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Abstract

In protein research it is often important to determine with which other
proteins an interaction may occur. This can help in definition of biological
role of the protein, such as inhibition or enhancement of particular func-
tions. The criteria that makes an interaction possible is that the two proteins
contain binding sites that structurally and chemically allow the interaction
to take place.

In this work a method is developed to allow the deduction of possible
new protein interactions by looking at the set of protein interactions that are
already known.

A framework has been created for experimenting with superimposition
of protein binding sites. The central methods employed are Particle Swarm
Optimization and Iterative Closest Point. Because the same protein binding
site may have variations across protein families, the removal of outliers, i.e.
atoms that should be discarded to achieve a good superimposition of the
binding site core, has been a central theme of this work.

The developed methodology is calibrated on representative data and the
quality of superimpositions made is compared with MultiBind, an existing
program for solving this problem that uses a fundamentally different ap-
proach.

Good superimpositions are achieved with geometrically similar struc-
tures, but biologically significant results are obtained less frequently. How-
ever, some experiments indicate that there is room for significantly improv-
ing performance on biologically significant results.



Resumé

I proteinforskning er det ofte vigtigt at kunne bestemme med hvilke an-
dre proteiner en interaktion kan finde sted. Dette kan hjælpe med at definere
et proteins biologiske rolle som inhibitor eller fremmer af bestemte funk-
tioner. Det der gør interaktion mellem to proteiner mulig er at de indeholder
en region der strukturelt og kemisk tillader interaktionen at finde sted.

I dette arbejde udvikles en metode der tillader deduktion af mulige nye
interaktioner mellem proteiner ved at se på det sættet af allerede kendte pro-
tein interaktioner.

Programmel er blevet udviklet som muliggør eksperimenteren med sam-
lægning af proteiners bindings regioner. De centrale metoder der tages i brug
er Particle Swarm Optimization og Iterative Closest Point. Fordi den samme
bindingsregion i et protein kan have variationer i forskellige protein familier,
har fjernelse af overflødige atomer i opnåelsen af en god samlægning af de
centrale dele af en bindingsregion været et centralt tema i dette arbejde.

Den udviklede metode er blevet kalibreret på representativ data og
kvaliteten af de opnåede samlægninger sammenlignes med MultiBind som
er et eksisterende program til at løse det samme problem, men med en fun-
damentalt anderledes metode.

Gode samlægninger opnås med protein strukturer der ligner hinanden
geometrisk, men biologisk signifikante resultater opnås mindre ofte. Dog
indikerer nogle eksperimenter at der er plads til at forbedre ydelsen på biol-
ogisk signifikante resultater betydeligt.



Contents
1 Background 1

1.1 Protein interaction . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Existing approaches . . . . . . . . . . . . . . . . . . . . . . 5

2 Methodology 5
2.1 Data from SCOWLP . . . . . . . . . . . . . . . . . . . . . 6
2.2 Initial approach . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Final approach . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Central algorithms 9
3.1 Loading of Model and Data . . . . . . . . . . . . . . . . . . 11
3.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Particle Swarm Optimization . . . . . . . . . . . . . . . . . 12
3.4 Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Creating the pairing . . . . . . . . . . . . . . . . . . 14
3.4.2 Estimating optimal transformations . . . . . . . . . 14

3.5 Pairing of atoms . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 The KD-tree . . . . . . . . . . . . . . . . . . . . . 15
3.5.2 Using a grid . . . . . . . . . . . . . . . . . . . . . . 15
3.5.3 The Munkres algorithm . . . . . . . . . . . . . . . . 16

3.6 Determining outliers . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 Fractional RMSD . . . . . . . . . . . . . . . . . . . 16
3.6.2 The QScore . . . . . . . . . . . . . . . . . . . . . . 17
3.6.3 Limit . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.4 Fixed . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Calculating a fitness value . . . . . . . . . . . . . . . . . . 18
3.8 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Some implementation details 20
4.1 Memory leaks and profiling . . . . . . . . . . . . . . . . . . 21

5 Evaluation 21
5.1 Two specific cases . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Creating the expected pairs . . . . . . . . . . . . . . 22
5.1.2 Evaluation of results . . . . . . . . . . . . . . . . . 24

5.2 Testing on a larger dataset . . . . . . . . . . . . . . . . . . 25
5.2.1 Creation of the reference dataset . . . . . . . . . . . 26
5.2.2 Collecting test data . . . . . . . . . . . . . . . . . . 28
5.2.3 Looking at Superimpose . . . . . . . . . . . . . . . 29
5.2.4 Comparing with MultiBind . . . . . . . . . . . . . . 32

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



6 Future directions 36
6.1 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 Evaluation of the test . . . . . . . . . . . . . . . . . 36
6.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Artificial test data . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 38

A Getting and building the program 42

B Program Options 44
B.1 General options . . . . . . . . . . . . . . . . . . . . . . . . 44
B.2 Input options . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3 PSO specific options . . . . . . . . . . . . . . . . . . . . . 46
B.4 ICP specific options . . . . . . . . . . . . . . . . . . . . . . 46

C The modified .pdb file format 49

D Class description 50
D.1 atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
D.2 config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
D.3 constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
D.4 defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
D.5 factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
D.6 fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
D.7 fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
D.8 icp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
D.9 initializer . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
D.10 loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
D.11 matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
D.12 randomXX . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.13 scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.14 site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.15 swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.16 utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
D.17 vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
D.18 weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
D.19 writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



This project has been done at the biotec center of Technische Universität
Dresden at the structural bioinformatics group led by Dr. Maria Teresa
Pisabarro in collaboration with M.Sc. Joan Teyra.

I would like to thank the group, especially Joan and Mayte for mak-
ing this cooperation possible.

I would also like to thank my supervisor Jyrki Katajainen for good
advice and support.



Background

1 Background
Proteins are the most abundant biological macromolecules, occurring in all
cells and all parts of cells. Proteins are the molecular instruments through
which genetic information is expressed. Relatively simple monomeric sub-
units provide the key to the structure of the thousands of different proteins.

A protein is defined by both the backbone, which consists of a linked
series of nitrogen, carbon and oxygen atoms, as well as the side chains which
extend from the backbone and which are important for interactions between
proteins. Carbon atoms that are part of the backbone are commonly referred
to as Cα atoms.

All proteins are constructed from the same set of 20 amino acids, cova-
lently linked in characteristic linear sequences. Because each of these amino
acids have a side chain with distinctive chemical properties, this group of 20
precursor molecules may be regarded as the alphabet in which the language
of protein structure is written. What is most remarkable is that cells can
produce proteins with strikingly different properties and activities by join-
ing the same 20 amino acids in many different combinations and sequences.
The more general term residue is often used to denote the atoms that make
up smaller chemical compounds, amino acids included.

The structure of proteins is typically divided into 4 different classes:
primary, secondary, tertiary and quaternary structures.

The primary structure is the name used for the sequence of different
amino acids that make up the protein. The sequence is determined by the
gene corresponding to the protein.

Secondary structure refers to structures that have a regular geometry,
such as the alpha-helices and beta-sheets. These structures depend only
on properties of the proteins backbone, or main chain. Two common Sec-
ondary structures into which protein folds are the beta-sheets and alpha-
helices which can be seen on figure 1.

The secondary structure elements are often folded into a shape of loops
and turns referred to as the tertiary structure. Included are all the non-
covalent bonds that are not a part of the secondary structure.

The quaternary structure denotes the interactions that happen between
separate chains in the protein. Only proteins of a certain size consisting of
several chains display quaternary structure.

The structure of a protein can give important clues about its proper-
ties and may be determined experimentally. Common methods for doing so
include X-ray crystallography and NMR spectroscopy. Determining protein
structure experimentally is a complex and involved process and only a
fraction of structures of proteins is known. Known structures are available
for download at the RCSB Protein Data Bank (PDB) [BWF+00] which
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Background

Figure 1: Stylistic view of a protein displaying the backbone and side chains. The backbone
reflects the curve of the protein and consists of alpha-helices and beta-sheets, shown in Lila and
yellow respectively. Numerous side-chains extend from the backbone and these are essential for
interactions among proteins. The atoms making up the molecule are colored according to their
element.
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Background 1.1 Protein interaction

is the canonical archive of experimentally determined three-dimensional
structures of biological macromolecules, including proteins and nucleic
acids. At the time of this writing it contains around 55.000 determined
protein structures.

The protein structures found in the PDB are distributed as flat files
that contain a description of the atoms that make up the protein as well
as additional information concerning physical and chemical properties of
the structure and information about the measurement of the structure. The
structures that may be found in the PDB files differ. Some files contain only
a single protein while others contain several copies of the same structure.
In other cases PDB files contain complexes formed between two protein
molecules engaging in a binding.

