31], resizable array [10], and variable-length array [6, 37]. As to the
vector class in C++, its full specification together with all associated oper-
ations can be found in the C++ standard [9, 19]. The vector class has two
template parameters that allow the user to specify the type of the elements
stored and the type of the allocator used for allocating and deallocating
memory. We have extended the interface with additional template param-
eters, which allow the user to specify the type of the data structure used
for storing the elements, the type of mutable iterators and immutable iter-
ators (colloquially const iterators) used when traversing over the sequence.
Because of the default values provided, these extra template parameters do
not affect the normal use of the container.

There are several aspects in the specification of vector [9, 19] that may
not be satisfactory for all users.

Referential integrity: In some applications a vector may be used to
maintain references to other objects, and these objects may again keep
references back to the array. Many programmers have been bitten by
the bug that, because of the reallocation of the underlying array, the
references back are no more valid. This is an error that is difficult to
find. Simply, the rules specified in the C++ standard, when and under
what circumstances iterators and references to elements are kept valid,
are difficult to remember. Hence, the memory burden on working pro-
grammers could be reduced if references and iterators were kept valid
by all operations, except when an element is erased.

Strong exception safety: A container operation is strongly exception safe
[1] if it completes successfully, or throws an exception and makes no
changes to the manipulated container and leaks no resources. The rules
specified in the C++ standard, which operations guarantee strongly ex-
ception safety and under what circumstances, are difficult to remember.
Hence, there is a need for a vector for which all operations guarantee
the strong form of exception safety.

74

Unspecified behaviour: In the C++ standard, the behaviour of front,
back, and pop_back member functions is not specified if the underlying
container is empty. Clearly, there is a need for a vector for which the
behaviour of these member functions is specified. Also, the behaviour
of operator[] is unspecified when the array index is out of bounds.
Often this comes as a big surprise for novice programmers. Even though
range checking is done by at member function, this function is seldom
used. Hence, there is a need for a vector for which range checking can
be switched on and off when desired.

Contiguous storage: The C++ standard requires that the elements of a
vector are stored contiguously in memory. However, in the literature
many interesting implementations have been proposed which do not
keep the elements in a contiguous memory segment (see, for example,
[10, 16, 21, 37]). Naturally, this requirement is important in some low-
level applications relying on address-of operations, but there should also
be space for vector implementations that do not fulfil this requirement.

Space utilization: In the C++ standard, no space bounds are specified for
the container classes. Because of performance considerations, standard
vector implementations do not release the allocated memory even if
the number of elements gets smaller. As pointed out in [8], in some ap-
plications, like long-running programs in servers, such a behaviour can
be unacceptable. Many such programs running simultaneously can fill
the whole memory although only a small portion of the memory is in
actual use. A natural requirement is that no container should use more
than linear extra space, linear in the number of elements stored. How-
ever, in some applications even this amount can be unacceptable, since
elements may be large and the space usage is measured in elements (not
in bytes or words). More space-economical vector implementations are
known: If n denotes the number of elements stored, the bound O(

√
n)

on the amount of extra space, i.e. the amount of space used in addition
to the elements themselves, is known to be achievable [10, 21, 37].

Amortized time bounds: Many member functions of vector are re-
quired to have O(1) cost in the amortized sense. In this point the
C++ standard is unclear since the sequence of operations over which
the amortization is performed is never specified. Due to reallocations,
the worst-case cost of a single operation like push_back can be lin-
ear, as is the case for the most common implementations. This can
have fatal consequences for other data structures that use a vector.
For example, a binary heap is expected to support its operations at
the logarithmic worst-case cost, but if a vector is used in its imple-
mentation, this worst-case behaviour does not hold any more [8]. It is
known that all vector operations can be supported at O(1) worst-case
cost, except that insertions and erasures have O(

√
n) worst-case cost if

only O(
√
n) extra space is available [21] and, for an arbitrary small but

fixed ε > 0, O(nε) worst-case cost if O(n1−ε) extra space is available
[33]. Clearly, it is relevant to provide vector implementations that

75

guarantee good worst-case performance for all operations.

In a normal implementation of the STL, one realization is provided
for each container. In the CPH STL, we want to provide at least three
predefined realizations for each container: one that is fast, one that is
safe, and one that is space efficient. As to vector, the user can se-
lect between cphstl::fast vector, cphstl::safe vector, and cphstl::

compact vector. Moreover, cphstl::vector is guaranteed to be standard
compliant.

The fast version is implemented by expanding the array by a constant
fraction and never contracting the array. The safe version is based on the
same expansion strategy, but it also applies a similar contraction strategy
(compare [8]). The safe implementation provides referential integrity and
strong exception safety. The point is that the safety guarantees are provided
without relaxing the performance requirements specified in the C++ stan-
dard. This is in a stark contrast with the earlier work (see, e.g. [1]), where
the technique of making a complete copy is offered as an option to achieve
the strong guarantee of exception safety. However, it took a long time for us
to get this version correct. For example, the solution sketched in an earlier
working paper [20] was not fully correct, but a bug was found during the
implementation phase. The compact version is implemented using a hashed
array tree [37] as the underlying data structure.

By examining the specification in the C++ standard carefully, an observant
reader can see that the requirements are produced by reverse engineering
one particular implementation, one that is similar to cphstl::fast vector

storing elements contiguously. Hence, it should not come as a surprise
that other implementations are not fully standard compliant. In particu-
lar, our safe and compact versions do not store the elements in a contiguous
memory segment. As a consequence of this the elements are not address-
able. Additionally, we have to rely on different kinds of proxy objects so
some operations, like operator[] and operator* for iterators, return an
implementation-defined proxy object, instead of a reference or const refer-
ence to an element as required by the standard. For the very same reason
vector<bool> is sometimes said to be an almost container with an almost
random-access iterator since it does not fulfil all the requirements specified
for the container and random-access iterator concepts.

1.2 Outline of the present paper

Instead of just providing some predefined behaviours, we develop a compo-
nent framework which allows us (and others) to extend the library with new
facilities. Using the terms of Oppermann and Simm [30], the CPH STL is
both adaptive, i.e. its components are able to change their behaviour based
on the type arguments given by the user, and adaptable, i.e. the components
can be changed and extended by the user who can provide new implemen-
tations for the template arguments accepted by the component framework.
Our framework can be used for realizing most of the known vector imple-

76

mentations. The component framework for vector is described in Sections
2, 3, and 4. When developing this framework, we took inspiration from a
similar framework introduced for binary search trees by Austern et al. [5]; a
component framework for associative containers is also available at the CPH
STL [36].

We had several reasons for introducing component frameworks into our
library. We wanted a high level of code reuse, ease of maintenance, and
fair benchmarking. Now it is possible to provide a new vector kernel by
writing a few member functions, whereas a complete vector implementa-
tion [9] must provide 40 member functions and seven operators. Also, to
a high degree we have been able to avoid copy-paste code which eases the
maintenance of the library considerably. Furthermore, we can do bench-
marking by changing the kernels and policies, and keeping the other parts
of the code unchanged. This really shows the effect of a particular change.
Hence, hopefully, our benchmarks report differences in the performance of
data structures, not the cleverness of the programmers. We make some
additional remarks on reusability in Section 6.

Naturally, it is interesting when a container library can automatically
adapt itself to different usage scenarios, and perform optimizations and
other tasks without user intervention. In the literature, the topic has been
discussed under the name active libraries [12]. For a long time, generic pro-
gramming has known to be a promising approach for generating customized
software components. However, in this point we are more pragmatic than
earlier authors. In our opinion, in C++, the facilities provided for compile-
time reflection and metaprogramming are still too primitive to be of great
practical value. We discuss adaptivity from our point of view in Section 7.

Our generic component frameworks are open and adaptable. In the litera-
ture many different words are used to describe adaptation activities, includ-
ing customization, configuration, modification, extension, personalization,
and tailoring. In different contexts the meaning of these words can vary.
When we talk about adaptability, we mean that the library offers several
levels of usage (similar thoughts appear in a more general context, for ex-
ample, in [17, 27]):
Normal generic use: A generic class template defines a family of classes.

As part of a normal instantiation process a user can select a class
from this family by specifying the types to be used for substituting the
template parameters. The user can use the components of the CPH
STL in the same way as the components of the C++ standard library.

Selective use: The user can choose between alternative predefined be-
haviours, like between the fast, safe, and compact container imple-
mentations. A type of use, where parameters impact the performance
of components, is common in generic software libraries. For example,
in LEDA [26] some container classes accept additional implementation
arguments.

Integrated use: The user can compose existing—internal or external—
components. For example, in the Boost graph library [34] the per-

77

formance of many graph algorithms can be tuned by non-functional
parameters.

Extended use: The user can extend the library by writing new compo-
nents. Already the users of the C++ standard library can provide their
own allocators and comparators, but we go even further. We allow
our users to design and implement their own iterators, policies, and
container kernels.

To facilitate extending use, it is necessary that the source code of the library
is made available for the users. We close our discussion on adaptability in
Section 8.

Our contribution can be summarized as follows.

– We show how a component (vector) from the C++ standard library can
be extended to a component framework still providing the same func-
tionality as required by the C++ standard. Our description can serve
as a starting point for future work when building similar component
frameworks.

– We show that a framework-based implementation of a component
(vector) has an acceptable performance overhead. (See Section 5.)

– We show that a component (vector) can be made to guarantee the
strong form of exception safety for all container operations and fulfil
the same theoretical performance requirements as the corresponding
unsafe variant. The programming techniques used have already shown
to be useful when implementing other safe components.

– We show that the cost of safety can be high in terms of actual running
time. This is mainly due to the loss of spatial locality in memory
references and the overhead caused by additional memory management.
(See Section 5.)

We hope that the ideas presented in this paper will be of benefit to other per-
sons engaged in the design and implementation of generic software libraries,
or in the tools used in their development.

2. Decomposition

In this section we give an overview of our adaptable component frame-
work for vector, and in the following two sections we describe some of
the architectural elements in greater detail. The design of a component
framework can be seen as an application of the template-method design
pattern [14]. However, since we rely on C++ templates, not on inheritance,
the implementation-specific details are specified by the template arguments
given for the component framework. Hence, the design is also related to the
strategy design pattern.

During the years the CPH STL has become a multi-interface library which
supports the C++ standard library [9], LEDA [26], and its own application-
programming interfaces (APIs) for several data structures. All APIs are

78

decoupled from their implementations using the bridge design pattern. Be-
cause of this design choice, we can conveniently support several APIs. Many
of the member functions provided by these APIs are actually convenience
functions, so to start with we extracted a core of all the member functions.
We call this core a realizator. The iterators are also decoupled from the
realizators in order to provide a common means of realizing items for the
LEDA APIs and iterators for the STL APIs.

After this initial phase, the realizator interface for vector has to provide
20 member functions. The realizator class specifies a skeleton that must be
filled in by the user with policies. A policy is the generic variant of a strategy
used in the strategy design pattern [2]. A policy can be used to customize
the class it is given to. In the original design of the STL, allocators and
comparators can be seen as policies that are given to the container classes.

In our source of inspiration [5], a component framework for binary search
trees was introduced. It is natural that the main variability between the dif-
ferent variants of balanced search trees is the balancing mechanism, which
can be placed in a policy class. Other variabilities are the searching mecha-
nism used for searching specific elements and the encapsulation mechanism
used for storing the information (nodes can store a colour or some other bal-
ancing information). To create a similar component framework for vector,
we had to do a variability and commonality analysis of the data structures
proposed in the literature. Such an analysis revealed that most implemen-
tations are built on the following concepts:

Slot: This is a memory location which stores a single element, or a pointer
to a proxy that stores the element or knows where the element is stored.

Segment: All vector implementations maintain a collection of memory
segments, each consisting of a sequence of slots.

Directory: There is a directory that keeps track of the memory segments
reserved. A directory can be of varying complexity; if there is only one
memory segment in all, the directory is trivial, but more complicated
alternatives are also possible.

We decided to package the management of memory segments and the
directory inside a small kernel which is given as a template argument to the
framework. There is a clear contract between the framework and the selected
kernel: the framework takes in the elements and moves them around, and
the kernel takes care of memory management. As a concept a kernel is
defined by the minimal interface which any implementation must comply
with. Let N denote the type of sizes and P the type of a proxy functioning
as a substitute for a reference to an element. In addition to a constructor
and destructor, a vector kernel should provide the following operations:

N size() const: Get the number of elements stored.

void size(N n): Set the number of elements stored to n.

N max size() const: Get the maximum number of elements that can be
stored.

N capacity() const: Get the current capacity of the kernel.

79

P access(N i): Convert a logical index i to a reference to the data stored
at the corresponding slot.

void grow(N δ): Increase the number of elements stored by δ ∈ N.

void shrink(): Fit the capacity to the number of elements stored.

In addition to the kernel, the framework accepts the types of elements
and an allocator as template arguments. The full conceptual specification of
the ValueType and allocator concepts can be found in the C++ standard. A
container can access the elements via iterators. The conceptual specification
of iterator concepts can also be found in the C++ standard. To implement
an iterator, one should somehow specify the slot, segment, and directory
in which the element pointed to lies. When this information is available,
it is possible to locate the element and to advance an iterator forward and
backward arbitrary many steps.

The purpose of the proxy design pattern is to provide a means of con-
trolling access to an object. We have found it necessary to employ several
different proxies in order to achieve many of the desirable safety properties.
The proxies used appear in two varieties. A surrogate is used as a substi-
tute for some real subject; to implement this proxy, we maintain a single
pointer to the real subject and access the real subject via this pointer. An
encapsulator [28] is used as a replacement for a real subject such that the
proxy and the real subject are functionally identical. In particular, we need
a surrogate for a kernel and we have to encapsulate an element, a reference
to an element, and a pointer to an element. The purpose of proxies will
become clearer when we give more details on the safe variants of vector.

In Figure 1, we use the CRC cards [7] to summarize the most important
concepts involved.

The user can assemble a realizator by specifying the policies required
by the framework. For example, to get a vector that stores the elements
directly inside the slots and maintains the elements in a single contiguous
memory segment, the user could write the code given in Listing 1. Observe
that, as proposed in [4], we have combined the implementations of mutable
iterators and immutable iterators into the same class; the selection of a
proper iterator is done by a Boolean value.

3. Kernels

In this section we will briefly describe the kernels which are available in
our vector framework at the moment. The kernels are dynamic array [8],
hashed array tree [37], and levelwise-allocated pile [21]. The selection of
these kernels was based on the results of previous benchmarks performed
in our research group and the desirable properties of the data structures.
A dynamic array can be used to realize a vector that stores the elements
contiguously, hashed array tree is space efficient, and levelwise-allocated pile
offers good worst-case running times. Throughout this section we assume
that the elements are stored directly at the slots; in the next section we will

80

STL container

Provide an
API to be
used by the
clients [9].

element
allocator
realizator
iterator

LEDA container

Provide an
API to be
used by the
clients [3].

element
realizator
encapsulator

framework

Delegate the
work to
different
policies.

element
allocator
kernel
surrogate
encapsulator
reference

iterator

Provide a
uniform way
of traversing
over the
elements.

realizator
surrogate
encapsulator
reference

kernel

Handle
memory
management.

element
allocator
encapsulator

encapsulator

Encapsulate
an element in
a small
object.

element
allocator

surrogate

Function as a
substitute for
a kernel.

kernel
iterator

reference

Encapsulate
a reference to
an element in
a small
object.

element
allocator
encapsulator

Figure 1. The big picture. In each CRC card, the class/concept name is listed in
the upper-left corner, the responsibilities appear on the left below the name and the
collaborators on the right.

consider other options to encapsulate elements.

Each kernel has a size which denotes the number of elements stored, and
a capacity which denotes the actual number of slots allocated for storing
the elements. If n denotes the size and N the capacity of a kernel, we use

λ
def
= n/N to denote the current load factor. When λ = 1 and we want to

increase the size of the kernel, an expansion is necessary and the expansion
factor α determines the capacity just after the expansion such that N = αn
and λ = 1/α. When the load factor becomes too small, a contraction may
take place; the contraction threshold β specifies the minimum acceptable
load factor.

The worst-case space consumption of the data structures is summarized
in Table 1 for some typical values of α and β.

81

Listing 1. An example of the use of the framework.