In an attempt to generate a systematic overview of proteins, efforts
have been made at classifying proteins into families, grouping proteins with
similar structural characteristics together.

Most proteins fold into three dimensional structures. The folding of a
protein into its native conformation is essential for the protein to function
correctly. At the tertiary level, protein structures are seen as made up of
more stable globular units called domains. The term domain denotes a part
of the protein chain that can evolve and exist independently. Protein struc-
ture classification efforts typically rely use domains to group structures into
families.

This approach is taken in the Structural Classification of Proteins
(SCOP) [MCA+07] database. SCOP aims to provide a description of the
structural and evolutionary relationships between known protein structures.
It is created by manual inspection as well as use of automated methods.

1.1 Protein interaction
The functions of proteins rely on their interactions with other molecules
including DNA, RNA, other proteins and other small molecules. Protein-
protein interactions are especially interesting because they are found in vir-
tually every process in living cells.

Two proteins interact by forming a non-covalent binding between their
binding sites. A binding site is a definite place in the protein molecule which
may bind a ligand. The term ligand designates a smaller molecule that is
able to bind to a protein and thereby form new functionality. In our case
the ligand is another protein. The protein that binds the ligand is typically
referred to as the receptor.

A binding site is characterized by having a specific geometric shape and
certain chemical properties. The combination of shape and chemical prop-
erties determines which molecules may bind to the binding site. Note that
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the binding of a ligand to a receptor is independent of sequence identity
between the two, but depends on matching geometrical surface and fitting
chemical properties. The same binding site may be found in proteins that
are structurally very different. This indicates a need for a classification of
binding sites that is independent of the families of the proteins in which they
are found.

Several databases have emerged in an attempt to create a classification
of the protein binding regions that are found across for the protein families.
One example is the Structural Characterization Of Water, Ligands and Pro-
teins (SCOWLP) [Tey08] database, which has been developed in the group
and which uses information from the SCOP database. SCOWLP contains
information about binding sites that has been extracted from the cases of
PDB files that contain complexes consisting of a ligand bound to a recep-
tor. These PDB files allow the extraction of geometric information about the
binding site.

It has been determined that only a small fraction of residues found in
a binding site are necessary for the binding to take place. These residues
represent so called hotspots and it is these that best identify a binding site.
The protein may bind similar molecules if the same hotspots can be found as
in a different protein. Geometrical and chemical properties of other residues
may vary, but as long as the hotspots are conserved binding sites may be said
to be similar and able to bind the same ligands.

1.2 Motivation
Experimental determination of protein interaction is difficult and time con-
suming. However, because we know that structurally different proteins from
different families may contain similar binding sites, we may be able to deter-
mine new interactions between proteins if we are able to determine that two
proteins contain the same or a very similar binding site. This would indicate
that the two proteins would be able to bind the same ligand, information that
could be helpful in inferring new protein functionally, aid in recognition of
function and in drug design.

The same binding site may be found in proteins belonging to separate
families that are structurally very different. This means that we can not
depend on sequence similarity or secondary structure similarity between the
proteins if we want to find the same binding site in different proteins. The
problem is then to identify a similar binding site by looking for geometric
similarity in different protein structures. Given a good geometric fit,
conforming physical and chemical properties between superimposed atom
pairs should be considered to get a stronger indication of having identified
the same binding site.

4



Background 1.3 Existing approaches

There are some main challenges presented by the problem of super-
imposing two binding regions. First of all we are interested in removing
outliers such that only the relevant parts of binding sites are aligned.
However, it is not clear which atoms that are part of the core, so an initial
geometric approach to outlier removal has been taken as a starting point.

A related problem is achieving biologically significant results. These
may differ from the best obtainable geometric superimpositions and in such
cases a means allowing the method to arrive at something that is biologically
relevant must be found.

1.3 Existing approaches
Other methods for solving a very similar problem exist. The most widely
used program is MultiBind [SPSNW08]. MultiBind is a novel computa-
tional method, for recognition of binding patterns common to a set of protein
structures. It performs a multiple alignment between protein binding sites
in the absence of overall sequence, fold or binding partner similarity. Multi-
Bind recognizes common spatial arrangements of physico-chemical proper-
ties in the binding sites.

The MultiBind method applies an efficient Geometric Hashing technique
[WR97] to detect a potential set of multiple alignments of the given binding
sites. To overcome the exponential number of possible multiple combina-
tions it applies a very efficient filtering procedure which is heavily based on
the selected scoring function.

2 Methodology
The goal of this work is to develop a methodology for superimposing bind-
ing site descriptions and to derive a measure that determines how similar
they are.

This would allow superimpositions to be made between all the binding
site descriptions found in SCOWLP. From these superimpositions and the
measure of how similar binding sites are, binding sites could be classified.

The program to perform the superimpositions should be efficient and
highly modular to allow changing methodologies and parts of the approach.
It should also be simple to parameterize the program so that different ap-
proaches may be chosen easily.

Because of the variations found in the same binding site when found
in different families, we are interested in the most well suited local align-
ment, not necessarily a global one. A global alignment is an alignment of all
atoms from atom set D onto atom set M . With a local alignment, we may
discard non-fitting outlier atoms from D and M if this allows us to arrive at
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a particularly good superimposition. Of course the discarding of atoms can
only be done up to some limit, because discarding all atoms except one from
each set of points, will guarantee us that we have a perfect superimposition.
Different approaches to the removal of outliers have been made. Note that
in the following the word points will often be used when referring to the
coordinates of an atom.

A related but different requirement to the program is that it should be
able to find the best fit of one set of atoms onto another when the atoms do
not match exactly. In other words, we are not necessarily interested in an
accurate fit.

The program should read and write binding site descriptions and super-
impositions made in a format similar to the PDB [rcs09]. This would allow
visual inspection of data used by the program, valuable for debugging and
analyzing input data and resulting superimpositions.

2.1 Data from SCOWLP
Data describing binding sites to superimpose will be extracted from the
SCOWLP database. The data includes information about the geometric ar-
rangement of atoms in the binding site, the atom element and also physical
and chemical properties.

The description also includes the center of mass of the protein, which
will be used together with the center of mass of the binding region to create
a vector used to indicate the directionality of the binding region. The direc-
tionality vector may be used for aligning the proteins to an initial starting
position for starting the superimposition, and to impose user specified con-
straints on the maximally allowed rotation of one binding region relative to
the other. This effectively reduces the search space and prevents some illegal
superimpositions from happening.

For a fit to be good the chemical properties of the atoms in the fitted bind-
ing site must conform to some constraints, causing some superimpositions
to be better than others, and even rejecting some alignments as impossible.
A simple approach was taken to initially differentiate two kinds of physic-
ochemical properties: hydrophilic and hydrophobic atoms. A hydrophilic
atom will never be able to pair with a hydrophobic atom in a superimposi-
tion.

Figure 2 gives a graphical example of the data from SCOWLP.
To limit the number of atoms making up a description of a binding site

SCOWLP employs methods for creating pseudo atoms from each of the
residues found in the binding site. A pseudo atom is a combination of several
atoms representing an average of their common location and chemical prop-
erties. Specific rules on how to make pseudo atoms from residues are used
to reduce the number of atoms in the binding site to a significantly lower

6
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Figure 2: An example of a binding site representation extracted from SCOWLP. Hydrophilic
pseudo atoms are shown in blue, hydrophobic pseudo atoms in red. The dark green atom represents
the center of mass of the whole protein. From this and the light green center of mass of the binding
site a directional vector is created. This vector may be used as a rough indication of where the
binding occurs and to limit the size of the possible solution space by putting a limit on the angle
between the directional vectors of two binding sites.

number of pseudo atoms. In the process it is noted how many atoms go into
the creation of a pseudo atom. Also the number of interactions known for
atoms are summed and stored along with each pseudo atom.

Appendix C contains a description of the file format of binding site de-
scription files output from SCOWLP.

2.2 Initial approach
Before going into details of the methodology developed, I will briefly
outline some of the steps that were taken towards the final methodology.

The two central algorithms used by the developed methodology are
variants of Particle Swarm Optimization (PSO) [EK95] and Iterative
Closest Point (ICP) [BM92]. PSO is a heuristic method for optimization
of non-linear functions. The development of the technique was inspired
by how schools of fish or flocks of birds move synchronously together.
The technique is explained in section 3.3. ICP is a method that is used to
match two sets of points to each other. It iteratively estimates the optimal
alignment of the two point sets and may be used real–time. Section 3.4
explains our use of ICP in arriving at a superimposition.

Efficient removal of outliers was initially a central focus point and also a
partial motivation of the choice to use a variant of ICP as the basic algorithm
to superimpose two point sets, or as in our case, two sets of atoms. Espe-
cially the frICP [PLT06] variant of the algorithm seemed interesting because
of the technique for outlier removal described in the paper. The terms Model
and Data used in this paper stuck and are used throughout this report; The
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Figure 3: Initial approach to solving the problem. PSO was used to arrive at a good global
alignment where after ICP was used to refine this removing outliers using the FRMSD algorithm.
This approach did not prove to function well, though.

term Model refers to the still standing point set and the term Data is denotes
the point set that is moved in an approximated transformation bringing it
closer to a superimposition onto the Model. Details of the ICP algorithm are
described in section 3.4.

As mentioned in [PLT06], the performance and outcome of ICP is de-
pendant on the initial starting positions of the two point sets relative to each
other. If the two point sets are initially close to each other the ICP algorithm
converges faster than if the point sets start out very differently.

But how to find a good starting point for the alignment? The answer to
this came quickly as there had been previous experience in the group with
using the PSO algorithm in a program for docking. The approach was to
use the PSO algorithm to arrive at a good global alignment of the two sets
of atoms and then to refine this by using ICP and removing outliers in the
process as depicted in figure 3. Each particle of the PSO was used to create
a translation and a rotation of the Data atoms and the Root Mean Square
Deviation (RMSD) between the Model and Data was calculated and used to
indicate the fitness of the particle. In bioinformatics RMSD is a frequently
used measure of the average distance between structures.

The PSO algorithm is described in section 3.3.

The approach was tried and applied to an artificially created test case
consisting of a rather dense mass of 32 atoms in the file mix.pdb.
Atoms in this file were copied, translated and rotated and placed in the file
mix2.pdb and an attempt to align the two was made. This seemed to be a
good initial test as the correct result would be a perfect superimposition of
one onto the other. Also, it should be rather simple since a perfect alignment
of all atoms should involve only rotation and translation. Figure 4 shows

8



Methodology 2.3 Final approach

the mix.pdb example.

Figure 4: A picture of the artificially created set of atoms I have called mix. A copy of this was
created, rotated, translated to create a perfectly matching case. The blue dots mark hydrophilic
atoms and the red dots mark hydrophobic atoms.

Unfortunately the program did not arrive at a good superimposition of
the mix test case, often discarding many of the atoms in an alignment and
taking a long time to arrive at a result. This led to the conclusion that a good
global alignment is not necessarily a good start for the ICP algorithm and a
new approach was sought.

2.3 Final approach
The idea of the final method was to use each particle of the particle swarm
to create a transformation of the Data atoms and then to use ICP to refine
the alignment of this constellation as before, but for each particle. When
the ICP algorithm converges a fitness value is returned which indicates how
well the remaining atom pairs are superimposed to each other.

This new approach functioned much better. The mix test case de-
scribed above was aligned in only a few seconds, including all of the 32
atoms. The RMSD measure returned by the ICP seemed to guide the
particle swarm through the solution space quite well.

3 Central algorithms
In this section I will describe each of the parts of the methodology that has
been developed in detail. An overview of the whole process from loading
two binding site descriptions to saving a superimposed output can be seen
in figure 5.
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Central algorithms

Figure 5: Overview of the main steps performed when making a superimposition of a Data binding
site to a Model. Starting in the top left corner, the files describing the Data and Model binding sites
are loaded and initialized to a starting position. Now the iteration of the Particle Swarm begins.
For each particle of the Particle Swarm a conformation of the Data binding site is created and
used as input for the ICP algorithm which consists of creating a matching of pairs between the
two molecules, removing outlier pairs and finding and optimal transformation of the Data binding
site that will bring it closer to the Model. The ICP algorithm involves creating a matching of atom
pairs, weighting how well atoms fit, determining the outlier fraction and finally the creation of an
optimal rotation and translation to superimpose the Data to the Model. The ICP algorithm will
converge and return a fitness value that is used to set the particle fitness in the Particle Swarm.
This repeats for each particle.

10



Central algorithms 3.1 Loading of Model and Data

For several of the steps in figure 5 there are program options that may
be used to specify different methods of performing the step. Appendix B
provides a detailed description of the program options that can be used to
select variations or change parameter values.

Overview Before going into the details of each step I will briefly
describe the main steps of the program as depicted in figure 5.

After loading the files containing the binding site descriptions, the
Model and Data sites are initialized. This includes moving the sites to the
origin of the coordinate system and possibly also aligning the directional
vectors of the sites. Also, the set of constraints to apply to a possible
superimposition is initialized.

Next, the iteration of the PSO commences. During each iteration, each
particle is used to initialize the Data binding site to starting point for ICP.
With this starting point, the ICP algorithm is run for a number of iterations
until it converges to an alignment of the atoms. The ICP iterations include
methods for creating point pairs, the weighting of how well point pairs fit,
removal of outliers and calculation of the optimal transformations to align
the point sets. When the ICP algorithm converges, a fitness value is returned
(the RMSD, for example) and it is this value that will be used to determine
the fitness of the current particle. In this way the particle swarm is directed
by the fitness values of the superimpositions created by the ICP algorithm.

Finally the superimposition of the Model and Data binding sites are
written to a file. This resulting superimposition can be viewed in a viewer
capable of visualizing files in the PDB file format.

In the following sections a more thorough description each of the
steps presented in figure 5 is made.

3.1 Loading of Model and Data
The first step is to load the Model and Data binding sites from data files
extracted from SCOWLP. The loader creates a representation of the binding
site similar to that depicted in figure 10 from files in a format similar to the
PDB file format [rcs09].

3.2 Initialization
The first step in the initialization is to translate the atoms of the Model and
Data binding sites such that the protein centroid is placed in the origin of the
coordinate system.
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Next, the directional vectors of both sites are aligned with the z-axis
and finally the broadest part of each binding site is found and the atoms are
rotated so that the broadest part of the binding site lies along the x-axis.

For the Data binding site, this initial positioning is used as a starting
point for each of the transformations that will be derived from each particle.
The Model binding site will remain fixed in this initial alignment.

Finally, constraints limiting the allowed length of translation of the Data
points are created from the coordinates of the binding sites. These con-
straints allow exclusion of superimpositions which cannot be well fitting.

3.3 Particle Swarm Optimization
The basic idea of PSO [EK95] is to represent the parameters of the function
to optimize as particles that fly around in n dimensional space, where n
denotes the number of parameters to the function to optimize. Each particle
has a position, a velocity and a recollection of the previous best position of
the particle (pBest). A fitness function determines the fitness of a particle
by using the particle parameters to calculate the function to optimize and
return a value denoting how good the function result is. The particle that
has parameters that give the best result of the fitness function is set to be the
globally best particle (gBest).

Before iteration begins, the particles of the swarm are initialized with
random values such that they are uniformly distributed in the solution space.
The pBest position of each particle is also initialized with a random value.

Each time the particles in the swarm are moved, the pBest and gBest
particles are used to update the velocity of each particle and hereafter the
particle is moved by adding the velocity to the current particle position.

There are a number of variations of the basic PSO algorithm, some of
which are described in [CD01]. I have chosen to implement a simple variant
of PSO inspired by [HE02]. The implementation uses just one swarm and
the global best particle is set after the evaluation of each particle, instead of
waiting until all particles have been evaluated in an iteration.

The formula used to update particle velocity is the same as used in the
original paper on PSO [EK95]:

V = V + (C ∗ rand() ∗ (pBest−P )) + (S ∗ rand() ∗ (gBest−P )) (1)

Where V and P are the particle velocity and position, C and S are user
specified values used to tune the cognitive and social components of the
particle velocities, rand() is a function returning a random value in the range
[0− 1] and gBest and pBest are as described above.

Intuitively, the cognitive and social components can be used to tune how
fast the particles should converge towards a global optimum, i.e. the gBest
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particle. A larger social component would cause the particles to move to-
ward the same point fast whereas a larger cognitive component would mean
that the particle swarm searches a larger volume of the solution space and
therefore convergence is slower. Depending on the problem at hand fast
convergence may be desirable or not.

Initialize particles according to constraints
for each particle

if particle fitness is better than previously for this particle
set best particle fitness
if fitness is better than the global fitness

set particle to new global best
update particle
move particle

Figure 6: The basic steps of the PSO algorithm

The basic steps taken in my implementation can be seen in figure 6. Each
particle in my implementation of the PSO is initialized with 7 parameters:
3 describing a translation vector, 3 that describe a vector to rotate about and
1 specifying the angle of rotation. These parameters are used to transform
the initial configuration of the Data point set to a starting point for the ICP
algorithm. When the ICP algorithm converges, a fitness value is returned.
This value is then used to set the pBest and gBest particles.

It may happen that the running of the ICP algorithm results in an align-
ment of the Data set to the Model that does not satisfy the constraints. In
this case the particle is restarted from its previous best position. A parameter
(--wiggle) exists to allow the user to specify a small random displace-
ment of this restart position.