1 #include ”direct -encapsulator.h++”
2 #include ”dynamic -array .h++”
3 #include <memory> // defines std : : allocator
4 #include ”rank -iterator.h++”
5 #include ”stl -vector.h++” // defines cphstl : : vector
6 #include ”vector -framework.h++”
7

8 int main() {
9 enum {immutable = true};

10

11 typedef int V ;
12 typedef std : :allocator<V> A ;
13 typedef cphstl : :direct_encapsulator<V , A> E ;
14 typedef cphstl : :dynamic_array<V , A , E> K ;
15 typedef cphstl : :vector_framework<V , A , K> R ;
16 typedef cphstl : :rank_iterator<R> I ;
17 typedef cphstl : :rank_iterator<R , immutable> J ;
18 typedef cphstl : :vector<V , A , R , I , J> C ;
19

20 C v ;
21 }

Table 1. Worst-case space consumption of our vector kernels when elements are stored
directly at the slots. Here n denotes the number of elements stored.

Kernel Space consumption
Dynamic array (α = 2; β = 1/4) 6n+ O(1)
Hashed array tree (α = 4; β = 1/8) n + O(

√
n)

Levelwise-allocated pile (α = 2; β = 1/2) 2n + O(lg n)

3.1 Dynamic array

A dynamic array is an array, the capacity of which varies as a function of
its size. The elements are kept in a contiguous memory segment, and when
this segment has no empty slots or too many empty slots, the elements are
reallocated to another array. Actually, a dynamic array is a family of data
structures depending on the expansion factor and the contraction threshold
used. By peeking at the source code of std::vector that comes with our
compiler (gcc version 4.2.4), we saw that it used expansion factor α = 2
and contraction threshold β = 0 (no contraction done). In our current
implementation, α = 2 and β = 1/4, but the shrink operation can be
switched to do nothing if wanted.

The reorganization of the array is done as follows: Allocate a new array
of load factor 1/α, copy the elements from the old array into the new array,
deallocate the old array, and adjust the pointer which gives the start address
of the array. The reason why we have slack between 1 and 1/α, and 1/α

82

and β is that the reorganization is rather expensive because of memory
allocations and copy operations. If we did not have this extra slack, a
sequence of intermixed insertion and erasure operations could make this
data structure very expensive and unattractive.

Since the elements are stored in an array, the efficiency of all array oper-
ations is the same as for a fixed-sized array, except the cost associated with
the reorganizations. According to the standard amortized analysis (see, for
example, [11, Section 17.4]), the additional cost incurred by reorganizations
is only O(1) per modifying operation. For our implementation, the worst-
case space consumption of a dynamic array storing n elements can be as
high as 6n + O(1). The worst case occurs when the old array uses only 1/4
of its capacity, which means that 4n slots are in use, and the new array uses
double the current size, which means 2n slots.

3.2 Hashed array tree

The hashed array tree consists of two parts: a directory of size m and Θ(m)
segments of size m. The directory stores pointers to the beginning of respec-
tive segments. We denote m as the segment size and we ensure that it is a
power of two at all times. We only allocate space for segments which store
elements, and we maintain the invariant that at most O(1) segments are
non-full. When the maximum capacity for the current segment size is used,
a reorganization is performed. In such reorganization the new segment size
is determined and all elements are relocated to a new data structure using
this new segment size. Also, when the load factor gets below 1/8, a similar
reorganization is carried out. A lookup of an element with index i is done
by accessing the slot d[⌊i/m⌋][i mod m] in the directory d. In the current
implementation this computation is done fast using a shift and a bitwise-
and operation. In Figure 2, an example of the data structure storing the
integers 〈0, 1, . . . , 15〉 is shown.

The hashed array tree is our preferable data structure for the compact
variant of cphstl::vector since the memory overhead can be bounded by
O(

√
n), n being the current size. To achieve this space bound, the reorgani-

zation has to be done such that a memory segment in the old data structure
is immediately released after all its elements have been moved into the new
data structure. Since in both data structures the sizes of the directories and
the sizes of the non-full segments are proportional to

√
n, the amount of ex-

tra space used, even during reorganization, is only O(
√
n). Observe that for

the safe version this optimization is not possible since the copy constructor
for elements is provided by the user and it can fail by throwing an excep-
tion. Therefore, an element copy is not necessarily reversible, and the old
segments can first be released after all copies have been taken. Otherwise,
some data may be lost.

83

0 1 2 3

33

22

11

00

73

62

51

40

113

102

91

80

153

142

131

120

Figure 2. The organization of data in a hashed array tree.

3.3 Levelwise-allocated pile

A levelwise-allocated pile is similar to a hashed array tree. However, its
directory is a small vector (whose initial capacity is set to 32) and memory
segments are arrays of size 2k where k is a parameter stored at the kernel.
The data structure is expanded by increasing k by one and allocating a new
segment of size 2k, and contracted by decreasing k by one and deallocating
the last empty segment provided that the second last non-empty segment
has lost more than, say, 8 elements. A lookup of an element with index i is
performed by accessing the slot d[⌊lg(i+1)⌋][i−2⌊lg(i+1)⌋+1] in the directory
d. An example of a levelwise-allocated pile storing integers 〈0, 1, . . . , 14〉 is
shown in Figure 3.

This data structure is attractive since elements are never moved because of
an expansion or a contraction. Due to the dynamization strategy the amount
of space allocated is never more than 2n + O(lg n) if there are n elements
in total. However, since the memory segments are of varying size, some
space may be lost due to memory fragmentation. Also, the lookup formula
can be problematic since it requires the calculation of the whole-number
logarithm. (This is a primitive operation in all Intel processors.) Compared
to a hashed array tree, the computation of the whole-number logarithm is
more expensive than performing a shift and a bitwise-and operation.

0

1

2

3

0
0

2
1

1
0

6
3

5
2

4
1

3
0

14
7

13
6

12
5

11
4

10
3

9
2

8
1

7
0

Figure 3. The organization of data in a levelwise-allocated pile.

84

4. Proxies

Up to now we have assumed that the elements are stored directly at the slots.
There are two major problems with direct encapsulation. First, modifying
operations may invalidate iterators and references to elements held within
the data structure (referential integrity). Second, it may not be possible to
revert to the former state of the data structure if the copy constructor of
the element throws an exception (strong exception safety). In this section
we will present the key ideas how to avoid both of these problems.

4.1 Referential integrity

The reason why lists and associative containers can guarantee referential
integrity is that they store the elements in separate allocated objects. The
same indirect-encapsulation mechanism can be used for vector; this way we
can achieve referential integrity and partially strong exception safety. We
denote the allocated object an element encapsulator since its purpose is to
encapsulate an element in an appropriate way. After this modification, a
kernel maintains pointers to encapsulators and the iterators also point to en-
capsulators. To maximize genericity, our equivalent version to std::vector

stores an array of encapsulators. For this version, every encapsulator is a
class containing the element along with member functions for accessing that
element.

Keeping just one pointer, from a memory segment maintained by the ker-
nel to an encapsulator, is not enough for guaranteeing referential integrity.
When an iterator is advanced k slots, the iterator needs a pointer from the
encapsulator to the corresponding slot in the kernel, so it can get the pointer
to the encapsulator which lies k slots from the current slot. The backpointer
from the encapsulator to the kernel slot does not point to the memory seg-
ment explicitly since a memory segment may be reallocated every time the
size of the kernel changes. Instead, each encapsulator stores an index of the
corresponding slot. Additionally, each iterator has to keep a pointer to the
encapsulator and to the kernel. Now the iterator can execute an advance
operation by retrieving the index from the current encapsulator and then
using the access member function of the kernel to get the pointer to the
desired encapsulator. During insertions and erasures we need to update the
indices in the encapsulators, but since the pointers from the kernel to the en-
capsulators are either copied or moved, this additional work does not result
in any increase in the asymptotic time complexity. Indirect encapsulation
is illustrated in Figure 4.

By letting the iterators contain pointers to kernels may still cause inconsis-
tency. Namely, when two containers are swapped, iterators get invalidated.
This problem can be solved by introducing a kernel surrogate which is a
small object containing just one pointer to the kernel. The idea is that
iterators should, instead of a pointer to the kernel, hold a pointer to the
surrogate. The surrogate is allocated by an allocator and a backpointer to

85

Framework

Kernel
i

v iEncapsulator

Iterator

Figure 4. The encapsulator mechanism.

Framework

Kernel
i

Surrogate
pointer

v iEncapsulator

Iterator

Surrogate

Figure 5. The surrogate mechanism.

the surrogate is maintained in the framework instance. Swapping two con-
tainers is now done as follows: First the pointers stored in the surrogates
are swapped, and then the backpointers to the surrogates in the framework
instances are swapped. The surrogate mechanism is illustrated in Figure 5.

4.2 Strong exception safety

General programming techniques for crafting exception-safe programs are
discussed in [38], and specifics for creating a strongly exception-safe vector

in [20]. We will not repeat the material that can be found from the earlier
sources, but concentrate on a single issue that we have found problematic:
How to make operator[] strongly exception safe?

Let us look into the scenario shown in Listing 2. In this program, vector

86

Listing 2. An error scenario for operator[]

1 #include <stdexcept> // defines std : : domain error
2 #include <stl -vector.h++> // defines cphstl : : vector
3

4 class my_class {
5 public :
6

7 my_class(int const& a) {
8 }
9

10 my_class const& operator=(my_class const&) {
11 throw std : :domain_error(” . . . ”) ;
12 }
13 };
14

15 int main() {
16 cphstl : :vector<my_class> v ;
17 v .insert(v .begin() , my_class(5)) ;
18 v [0] = my_class(6) ; // my class : : operator= fai l s
19 }

v that consists of objects of type my_class is created, an element is in-
serted into v, and the created value is modified. During the last operation
an exception is thrown, and the container is now in an inconsistent state.
This means that our vector does not provide the strong form of exception
safety. One may argue that the exception was not thrown in the scope of
the container, so it is the user’s responsibility to handle possible exceptions.
We disagree, since the user cannot necessarily recover from this error.

To provide a safe mechanism for performing this operation, we will ensure
that this exception is handled within the scope of the library. According to
the C++ standard, operator[] should return a reference to the type of the
value, which we cannot control. Instead, we will return a reference proxy,
which we can control. The behaviour is almost the same as if a reference
was returned. The reference proxy has operator= as its member function
which will perform the assignment within a try-catch block. We need to
make some changes to the underlying data structure for it to work, since
if an exception occurs, we cannot necessarily undo this action because an
exception can be thrown in the copy constructor, too. Moving the element
outside the encapsulator, and allocating the space for it with an allocator,
solves our problem. Now operator= allocates a new element and explicitly
invokes the assignment operator; if the operation fails, we deallocate the
element whose allocation failed and the container will still be in the same
state as before the exception was thrown. If an exception is not thrown,
the new element is attached to the encapsulator and the old element is
deallocated. Referential integrity is still maintained since the iterators point
to encapsulators. In this situation, we say that the elements are encapsulated

87

doubly indirectly. An overview of the different ways to encapsulate elements
is given in Figure 6.

Elements stored
directly

Elements stored
indirectly

Elements stored
doubly indirectly

v

v i

.

i

v

Figure 6. The three different encapsulation strategies.

To maximize genericity the creation of encapsulator objects takes place
in another class, in a so-called factory. This class is needed since an object
of an encapsulator class is not necessarily created in the same way. For
example, for the encapsulators which encapsulate elements indirectly, the
object needs to be allocated and afterwards constructed; for the encapsulator
which encapsulates elements directly, the encapsulator is just constructed.
To provide the two alternative behaviours, we used partial specialization
when implementing the factory class.

4.3 Iterators

As to iterators, we have predefined two different class templates: one sup-
porting direct encapsulation (rank iterator) and another supporting indi-
rect encapsulation (proxy iterator). The rank iterator keeps an index, which
corresponds to the current slot, and a pointer to the surrogate object. The
proxy iterator keeps a pointer to the encapsulator object, which corresponds
to the current slot, and a pointer to the surrogate object.

To make the framework work for both kinds of iterators, the member
functions cannot accept iterators as input arguments or as return values.
Inside the framework, indices are used instead. For the communication be-
tween the framework and container, the iterator class provides a conversion
mechanism to convert an iterator to an index, and vice versa. This conver-
sion between iterators and indices is completely transparent; it is done by a
parameterized constructor and a conversion operator. Both of these mem-
ber functions are protected so that they can only be used by the friends;
in particular, the vector container must be a friend of the iterator classes.
If this was not the case, the iterator encapsulation would break down. A
sequence diagram illustrating the conversion mechanism is shown in Figure
7.

88

Client Container

index

insert(index, v)insert(iterator, v)

Realizator

iterator

Figure 7. A sequence diagram showing what happens in an insert operation.

5. Benchmarks

There are two questions related to our framework which could be interesting
to answer:

1. Does the use of the framework result in any performance loss?

2. What is the extra cost associated with safety?

To answer these questions we performed some experiments using the frame-
work. In this section we describe the experiments ran and report the results
obtained.

The overall picture of the experimental results was very consistent across
the computers where we ran the benchmarks. The results reported here
were carried out on a PC with the following configuration:

CPU: Intel Core 2 Duo at 2.4 GHz

Memory size: 2 GB

Cache size: 2 MB

Operating system: Ubuntu 8.04.2, kernel 2.6.24

Compiler: gcc 4.2.4 with optimization flag -O3.

The experiments were run on a dedicated machine by closing down all un-
necessary system processes. Each individual experiment was repeated 10
times to be sure that the clock precision would not cause big inaccuracies
in the results.

In our experiments, the elements stored were integers. We considered the
three kernels combined with different encapsulation policies (but we only
report the results for the dynamic array with doubly-indirect encapsula-
tion). For the sake of comparison, we also report the results obtained for
std::vector. Let v and w be two integer vectors. We performed five
experiments for different values of n:

push back: For i ∈ [0, n): v.push back(i).

pop back: For i ∈ [0, n): v.pop back().

operator[]; sequential access: For i ∈ [0, n): v[i] = 0.

operator[]; random access: For i ∈ [0, n): v[w[i]] = 0. Before this,
the elements in w were randomly shuffled.

insert: For k ∈ [0, 100): v.insert(v.begin() + n/2, k).

In our graphs we report the execution times per operation. The time needed
for all initializations is excluded in the numbers reported.

89

The results obtained are shown in Figures 8, 9, 10, 11, and 12. In general,
std::vector is much faster than the CPH STL implementations. How-
ever, the dynamic array with direct encapsulation, which is a similar to
std::vector, is not much slower. In an earlier study [36] we have shown
that it is possible to implement a component framework with an acceptable
loss in performance. This also seems to be true for our vector framework.
Even if our safe variants maintain the desired asymptotic complexity, the
constant factors introduced are high. Each level of indirection increases the
execution time by a significant additive term. Cache misses and memory
allocations are expensive in contemporary computers!

A thorough inspection of the figures gives rise to two additional remarks.
All our kernels ensure that the amount of space used is linear in the num-
ber of elements stored (provided that the reserve member function is not
called). From Figure 9 we can see that this makes pop_back much slower
than that available in the standard implementation. However, the cost of
pop_back is comparable to that of push_back which should be acceptable
for most applications. From Figure 12 we can see that insert is extremely
slow for a levelwise-allocated pile. The execution time of the direct version
is about the same as that of the indirect version. This means that the oper-
ation is CPU bound, indicating that the computation of the whole-number
logarithm is expensive. The problem is that the framework calls the access
member of the kernel when copying the elements, and this is done for each
element. If copying was implemented in the kernel, most of these com-
putations could be avoided. This example shows that a framework-based
approach can incur extra overhead.

6. Reusability

It is well-known that LOC is a questionable software metric. In spite of
this we carried out a brief analysis on our code base. So far, we have
implemented three different vector kernels and each implementation comes
with three variants: fast, safe that provides iterator validity, and extra safe
that also provides the strong form of exception safety. We wanted to avoid
the situation where these nine variants would require nine times as much
code as a single complete implementation. We have succeeded in this.

There are different ways of organizing template source code. We try
to provide a declaration of a component in a separate header file (.h++
files) and a definition of the member functions in another implementation
file (.i++ files) if we expect that the component will be used by external
users. In components that are small or are only meant for internal use, the
member functions are implemented inline, and no separate implementation
file is provided. When interpreting the results of LOC calculations, the
code duplication due to separate declarations can be problematic. Since
the declarations could be generated automatically, we ignore the overhead
caused by them.