3.4 Iterative Closest Point
Iterative Closest Point [BM92] is an algorithm for iteratively aligning two
sets of points. ICP is widely used for 2- and 3-dimensional alignment of
point sets when an initial estimate of a good starting point is known. ICP is
computationally efficient and may be used in real-time applications.

The basic steps of the algorithm are as follows:

1. Create a pairing between points between the two point sets

2. Estimate a transformation that will align the point sets

3. Apply the rotation and the translation to the two point sets

4. iterate

ICP was chosen as a means to refine a superimposition mainly because
there are efficient variants of the ICP algorithm that deal well with the issue
of removing outliers [CSK05] [PLT06].
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3.4.1 Creating the pairing

To find and remove outliers from the pairing, I initially implemented a vari-
ant of the Fractional Iterative Closest Point (FICP) [PLT06] algorithm. It
turned out that the removal of outliers was too aggressive using this ap-
proach, but a better approach was found and the framework was changed so
that it is easy to experiment with other functions for removing outliers. See
section 3.5 for details.

When calculating the optimal rotation and translation to apply to the
Data point set, only the points regarded as inliers are used for the calculation,
but the transformations are applied to all points of the data set. This allows
for new pairings to be created as the Data point set moves closer to the
Model.

3.4.2 Estimating optimal transformations

To estimate the optimal rotation between the two point sets, I have used an
implementation [Ho09] of the Kabsch algorithm [Kab76].

Given a pairing of points in space, the Kabsch algorithm will calculate
a rotation matrix that, when applied to the Data point set, will rotate it so
that the RMSD between the point sets is minimal. Note that the computed
rotation minimizes the RMSD distance between point pairs created and not
between the two point sets in general. This means that the atom pairing used
is of high significance for the outcome.

The calculation of the optimal translation to apply to the now rotated
point set is done by calculating an average translation vector between the
paired points using the following formula:

T =
∑n
i=0(Mi −Di)

n
(2)

Where n is the number of pairs that have been matched and Mi and
Di are the corresponding paired points from the model and data point sets.
Applying this vector to translate the Data point set will result in a further
minimization of the RMS distance between the Model and Data.

The iteration of the ICP algorithm stops when the maximum number
of iterations has been reached or when the resulting rotation is the identity
matrix and the translation is (0, 0, 0).

3.5 Pairing of atoms
There are several different methods one can employ when creating a pairing
between the two sets of atoms. Some examples are ray-casting and creating
surface normals to indicate in which direction a given point of one set is
likely to find its match. The approach initially taken by the Superimpose
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program developed in this work, was to find the nearest neighbour of the
other point set. This approach was chosen because it is fairly general and
because the nature of the data describing the binding region is not always
dependable.

To restrict a pairing of a hydrophilic and a hydrophobic atom, the dis-
tance calculation is artificially modified to be very large between incom-
patible atoms, assuring that pairings between these atom types will not be
included.

3.5.1 The KD-tree

The initial approach to perform a pairing between the model and data point
sets was to use a KD-tree [Ben90]. A KD-tree is a data structure that repre-
sents a set of n points in K-dimensional space, in this case in 3-dimensional
space. It can be used for efficiently finding the closest point to a given point.
Lookup of a closest point takes O(log n) time and the creation of the tree
takes O(n log n) time.

The motivation for using a KD-tree was its efficiency. Because transfor-
mations are applied only to the data point set, the KD-tree can be calculated
just once for a further improvement of efficiency.

There were some problems with using a KD-tree: It is often the case
that several points will have the same point as their closest point. This
means that the translations calculated will arrive at a good average super-
imposition distance between points, but rarely an exact match. Therefore
one-to-one point paring was tried next.

3.5.2 Using a grid

A simple way to avoid the problem of pairing several points with the same
point is to calculate a grid of all distances between atoms and choosing point
pairs by finding the smallest distances in the grid. If several atoms have
the same atom as their closest atom, then only the atom with the smallest
distance is regarded as a pair. All other atoms are discarded.

As it turns out this approach also has some problems. First, it is rather
time consuming, taking O(|M | ∗ |D|) time for each time the pairing is
performed. Second, there is a risk of discarding too many atom pairs when
many atoms have the same atom as their nearest neighbour. If we are very
unlucky all atom pairs but one will be discarded. The result is that the
transformations computed to superimpose the Data set to the Model become
skewed.

The computation of the grid led to the next approach.
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3.5.3 The Munkres algorithm

The Munkres algorithm [Mun57] also known as the Hungarian method
solves the Assignment problem: Given N workers and T tasks find the op-
timal assignment of tasks to workers so as to minimize the total time taken
to perform all the tasks. If the number of workers and tasks are the same the
problem is denoted the Linear Assignment problem.

The Munkres algorithm was applied to the grid of distances between the
atoms of the two binding regions, to arrive at a pairing such that each atom
is paired uniquely to exactly one other atom and the sum of the distances
between atoms becomes minimized.

This turned out to be a good approach.
Unfortunately the time complexity of the Munkres algorithm is rather

high taking O(N4) in its original form. This has been improved to O(N3).
The implementation used in Superimpose uses the improved version
[Wea09].

A like approach to creating unique pairs from a grid of all distances
between atoms of the two binding regions, is to use the Gale-Shapley
[GS62] stable matching algorithm. This has not been tried, but would be
interesting, since the Gale-Shapley algorithm may be faster. However, some
tricks would have to be used since the algorithm expects to match elements
from two sets of the same size, and it is seldom the case that there are the
same amount of atoms in two different binding regions.

3.6 Determining outliers
The class matching which implements the matching of points using one
of the methods described above, makes available a list of atom pairs sorted
in ascending order on the distance between the pairs. This distance may
be modified by the weighting of how well the two atoms fit together. The
list is used by the methods of determining inliers described in the following
subsections, by setting an index which separates inliers and outliers.

3.6.1 Fractional RMSD

The calculation of the Fractional RMSD value was taken from [PLT06]. The
idea is to minimize the following expression:

1
fλ

√√√√ 1
|Df |

∑
p∈Df

||T (p)− u(p)||2 (3)

where f ∈ [0, 1] is the fraction of inliers, Df are the closest f |D| point
pairs, T (p) is the transformation applied to each point in the Data point set,
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and u(p) is the point from the Model with which p is paired.
The term 1

fλ
is used to balance the RMSD term. λ is an empirical value

that can be changed by the user. The authors of [PLT06] recommend setting
λ = 0.95 when matching points in three dimensions.

Preliminary experiments using this method showed that the removal of
outliers seemed to be too aggressive using λ = 0.95. Setting the lambda
value significantly higher increased the amount of inliers. This may be due
to the rather small point sets that we used compared to the point sets used
in [PLT06].

The initial experiments with fractional FRMSD inspired the search
for a different function for outlier removal, mainly because FRMSD was
very sensitive to changing lambda values.

3.6.2 The QScore

The function dubbed the QScore was found in [KEHK04]. The computation
is a maximization of the following formula:

P 2

1 + (RMSD/R0) ∗ |M | ∗ |D|
(4)

Where P is the number of pairs used for the calculation of the RMSD
value, |M | and |D| are the cardinalities of the Model and Data point sets and
R0 is an empirical value that is specified by the user serving to balance the
significance of the RMSD value and the number of aligned pairs P .

The strength of this function for the calculation of inliers and outliers is,
that it takes into account not just the number of atom pairs and the RMSD
value, but also the number of points in the Model and Data point sets.

By changing the value of the R0 parameter it is possible to weight the
significance of the RMSD score in the value of the measure. The larger R0

is the less significant the RMSD will be.

The following two subsections describe two simple approaches to
determining which pairs should be regarded as outliers.

3.6.3 Limit

This method is a very simple way of specifying the border between in-
liers and outliers in the list of sorted atom pairings. The user specifies an
Ångstøm distance and all atom pairs with a distance between them that is
less than this value will be regarded as inliers.

This method is highly dependant on the initial starting position of the
two sets of atoms. It generally does not function well.
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3.6.4 Fixed

The fixed pairing was introduced to allow for refinement of manually created
superimpositions of binding sites. A file containing the expected pairings
specifies the only pairing that will be considered. This pairing is used in
refining the alignment with ICP.

3.7 Calculating a fitness value
Initially the Root Mean Square Distance (RMSD) was used to calculate a
fitness value indicating the “closeness” of the two atom sets. This is a com-
monly used measure for quantifying the distance between two geometrical
shapes. It is

RMSD(P,Q) =

√∑n
i=1(Pi −Qi)2

n
(5)

Where Pi and Qi denote the Cartesian coordinates of matching atom
pairs.