90

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

push_back for integer data

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
levelwise−allocated pile, direct encapsulation
dynamic array, direct encapsulation
hashed array tree, direct encapsulation
std::vector

Figure 8. Experiment with push back.

All source code related to the existing implementations is published in an
electronic appendix associated with this paper [23]. Table 2 summarizes the
(logical) LOC used by each file.

By looking at these numbers and the actual code, we can still identify
some code duplication; the three encapsulator classes and the three partial
specializations of the factory class for each type of encapsulator are very
similar. Probably some additional language support would be needed to be
able to handle encapsulators in a cleaner way. (For Smalltalk, an exten-
sion of the run-time system has been proposed for this purpose [28].) One
can see that the kernels are relatively small. Each kernel has to provide
nine member functions and normally we use about 100 LOC, or less, for
the implementation. It is the kernel that crystallizes the essence of a data
structure. We expect to see these kernels in textbooks on algorithms and
data structures.

As we wrote in the introduction, a complete implementation of vector

described in [29] took 365 LOC. In their implementation, iterators were
realized as pointers to elements so no separate classes were needed for them.
Also, no separate declarations for any of the classes were provided. In our
case, a dynamic-array kernel with direct encapsulation would correspond
to their implementation. Hence, if we ignore the declarations, we use 249
(stl-vector.i++) + 137 (vector-framework.i++) + 12 (surrogate.h++)
+ 20 (direct-encapsulator.h++) + 95 (reference-proxy.h++) + 121
(rank-iterator.h++) + 33 (factory.h++) + 67 (dynamic-array.h++) +
22 (slot-swap.i++) + 25 (uninitialized-copy.i++) = 781 LOC to obtain

91

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

pop_back for integer data

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
levelwise−allocated pile, direct encapsulation
hashed array tree, direct encapsulation
dynamic array, direct encapsulation
std::vector

Figure 9. Experiment with pop back.

Table 2. LOC counts for our files.

File LOC
stl-vector.h++ 102
stl-vector.i++ 249

vector-framework.h++ 62
vector-framework.i++ 137

surrogate.h++ 12
direct-encapsulator.h++ 20
indirect-encapsulator.h++ 39

doubly-indirect-encapsulator.h++ 72
reference-proxy.h++ 95
rank-iterator.h++ 73
rank-iterator.i++ 121
proxy-iterator.h++ 65
proxy-iterator.i++ 140

factory.h++ 33
dynamic-array.h++ 67

hashed-array-tree.h++ 101
levelwise-allocated-pile.h++ 59

slot-swap.i++ 22
uninitialized-copy.i++ 25

about the same functionality. Because of generality, we have more than
doubled the amount of code needed. We will leave it for the reader to decide

92

 1

 10

 100

 1000

220 221 222 223 224

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

operator[] for integer data (sequential access)

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
levelwise−allocated pile, direct encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
hashed array tree, direct encapsulation
dynamic array, direct encapsulation
std::vector

Figure 10. Experiment with operator[]. Each element is visited once in sequential
order.

whether it is worth paying this price in the increase on the complexity and
the amount of code. The increased complexity is in particular apparent
in code that is common for both the safe and unsafe components. The
common pieces must be carefully crafted to be sure that the safety of the
safe implementations is not lost.

7. Adaptivity

In this section we describe in which ways our current implementation of the
component framework for vector could be made adaptive. For benchmark-
ing purposes, in the actual realizations we still have full control over the
instantiation of template parameters. We also give a list of the language
facilities in C++ that could be improved to make the development of active
libraries easier.

7.1 Overriding default implementations

A naive implementation of insert moves the elements between the given po-
sition and the end of the vector forward and copies the given element(s) into
the hole created. According to the contract made between the framework
and each kernel, the framework is responsible for insert. However, some-
times the framework does not have enough information to do the movement
of elements efficiently. For example, our benchmarks showed that insert

was unnecessarily slow for levelwise-allocated piles. To recover from this

93

 1

 10

 100

 1000

 10000

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of operations

operator[] for integer data (random access)

dynamic array, doubly indirect encapsulation
levelwise−allocated pile, indirect encapsulation
dynamic array, indirect encapsulation
hashed array tree, indirect encapsulation
levelwise−allocated pile, direct encapsulation
hashed array tree, direct encapsulation
std::vector
dynamic array, direct encapsulation

Figure 11. Experiment with operator[]. Each element is visited once, and these visits
are done in random order.

inefficiency, we can let the kernel implement insert as well. After this the
framework can invoke the function provided by the kernel. This leads to
a general optimization strategy that resembles member-function overriding
achieved via inheritance.

Optimization 1. If a policy provides an implementation of a member func-
tion, for which a framework provides a default implementation, override the
default implementation by invoking the function in the policy.

Our prototype implementation of this optimization relies on the
substitution-failure-is-not-an-error principle [40, Section 8.3]. We wrote a
macro HAS_SINGLE_ELEMENT_INSERT that tests whether the kernel has an
insert member function that takes an index and a reference to an im-
mutable element as parameters and returns nothing. This macro is then
used as a compile-time function that returns a Boolean value. In the frame-
work the actual implementation of insert invokes a private member func-
tion that comes in two versions, one that invokes the member function in the
kernel and another that provides the default implementation. The selection
of the correct version of that private member function is done by convert-
ing the Boolean value returned by the macro to a type and by relying on
function overloading. The programming technique used here is called tag
dispatching, and it has been used in many places in earlier implementations
of the STL.

A more elegant implementation could be obtained by relying on concept-
based overloading. First, a concept HasSingleElementInsert is defined to

94

105

106

107

108

109

217 218 219 220 221 222 223

E
xe

cu
tio

n
tim

e
pe

r
op

er
at

io
n

[in
 n

an
os

ec
on

ds
]

Number of elements

insert for integer data (100 insertions in the middle of a sequence)

levelwise−allocated pile, indirect encapsulation
levelwise−allocated pile, direct encapsulation
dynamic array, doubly indirect encapsulation
hashed array tree, indirect encapsulation
dynamic array, indirect encapsulation
hashed array tree, direct encapsulation
dynamic array, direct encapsulation
std::vector

Figure 12. Experiment with insert. Repeatedly insert new elements in the middle of
the sequence.

specify that the given type must have a member function with the signa-
ture void insert(size type, value type const&). Second, this concept
is used to define two overloaded versions of insert in the framework. The
first version requires that the kernel, which is one of the template parame-
ters, fulfils the requirement specified by the concept and the second version
requires that the kernel does not fulfil this requirement. As above, the first
version employs the member function in the kernel and the second version
provides the default implementation. Since we did not have a compiler avail-
able that could handle concepts, we were not able to try this approach in
practice.

We hope that the reader can recognize the significance of this idea: it
leads to extremely flexible interfaces and makes the development of efficient
component frameworks easier. Possibly even direct language support should
be provided for this facility.

7.2 Selecting the fastest copy algorithm

In our vector framework, copying of elements from one memory segment
to another is an often-recurring operation. To speed up copying, a standard
optimization described, for example, in [25] is to utilize an efficient bitwise
copying method if such copying will have a correct outcome. This is true,
for example, for all plain-old-data (POD) types.

Optimization 2. If both in the source and the target the elements are
stored in a contiguous memory segment, if the elements are POD types, and

95

if the sizes of the elements in both arrays are the same, copy the elements
using the fast memcpy function, which is available at the standard C library.

One way of implementing this optimization is to use the type traits avail-
able at the standard library together with tag dispatching. However, accord-
ing to the technical report on C++ library extensions [18], it is unspecified
under what circumstances std::tr1::is pod<V>::value is true. Hence, it
is unspecified when the optimization is in use, if it is in use at all. Clearly,
under these premises it is difficult to build a portable active library. In gen-
eral, the facilities for compile-time reflection, i.e. the ability of a program to
inspect its own high-level properties at compile time, could be improved in
C++.

7.3 Selecting the best-suited encapsulation policy

We observed that for vector implementations based on direct encapsulation
are slow when elements being manipulated are expensive to copy. This
inefficiency is due to relocations of elements, involving element constructions
and destructions. A faster behaviour can be obtained by letting the array
store pointers to elements.

Optimization 3. If indirect encapsulation is more profitable than direct
encapsulation, store elements indirectly; otherwise store them directly.

To implement this kind of optimization, we would need a compile-time
operator costof that evaluates the cost of a given expression at compile
time. The idea that a compiler does profiling during compilation is inter-
esting. Since there is no operator costof available, we are only able to
approximate this optimization. For example, sizeof can provide a good
estimation whether a copy of an element will be more expensive than a
copy of a pointer, but this is not necessarily the case. For example, think
of a socket that is a small object but it can be costly to copy. Also, the
expression for costof should be chosen carefully to take into account the
cost of indirection and the cost of cache misses. We admit that profiling can
slow down compilation too much so it might be wiser to rely on an external
configuration tool.

As to the selection of a suitable encapsulation policy, a similar situation
appears when instantiating a kernel that guarantees strong exception safety
and referential integrity. Depending on whether the copy constructor for the
elements can throw an exception or not, the simplest possible encapsulation
policy can be selected without loosing the strong form of exception safety.

Optimization 4. If the copy constructor for the elements cannot throw an
exception, store elements indirectly; otherwise store them doubly indirectly.

To implement this optimization, the has_nothrow_copy type trait from
the standard library could be used. However, again the technical report on
C++ library extensions [18] does not specify under what circumstances, if
any, std::tr1::has nothrow copy<V>::value evaluates to true.

96

8. Adaptability

.
For years, the CPH STL has been an interesting teaching tool when edu-

cating software developers at our university. We have been convinced that
the library might also be used at other universities for teaching purposes.
However, up to now this has not happened. After introducing component
frameworks into the library we expect that the deployment at other sites
will actually happen.

The development of component frameworks is demanding. First an at-
tempt of trying to extend an existing component framework with new fea-
tures reveals the weaknesses of earlier design decisions. To understand a
complete component framework and to extend it requires good developer
skills. We claim that the CPH STL is a good platform for training these
skills.

The development of component frameworks, and generic programming in
general, requires extreme discipline. Even if the user or the developer of a
component framework makes a trivial mistake, the error message produced
by the compiler can be extensive. This is simply because the types involved
are so complicated; the description of a type based on a component frame-
work with all the instantiated policies can easily fill a small computer screen.
The developer community has hoped that C++ concepts (see, for example,
[15, 19]) could solve the problem with poor error messages, but we doubt
that. We question whether it is a good idea to encode complicated adap-
tations into types. Even though adaptability of component frameworks is a
nice feature, with current tools the development of frameworks is tedious.

The components of the CPH STL are extensible. We have already now
a collection of programming exercises for our students. You could test your
developer skills by solving any of the following exercises.
Exercise 1. Implement a new vector kernel for the CPH STL. Highly
relevant candidates to consider include tiered vectors described in [16] and
blockwise-allocated piles described in [21].
Exercise 2. In our current implementation of a levelwise-allocated pile the
directory is a fixed-sized array. To make the data structure fully dynamic
and to provide the best possible worst-case performance bounds, we would
need a vector implementation that realizes push_back and pop_back at
O(1) worst-case cost. Develop a vector kernel that gives these performance
guarantees.
Exercise 3. Extend the framework such that the user can specify both the
encapsulation policy (direct, indirect, and doubly indirect encapsulation)
and the ownership policy (client owns, container owns, and realizator owns)
for the elements stored in a vector.
Exercise 4. Components obtained by instantiating component frameworks
are often built on several layers of abstraction. This would make the work
of compilers harder, and sometimes performance penalties are introduced.
Investigate the assembler code produced by your compiler to see what are

97

the causes for the performance penalties in our vector implementations.
Can you tell your compiler vendor how these could be avoided? Can you
tell us how we could have avoided them?

The CPH STL is like any other software; it will never become complete.
By releasing these extensible component frameworks, we do not even aim at
producing a complete—ultimate—release of the library. The whole point is
to use the library in education, and let coming software developers extend
the library. It is a fascinating idea that the users will continue the design
and development of the library by extending frameworks and writing new
components.

9. Conclusions

We conclude the paper with brief messages to different stakeholders in the
software-library community.

Users of generic software libraries: The CPH STL provides fast, safe,
and compact variants for many of the existing standard-library contain-
ers. Similar facilities could be provided, and are already provided, by
other container libraries. Hopefully, we have made it clear that safety
comes with a price tag. However, in applications, where safety has a
higher priority than performance, it is natural to use the safe variants.
This way one can avoid many hard-to-find bugs. The safe components
may be particularly useful for educational purposes.

Designers of programming-language facilities: An important procla-
mation made in this paper was that in C++ the facilities provided for
compile-time reflection and metaprogramming are far too primitive to
be of practical value. Also, a stronger support for writing generic en-
capsulators would be desirable. We hope that better programming-
language support for generic programming will be available in the near
future.

Developers of generic software libraries: When developing the
vector framework, we encountered a problem which we had not
thought of before and for which we could not provide any general
solution: How to avoid or detect gracefully a mismatch between the
template parameters given? It would be easy to check that a given
class K conceptually fulfils all kernel requirements and another given
class E all encapsulator requirements, but what if E was not designed
to work with K at all. The poor user will waste his or her valuable
development time to find out this sad fact. We leave the problem of
designing mismatch-free component libraries as a challenge for other
library developers.

Teachers of software developers: We have used the CPH STL in the ex-
ercises (weekly assignments and mini-projects) of our courses (generic
programming and software construction) to teach both design and pro-
gramming. The student feedback from these courses has been overly

98

positive. Students have found the assignments interesting and challeng-
ing. But, yes, we have also received complaints about a heavy workload.
Our recommendation is that projects are not made longer than three
weeks before the students have enough practical experience in generic
programming. Due to the lack of adequate (open-source) tools, weak
students would waste their time if the project periods were longer. But
still, as put by one of our students, it is better to over-challenge than
to simplify the assignments.

Software availability

The programs discussed in this study are available via the home page of the
CPH STL project [13] in the form of a PDF document [23] and a tar file.

Acknowledgements

We thank the following people who have been directly involved in the de-
velopment of vector in the CPH STL project; much of our work is built on
their work: Tina A. G. Andersen, Filip Bruman, Marc Framvig-Antonsen,
Ulrik Schou Jørgensen, Mads D. Kristensen, Wojciech Sikora-Kobylinski,
Daniel P. Larsen, Bjarke Buur Mortensen, Jan Presz, Jens Peter Svensson,
Mikkel Thomsen, Ole Hyldahl Tolshave, Claus Ullerlund, Bue Vedel-Larsen,
and Christian Wolfgang. Also, we thank the anonymous referees for their
insightful comments that sharpened our understanding of subject matter.

99

References

[1] David Abrahams. Exception-safety in generic components: Lessons learned from
specifying exception-safety for the C++ standard library. In Selected Papers from the
International Seminar on Generic Programming, Lecture Notes in Computer Science
1766. Springer-Verlag, 2000, 69–79.

[2] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, 2001.

[3] Algorithmic Solutions. The LEDA User Manual, Version 6.2. Web document avail-
able at http://www.algorithmic-solutions.info/leda_manual, 2008.

[4] Matt Austern. Defining iterators and const iterators. C/C++ User’s Journal 19(1),
2001, 74–79.

[5] Matthew H. Austern, Bjarne Stroustrup, Mikkel Thorup, and John Wilkinson. Un-
tangling the balancing and searching of balanced binary search trees. Software—
Practice and Experience 33(13), 2003, 1273-1298.

[6] Phil Bagwell. Fast functional lists, hash-lists, deques and variable length arrays.
LAMP Report 2002-003. School of Computer and Communication Sciences, Swiss
Federal Institute of Technology Lausanne, 2002.

[7] Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented think-
ing. SIGPLAN Notices 24(10), 1989, 1–6.

[8] John Boyer. Algorithm alley: Resizable data structures. Dr. Dobb’s Journal 23(1),
1998, 115–116, 118, 129.

[9] British Standards Institute. The C++ Standard: Incorporating Technical Corrigen-
dum 1, 2nd Edition. John Wiley and Sons, Ltd., 2003.