Later, a similar measure was found that also includes information about
the difference in internal distances between the two sets of atoms. This was
termed the DRMS after the paper in which it was initially found [SL03].
The formula is:

DRMS(P,Q) =

√√√√ 2
n(n− 1)

n∑
i=2

i−1∑
j=1

(dPij − d
Q
ij)2 (6)

This measure compares the matrix of distances between all points within
each structure. For a point set P this matrix is defined as the distances
between all points:

dPij = ||pi − pj ||2 (7)

The cost of computing this measure grows quadratically as the size of
the proteins for which it is calculated increases.

3.8 Weighting
A simple form of weighting was been implemented to try and take into ac-
count additional information known about a binding site. Time constraints
did not allow thorough examination of how to apply weights and further
work should be done here.

For each atom in the binding site, the number of interactions in a known
binding is recorded in the data received from SCOWLP (see appendix C).
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This information is used to calculate a similarity measure between this atom
and candidate atoms for a pairing.

The reasoning behind this approach is that atoms will typically pair well
with atoms that have almost the same number of interactions. For weighting
the similarity, the following formula has been used:

|ID − IM |
ID + IM

(8)

Where ID and IM denote the number of interactions between the Data
and Model, respectively.

This weighting is used to modify a user specified fraction of the calcu-
lated distance between the two atoms, such that the distance is decreased if
two atoms match particularly well. Figure 7 shows a graphical representa-
tion of how these weightings are used to modify the RMSD distance.
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Figure 7: Similarity measures using known interactions of the binding sites. When a model atom
pairs with a Data atom that has the same number of interactions the whole user specified fraction
of the distance between the two atoms can be removed. This is shown in the graph as a similarity
of 1.0
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4 Some implementation details
Superimpose has been implemented as a command-line program using
the C++ language. C++ was chosen as implementation language because
an efficient implementation was wanted. It should be able to perform
comparisons between all binding site descriptions found in SCOWLP
within a reasonable amount of time.

The excellent boost::program_options library was chosen as
a means to configure the run of Superimpose. It allows options to be
specified in a configuration file (defaults to $HOME/.superimposerc)
or as command line options. Command line options will override options
set in the configuration file. This way of configuring the program is flexible
and allows for easy parameterization of the program.

User specified options to the program are collected in the config
object which is implemented as a singleton. It is used mainly by the
factory class which creates objects from classes according to the settings
found in the config object.

The GNU Scientific Library [gsl03] has been used for creating high
quality random numbers.

Polymorphism using virtual methods has been used liberally through-
out the program to implement the different methodologies. It has been
argued that the lookup that C++ makes into a vtable for each call to a virtual
function causes a large overhead, but this has not been found to impact the
performance significantly.

I chose valarrays which are part of the STL to hold the values of
each particles position, best position and direction. These are well suited
for this purpose as they have been designed for efficient numerical compu-
tations and also define convenient operators for arithmetic operations on all
members.

Finally, I would like to mention the design decision made to simplify
memory management. From early on I decided to create as many as
possible of the objects needed by the program before beginning the
superimposition. The motivation was to simplify memory management by
avoiding memory allocations and deallocations being scattered across the
program in many different files.

The std::auto_ptr template class is used to hold all of the central
objects that are allocated beforehand. This guarantees that objects will be
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deallocated when the scope is left. The allocation of the objects is done in
the main function.

Please refer to the doxygen generated documentation in the doc/
directory for further details.

4.1 Memory leaks and profiling
To verify that there are no memory leaks the program has been run with
various parameter settings using the --leak-check=full option of the
valgrind program [NS07]. This helped to find and correct a few mistakes.

To direct possible future optimizations a profiling of the program was
made using gprof [GKM04]. The results clearly indicate that the pairing
of atoms is the most time consuming, both when using the munkres and
the simple methods of pairing. It may be possible to achieve increased
performance by using the Gale-Shapley stable matching algorithm instead
of the Munkres algorithm to create unique atom pairs.

A considerable amount of execution time is spent on applying weights
to the atom pair distances. This can be optimized because weights are calcu-
lated anew for each time a new distance is calculated. Instead a grid contain-
ing weightings of all possible atom combinations should be pre-calculated,
and the values in the grid should then be applied to newly calculated dis-
tances.

5 Evaluation
The evaluation of the program has been done in two separate parts. In the
first part the program was compared with two cases of superimposition that
were manually created. The goal of these initial tests was to assert that
the program works correctly, and to evaluate its performance on two known
cases where the expected outcome is known. The superimpositions should
be relatively easy as the binding sites used are from the same family.

The second approach was of a more high throughput nature and involved
an extraction of 270 cases of known binding site interactions from SCOWLP.
By running the Superimpose on this data, a representative parameterization
on this dataset was sought. Also, a comparison with the MultiBind program
was made.

The superimpositions made in this part should be significantly more dif-
ficult because all binding site comparisons are between binding sites from
different families.
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5.1 Two specific cases
Several methods of creating atom pairs and of separating inliers and outliers
have been tried. The following methods proved to be superior to other ap-
proaches for arriving at superimpositions, and therefore the tests run will use
these methods:

• Using the munkres method of creating point pairs.

• Using either the QScore function or the FRMSD function for defining
how to separate inliers and outliers.

A goal of these first tests was to see how the simple weighting method-
ology influenced the performance on the two cases.

For these tests the Phosphotyrosine-binding domain (PTB) of the PDB
files with codes 1x11, 1aqc and 1shc were used. The binding sites of
the PTB domains were chosen because these had been studied well before
in the group, and because the domains and therefore also the binding sites
are relatively small, so that the program would be able to arrive at a result
relatively fast. Also, the proteins in whcih the domains are found belong
to the same family, meaning that there should be some structural similarity
between the binding sites.

The quality of superimpositions achieved has been evaluated by look-
ing at the closest pseudo atom pairs that the program finds and comparing
these with a list of expected atom pairs. This method was chosen in favour
of a calculation of how close the two structures are to each other because the
main focus of Superimpose is on finding the most biologically significant
superimposition, not the best geometrical one. If the program returns a
superimposition that uses a large number of the same pairs as the manually
created superimposition this would be a good indication that we are able to
arrive at a superimposition that is comparable to the expected one.

5.1.1 Creating the expected pairs

Manual superimpositions were created of the PTB domains of 1x11 vs.
1aqc and 1x11 vs. 1shc using Accelrys Discovery Studio Visualizer
[SI09].

The serial numbers of the best atom pairs of these two superimpositions
were noted into a file. Using this file to specify a fixed pairing, Superimpose
was run on the same input data to arrive at the best superimposition using
these pairs. This was done by specifying the --icp_fixed_pairing
option to Superimpose. The resulting number of atom pairs from these re-
finements are shown in table 1.

The pairings written to this file were then compared with the pairs that
the Superimpose program arrived at when running with different parameters.
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Comparisons Pairs RMSD (Å)
1x11 vs. 1shc 14 2.4265
1aqc vs. 1x11 20 3.0994

Table 1: The number of pairs and the resulting RMSD value achieved by refinement of superim-
positions created manually by running Superimpose with the -icp_fixed_pairing option.
The pairs were noted into a file and used for comparison with superimpositions created by Super-
impose

The parameterizations of the program that are common for these tests
are as shown in figure 8. For a description of the meaning of these
parameters, please see appendix B.

initialize = align

#-------PSO--------
pso_particles = 20
pso_iterations = 20
pso_cognitive = 2.10
pso_social = 2.15
pso_min_fitness = 0.01
pso_wiggle = 0.3
pso_divisor = 42

#-------ICP--------
icp_iterations = 64
icp_min_points = 5
icp_matching = munkres
icp_max_angle = 60

Figure 8: The parameters of the program that are common for all the tests run with the program

The configuration settings that were varied when running the Superim-
pose program in these tests were the application of weights and the method
of removing outliers. Four different combinations of configuration settings
were tried: Outlier removal using both the QScore and the FRMSD methods,
both with and without applying weights.

When using FRMSD the λ value was set to 7. Using the QScore function
the R0 value was set to 3. When using weights, the amount of the RMSD
that can be influenced by the weighting function was set to 0.9. These values
were chosen, because initial tests on different cases showed the best results
using these values.