[10] Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro, and Robert
Sedgewick. Resizable arrays in optimal time and space. In Proceedings of the 6th
International Workshop on Algorithms and Data Structures, Lecture Notes in Com-
puter Science 1663. Springer-Verlag, 1999, 37–48

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 2nd Edition. The MIT Press, 2001.

[12] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David Vandevoorde, and Todd
Veldhuizen. Generative programming and active libraries. In Selected Papers from
the International Seminar on Generic Programming, Lecture Notes in Computer
Science 1766. Springer-Verlag, 2000, 25–39.

[13] Department of Computer Science, University of Copenhagen. The CPH STL. Web-
site accessible at http://cphstl.dk, 2000-2009.

[14] Erich Gamma, Richard Helm, Ralph Johnson, John and Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[15] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis,
and Andrew Lumsdaine. Concepts: Linguistic support for generic programming in
C++. SIGPLAN Notices 41(10), 2006, 291–310.

[16] Michael T. Goodrich and John G. Kloss II. Tiered vectors: Efficient dynamic ar-
rays for rank-based sequences. In Proceedings of the 6th International Workshop on
Algorithms and Data Structures, Lecture Notes in Computer Science 1663. Springer-
Verlag, 1999, 205–216.

[17] Austin Henderson and Morten Kyng. There’s no place like home: Continuing design
in use. In Design at Work: Cooperative Design of Computer Systems. Lawrence
Erlbaum Associates, 1991, 219–240.

[18] ISO/IEC. Draft Technical Report on C++ Library Extensions. Document Number
N1836. The C++ Standards Committee, 2005.

[19] ISO/IEC. Working Draft: Standard for Programming Language C++. Document
Number N2857. The C++ Standards Committee, 2009.

[20] Jyrki Katajainen. Making operations on standard-library containers strongly excep-
tion safe. In Proceedings of the 3rd DIKU-IST Joint Workshop on Foundations of
Software. Report 07/07. Department of Computer Science, University of Copen-
hagen, 2007, 158–169.

100

[21] Jyrki Katajainen and Bjarke Buur Mortensen. Experiences with the design and
implementation of space-efficient deques. In Proceedings of the 5th Workshop on
Algorithm Engineering, Lecture Notes in Computer Science 2141. Springer-Verlag,
2001, 39–50.

[22] Jyrki Katajainen and Bo Simonsen. The design and description of a generic software
library. Work in progress, 2009.

[23] Jyrki Katajainen and Bo Simonsen. Vector framework: Electronic appendix. CPH
STL Report 2009-4. Department of Computer Science, University of Copenhagen,
2009.

[24] Mads D. Kristensen. Vector implementation for the CPH STL. CPH STL Report
2004-2. Department of Computer Science, University of Copenhagen, 2004.

[25] John Maddock and Steve Cleary. C++ type traits. Dr. Dobb’s Journal 25(10), 2000,
38–44.

[26] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[27] Anders Mørch. Three levels of end-user tailoring: Customization, integration, and
extension. In Computers and Design in Context. The MIT Press, 1997, 51–76.

[28] Geoffrey A. Pascoe. Encapsulators: A new software paradigm in Smalltalk-80. SIG-
PLAN Notices 21(11), 1986, 341–346.

[29] P. J. Plauger, Alexander A. Stepanov, Meng Lee, and David R. Musser. The C++
Standard Template Library. Prentice Hall PTR, 2001.

[30] R. Oppermann and H. Simm. Adaptability: User-initiated individualization. In
Adaptive User Support—Ergonomic Design of Manually and Automatically Adaptable
Software. Lawrence Erlbaum Associates, 1994, 14–66.

[31] Frédéric Pluquet, Stefan Langerman, Antoine Marot, and Roel Wuyts. Implementing
partial persistence in object-oriented languages. In Proceedings of the Workshop on
Algorithm Engineering and Experiments. ACM-SIAM, 2008, 37–48.

[32] Rajeev Raman and S. Srinivasa Rao. Succinct dynamic dictionaries and trees. In
Proceedings of the 30th International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science 2719. Springer-Verlag, 2003, 357–368.

[33] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data
structures. In Proceedings of the 7th International Workshop on Algorithms and
Data Structures, Lecture Notes in Computer Science 2125. Springer-Verlag, 2001,
426–437.

[34] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley Professional, 2002.

[35] Silicon Graphics, Inc. Standard template library programmer’s guide. Website ac-
cessible at http://www.sgi.com/tech/stl, 1993–2009.

[36] Bo Simonsen. A framework for implementing associative containers. CPH STL
Report 2009-3. Department of Computer Science, University of Copenhagen, 2009.

[37] Edward Sitarski. Algorithm alley: HATs: Hashed array trees: Fast variable-length
arrays Dr. Dobb’s Journal 21(11), 1996.

[38] Bjarne Stroustrup. Appendix E: Standard-library exception safety. The C++ Pro-
gramming Language, Special Edition. Addison-Wesley, 2000.

[39] Bjarne Stroustrup. Programming: Principles and Practice Using C++. Pearson Ed-
ucation, Inc., 2009.

[40] David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete Guide.
Pearson Education, Inc., 2003.

101

Towards better usability of

component frameworks

Bo Simonsen

Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

bosim@diku.dk

Abstract. The CPH STL is an enhanced version of the STL. During the devel-
opment of the CPH STL we focused on the container part of the STL. Our goal
is to provide several versions of individual STL containers, each providing different
trade-offs and desired properties. We found that maintaining complete implemen-
tations of all variants would become a hazard for the future development of the
library. Therefore, we designed component frameworks, where the concepts of the
containers are factorized into smaller parts and most of them can vary indepen-
dently. Component frameworks give the user an enormous flexibility which allows
he or she to specify the desirable trade-offs and properties. We observed that
flexibility and usability are hard to reconcile because of limitations in the C++ pro-
gramming language. In this work we will study the usability problems, caused by
these limitations, and we will also provide solutions for these problems. The key
problems are that the user has to write a large declaration for using a container,
and a component mismatch is likely to occur, i.e. the user gives incompatible com-
ponents to the framework. Such a component mismatch results in unreadable error
messages and the actual errors can be hard to correct. We solved the problem
of large declarations by extending C++ with named template arguments and we
applied C++ metaprogramming techniques to solve the problem of component mis-
matches. We believe that the solutions to the problems described in this work are
relevant beyond the CPH STL.

Keywords. component frameworks, C++ language features, C++0x, named tem-
plate arguments, template argument propagation, component mismatch.

102

Table of contents

1 Introduction . 104
1.1 Contributions . 107

2 Selective use . 107
2.1 C macros . 108
2.2 Inheritance and template programming 109
2.3 Inheriting constructors . 111
2.4 Template aliases . 111
2.5 Conclusions . 113

3 Template argument propagation . 114
3.1 Inner classes . 115
3.2 The idiom . 117
3.3 Cyclic template arguments . 119

4 The named template argument language extension 121
4.1 The language extension . 123
4.2 Details . 127
4.3 More examples . 127
4.4 Reflection . 128

5 Framework configuration . 129
5.1 Formalization . 130
5.2 Concepts . 131
5.3 Component families . 135

6 Concluding remarks . 140
References . 141

103

104

1. Introduction

Adaptable component frameworks, in context of the STL, were introduced
in our paper on the CPH STL vector implementation [18]. A component
framework is a skeleton of a software component which is to be filled in with
implementation-specific details in the form of policies. A policy [33] is the
generic variant of a strategy used in the strategy design pattern [10, 11].
More details of how policies are integrated in the CPH STL can be found in
[17, 18, 19]1. The result of our work was a component framework for vector,
which gave us a high level of parameterization, by template arguments, such
that the user can select the desired properties (and trade-offs) of the vector
container. The conceptual view of the vector framework is shown in Figure
1.

vector framework

kernel

encapsulator

iterator

int float bool

rank iterator proxy iterator

dynamic array

value type

hashed array tree

direct encapsulator indirect encapsulator

Figure 1. The conceptual view of the vector framework.

We factorized the vector concept into the following concepts: A kernel
is a minimal implementation of a data structure. For vector this policy
provides the member functions grow, shrink, and access which allow the
framework to adjust the size of the kernel and to access elements stored in the
kernel. We provide several different kernels with different trade-offs which
include space efficiency and worst-case time complexity. An encapsulator is
a storage policy which states how each element should be encapsulated. We
provide three different encapsulators, an encapsulator which stores elements
directly, an encapsulator which stores elements indirectly, and an encap-
sulator which stores elements doubly indirectly. In this context, indirectly
means that the underlying array contains references to objects where each
value is stored. Each encapsulator gives different properties with respect
to referential integrity and strong exception safety. An iterator is an im-
plementation of a random-access iterator which interface is described in the

1 [17] is included in [26].

105

C++ standard [6]. Because we provide different encapsulators and kernels,
we need different kinds of iterator classes. Currently, we have a rank iterator
and a proxy iterator. The rank iterator is used when elements are stored
directly and the proxy iterator when elements are stored either indirectly or
doubly indirectly. However, in the future more iterator classes may appear,
since the framework is extendable.

Notice that these concepts are generic for most containers. We have also
made a component framework for binary search trees [27]. The significant
concepts in this framework is a balancing policy and a storage policy. The
balancing policy (or the balancer) contains member functions for restoring the
balance of a binary search tree after modifying operations are executed, and
the storage policy contains member functions for adjusting and retrieving the
value and the pointers. This work was carried out before we constructed the
vector component framework. At the time when we developed the vector

component framework we observed that the balancing policy was similar to
the kernel concept and the storage policy was similar to the encapsulator
concept.

An important property of the construction of the vector component
framework is that the kernels and encapsulators can vary independently and
they are interchangeable. For example, if the user desires a space-efficient
container which provides referential integrity, he or she would configure
the framework with the kernel hashed_array_tree and the encapsulator
indirect_encapsulator. If the user later observes that he or she does not
need referential integrity, he or she should simply change the encapsulator
to direct_encapsulator.

Component frameworks give both developers and users an enormous flexi-
bility, but they do also introduce problems. We found two significant prob-
lems: The user has to give many template arguments for using the frame-
work, and the probability of a component mismatch is large. Such a com-
ponent mismatch results in many lines of error messages produced by the
compiler, where the actual error can be hard to find.

We will justify the claim that component frameworks are hard to use with
an example, which is given in Listing 1. This example shows a configuration
of the binary search tree framework. A configuration is an instance of the
framework assembled with the user-selected policies. The container which is
assembled with this configuration is an ordered container set which stores
unique elements. In this configuration the balancing policy is the AVL-tree
balancer [1] (avl_tree_balancer), the storage policy is a space-efficient
node (avl_tree_node, the last template argument determines whether the
node is space efficient or not), and the iterator is a generic iterator class for
containers that are based on nodes (node_iterator). More details about
the binary search tree framework can be found in [27]. More details on the
architecture of the CPH STL can be found in [17, 19].

By analysing the code shown in Listing 1 we deduced the following ob-
servations:

– Several template arguments are given several times, for example, the

106

Listing 1. An example of a configuration of the binary search tree framework.

1 typedef cphstl::set<int,
2 std::less<int>,
3 std::allocator<int>,
4 cphstl::tree<int,
5 int,
6 cphstl::unnamed::identity<int>,
7 std::less<int>,
8 std::allocator<int>,
9 cphstl::avl_tree_node<int, true>,

10 cphstl::avl_tree_balancer<
11 cphstl::avl_tree_node<int, true>
12 >
13 >,
14 cphstl::node_iterator<
15 cphstl::avl_tree_node<int, true>,
16 false
17 >,
18 cphstl::node_iterator<
19 cphstl::avl_tree_node<int, true>,
20 true>
21 > C;

type of the value which is int is given 11 times.
– The meaning of each template argument is not clear. For example, it

is not obvious to an inexperienced user what false and true mean in
the context of the iterator class node_iterator.

– The default arguments are not sufficient. Consider the template param-
eter list for a class L = 〈P0, P1, . . . , Pn〉. We assume that all template
parameters have default arguments. If the user wants to override the
default argument for Pn, he or she needs to give all template arguments
because the order of the template arguments matters. This applies to
our current example, if we just want to override the iterator class, we
need to give the whole declaration.

In [18] we propose a partial solution to these problems by introducing
predefined container classes. For predefined container classes we select the
policies in advance such that the user should only give the type of the value
and the type of the allocator as required by the C++ standard. For example,
for vector we provide compact_vector which is realized by a space-efficient
data structure. The predefined container classes cannot be the only way
of using the component framework, simply because we desire the flexibility
obtained by the current construction of the framework. Therefore we should
support both variants of use. These two kinds of use are defined in [18] as
selective use, where the user selects a predefined container class, and as
integrated use where the user builds a component from smaller components
(kernel, encapsulator, and iterator). We need a better way of writing the
declarations for integrated use because of the problems identified earlier.

107

With these problems in mind, we can specify the requirements for the
future declarations of integrated use: Each template argument should be
given once, the meaning of each template argument should be clear, and
overriding default arguments should not affect other default arguments in
the template parameter list.

1.1 Contributions

The problem of writing proper container declarations is just one problem
related to the use of component frameworks. In this work we will study
other aspects related to the use of component frameworks as well. More
precisely, the main contributions of this work are:

– We describe how to implement selective use and how to improve the
interaction between the user and the framework for realizing integrated
use.

– We show how to detect a component mismatch and provide a solution
which produces better error messages when a component mismatch is
detected.

Further contributions of this work are:

– We discuss several elements from the upcoming revision of the C++
standard, which we found useful in the context of program-library de-
velopment.

– We define the template argument propagation idiom and provide some
ideas of its application.

– We provide a complete specification and implementation of our named
template argument language extension such that others can use it.

2. Selective use

In this section we will consider several different approaches of how to imple-
ment selective use. We will consider a C-macro approach, and an approach
based on inheritance. We will also consider several different language-feature
proposals which have been accepted to the upcoming revision of the C++
standard.

We will use the vector component framework as an example in our study
of how to provide selective use. The predefined container classes for the
vector framework are the following:

cphstl::vector<V, A, R, I, J>: The parameterized vector class. The
default template arguments ensure that the container class can be used
as specified in the C++ standard; this container class is standard com-
pliant2 and it should be realized by a dynamic array [8] or a similar
data structure.

2 The current cphstl::vector interface is not standard compliant because of the reference
proxy (described in [18]). The reference proxy should be given as template argument to the
framework, such that the vector framework can be used to produce a standard compliant
vector.

108

cphstl::fast_vector<V, A>: A vector similar to cphstl::vector but
the array is not contracted due to performance considerations. This
implementation is similar to the one provided by GNU libstdc++ [13].

cphstl::safe_vector<V, A>: A vector based on a regular dynamic ar-
ray [8], or a similar data structure, with the safety extensions (strong
exception safety and referential integrity) as described in [18].

cphstl::compact_vector<V, A>: A vector based on the hashed array
tree [30] or a similar data structure. This container must provide a
space overhead bounded by O(

√
n).

The template parameter V is the type of the value and the template param-
eter A is the type of the allocator.

When finding solutions to problems in the area of library development
we have several metrics to measure the quality of our solutions, including
flexibility, maintainability, usability, and code reuse. Regarding the con-
struction of predefined container classes, we are mostly concerned about
code reuse. That is because, currently we have four different predefined
container classes but more may appear in the future. At that time, main-
taining several complete implementations of the vector container interface
may become a hazard for the future development. Therefore we will select
the solution which ensures that the highest amount of code is reused, and
works according to our requirements. We desire that cphstl::vector is the
only complete implementation of the interface specified in the C++ standard.

2.1 C macros

A predefined container class for the vector component framework can be
viewed as an alias of the vector container given some template arguments in
advance. The C++ programming language provides most language features
as we know from the C programming language [20]. That includes the
preprocessor directives that allow the programmer to let the preprocessor
generate code at compile time. These directives are prefixed by #. One of
these directives is define which is used to create an alias (also known as a
macro).

The define directive takes two arguments, an identifier and a replace-
ment text. What happens when the programmer writes the identifier is
that the C preprocessor will substitute the identifier with the replacement
text. The identifier can also have an associated parameter list which allows
the replacement text to contain parameters. When the programmer sup-
plies an identifier with arguments, the parameters in the replacement text
will be substituted with the arguments. We can use the define directive
to create an alias for the predefined container classes. An example where
fast_vector is defined using macros is shown in Listing 2.

This solution comes with some major problems. The first obvious problem
is that each alias needs a unique name. That is because overloading of aliases
depending on their parameter count is not allowed in C-style macros. This
means, if a predefined container class has a parameter list of length n with

109

Listing 2. Macro-based solution for fast vector.

1 #define fast_vector_(V, A) vector<V, A, vector_framework<V, A,
dynamic_array<V, A, direct_encapsulator<V, A>, true > >,
rank_iterator< vector_framework<V, A, dynamic_array<V, A,
direct_encapsulator<V, A >, true > >, false>, rank_iterator<
vector_framework<V, A, dynamic_array<V, A, direct_encapsulator<V
, A >, true > >, true> >

2 #define fast_vector(V) vector<V, std::allocator<V>, vector_framework
<V, std::allocator<V>, dynamic_array<V, std::allocator<V>,
direct_encapsulator<V, std::allocator<V> >, true > >,
rank_iterator< vector_framework<V, std::allocator<V>,
dynamic_array<V, std::allocator<V>, direct_encapsulator<V, std::
allocator<V> >, true > >, false>, rank_iterator<
vector_framework<V, std::allocator<V>, dynamic_array<V, std::
allocator<V>, direct_encapsulator<V, std::allocator<V> >, true >
>, true> >

Listing 3. Inheritance-based solution for fast vector.

1 namespace cphstl {
2 template <typename V,
3 typename A = std::allocator<V> >
4 class fast_vector : public vector<V, A, vector_framework<V, A,

dynamic_array<V, A, direct_encapsulator<V, A>, true > >,
rank_iterator< vector_framework<V, A, dynamic_array<V, A,
direct_encapsulator<V, A >, true > >, false>, rank_iterator<
vector_framework<V, A, dynamic_array<V, A, direct_encapsulator
<V, A >, true > >, true> > {

5 public:
6 /* constructors and operator= */
7 };
8 }

default arguments, we need n different macros with unique names. This
fact makes this solution less attractive. Yet another problem is that macros
are processed by the preprocessor, and in that state the compiler has no
abstract syntax tree. This means that it has no knowledge of namespaces,
so it is not possible to define a macro within the CPH STL namespace. This
could cause conflicts if the user did define a macro with the same name.

2.2 Inheritance and template programming

Inheritance and template-based programming can be mixed, such that we
can define a class template which inherits from another class template [33].
This means that we can define cphstl::fast_vector as a class template
which inherits from cphstl::vector. A skeleton of the implementation is
shown in Listing 3. We can still provide the default arguments, such that
the user can give just V and the default argument for A will be used. The

110

Table 1. The differences between the constructors of the stack container and adaptor
classes.

Container

template <
typename V,
typename A = std::allocator<V>,
typename R = std::list<V, A>

>
class stack_container {
public:

...
explicit stack_container(
A const& = A());

stack_container(
stack_container<V, A, R> const&);

...
};

Adaptor

template <
typename V,
typename C = std::deque<V

>
>
class stack_adaptor {
public:

...
explicit stack_adaptor(
const C& = C());

...
};

user can also give both arguments without problems.
A problem with this solution is that we need to define all constructors

in each derived class. For this particular example (cphstl::fast_vector)
that fact does not cause any problems, since we are inheriting from the
same class for any permutation of template arguments. A problem will only
appear if the vector container gets more constructors, then all predefined
container classes should be altered. It is not always the case that a class
inherits from the same class for any permutation of template arguments, for
instance, the CPH STL implementation of stack does not.

Example 1. The cphstl::stack implementation is adaptive meaning that
if the last template argument is an allocator, cphstl::stack inherits all
members from the container variant of stack, otherwise it inherits all mem-
bers from the adaptor variant of stack. The adaptor variant is described in
the C++ standard and the container variant is a CPH STL extension. We
provide a container variant of stack since the underlying container already
provides iterators, and we observed that our users would prefer that iterators
were available in some cases. 2

The selection of which class cphstl::stack inherits from (as described in
Example 1) can be implemented using C++ metaprogramming techniques.
The problem is that the two classes (the stack adaptor and the stack con-
tainer) do not provide the same constructors which is required in order
to successfully implement cphstl::stack using inheritance, since the con-
structors are not inherited. The code relevant for this observation is shown
in Table 1. We have not found any language features for solving this prob-
lem within the scope of the current C++ standard. To successfully solve this
problem, we would need a language feature which allowed us to explicitly
specify for a subclass that the constructors (in general, all members) should

111

be inherited.

2.3 Inheriting constructors

The lack of language support for inheriting constructors in C++ turned out
to be a well-known problem. The upcoming revision of the C++ standard, in-
formally denoted C++0x, will include a language feature which allows inher-
itance of constructors. The proposal [24] states that if the using keyword,
parameterized with the name of the base class is present in the declaration
of a subclass, the constructors of that base class are inherited. Example 2
shows how the proposed syntax of the using keyword can be applied.

Example 2. Consider two classes sub_class and base_class. We de-
sire that sub_class inherits all constructors from base_class. With the
language feature described in [24] we can write the following C++ code to
implement this scenario.

1 class base_class;
2

3 class sub_class : public base_class {
4 using base_class::base_class;
5 public:
6 ...
7 };

Notice, that the using keyword can be placed arbitrarily in the class decla-
ration. 2

The appearance of such a language feature will make the predefined con-
tainer classes smaller, but most importantly this language feature provides
us hope that it should be possible to implement the adaptive stack with the
desired behaviour as described in Example 1. In the proposal of the inher-
iting constructors language feature, it is not clear whether it is allowed to
inherit constructors from a class template or a template argument. For our
implementation of the adaptive stack this is crucial. The most recent draft
of the C++0x standard [15] confirms that it should be allowed to inherit con-
structors from a class template or a template argument. This means that
the adaptive stack can be implemented with the desirable behaviour using
inheritance.

2.4 Template aliases

Let us reconsider the implementation of the predefined container classes.
Currently, we can only provide a valid solution using inheritance. In general
we want to avoid inheritance because we have observed that bugs involved
in such programs are hard to find since the polymorphic binding is per-
formed at run time. We prefer compile-time polymorphic binding, since an
error in such programs will usually result in an error message produced by
the compiler, which is easier to find than run-time errors like segmentation

112

faults. Example 3 partly justifies this claim; it shows one pitfall related to
inheritance in C++, which most programmers may have encountered.

Example 3. Consider two classes A and B. The class B inherits all members
from A. Both classes contain a member function test. The following code
defines the classes and creates an object of B.

1 #include <iostream>
2

3 class A {
4 public:
5 void test() {
6 std::cout << "A" << std::endl;
7 }
8 };
9

10 class B : public A {
11 public:
12 void test() {
13 std::cout << "B" << std::endl;
14 }
15 };
16

17 int main() {
18 A* x = new B();
19 x->test();
20 }

When the call x->test() is issued, we expect that B::test() is called,
but it turns out that A::test() is called. This happens since the member
function in A is not defined to be virtual. 2

An interesting language feature proposed for C++0x is called typedef tem-
plates (also known as template aliases). Before we will introduce this lan-
guage feature, we will give some background on C++ generic programming.
A typedef is short for type definition. A typedef is used to create an alias
for a type. It is similar to the define directive, as we discussed earlier.
Typedefs are fundamental in C++ generic programming and especially when
designing STL containers. That is because class members can be types. We
can perform type definitions for all types, also class templates. For exam-
ple, we can create a type definition for an integer vector in the following
way: typedef std::vector<int, std::allocator<int> > int_vector.
Sometimes it can be useful to create an alias for a class template where the
template arguments are not given in advance (see Example 4), as they were
in the previous example.

Example 4. Boost C++ libraries [5] provide a so-called pool allocator
(boost::pool_allocator). A pool allocator [3] maintains an object pool
(or a free-list) which is used to serve allocation requests. Furthermore
when the allocator receives a deallocation request, the object is not deal-
located, but it is stored in the object pool. Such an allocator may be a
performance improvement for containers which are often updated (elem-

113

Listing 4. A typedef template for cphstl::fast vector.

1 namespace cphstl {
2 template <typename V, typename A>
3 using fast_vector = vector<V, A, dynamic_array<direct_encapsulator

<V, A>, false>, rank_iterator<dynamic_array<
direct_encapsulator<V, A>, false>, false>, rank_iterator<
dynamic_array<direct_encapsulator<V, A>, false>, true> >;

4 }

ents are erased and inserted). For convenience, we would desire an alias
where we could write pool_allocated_list<V> to obtain an instance of
std::list<V, boost::pool_allocator<V> >; V denotes the type of the
value. 2

We can implement the proposal in Example 4 using inheritance or using a
typedef template. A typedef template is similar to a typedef but it is allowed
to use template parameters in its declaration such that when the typedef
template is used, the template arguments are given. This language feature
was proposed by Sutter [32], and the syntax is the following:

template<L> using A = D;
The elements in this syntax are the following: L the template parameter list,
A the alias, and D the declaration of which the typedef template is an alias
for. The same syntax appears in the draft of the upcoming C++ standard
[15].

To clarify the use of this language feature, we can now specify the typedef
template for pool_allocated_list<V> as described in Example 4. The
declaration looks as follows:

1 template <typename V>
2 using pool_allocated_list = std::list<V, boost::pool_allocator<V> >;

An important observation is that this language feature becomes useful when
implementing the predefined container classes. With inheritance we needed
several lines of code, with typedef templates we need just a few lines. This
is shown in Listing 4 where the full declaration of cphstl::fast_vector is
given.

2.5 Conclusions

From the discussion in this section, we have learned that the language fea-
tures proposed for C++0x ease and improve library development. More
specifically we have learned that the adaptive stack can be implemented
using inheritance with the extension of inheriting constructors. Currently
it cannot be implemented in the desired way, which means that the cur-
rent specification of the C++ programming language is not strong enough
regarding this matter. Furthermore we learned that we can implement the
predefined container classes with just a typedef template instead of a class
declaration.

114

3. Template argument propagation

In this section we will study how to improve support for integrated use; the
way of use where the user specifies the kernel, encapsulator, and iterator
for realizing the vector container. We observed that the declarations for
integrated use were long and hardly readable. That was because the user had
to give each template argument several times in the worst case, the meaning
of each template argument was not clear, and the default arguments were
not sufficient. If we could just solve one of these problems, we would achieve
a significant improvement regarding usability. We have found a technique,
based on the regular C++ language, which ensures that the user can give
each template argument once; we can therefore solve one of our usability
problems.

The idea in this technique is to propagate (or forward) each template
argument, which is given to a class template X, to class templates which are
instantiated by X. A simple algorithm for propagating template arguments
is shown in Algorithm 1. The algorithm accepts sets of template arguments
given to each class in a configuration. These sets are denoted Ax for a
class x. In these sets template arguments are just given once, and the
algorithm computes a full set of template arguments for set Ax for all x in
the configuration. The algorithm has several limitations, including that all
template arguments must be unique, i.e. a class template cannot be given
twice with different permutations of types. This fact does not matter, since
the purpose of the algorithm is to show how this mechanism works.

Algorithm 1 propagate(C,A,P)

Require: The class name C. The set Ax containing pairs
〈parameter, argument〉 for a class x. The set Px containing tem-
plate parameters for a class x.

1: for 〈p, a〉 in AC do

2: Aa ← {〈p′, a′〉 | 〈p′, a′〉 ∈ AC ∧ p′ ∈ Pa} ∪ Aa

3: propagate(a, A,P)
4: end for

A concrete example which shows how the template arguments are prop-
agated when this technique is applied for our vector framework is shown
below.
Example 5. Let us consider the vector and vector_framework classes.
The propagating procedure works as follows (also shown in Figure 2):

– The user supplies vector with all template arguments required which
are V, A, R, I, and J.

– The template arguments which are required by vector_framework and
known by vector will automatically be given to vector_framework.
These are V and A.

– The template argument which is not known by vector must be supplied
by the user. This template argument is K.

115

Propagate V and A Propagate V and A

A

kernel

J
I

A

vector vector framework

A
E

VR

V

K

V

Figure 2. Template argument propagation.

This procedure can be repeated recursively such that vector_framework

propagates template arguments to the kernel, and the kernel propagates
template arguments to the encapsulator using the same principle. 2

This technique can be widely applied when exercising C++ generic pro-
gramming; we will see that the use of this technique has other applications
as well. Since it is a technique which can be widely applied we have classified
it as an idiom, and named it the template argument propagation idiom. We
will now give some background on the C++ programming language required
for understanding the implementation of this idiom.

3.1 Inner classes

The C++ programming language is very powerful for structuring elements in
a large code base. These elements are functions, variables, and so on. The
basic language features for structuring these elements are structs and classes.
More advanced language features for structuring elements are namespaces,
which become very useful in, for example, library development. Namespaces
make it possible for the user to use several different libraries within the same
code, for example, the user can use both elements from the CPH STL and
the STL at the same time. A language feature, which is often overlooked, is
the possibility of having inner classes [33] in a class, i.e. classes can contain
other classes.

Let us consider a simple example shown in Table 2. Here, the class A has
three inner classes. The classes B and C are declared public, and the class
D is declared private. The use of inner classes makes it easy to do proper
encapsulation. With these declarations we specified that the classes B and
C can be instantiated outside A but D needs to be instantiated within A (if A
contained friend declarations, the friends could also create instances of D).
The classes contained in A can be accessed like any other member using the
:: infix operator, e.g. C can be accessed using the statement A::C. Accessing
a member in C can be done using A::C::member.

Regarding this language feature, we are mostly concerned if it can be
applied to class templates such that we can have inner class templates in class
templates. This is possible, and in general, there is no difference between

116

Table 2. A class containing inner classes.

1 class A {
2 public:
3 /* classes */
4 class B {
5 public:
6 void a_member_func() {
7 }
8 };
9 class C {

10 public:
11 typedef int member;
12 void another_member_func() {
13 }
14 };
15

16 /* member function */
17 void test() {
18 (*this).d.test();
19 (*this).b.a_member_func();
20 }

continues in the right column

21 private:
22 /* classes */
23 class D {
24 public:
25 void test() {
26 }
27 }
28

29 /* member data */
30 B b;
31 D d;
32 };
33

34 int main() {
35 A a;
36 A::C c;
37 a.test();
38 c.another_member_func();
39 }

Table 3. An inner class template.

1 template <typename P1>
2 class A {
3 public:
4 template <typename P2>
5 class B {
6 public:
7 void test() {
8 P1 p1;
9 P2 p2;

10 ...
11 }
12 };
13 };
14

15 template <typename P1>
16 class C {

continues in the right column

17 public:
18 void test() {
19 b.test();
20 }
21 private:
22 typename P1::template B<P1> b;
23 };
24

25 int main() {
26 A<int>::B<float> b;
27 b.test();
28

29 C<A<int> > c;
30 c.test();
31 }

117

writing regular inner classes and inner class templates. An example of the
use of inner class templates is shown in Table 3. In this example we have a
class template A which consists of an inner class template B. As the reader
can verify by examining this example, the only difference between the use of
inner classes and inner class templates is that we provide template arguments
for inner class templates. The use of inner class templates is similar to the
construction given in Example 6.

Example 6. For most STL containers, in this example vector, we see the
following recurring construction:

1 template <typename V, typename A = std::allocator<int> >
2 class vector {
3 public:
4 ...
5 template <typename I>
6 void insert(I first, I second);
7 };
8

9 int main() {
10 vector<int> v;
11 int a[] = {1,2,3};
12 v.insert(a, a+3);
13 v.insert<int*>(a, a+3);
14 }

The user supplies vector with the template arguments V and A. The tem-
plate argument I for the function template insert is deduced from the type
of the iterator which is given as argument. The template argument can also
be given explicitly as shown in the second call to insert. 2

By using this language feature we can create even more complex construc-
tions. Let us consider the class C from the example in Table 3. The class
C accepts a class template containing an inner class template as template
argument; C creates an object of the inner class template and calls a member
function using this object. The declaration of creating the object is more
complex than the declarations that we have already seen. Since the outer
class template is given as template argument, we have to use the template

keyword to access the inner class template (see line 22 in Table 3).