For each of the two test cases 40 runs of the program were made using
the four different configurations. The worst, best and average number of
expected pairs were recorded along with their corresponding RMSD values.
The only parameter that changes for each run is the seed for the random
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1aqc vs. 1x11 Worst Average Best
Pairs RMSD (Å) Pairs RMSD (Å) Pairs RMSD (Å)

QScore, no weights 19/19 0.841 19/19 0.841 19/19 0.841
QScore, weights 19/18 0.198 19/18 0.197 19/19 0.186
FRMSD, no weights 17/17 0.412 17/17 0.412 17/17 0.412
FRMSD, weights 19/19 0.198 19/19 0.197 19/19 0.190
1x11 vs. 1shc Worst Average Best

Pairs RMSD (Å) Pairs RMSD (Å) Pairs RMSD (Å)
QScore, no weights 15/0 3.212 17/8 3.02 18/11 2.087
QScore, weights 20/4 1.079 20/5 0.980 20/6 0.972
FRMSD, no weights 24/2 5.196 24/4 5.195 24/5 5.159
FRMSD, weights 22/5 1.061 22/5 1.018 22/6 0.927

Table 2: Results of runs of the Superimpose program using on the PTB binding sites of 1aqc vs.
1x11 (top) and the PTB binding sites of 1x11 vs. 1shc (bottom). There are two numbers given
in the Pairs columns. The first number indicates the number of pairs found that are regarded as
inliers. The second number indicates how many of these pairs that are also expected pairs.

number generator.
The results of these runs can be seen in table 2. The Pairs column of

these two tables contain two numbers where the first indicates the number
of pairs found that are regarded as inliers and the second number indicates
the number of these pairs that are also found in the expected pairing. Note
that the RMSD value in the case of weighted runs is not the actual RMSD
value, but rather the RMSD value calculated from distances modified by the
weighting.

5.1.2 Evaluation of results

The superimpositions of 1aqc vs. 1x11 are generally good. In the worst
case 17 of the expected 20 pairs are found in the superimposition and in the
best case 19 of 20 expected are found.

For the QScore function the application of weights does not improve
results significantly. In the case of the FRMSD method of removing outliers
results are improved with the application of weights. Using FRMSD with
no weighting gives the worst results.

It is notable that the RMSD values of the superimpositions made
by Superimpose are much better than the RMSD value of the manual
superimposition (3.0994 Ångstrøm).

The superimpositions of 1x11 vs. 1shc are not so good. The worst
case shows that we find none of the expected pairings. In the best case 11 of
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the expected 14 pairs have been found in addition to 7 not expected pairs.
The QScore method of outlier removal seems to be slightly better than

the FRMSD method. In both cases slightly more of the expected pairs are
found in the average and best cases using the QScore than when using the
FRMSD measure.

The application of weights does not seem to better the results. When us-
ing the QScore function the application of weights even worsens the results.
This indicates that the method of weighting does not have a positive effect
on the results.

It is suspected that the reason that the superimpositions of 1aqc vs.
1x11 is much better than superimposition of 1x11 vs. 1shc is that there
exists a superimposition of points that fits better geometrically than the
manual superimposition in the case of 1x11 vs. 1shc. This indicates that
more strict chemical constraints could help to better the results.

The results of these two tests only gives a weak indication about the
actual performance of the program, mainly because there are only two test
cases. The initial plan was to look at more cases from the PTB domain, but
this decision was not taken in favour of a more high throughput method that
would be able to give a better picture of the performance of the program
under different settings.

Another reason for choosing this route was that the manual creation of
the expected pairs was rather time consuming making it not feasible to create
many test cases.

5.2 Testing on a larger dataset
A larger dataset was extracted from SCOWLP and used for two purposes: to
see with which parameter settings that Superimpose performs the best and
for performing a comparison of Superimpose and MultiBind.

Having a larger dataset the results should be more significant and
possible tendencies should be easier to find. Also, there was an interest in
the group in a method for curating data from SCOWLP.

The protein structures in the PDB files corresponding to the extracted
binding site data from SCOWLP are complexes consisting of a receptor to
which a ligand is bound. In the extracted data receptors in two complexes
that contain the same binding site are from the same family. This means
that a structural alignment of the receptors should be straightforward using
a program for structural alignment of proteins. The ligands, however, are
from different families suggesting that superimpositions would be more
difficult.

When the receptors are aligned the two ligands will be placed closely
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together in a superimposition that is representative of a superimposition de-
sirable to find using a program like Superimpose or MultiBind. This happens
because the receptors are in the same family and therefore are expected to
have the binding site located in the same surface area. By aligning the recep-
tors and noting how the ligands are placed on top of each other a reference
data set can be created and used to measure the quality of an alignment ob-
tained by running Superimpose or MultiBind. The closer the result of either
of these programs is to the reference, the better. This method effectively
allows for comparison of binding sites across family borders.

Note that neither Superimpose or MultiBind would have information on
a receptor available when trying to align to binding sites in a real setting.
This is simply information that we are lucky to have in our test dataset.

As with the simpler test cases it was chosen to create lists of expected atom
pairs between the ligands belonging to the two aligned receptors and use
these to represent the ideal alignment. If the superimposition is a good fit it
should include many of the pairs also found in the list of expected pairings,
just as in the previous section.

It should be mentioned that this methodology does have some problems,
however. Results are dependant on the distance within which pairs are
created and also on how representative the superimposition of the ligands
are of an actual binding when the receptors are aligned. Some variation in
size of binding sites and in the position of the binding sites is expected,
but generally the alignment of the receptors should place the ligands in a
fashion that is representative.

Even though there may be some inaccuracies by using this method
the goal was to get a fairly good picture of how the two programs compare.
Also, we are able to create a smaller representative subset of the initial
dataset as defined by the extraction from SCOWLP which can be used for
further tests. This smaller set of data could be useful in future experiments.

5.2.1 Creation of the reference dataset

First, 270 known binding site superimpositions were extracted from the
SCOWLP database and the PDB files containing the corresponding protein
molecules on which the binding sites are found were downloaded from the
RCSB Protein Data Bank. A criteria for extracting exactly these was that the
binding site size lay between 10 and 40 atoms. Most information on binding
sites in SCOWLP is about binding sites in this size range.

The MAMMOTH [LLMO05] program was used to create a alignment
of the two receptors as depicted in figure 9. MAMMOTH structurally aligns
two proteins using a methodology that involves decomposing the proteins
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into short peptides. The computation of an alignment is typically fast, al-
lowing us to align the set of PDB files within half an hour.

MAMMOTH

Figure 9: A schematic view of how the backbone of the receptors R1 and R2 are aligned using
MAMMOTH. This results in an alignment of the ligands L1 and L2 which is used to create the
file containing the expected pairings. This is done by calculating all distances between residue
centroids of L1 to residue centroids of L2 and then removing pairs with a distance larger than a
certain cut-off distance. Only residues of L1 and L2 within a certain distance of the receptors are
considered for creating the expected pairs. Note that the contact between R1 and L1 is slightly
larger than that between R2 and L2 and also placed slightly differently. This illustrates that the
definition of a binding site can vary slightly both in size and location.

The program create_expected_paringswas run on the data cre-
ated with MAMMOTH. It creates a list of residue pairs that lie within a cer-
tain distance of each other. The program functions in two steps. First, cen-
troids are created from each residue in the two ligands and the two receptors.
Then the ligand centroids that lie within a certain distance of the receptor are
isolated. These closest ligand centroids are taken to be the atoms that repre-
sent the atoms that make up the binding site. The expected pairs are formed
between these and written to the expected pairs file. The distance from a re-
ceptor within which ligand centroids are selected was set to 8Å. The distance
between a residue centroid of L1 to a residue centroid of L2 within which
pairs are formed was set to 3Å. Figure 10 shows two receptors aligned with
MAMMOTH and the corresponding ligands.

This approach is slightly different from the previously described ap-
proach using expected pairs in that closest residue centroids are used for
creating the expected pairs. This is somewhat crude compared to before
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Figure 10: An example of an alignment made by MAMMOTH. The backbones of the receptors
are shown in blue and green and as can be seen they align very well. Below in grey and orange the
backbones of the corresponding ligands are shown. Some of the residues that have been found to
be pairs by looking at their centroids are shown with a ball and stick.

where a single atom reported in the output of Superimpose was used for
comparison. The reasons for choosing to rely on residue centroids are sev-
eral.

First of all MultiBind reports only the corresponding residues of the
pseudo atoms that have been paired, along with the distance between the
two and the bonding method observed. However, it may be possible to de-
duce the exact interacting atom by looking at how MultiBind defines pseudo
atoms and comparing this with the MultiBind output. This is rather involved
and has not been tried.

Another reason is that pseudo atoms are defined differently by SCOWLP
and by MultiBind. This means that the results of the two are not directly
comparable as the interacting pairs reported by the two programs will differ
even if the exact same superimposition was made.

To be able to compare the output with the expected pairs the atoms
reported by Superimpose are translated into their corresponding residues
before being compared with the expected pairs.

It was decided to use the two ligands for creating atom pairs and not
the receptors, because it was thought that the ligands are slightly less
sensitive to variations in binding site locations than the receptors.

5.2.2 Collecting test data

MultiBind and Superimpose were run on the test data using different param-
eterizations.
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Figure 11 gives an overview of the whole test process including creation
of the expected pairs, running of Superimpose and MultiBind, the extraction
of results placing them in a database. All steps in the process are bound
together in a rather large python script test.py which can execute the
various stages of the test data collection via arguments to the --action
switch.