Observation 1. In Table 3, the class C provides the template arguments
for the inner class template (in this example B) of the class template given as
template argument (in this example A). This means that the user just speci-
fies the template arguments for A and C supplies B with template arguments.

2

3.2 The idiom

Observation 1 is the foundation for the template argument propagation id-
iom. The key aspect is that some class template can accept another class
template by its template argument and provide template arguments for this
class, using an inner class as a proxy for the real class. An example is shown

118

Listing 5. General structure of the template argument propagation idiom.

1 class Y {
2 public:
3 template <typename P1, typename P2, ...>
4 class real_class {
5 public:
6 ...
7 };
8

9 };
10

11 template <typename P1, typename P2, ..., typename PY = Y>
12 class X {
13 public:
14 ...
15 typename PY::template real_class<P1, P2, ...> y;
16 };
17

18 int main() {
19 X<int, char, ..., Y> x;
20 ..
21 }

in Listing 5 where we have two classes X and Y. The idea is that the user
should only supply X with template arguments, and then X supplies Y with
the template arguments needed. The class Y can also take template argu-
ments. These template arguments are specified by the user. This is useful
if Y takes template arguments which are not known by X as we described
earlier.

This idiom could be directly applied to ensure that we will only specify
template arguments once when using our frameworks. An example of how
the idiom could be applied in our vector component framework is shown
in Listing 6. This example is almost equivalent to the example shown in
Listing 5, where vector is X and vector_framework is Y. The difference is
that vector_framework takes one template argument which is the kernel;
this template argument is not known by vector. We assume in this example
that the kernel is using this idiom such that the template arguments are
propagated.

Every solution to a problem has its price, one may ask, what is the cost
of this solution? In order to propagate all template arguments for every
component in our layered architecture, this idiom should be applied to all
components, which includes container classes, frameworks, kernels, iterators,
and so on. Changing our entire code base would be a very time consuming
task, and the code would become less readable. As earlier stated the use
of this idiom does only solve one of our problems, namely that template
arguments are given once. The two other problems still remain, namely
that the meaning of each template argument was not clear, and overriding

119

Listing 6. A skeleton of vector and vector framework with the template argument
propagation idiom applied.

1 template <typename K>
2 class vector_framework {
3 public:
4 template <typename V, typename A>
5 class real_class {
6 public:
7 ...
8 };
9 };

10

11 template <typename V, typename A, typename R, typename I, typename J
>

12 class vector {
13 ...
14 private:
15 typename R::template real_class<V, A> r;
16 };
17

18 int main() {
19 vector<int, std::allocator<int>, vector_framework<

hashed_array_tree< ... > >, ... > v;
20 }

some template arguments meant that the default arguments could no longer
be used. The fact that this solution comes with an expensive price tag and
it does not solve all our problems makes it unattractive. We have found no
way to solve all problems within the scope of the current C++ standard. In
the next section we will consider a solution which solves all three problems,
but this solution is beyond the current C++ standard. But first we will look
into another application of this idiom.

3.3 Cyclic template arguments

A recurring problem when exercising C++ generic programming is that a
cyclic dependency of template arguments can appear. Given two classes P

and Q, assume that both classes takes one template argument. Consider the
scenario where P is given to Q and Q is given to P as template arguments.
If the user tries to write a declaration for this scenario, he or she would
end up with an infinite declaration: P< Q< P< ... > > >. Obviously, this
declaration cannot be accepted by the compiler. We call the problem, caused
by this scenario, the problem of cyclic template arguments. We observed that
applying the template argument propagation idiom solves this problem; the
solution is shown in Listing 7 for the current example. We can now rewrite
the infinite declaration to the following finite declaration P<Q>. The example
below describes the situation where we encountered this problem for the first

120

Listing 7. The template argument propagation idiom applied to two classes with a cyclic
dependency by template arguments.

1 class Q {
2 public:
3 template <typename Arg>
4 class real_class {
5 public:
6 ...
7 };
8 };
9

10 template <typename Arg>
11 class P {
12 public:
13 ...
14 typename Arg::template real_class< P< Arg > > y;
15 };
16

17 int main() {
18 P<Q> p;
19 }

iv

Array

Dynamic Array
Surrogate

SurrogateEncapsulator

Iterator

pointer

Surrogate pointer

Figure 3. The initial construction of a dynamic array providing referential integrity.

121

time.

Example 7. The initial construction [28] for a dynamic array providing
iterator validity and thereby partly referential integrity (for definition see
[18]) in the CPH STL is shown in Figure 3. In this construction each en-
capsulator stores a pointer to the surrogate. This construction was later
refactored and during this refactoring the surrogate pointer was moved to
the iterator. The motivation of this change was to reduce the space con-
sumption for each encapsulator by a pointer, i.e. the memory consumption
for a vector storing n elements was reduced by n pointers. Yet another
argument for moving the pointer to the surrogate was that the template ar-
guments became cyclic within the initial construction: The surrogate class
takes the realizator (dynamic array) as its template argument, the realizator
takes an encapsulator as a template argument, and the encapsulator takes
a surrogate as a template argument. Moving the surrogate pointer to the
iterator removed this cyclic dependency. 2

An interesting question one may ask: can we during the design phrase de-
tect whether the problem of cyclic template arguments appear? The answer
to this question is yes; the observation below states under which circum-
stances the problem will occur.

Observation 2. If the relationship between the components is interpreted
as a directed graph (see Figure 3), the problem of cyclic template arguments
exists if there exists a cycle in this graph (represented by the bold edges in
the figure). 2

We learned from Example 7 that the cyclic dependency can be removed
by reorganizing the components. Such a reorganization may, in some cases,
cause reduced flexibility, for example, the surrogate cannot be accepted as
template argument in the framework, without applying the template argu-
ment propagation idiom. We found it acceptable that the surrogate was
explicitly defined in the framework, but in some cases it might be unaccept-
able to explicitly define types. In such cases we have found no other options
than applying the template argument propagation idiom. The problem has
earlier been discussed in [7]. The solution proposed in [7] is denoted rebind-
ing (this concept is also used in allocators) which is similar to the template
argument propagation idiom.

4. The named template argument language extension

Several modern programming languages provide the feature named argu-
ments (also known as keyword arguments). This feature provides a mecha-
nism to call a method where the arguments are prefixed with the name of
the parameter. These programming languages include JavaScript, Python,
C#, and F#. We will study how this works in Python [25] by considering
the code given in Listing 8. The function fun defined in lines 1–2 takes two
arguments; both parameters have default arguments defined. This means
that the function can be called with no arguments (line 4) and the default

122

Listing 8. The use of keyword arguments in Python.

1 def fun(pone = ’a’, ptwo = 1):
2 print pone, ptwo
3

4 fun() # prints ’a 1’
5 fun(’b’) # prints ’b 1’
6 fun(’b’, 2) # prints ’b 2’
7 fun(ptwo = 2) # prints ’a 2’
8 fun(pone = ’b’) # prints ’b 1’
9 fun(pone = ’b’, ptwo = 2) # prints ’b 2’

arguments will be used. The function can be called with one argument and
the default argument for the last parameter will be used (line 5). Finally
the function can be called with both arguments (line 6). These ways of use
are identical to what is possible in C++.

What is beyond C++ in Listing 8 is that we can supply the arguments
using the name of the parameters. The use of this language feature is shown
in the fourth call (line 7) where the function is called with ptwo = 2. This
means that ptwo in the function is set to 2 and the default argument for
pone is used. The remaining calls (lines 8–9) are similar to the calls in lines
5–6. The reason why we study this language feature is that we found it
relevant for C++ templates. When we studied the usability problems, which
we identified earlier, we have just found a solution for one of the problems
(template arguments were given several times). The two remaining problems
which were that the meaning of the template arguments were not clear
and the default arguments were not sufficient if one overrides the default
argument for the last template parameter in the list.

Our hypothesis is that named template arguments will solve these prob-
lems. The idea is that template arguments can be given in a similar way
as shown for function arguments in Python. The fact that the parameter
name can be given as prefix for the argument should make the meaning of the
template argument clear (if the name of the parameter is carefully chosen)
and since the template argument is addressed by its parameter name the
order is not important anymore. Therefore this language extension solves
our problems. To realize such an extension we develop a preprocessor which
takes C++ code mixed with the language extension code and produce C++
code which can be accepted by the compiler. We are not the first to propose
named template arguments in C++ template programming. An earlier at-
tempt [33] has been made to obtain this feature in C++; however this attempt
relies on C++ metaprogramming techniques. Combined with the template
argument propagation idiom this technique may solve all three problems,
but it requires that the whole library is refactored.

Another solution could be to develop a domain-specific language (dis-
cussed in for example [23]) for specifying container declarations. A simple
language is shown in Example 8. This language would partly solve our prob-

123

lems combined with the template argument propagation idiom. A prepro-
cessor could translate the domain-specific language code embedded in C++
code into pure C++ code. The problem with this language is that the tem-
plate arguments contained in D, R, I and E would not have any description
associated such that the meaning of these parameters would be clear. Then
we should add another feature to the language to provide proper readability.
This fact makes this solution unattractive, since such a language would be
hard to maintain. We have learned this lesson from earlier experiences [29].
Example 8. Consider a domain-specific language realized by the following
regular expression:

L = D ((using R) ∪ ∅) ((, encapsulator E) ∪ ∅) ((, iterator I) ∪ ∅)
Where D is a C++ declaration for a container as defined in the C++ stan-

dard, R is the realizator, E is the encapsulator, and I the iterator class.

2

We have not yet addressed the problem of propagating template argu-
ments in context of the named template argument language extension. We
learned that we should change our entire code base for applying the template
argument propagation idiom. We want to avoid that. Fortunately, there is
a smarter solution. If all template arguments given by the user are consid-
ered to be global template arguments we can automatically propagate the
template arguments. For example, the user supplies vector with the type
of the value V. The template argument V will now be global, so all classes
(all classes in the configuration) contained in vector will know V. Another
argument in favour for named template arguments, besides that it solves
our usability problems, is that it is usable outside the CPH STL. That is
why we classified it as a language extension. If such a language extension
appeared in the C++ programming language, the language would become
stronger for template-based programming. Not just because the code be-
comes more readable but mainly because the default template arguments
would be usable for any template argument that is overridden.

4.1 The language extension

We will start explaining our language extension of named template argu-
ments by an example. This example is shown in Listing 9. In this example,
we declare a container type C. This container is a set which is an ordered
container which stores unique elements. In this example the set is storing
elements of type int, and it is realized using the binary search tree frame-
work. The kernel is an AVL tree [1] and a space-efficient node is used. This
example is equivalent to the first container declaration (Listing 1) we con-
sidered. So for this example, the preprocessor will translate the code given
in Listing 9 to the code given in Listing 1.

The tokens !< and !> are used to enclose the declarations which are part
of the language extension such that our preprocessor can easily recognize the
declarations which it should process. The logic of our language extension is:

124

Listing 9. An example of a declaration using named template arguments.

1 typedef cphstl::set!<V=int,
2 R=cphstl::tree!<
3 N=cphstl::avl_tree_node!<packed=true!>,
4 B=cphstl::avl_tree_balancer
5 !>,
6 J=cphstl::node_iterator!<is_const=true!>,
7 I=cphstl::node_iterator!<is_const=false!>
8 !> C;

– Every argument enclosed by the tokens !< and !> must be a named
argument, i.e. it is prefixed by its parameter. We denote a list of named
arguments enclosed by the tokens !< and !> a block.

– An argument may contain another block of named template arguments
(for example, see the argument for parameter R, line 2 in Listing 9).

– The argument for each parameter is memorized such that if a named
argument is already given, that argument will be used. It is possible to
overwrite these arguments such that, if a named argument X is given,
it can later be overwritten and the overwritten version will be used in
the rest of the declaration.

– If a named argument is not given, and it is not memorized from an ear-
lier declaration, the default arguments, as specified in the declaration
of the class will be used (for example, in Listing 9 the named argument
of A, the allocator, is omitted, here the default argument is used). If
this is not specified either, an error is reported.

Already now we can see the advantages of our language extension: The
meaning of the template arguments becomes clear. For example in the
declaration of node_iterator it is now clear what the Boolean argument
means, because the argument is prefixed by is_const. When is_const

is true, an immutable iterator class is made, and when is_const is false,
a mutable iterator class is made. In our paper on component frameworks
[18, Listing 1] we had problems showing what the Boolean argument meant.
We used an enum to show the meaning. Likewise for the node class. The
Boolean argument determines if the node should be packed (space efficient)
or not; According to the code example, that should be clear now.

Another advantage is that the declaration has been reduced in size, be-
cause each unique template argument is given once. Earlier we used 387
characters to write the declaration. Now we use 206 characters, which is a
reduction of approximately 50%. Another aspect in this reduction is that
only the significant template arguments for each class are shown. For ex-
ample, the significant policies for the framework are the kernel and the en-
capsulator, which are the only template arguments given to the framework.
The user should obtain a better overview of the code by this reduction. The
order partly matters currently. In the example, given in Listing 9, I and
J has been swapped according to the order of the template parameters for

125

〈nta statement 〉 → id !< 〈nta list 〉 !>

〈nta list 〉 → 〈nta list′ 〉 〈nta entry 〉
〈nta list′ 〉 → 〈nta list 〉
| ǫ

〈argument list 〉 → 〈argument list′ 〉 id

〈argument list′ 〉 → 〈argument list 〉
| ǫ

〈nta entry 〉 → id = 〈nta statement 〉
| id = id < 〈argument list 〉 >

| id = id

Figure 4. BNF grammar for the language extension.

set, i.e. I is given before J. For these particular template arguments it does
not matter, since I and J are not used by other classes given to vector.
But if one desires to move V to the end of the template argument list, it is
not possible in the current implementation.

We will now study how the preprocessor is implemented. It is imple-
mented like a regular compiler with the phases of parsing, code emission,
and so on [2]. However, some of the phases have been omitted, since we will,
for example, not perform type checking since it is done by the underlying
C++ compiler. We will now describe what happens in each phase.

Parsing of class templates: Class templates found in the included files
are parsed and stored in a dictionary. This is needed since the pre-
processor must have knowledge of the default arguments of each class
template, in order to use the default arguments when a template argu-
ment is omitted.

Parsing of named template arguments: Named template argument
expressions are identified and parsed using the grammar specified in
Figure 4. The grammar is specified using the Barcus-Naur Form
(BNF). The result of the parsing is abstract syntax trees of the named
template argument expressions. These trees reflect the structure of the
expressions. An example of such a tree is shown in Figure 5. What is
not shown in the figure is that also namespaces are registered. That
is needed since the same class name can be in several different names-
paces. That is the case too, for the dictionary of class templates.

Code emission: Using the dictionary of class templates and the abstract
syntax tree, the resulting C++ code is emitted. When traversing the
abstract syntax tree and the list of class templates a dictionary of global
template arguments is maintained. Such that when, for example, V is
found its argument is registered in the global dictionary. The pseudo
code for the emission procedure can be found in Listing 10.

126

vector

I=proxy_iterator J=proxy_iterator R=vector_framework V=int

is_const=false is_const=true K=hashed_array_tree

E=doubly_indirect_encapsulator

Figure 5. The abstract syntax tree for a simple vector declaration.

Listing 10. Python pseudo code for the code emission procedure.

1 # REQURE: ’ast’ the abstract syntax tree, ’gd’ the global dictionary
2 # containing the named arguments, ’ct’ the dictionary of class
3 # templates.
4

5 def emit_code(class_name, parameter_dict):
6 for (parameter, default_argument) in ct[class_name]:
7 if parameter_dict.has_key(parameter):
8 (class_name, arguments) = parameter_dict[parameter]
9

10 if arguments != {}:
11 # This is a nested statement, i.e. !< !>
12 ret = emit_code(class_name, arguments)
13 register_and_emit(ret)
14 elif ct.has_key(class_name):
15 # The user just gave the class name, we need to expand the
16 # declaration by either ct or gd
17 ret = emit_code(class_name, {})
18 register_and_emit(ret)
19 else:
20 # simply use the class_name.
21 elif gd.has_key(parameter):
22 # use gd[parameter], since parameter is already given.
23 else:
24 # use the default arguments for this parameter.
25 ret = emit_code(default_argument[0], default_argument[1])
26 register_and_emit(ret)
27

28 emit_code(ast[0], ast[ast[0]])

127

4.2 Details

We will now give some more details regarding the implementation of the pre-
processor. We will first consider the grammar given in Figure 4. The most
interesting element in the grammar is 〈nta entry〉. For a named template
argument declaration: C !< P = .. !>, P can be the following:

– P can be a new named template argument declaration such that we can
write C !< P = C2 !< ... !> !>.

– P can be an instantiation of a class template C !< P = C3<...> !>.
The argument of parameter P is untouched.

– P can be a class name i.e. C !< P = C4 !>. This expression is similar
to C4 !< !>, such that the global dictionary and the default arguments
will be used to find appropriate template arguments for C4.

The process of emitting the code, shown in Listing 10, is so complex that
it deserves some more explanation. Since the job of our preprocessor is to
generate the full declaration of template arguments, we start by traversing
the dictionary of class templates. Each entry in the dictionary contains a
list of parameters and their default arguments. Within this traversal there
are three different cases:

Case 1 is executed if the user supplied the argument for the current pa-
rameter (the user supplied arguments are kept in parameter_dict).
This case has three different cases which are derived of 〈 nta entry 〉 as
we described above.

Case 2 is executed if the user did not supply this argument and the argu-
ment is already known, i.e. it is already registered in the global dic-
tionary. In this case we will use the argument obtained from the global
dictionary.

Case 3 is executed if neither of the two first cases are executed. In this
case we will use the default argument. If the default argument is non-
existing an error is reported to the user.

4.3 More examples

We will now consider some more examples on the use of this language ex-
tension to better understand its novelty.

Example 9. Figure 5 shows a declaration of a vector storing elements
of type int. The vector container is realized by the vector framework,
where the kernel is a hashed array tree and the encapsulator stores elements
doubly indirectly. The iterator used in this setting is the proxy_iterator.
The declaration using named template arguments is the following:

1 cphstl::vector!<V=int,
2 R=cphstl::vector_framework!<
3 K=cphstl::hashed_array_tree!<
4 E=cphstl::doubly_indirect_encapsulator
5 !>
6 !>,

128

7 I=cphstl::proxy_iterator!<is_const=false!>,
8 J=cphstl::proxy_iterator!<is_const=true!>
9 !> vec;

2

Example 10. The associative container map stores keys of type K. Each key
is associated with a value of type V. In this example we will consider a map

container realized by the binary search tree framework, where the kernel is
an AA-tree. The iterator used is the generic iterator for data structures
based on nodes node_iterator.

1 cphstl::map!<K=char,
2 V=int,
3 A=std::allocator<std::pair<char, int> >,
4 R=cphstl::tree!<
5 V=std::pair<char, int>,
6 F=cphstl::unnamed::key_extractor,
7 N=cphstl::aa_tree_node,
8 B=cphstl::aa_tree_balancer
9 !>,

10 I=cphstl::node_iterator!<is_const=false!>,
11 J=cphstl::node_iterator!<is_const=true!>
12 !> mc;

Notice that V is overwritten, since the type of the value stored in the
tree is the pair of 〈K, V〉. The keys are retrieved using the class template
key_extractor which represents the function F : 〈K, V〉 → K. The C++

standard requires that K and V are given separately to map. 2

4.4 Reflection

This solution also comes with disadvantages. Usually the name of the tem-
plate parameter has no meaning in the context of the interface. With this
language extension this fact is no longer true. Now, the library developer
needs to carefully select the names for each template parameter and he or
she needs to consider which template arguments should be propagated. The
library developer also needs to think of possible conflicts regarding template
parameters, for example, maybe template parameter V has a meaning in
one class and in another class it has a different meaning. This problem be-
comes obvious when using the map container and the search tree framework
together, see Example 10.

Our language extension allows us to overwrite a template argument which
is already given, but the feature should be used with caution since a type er-
ror can occur if an argument is overwritten and the later declaration expects
the previous version of the argument. To get the code given in Example 10
working, it has been necessary to overwrite the argument V. It works since
the argument V given to map is not used further on by classes given as argu-
ments. Let us consider the following scenario: We add template parameter
at the end of the template parameter list for map. The class, which is used

129

as argument to this parameter, requires the argument V which is given to
map. This scenario will cause a compile-time error since V was overwritten.

The obvious solution to this problem is to rename either the parameter V
defined in map or the parameter V defined in the binary search tree frame-
work. If the parameter V defined in the search-tree framework is changed,
the node class also needs to be changed, in order to propagate the template
argument. Since we have several node classes, the easiest solution would
be to change the parameter defined in map, since no changes to other class
templates are required.

Another solution is to introduce local template arguments, which are tem-
plate arguments that are not propagated. In our current example, V should
be a local template argument. Since the argument of V is not propagated we
need to give the argument of V to all classes which take V as their template
argument. In the scope of our example, we only need to give V to the node
class, since the other classes obtain the type of the value from the node class.

A third solution is to introduce sticky template arguments, which are
template arguments that are propagated but changes to them will not be
propagated. This mechanism is similar to the call-by-value principle which
we know from imperative programming, where a function is called by copies
of the arguments such that any change to the arguments (which become
local variables) is not propagated. In our current example, this mechanism
would propagate V to the search-tree framework where it is overwritten but
within the scope of map it is not overwritten. We will leave the decision of
which solution would be the most appropriate as future work.

5. Framework configuration

Another disadvantage of component frameworks, which we have not dis-
cussed yet, is the poor error messages that will occur if the wrong compon-
ents are given to the framework. During the development of the CPH STL
architecture [17, 19], we decided to decouple the iterators from the contain-
ers. Later, we found this decoupling useful in the construction of the vector
component framework. In the vector framework we have two different it-
erator classes which are the proxy iterator and the rank iterator. The rank
iterator is used for a vector where the elements are stored directly in the
array, and the proxy iterator is used for a vector where the elements are
stored indirectly, i.e. in objects of which the array contains references to [18].
Whether the elements are stored directly depends of which encapsulator is
given to the framework.

By decoupling the iterator we created the possibility of a com-
ponent mismatch, since there is a relationship: When either
doubly_indirect_encapsulator or indirect_encapsulator is given to
the framework as encapsulator, proxy_iterator must also be given to the
framework as iterator class. When direct_encapsulator is given to the
framework as encapsulator, rank_iterator must also be given to the frame-

130

Immutable iterator

Mutable iterator

Realizator

Allocator type

Value type

Allocator type

Kernel

Value type

Encapsulator

Allocator type

Value type

Allocator type

Value type

Realizator

is const

Encapsulator

Realizator

is const

Encapsulator

rank iterator

rank iterator

std::allocator

int

direct encapsulator

vector

dynamic array

vector framework

(J)

(I)

(V)

(A)

(R)

false

(E)

(R)

true

(E)

(R)

(V)

(A)

(A)

(A)

(V)

(V)

(E)

(K)

Figure 6. A configuration graph.

work as iterator class. If the user tries to use the framework with an encap-
sulator which does not fit the iterator class, the user will get several screen
lengths of error messages, and these error messages are not useful at all for
finding the actual error. The compiler will typically write errors which re-
late to missing members or incorrect types. What we really need is a simple
message which states that the iterator class does not fit the encapsulator
class.

5.1 Formalization

A configuration of the framework results in a configuration graph; an example
of such a graph is shown in Figure 6. A graph is formally defined by the
tuple: G := 〈V, E〉, where V is the set of vertices and E is the set of edges.
To avoid a component mismatch, we have extended the graph definition for
a configuration graph with constraints. This graph is formalized with the
following definition:

131

Definition 1. A configuration graph is a directed graph defined by the fol-
lowing triplet G := 〈V, E , Γ〉, where V is the set of vertices (classes involved in
the configuration), E is the set of edges (the relationship between the classes
by template arguments), and Γ is the set of allowed edges in G.

The set of edges E in an ordinary graphs contains pairs of vertices 〈vs, ve〉,
where vs is the starting vertex and ve is the ending vertex. This is not
sufficient for us since a class can be given to a class template several times,
but the template parameter will differ. Therefore each edge needs to have
the template parameter associated as a label.

Definition 2. Each edge e ∈ E is defined by a triplet 〈vs, ve, p〉 The element
p is the name of the template parameter in the class vs of which ve is given
to.

Now, we have defined the configuration graph. But we have not defined
how we can verify that a graph is correct. Trivially, this can be done as
described in Proposition 1.

Proposition 1. If Γ contains all allowable edges in G and E ⊆ Γ, no com-
ponent mismatch can occur.

We want this invariant to be checked at compile time. If the invariant
is not maintained, the compiler should provide a decent error message. We
will in the following subsections consider different methods for verifying that
the invariant described in Proposition 1 is maintained.

5.2 Concepts

The most significant contribution, proposed to C++0x, is C++ concepts. In
the traditional form, polymorphism is obtained by creating a base class
containing the desired interface. The interface consists of member functions
which are defined as pure virtual member functions. A pure virtual member
function is a member function, defined in a base class, which each subclass
must implement. In the example below, we show how this language feature
works.

Example 11. Consider the following C++ program:

1 #include <iostream>
2

3 class BaseClass {
4 public:
5 virtual void a_member() = 0;
6

7 };
8

9 class SubClass : public BaseClass {
10 public:
11 void another_member() {
12 std::cout << "Test" << std::endl;
13 }
14 };
15

132

16 int main() {
17 SubClass s;
18 }

The member function a_member in BaseClass is declared to be a pure virtual
member function. The subclass SubClass does not implement this member
function which results in the following error message (generated using gcc
4.3.2):

1 test-virtual.c++: In function ’int main()’:
2 test-virtual.c++:17: error: cannot declare variable ’s’ to be of

abstract type ’SubClass’
3 test-virtual.c++:9: note: because the following virtual functions

are pure within ’SubClass’:
4 test-virtual.c++:5: note: virtual void BaseClass::a_member()

These error messages are hardly understandable, but at least they give a
hint of where to look for the error. 2

Until now, we had no language features which allowed us to create a equiv-
alent restriction for types in a template-based setting. More precisely, we
cannot specify restrictions of the types that can be given to class templates
as template arguments. C++ concepts provide such a language feature. With
C++ concepts the programmer can specify concepts and concept maps. A
concept is a set of constraints (members, axioms) one or more types must
satisfy. After a concept is defined the programmer can use the concept by
specifying that the argument of some template parameter, in a class or func-
tion template, should satisfy the concept. A concept map is used to make
types which do not satisfy a concept, satisfy the concept by defining a map-
ping. Example 12 gives more details of how concepts are applied. The main
reason for introducing concepts is to provide better error messages when an
incompatible type is given as template argument to a class template. As we
discussed earlier such a mismatch would produce several screen lengths of
error messages by a contemporary compiler. With C++ concepts the com-
piler would simply write that the type given as template argument does not
satisfy the required concept.

Example 12. Let us consider the function template min. Given two argu-
ments of the same type, this function template returns the argument with
the smallest value. This function template is part of the C++ standard li-
brary. Let us consider the scenario where min is called with a type which
does not provide operator<(...). This will cause an error, and the error
messages produced by the compiler may not be helpful. With the declara-
tion defined below using concepts, the compiler will simply write that the
type T does not satisfy the concept LessThanComparable.

1 auto concept LessThanComparable<typename T> {
2 bool operator<(T, T);
3 }
4

5 template <LessThanComparable T>
6 void min(T const& v1, T const& v2) {

133

7 if(v1 < v2) {
8 return v1;
9 }

10 return v2;
11 }

2

C++ concepts are more than just verifying that a type satisfies a speci-
fied interface. A new way of overloading, concept-based overloading, is
possible, which is more elegant than, for example, tag dispatching. We
briefly discussed this issue in the paper on component frameworks [18]. The
idea in concept-based overloading is that several function templates can
be defined with the same parameters and return type. The difference be-
tween these function templates is in the concepts which the input types
should match. For example, we can have two versions of min, one using
LessThanComparable and one using GreaterThanComparable. Concepts
are described in depth in [14]. According to our formal definition of con-
figuration graph verification, concept checking can be performed using the
definition below:
Definition 3. Given V and E, we generate the set Γ using the following
expression: Γ := {〈vs, ve, p〉 | 〈vs, ve, p〉 ∈ E ∧Φ(vs, ve, p) = true}. Φ returns
true if there exists a concept for parameter p in vs and it is satisfied by ve.

In July 2009 the C++ standards committee decided to remove concepts
from the C++0x specification [31]. This means that we need to wait for the
next C++ standard to appear to get tools for solving the problems of com-
ponent mismatches. Before this decision we had doubts [18] that concepts
could solve our problems completely. We questioned whether concepts are
strong enough to solve the problems encountered in library development.
Consider two algorithms, encapsulated in functors, with the same interface.
The behaviour of these algorithms is different, the first algorithm solves
problem X and the second algorithm solves problem Y. These functors are
likely to be given to class templates as template argument. Let us consider
the scenario where the incompatible functor is given to a class template.
A run-time error may occur or even worse a semantic error, meaning that
the program does not behave as desired. Such a semantic error is usually
harder to find than a run-time error. Such a problem is shown in Example
13. With the current specification of concepts, we do not have an obvious
way of performing a check at compile time which avoids this scenario. In
context of our formal definition, this means that the set Γ may contain edges
which are not allowed in a logical sense, since the set is constructed by the
interfaces.
Example 13. Consider the algorithms random_shuffle and sort encap-
sulated in functors. These algorithms are defined in the C++ standard. The
interface of these algorithms is the same:

1 template <RandomAccessIterator I>
2 void sort(I first, I last);
3 template <RandomAccessIterator I>

134

4 void random_shuffle(I first, I last);

Clearly the algorithms are designed to solve two different tasks, sort sorts
a sequence enclosed by the given iterators and random_shuffle gives a
random permutation of the sequence enclosed by the two iterators. Let us
consider the scenario where random_shuffle is given to a class template
X as template argument. This class template expects that sort is given
as template argument. After the functor is invoked, the class template X

performs binary search. Since the sequence is not sorted, no elements are
likely to be found. This means that the program will probably not perform
the right computation and the output produced by the program will be
incorrect. Such an error can be hard to find in a complicated system with a
large configuration graph. 2

Techniques for contract programming could be used to avoid the scenario
given in Example 13. For example, the D programming language proposes
that a function should consist of three blocks in, out, and body [9]. All
preconditions are put in the in block and all postconditions are put in
the out block, and the functionality of the function is put in the body

block. Such a contract for a function can be implemented without language
features; one should simply put the preconditions at the beginning of the
function and the postconditions in the end of the function. However, having
the pre- and postconditions in the declaration of the function makes them
clearer and idiomatic. Techniques for contract programming might solve
some of our problems, but to determine whether the pre- and postconditions
are true might give a performance overhead, since pre- and postconditions
are evaluated at run time.

Example 14. A version of the class template X from Example 13, which
verifies the post condition of the call to the functor, is shown below:

1 template <typename C, typename F>
2 class X {
3 public:
4 bool member(C const& c, C::value_type* es, std::size_t

number_of_es) {
5 F f;
6 f(c.begin(), c.end());
7 /* check post condition of the call to f */
8 assert(std::is_sorted(c.begin(), c.end());
9 for(int i=0; i < number_of_es; ++i) {

10 if(!std::binary_search(c.begin(), c.end(), es[i])) {
11 return false;
12 }
13 }
14 return true;
15 }
16 };

Notice that we use Θ(n) worst-case time (for a container c storing n elem-
ents) to verify that the post condition is valid. 2

135

Since concepts will not appear in the C++0x standard, we need to con-
sider alternatives for specifying the relationship between our components
(specifically which components can be accepted by our frameworks and con-
tainers), such that we can provide decent error messages. We know that
the C++ standard is revised every fifth year, therefore it would take at least
five years for concepts to appear in the C++ standard. We believe that com-
ponent frameworks will not gain widespread acceptance unless we solve the
problems related to their use.

One alternative, which can be used as a substitute for C++ concepts, is
the Boost concept checking library [4]. This library provides a functionality
similar to C++ concepts, but it is implemented using C macros. The con-
cepts are defined as regular classes (or structs), and in each class there are
several assertions (by the macro BOOST_CONCEPT_ASSERT), which are similar
to regular assertions (assert from the C standard library), just for concept
classes. The macro BOOST_CONCEPT_REQUIRES is similar to the assertion
macro, but it is used for function templates. The last significant macro is
BOOST_CONCEPT_USAGE where it is possible to specify some desired proper-
ties of the types involved in the concepts (for example, copy construction
and assignment).