The final step of the data collection is to place results of the test runs into
a sqlite3 [htt09] database. This database can be conveniently queried
using SQL allowing for easy access to different views of the test runs.

Special efforts have been made to assure that the superimpositions
that are created by Superimpose and MultiBind may be visually inspected.
This is important for veryfying the quality of the superimposition.

5.2.3 Looking at Superimpose

Using the larger dataset it was a goal to establish what is the best fitness
measure and method of outlier removal including the best combination of
the two. This involved testing 4 different combinations of fitness calculation
and outlier removal: DRMS-FRMSD, DRMS-QScore, RMSD-FRMSD and
RMSD-QScore.

A second but lesser goal was to find out what the best R0 value for
the QScore and the best lambda value for FRMSD are. This was done by
running Superimpose with lambda values in the range 1.0 − 5.0 and R0

values in the same range.
In the following I will use the term lambda to refer to both the lambda

value setting for the FRMSD and the R0 value setting for the QScore.
This is because the option to superimpose to set this value is called
--icp_lambda. Another option specifies if this value is applied to the
FRMSD or the QScore.

Other parameter settings of Superimpose are as for the two simple test
cases shown in figure 8.

A number of queries was made into the database to establish which of the
4 mentioned combinations performs best. Unfortunately the results where
not clear when looking at results from Superimpose alone, indicating that
there may be noise in the data. I decided to look at the performance of each
of the 4 combinations in cases where both MultiBind and Superimpose do
well. The agreement of the two programs can be seen as a sort of “filter” for
removing inaccuracies.

The criteria in the query was to look at how the good fits of Superimpose
are distributed among the above categories. Here good fits are defined as
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test.db

superimpose

MultiBind

create

extract

query

expected

createm

pdbs/

1ow3BA.pdb
1g4uRS.pdb
2bweSL.pdb

1ow3BA_1g4uRS.aln
2bweSL_2d3gBP.aln
2bweSL_1zguBA.aln

1ow3BA_1g4uRS.aln.expected
2bweSL_2d3gBP.aln.expected
2bweSL_1zguBA.aln.expected

MAMMOTH

create_expected_pairs

data/

1ow3BA-1g4uRS-qscore-drms.pdb
2bweSL-2d3gBP-qscore-rmsd.pdb
2bweSL-1zguBA-qscore-drms.pdb

superimpose/

multibind-5.0/
1ow3BA-1g4uRS-qscore-drms.pdb
2bweSL-2d3gBP-qscore-rmsd.pdb
2bweSL-1zguBA-qscore-drms.pdb

plots

categories

curate N

pdb_comparisons

1ow3BA, 1g4uRS
2bweSL, 2d3gBP
2bweSL, 1zguBA
2d3gBP, 1zgubA
...

test.py test.config
[path]
pdb_comparisons
programs
...

[multibind]
threshold = 5.0 6.0

[superimpose-rmsd]
opt1 = --icp_fitness %s
val1 = rmsd drms
opt2 = --icp_lambda %s
val2 = 1.0 2.0 3.0

--action

Figure 11: A simplified view of the method used to evaluate the accuracy of the two programs com-
pared. The test.py program reads a configuration file and information about which PDB files
to compare and then executes one of the actions as specified by the -action parameter. First,
MAMMOTH is used to create a structural alignment of the receptors in the PDB files, placing the
output in files with suffix .aln. These files are now read by the create_expected_pairs
program which finds the closest pairs from the two different ligands and writes them to file.
The create and createm run Superimpose and MultiBind on the binding sites specified in
the pdb_comparisons file. The output is placed under the relevant data/ directory. The
extract action may be run after running the two programs to create output data. This creates a
summary of the results obtained by the programs and places it in a database that may be queried
using SQL. Finally the query action may be used to create summaries of the data in the database,
including plots of graphs.
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Figure 12: Total number of cases with 4 or more good pairs shown for each of the 4 combinations
of outlier removal and fitness measure. The cases where the DRMS is used the number of good
fits is significantly higher indicating that the DRMS measure is superior to the RMSD measure for
determining the fitness. It is not possible to determine the best method of outlier removal from
these results.

the binding site superimpositions where 4 or more of the expected pairs
are found. Similarly the term good pairs refers to found pairs that are also
expected pairs.

Taking cases where both MultiBind and Superimpose find good fits I
looked at the distribution of the good fits of Superimpose into the 4 cate-
gories. The results can be seen in figure 12. Note that the results shown are
across all of the lambda values tested.

The figure clearly shows that a larger amount of good fits are found in
the runs where the DRMS fitness measure has been used.

Having established that using DRMS performs the best as fitness mea-
sure, I looked at which lambda values achieved the highest number of good
fits. The same “filtering” as mentioned abova has been used. The results of
this can be seen in figure 13.

In this figure the DRMS-QScore combination does well for lambda
values 1.0, 2.0 and 4.0 with a somewhat surprising lack of good perfor-
mance for lambda values of 3.0 and 5.0. I am unsure of the cause of the
inconsistent performance of the cases where the DRMS fitness measure is
used. More careful inspection of test results should be made to investigate
this.
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Figure 13: Distribution of results in the 4 categories across lambda values 1.0 - 5.0. The DRMS-
QScore combination performs best with a lambda value of 1.0, 2.0 or 4.0.

In conclusion, we seem to get the best results by running Superimpose
using the DRMS fitness method and the QScore method of outlier removal.
There is an indication that some lambda values perform significantly better
than others, but results are inconsistent. This indicates the need for further
tests.

5.2.4 Comparing with MultiBind

The main motivation for comparing Superimpose and MultiBind was to have
a comparison with an existing program that solves a similar problem, but
uses a fundamentally different methodology that is well established.

In the paper presenting the MultiBind method [SPSNW08] the authors
use a threshold of 4Å within the surface area to define the binding site
that is used for the calculation of the superimposition. This is also the
threshold value used in the comparison with Superimpose. The best settings
of Superimpose were used to compare with, meaning the DRMS-QScore
combination with a lambda value of 4.0.

To compare the two programs I looked at the precision and recall
measures that are commonly used in information retrieval, as well as the
F-Measure which is a combination of precision and recall.

The precision indicates how large a fraction of true positives are found,
i.e. the fraction of found pairs that are good pairs. It is calculated as
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precision =
good pairs

found pairs
(9)

The recall indicates how large a fraction of the expected pairs we find. It
is calculated as

recall =
good pairs

expected pairs
(10)

The precision and recall can be combined into the F-measure which is a
weighted mean of precision and recall. I have calculated it as

F = 2 ∗ precision ∗ recall
precision+ recall

(11)

In the following graphs the precision and recall fractions have been con-
verted into a percentage value.
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Figure 14: Percentage of good pairs of all found pairs. The graph on the left shows the results of
MultiBind sorted in descending order. The results in right graph have been sorted by the precision
values for Superimpose.

The following graphs all have a percentage or a fraction on the y-axis
and an enumeration of the comparisons is on the x-axis.

In figure 14 the calculated precision values are shown. In the first
graph the results have been sorted on the values for MultiBind in descend-
ing order. The second graph shows the same results only sorted by the
precision values of results reported by Superimpose.

It can be seen that MultiBind has a higher precision up to around the first
80 comparisons where the second plateau in the left graph begins. MultiBind
has a higher precision than Superimpose for all the cases to the point where
the graph for MultiBind crosses 20%. After this point many of the precision
values for Superimpose are higher, but only few have a precision higher than
25%.
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Evaluation 5.3 Discussion

The graphs show that there is a correlation between the cases where both
Superimpose and MultiBind have a high precision. For the first 50 cases
MultiBind reports a higher precision than Superimpose in most of the cases.
After this there are some cases where Superimpose does better and some
where MultiBind does better.

Also, Superimpose reports more cases with a positive precision, around
140 where MultiBind reports a positive precision for around the first 110
cases.
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Figure 15: The percentage of the found pairs that are also in the list of expected pairs. The x-axis
enumerates the compared cases. In the first graph the results have been sorted in descending order
on the results of running MultiBind. The second graph shows the same data only sorted on the
results from Superimpose.

In figure 15 the graph for MultiBind is somewhat similar. Only after
around the 75 first comparisons cases are found where Superimpose does
better than MultiBind.

Looking at the right graph for Superimpose there seems to be a tendency
that MultiBind has a higher recall than Superimpose or a recall of 0 where
the recall of Superimpose is greater than 0. Cases in between are very few.
This could indicate noise.

Again it is notable that Superimpose reports a positive recall for more
comparisons than MultiBind does.

Figure 16 shows the F-measure calculated from the values used to pro-
duce the previous figures. Only cases where the F-measure is positive is
included. MultiBind has a significantly higher F-measure up to around the
100 first comparisons. After this point the F-measure of the two programs
does not differ significantly.