On the Boost concept checking library homepage [4], several examples
show that the error messages produced by the BOOST concept checking
library are much better (and shorter) than the error messages which would
be produced by the compiler (without any concept checking). However,
the concept checking library still produces several lines of error messages,
but what we desire is a simple one line error message which tells the user
what the problem is. For example if direct_encapsulator is given to
proxy_iterator, the compiler should just stop compilation with an error
message, saying that the encapsulator provided does not fit the iterator. In
other parts of the library the Boost concept checking mechanism may be
useful, for example, to verify that the types, given to generic algorithms,
satisfy some requirements.

5.3 Component families

A simple approach to perform the check whether an iterator fits an encapsu-
lator is to define a component family. The idea of component families is that
we have two finite sets of components; the first set (denoted J) represents
classes that accept one or more classes drawn from the second set (denoted
K). The family is a relation of which classes in J can accept classes in K.
Given j ∈ J and k ∈ K we want to check if there is a connection between j

and k.
We can perform such a check at compile time using C++ metaprogram-

ming, but how can we report an error at compile time? C++0x provides
static assertions (or compile-time assertions) [21, 15], which are similar to
assert from the C standard library; the difference is that the static asser-
tions are evaluated at compile time. The built-in function static_assert

136

rank iterator

proxy iterator

rank

proxy

indirect encapsulator

doubly

indirect encapsulator

direct encapsulator

J K

Figure 7. A family graph.

takes two arguments, the condition which should evaluate to true, and an
error message. The condition must be written such that it can be evaluated
at compile time. Fortunately, static_assert is available in gcc 4.3 and
4.4 [12] (by compiler option -std=c++0x), so we can already now test the
code. It has been possible to create a mechanism similar to static assertions
before (see, for example, [22, 16]), however there has been no way to pro-
vide a user-defined error message which is readable, i.e. a plain text string
is printed. This is the significant improvement in C++0x static assertions.

Let us reconsider the problem of verifying that an encapsulator fits an
iterator. In Figure 7, a component family graph is shown. As illustrated in
the figure, we create two families which we call rank and proxy; these fam-
ilies have relations between iterators and encapsulators. The set of iterator
classes is represented as the set J and the set of encapsulators is represented
as the set K. According to our formal definition of our configuration graph,
we need to consider, how to construct Γf ⊆ Γ.

Definition 4. Given V and E, we generate the set Γf using the following
expression: Γf := {〈vs, ve, p〉 | 〈vs, ve, p〉 ∈ E∧vs ∈ J∧ve ∈ K∧Φf(〈vs, ve〉) =
true}. The function Φf returns true if there exists a connection between j

and k by the family relation f.

The observant reader may question, why we need families. We could just
implement a mechanism which specified and verified the set Γ (as defined
in Proposition 1). If we did so, elements in J were directly connected to
elements in K. To justify the need of families, let us take a look at Figure 7.
In the set J there is a one-to-one correspondence to a family. However, in
the future there might be a many-to-one correspondence, since it is highly
relevant that several iterator classes can occur for each family. It is also
possible that other components (which are not iterators) can be a part of
J . Consider a kernel which only allows direct encapsulation.

For the approach without families, the developer of a kernel would need

137

to declare the specific encapsulators that could be accepted by the kernel.
If more encapsulators would come, the declaration would require changes.
With the family approach, the new encapsulators should just be made mem-
ber of the appropriate family. Since we allow our users to create there own
components, including encapsulators, the family approach is preferable. To
implement component families we would need six basic operations:

make-family(f): Creates an empty family f with no connections.
addK(c): Adds a class c to the set K.
addJ (c, p): Adds a class c to the set J and stores template parameter p.
connectJ (j, f): Connects j ∈ J to f .
connectK(f, k): Connects f to k ∈ K.
connection-exists(f, j, k): Calls Φf(〈j, k〉).

We have implemented these operations in C++ for the family graph given in
Figure 7. The implementation is not directly equivalent to the operations
described above. But all together they make it possible to verify that a part
of the configuration graph is correct.

We have decided to use C macros for the implementation, since the check
should be performed at compile time, we have no other options since we
desire a small and readable declaration for each operation. The macros are
shown in Listing 11 (lines 1–16). We will now discuss the implementation
of each macro.
NEW_ENCAPSULATOR_FAMILY(f): implements the operation

make-family(f) by generating a general version of a class tem-
plate named f classes. This class template keeps a constant named
positive which value is set to zero.

JOIN_ENCAPSULATOR_FAMILY(f, e): implements the operations addK(c)
and connectK(f, k). This is implemented by partial specializing the
class template f classes for the encapsulator e given as argument to
the macro. In this specialization, the positive constant is set to one.

IS_ENCAPSULATOR_IN_FAMILY(e, f): implements the operations
addJ (c, p), connectJ (j, f), and connection-exists(f, j, k).
Because of simplicity we do not maintain the set J . When this
macro is used, the static assertion is generated. The constraint of this
assertion is that the class template f classes, given the encapsulator
e as template argument, provides a constant positive of which value
is one.

The declarations, which realize the families given in Figure 7, are shown in
Listing 11 lines 18–31.

Some STL components are classified, for example, iterators have a tag
such that the generic algorithms and other function templates can provide
several different versions, typically one for random-access iterators and one
for bidirectional iterators (see, for example, advance). The family approach
is similar; we could inside each encapsulator define a type which stated the
family of the encapsulator. A problem is likely to occur: if an encapsulator
does not provide the required type, the compiler will give an error instead of

138

Listing 11. Declarations of component families.

1 #define NEW_ENCAPSULATOR_FAMILY(f) template <typename V, typename A,
typename E> \

2 class f##_classes { \
3 public: \
4 enum {positive = 0}; \
5 };
6

7 #define JOIN_ENCAPSULATOR_FAMILY(f, e) template <typename V,
typename A> \

8 class f##_classes< V, A, e <V, A> > { \
9 public: \

10 enum {positive = 1}; \
11 };
12

13 #define IS_ENCAPSULATOR_IN_FAMILY(e, f) static_assert(\
14 f##_classes<typename e::value_type, typename e::allocator_type, e

>::positive == 1, \
15 "Encapsulator " #e " is not in family _" #f "_" \
16);
17

18 namespace cphstl {
19 NEW_ENCAPSULATOR_FAMILY(proxy)
20 NEW_ENCAPSULATOR_FAMILY(rank)
21 JOIN_ENCAPSULATOR_FAMILY(proxy, doubly_indirect_encapsulator)
22 JOIN_ENCAPSULATOR_FAMILY(proxy, indirect_encapsulator)
23 JOIN_ENCAPSULATOR_FAMILY(rank, direct_encapsulator)
24 }
25

26 template <typename R, typename is_const = false, typename E =
typename R::encapsulator_type>

27 class proxy_iterator {
28 IS_ENCAPSULATOR_IN_FAMILY(E, proxy)
29 public:
30 ...
31 };

Listing 12. An example error message using component families.

1 /home/bo/CPHSTL/Source/Iterator/Code/proxy-iterator.h++: In
instantiation of ’cphstl::proxy_iterator<cphstl::
vector_framework<int, std::allocator<int>, cphstl::dynamic_array
<int, std::allocator<int>, cphstl::direct_encapsulator<int, std
::allocator<int> >, false> >, false, cphstl::direct_encapsulator
<int, std::allocator<int> > >’:

2 use-test.c++:41: instantiated from here
3 /home/bo/CPHSTL/Source/Iterator/Code/proxy-iterator.h++:32: error:

static assertion failed: "Encapsulator E is not in family
proxy"

139

Listing 13. A backward-compatible version of IS ENCAPSULATOR IN FAMILY.

1 #ifdef __GXX_EXPERIMENTAL_CXX0X__
2 #define IS_ENCAPSULATOR_IN_FAMILY(e, f) static_assert(...)
3 #else
4 #define IS_ENCAPSULATOR_IN_FAMILY(e, f)
5 #endif

printing the error message given by the static assertion. This problem could
be solved by applying the SFINAE principle [33]. In general, we wanted to
avoid this principle since the code becomes less readable. We used partial
specializations to avoid a type error, since if an encapsulator is not in the
required family, the general version will be used, and the static assertion will
fail. Otherwise one of the specializations is used, and the invariant given by
the assertion will be fulfilled.

We cannot assume that all our users use a version of gcc which pro-
vides static assertions. Since static assertions may not be available in older
compilers, the user will get an error if he tries to use the vector com-
ponent framework, since the proxy_iterator (as defined in Listing 11)
uses a static assertion. One way of providing backward compatibility is to
maintain a second iterator class which is insecure, in the meaning of no
verification of the components is performed. Because of code-reuse con-
siderations this solution is unattractive. Instead we can take advantage
of the macro __GXX_EXPERIMENTAL_CXX0X__. If gcc is invoked with the
support for C++0x extensions that macro is defined. We can now rewrite
IS_ENCAPSULATOR_IN_FAMILY to be backward compatible, the code is shown
in Listing 13. If gcc is not invoked with support for the C++0x extensions, we
do no verification of whether the components fit together. Instead of doing
no verification, we could use the macro-based static assertions as discussed
in [22, 16].

We have now argued that the component family approach can be used
to verify that the appropriate encapsulator is given to an iterator, i.e. we
computed the set Γf for a family f. Let F denote the set of families involved
in a configuration. The question is how can we compute Γ :=

⋃
f∈F Γf? If

we assume that all types are classified to belong in a certain family, we can
do that. But can we define families for all types? The example below shows
that it may be difficult to maintain a complete set of families for possible
configurations of each framework.

Example 15. Consider an instance of set given the comparator
std::less. We can define a family for the value types which can be ac-
cepted by set if the user defines his or her self-defined types to be mem-
bers of this family. The comparator std::less requires that the types
provide operator<(); hence a new family should be defined and the user-
defined types should be included in this family. Likewise, for the comparator
std::greater and other comparators. 2

From this example, we can deduce that component families are not a

140

good idea for external components, like the value type. However, for inter-
nal components in the framework, it seems like a good approach to avoid
a component mismatch. For external components, concepts may be the
best approach to detect a component mismatch, since the dependency be-
tween the components is defined by the interfaces, and does not rely on any
predefined relationship.

6. Concluding remarks

In this work we studied the disadvantages related to component frameworks
found in [18]. We believe that the result of our work is the following:

– We improved the usability of component frameworks with respect to
integrated use. We found in [17] that just a few studies has been
performed on the use of libraries therefore it would be interesting to
find out (by an empirical study) whether the methods described in this
work will improve usability in practice.

– We hope that this work will lead to acceptance of adaptable component
frameworks in a template-based setting. Other library developers may
have rejected a design, similar to the one given in [18], because they
found the same disadvantages. The existence of the named template
argument language extension makes such a design possible, not just in
theory, but in practice.

– We formalized the component-mismatch problem by applying basic
graph theory. We hope that this point of view can be useful for rea-
soning about, for example, C++ concepts. Also, we hope that we em-
phasized that the existence of concepts in C++ is crucial for detecting a
component mismatch for some kinds of components in the framework.

Acknowledgements

I want to thank everybody who contributed to the CPH STL project. Their
work gave us a starting point for designing the vector component frame-
work; without the existence of the vector component framework, the prob-
lems studied would be unknown to us. Also I want to thank my supervisor
Jyrki Katajainen for his collaboration on the syntax of the named template
argument language extension and for his valuable feedback.

141

References

[1] G. M. Adel’son-Vel’skĭı and E. M. Landis, An algorithm for the organization of
information, Soviet Mathematics 3, 5 (1962), 1259–1263.

[2] A. W. Appel, Modern Compiler Implementation in C, Cambridge University Press
(1998).

[3] A. Aue, Improving performance with custom pool allocators for STL, Dr. Dobb’s

Journal (2005).
[4] Boost Community, The Boost concept check library, Website accessible at http:

//www.boost.org/doc/libs/1_39_0/libs/concept_check/concept_check.htm

(2000–2007).
[5] Boost Community, Boost C++ libraries, Website accessible at http://www.boost.

org/ (2000–2009).
[6] British Standards Institute, The C++ Standard: Incorporating Technical Corrigendum

1, 2nd Edition, John Wiley and Sons, Ltd. (2003).
[7] Computational Geometry Algorithms Library, CGAL User and Reference Man-

ual, Worldwide Web Document (2009). Available at http://www.cgal.org/Manual/
last/doc_html/cgal_manual/contents.html.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd Edition, The MIT Press (2001).

[9] Digital Mars, Contract programming, Worldwide Web Document. Available at http:
//www.digitalmars.com/d/2.0/dbc.html.

[10] A. Duret-Lutz, T. Géraud, and A. Demaille, Design patterns for generic programming
in C++, Proceedings of the 6th Conference on USENIX Conference on Object-Oriented

Technologies and Systems, The USENIX Association (2001), 189–202.
[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley

Professional (1995).
[12] GNU, Status of experimental C++0x support in GCC 4.4, Worldwide Web Document.

Available at http://gcc.gnu.org/gcc-4.4/cxx0x_status.html.
[13] GNU, libstdc++, Website accessible at http://gcc.gnu.org/onlinedocs/libstdc+

+/ (1999-2008).
[14] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. D. Reis, and A. Lumsdaine, Concepts:

Linguistic support for generic programming in C++, SIGPLAN Notices 41, 10 (2006),
291–310.

[15] ISO/NEC, Working draft, standard for programming language C++, Document num-
ber N2914, The C++ Standards Committee (2009).

[16] J. Katajainen, New CPH STL headers <compile-time-assert> and <type>, World-
wide Web Document (2001). Available at http://www.cphstl.dk/Presentation/

3rd-STL-workshop/New-headers/Jyrki-17.12.2001.pdf.
[17] J. Katajainen and B. Simonsen, Applying design patterns to specify the architecture

of a generic program library (2008).
[18] J. Katajainen and B. Simonsen, Adaptable component frameworks: Using vector

from the C++ standard library as an example, Proceedings of the 2009 ACM SIG-

PLAN Workshop on Generic Programming, ACM (2009), 13–24.
[19] J. Katajainen and B. Simonsen, The design and description of a generic software

library (2009, work in progress).
[20] B. W. Kerninghan and D. M. Ritchie, The C Programming Language, Prentice-Hall

Inc (1978).
[21] R. Klarer, J. Maddock, B. Dawes, and H. Hinnant, Proposal to add static assertions to

the core language (rev. 3), Document number N1720, The C++ Standards Committee
(2004).

[22] J. Maddock and S. Cleary, Boost.StaticAssert, Worldwide Web Document
(2005). Available at http://www.boost.org/doc/libs/1_39_0/doc/html/boost_

staticassert.html.
[23] M. Mernik, J. Heering, and A. M. Sloane, When and how to develop domain-specific

languages, ACM Computing Surveys 37, 4 (2005), 316–344.

142

[24] M. Michaud and M. Wong, Forwarding and inherited constructors (rev. 2), Document
number N1898, The C++ Standards Committee (2005).

[25] Python Software Foundation, The official website of the Python programming lan-
guage, Website accessible at http://www.python.org/ (1990–2009).

[26] B. Simonsen, Foundations of an adaptable container library, Master’s Thesis, De-
partment of Computer Science, University of Copenhagen (2009).

[27] B. Simonsen, A framework for implementing associative containers, CPH STL Report
2009-3, Department of Computer Science, University of Copenhagen (2009).

[28] B. Simonsen, Towards stronger guarantees: Safer iterators, CPH STL Report 2009-

1, Department of Computer Science, University of Copenhagen (2009).
[29] B. Simonsen, View programming, Internal progress report (available on request),

Department of Computer Science, University of Copenhagen (2009).
[30] E. Sitarski, Algorithm alley: HATs: Hashed array trees: Fast variable-length arrays,

Dr. Dobb’s Journal 21, 11 (1996).
[31] B. Stroustrup, The C++0x ”Remove Concepts” Decision, Dr. Dobb’s Journal (2009).
[32] H. Sutter, Proposed addition to C++: Typedef templates, Document number N1373,

The C++ Standards Committee (2002).
[33] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

Wesley (2003).