5.3 Discussion
The specific test cases shown in section 5.1.1 demonstrate that there is a
need to reimplement how the weighting is done if Superimpose is to find
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Figure 16: F-Measure values sorted

biologically interesting results. The result outcomes shown are rather good
when compared to the tests performed on a larger extraction of data from
SCOWLP. This is likely linked to the fact that the test cases in this section
are from the same family, and are therefore structurally more similar than
any of the cases in the later tests, where all superimposed binding sites are
from different families.

It is established that Superimpose gives the best results when run
with the DRMS method of determining the quality of a superimposition in
section 5.2.3. This makes sense as the DRMS measure incorporates more
information than the RMSD measure and also indicates that the fitness
measure here is effective in changing which superimpositions the program
will arrive at. To me this is also an indication that better biological results
may be obtained by enhancing the fitness function to take more of the
properties of the two binding sites into account.

The attempt at determining with which lambda value the best results can
be obtained are unclear and there is a need for more work here to establish
this.

From the test data presented in section 5.2.4 it can be seen that MultiBind
performs better than Superimpose for most of the test cases. However,
there seem to be some cases where Superimpose finds better results than
MultiBind and these would be interesting to take a closer look at.

The way that pseudo atoms are defined by the two programs differs in
such a way that MultiBind will report a larger amount of atoms than Super-
impose for the same superimposition. This gives an advantage to MultiBind
in that more pseudo atom pairs will be reported in the output. Also, the
geometrical alignment is be expected to be better with a more detailed rep-
resentation of binding sites.

Another possible source of MultiBinds superior performance on the test

35



Future directions

cases lies in the employment of a much more advanced weighting function
than used by Superimpose.

There seems to be a fair amount of inaccuracy found in the test data
and it is unsure exactly how this effects the results. This should be
investigated.

The test method should also be evaluated further and possibly extended
by also looking at which closes pairs that exist between the receptors of the
two protein complexes.

6 Future directions
Here I will mention some possibilities of future development of the
Superimpose program. Many of these ideas came up during the project, but
were not pursued due to lack of time.

I believe that the most interesting further development of this pro-
gram lies in bettering results by improving on the fitness function. This I
would do by working on a few cases where MultiBind performs well, but
Superimpose performs poorly.

6.1 Test data
The comparison of the two programs is unfair because the definition of
pseudo atoms differs between the two programs. This should be changed and
maybe a different approach to comparing superimposition quality should be
made to avoid inaccurate results. A possible addition would be to include
the comparison of closest pairs between the MAMMOTH aligned receptors
when evaluating the quality.

6.1.1 Evaluation of the test

The comparison between MultiBind and Superimpose indicates that there
is a fair amount of inaccuracy in the test data, which has also been verified
to some extent by looking at some of the data output from MAMMOTH.
This has not been done thoroughly, but more effort should be put into
guaranteeing the quality of the data.

A possible start to do this would be to divide data into categories
similar to those shown in figure 17 and pick representatives of each category
to take a more careful look at.
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Nothing found 
by either program

8.3%

Nothing found 
by superimpose

9.8%

Nothing found 
by MultiBind

16.9%

Both find 
3 or more

32.0%

Other cases

33.1%

Figure 17: A rough division of data into 3 categories has been made. Representatives of each
category should be visually inspected.

6.2 Weighting
The initial method of weighting does not function well. I believe this is be-
cause the weighting function is not placed correctly; It currently only affects
the pairings of atoms.

The correct place to put a weighting function would be in the compu-
tation of the fitness value that is returned to each particle after ICP con-
verges. This is also indicated by better performance of DRMS compared to
the RMSD fitness method.

A place to start would be to move the existing weighting function away
from its current location and reshape it into a fitness function. Initial steps
to do this have been made in the file fitness.h.

The use of chemical properties should also be more nuanced. Disal-
lowing an interaction between hydrophilic and hydrophobic atoms is too
restrictive. Instead an analysis should be made of the properties between in-
teracting atoms in the bindings we know from the PDB and this information
should be used to create a better weighting function.

6.3 Artificial test data
An alternative to using real-world binding site data would be to create the ar-
tificial binding sites. This could be valuable in benchmarking Superimpose
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because features such as outliers and chemical properties may be varied sys-
tematically. This could give a more accurate estimation of how well the
program performs with different kinds of data.

The program make_random_sites was written to be able to
perform benchmarks like this, but the effort was discontinued in favour of a
comparison with an existing program. However, the program is functional
and systematic benchmarks would be easy to make with this.

The program creates two files containing a specified number of atoms
distributed randomly within a specified distance from the origin. One file
contains the Model and another the Data. The coordinates of Data file
generated are translated a user specified amount in a random direction and
also rotated a user specified number of degrees around a random axis. The
user may also specify how many outliers there should be.

Initial tests of Superimpose on data generated with this program have
been made, but unfortunately time constraints have not allowed inclusion of
these results in this report.

However, the initial tests have shown that the perfect superimposition
is found almost immediately if the two point sets have the same spacial
configuration, (i.e. no outliers) but the Data point set is translated and rotated
differently than the Model.

7 Conclusion
I have successfully implemented the Superimpose program, which uses a
combination of the Particle Swarm Optimization and Iterative Closest Point
algorithms to create a superimposition of the atoms of two protein binding
regions.

Several methods for matching atom pairs and for removing atoms that
are deemed to be irrelevant have been tried. There are many parameters to
the program allowing a user to experiment with a variety of settings. The
program has a highly modular design, making it open to future extensions.

The program has been tested by comparing the results of a manually cre-
ated superimposition, with the results of running the program on the same
input data and it has been compared with MultiBind on a larger data set ex-
tracted from SCOWLP. Results show that the initial weighting methodology
implemented does not perform well and that the developed program can not
compete with MultiBind at this point in time.

Tests to determine the best combination of fitness function and method
of outlier removal have been made on a relevant data set. These tests indicate
that there is room for further improvement of the fitness function.
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Appendix A - Getting and building the program

A Getting and building the program
The source code of the program is available from the following location, or
on the CD included with this report.

http://bladre.dk/superimpose

On this page a version of Boost and the GNU Scientific Library can
also be found. These will need to be installed to be able to compile
Superimpose. The program has been successfully built and tested using the
library versions available from the above page.

The following steps describe how to set up a running version of the
program developed in this report. It is assumed that the library dependen-
cies will be installed in $HOME/install and that the source code of the
project has been extracted to the folder $HOME/superimpose.

• Download the Boost libraries to the $HOME/install folder, un-
pack and install it:

wget http://bladre.dk/superimpose/boost_1_38_0.tar.bz2
tar -xvjf boost_1_38_0.tar.bz2
cd boost_1_38_0
./configure --prefix=$HOME/install
make && make install

• Download the GNU Scientific Library to the $HOME/install
folder and unpack and install it

wget http://bladre.dk/superimpose/gsl-1.9.tar.gz
tar -xvzf gsl-1.9.tar.gz
cd gsl-1.9
./configure --prefix=$HOME/install
make && make install

• Download Superimpose and unpack it. Note that the package is
rather large

wget http://bladre.dk/superimpose/superimpose-v760.tar.bz2
tar -xvjf superimpose-v412.tar.bz
cd superimpose

• To be able to link with the installed libraries the variable
LD_LIBRARY_PATH needs to include the directory containing
these:

export LD_LIBRARY_PATH=$HOME/install/lib:$LD_LIBRARY_PATH

• To get compilation flags needed for the GNU Scientific Library the
PATH variable should contain the bin directory where the libraries
are installed

export PATH=$HOME/install/bin:$PATH
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• The BASE variable in the env.sh file should be modified to point
to the root of the directory containing the source code of the project.

• Depending on which version of g++ you are using the variable
PRGOPT in the make.conf file may also need to be modified to
be able to link with the boost-program-options library.

• Now enter the src directory and type one of the following com-
mands to build the superimpose executable.

make to build an executable that includes debugging information.
BUILD=1 make to build an optimized version of the program.

• To create code documentation the doxygen program has been used.
The documentation can be created by entering the doc/ directory
and typing make.
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B Program Options
This section contains a more thorough description of the program options
than printed when running:

./superimpose --help

Options may be specified at the command line or in the file .superim-
poserc in the users home directory. If an option appears both places, the
command line option will override the option in the .superimposerc file.

All options have defaults, so it is not necessary to specify all options.
Check ./superimpose –help to see the defaults.

B.1 General options
-V or --version

Print out the program version information.

-h or --help

Print out a summary of the program options.

-s or --show

When this option is specified the program will not run, but rather print
out an overview of option settings. The same overview is printed in
each output file produced by superimpose such that a given super-
imposition may be reproduced.

B.2 Input options
-m or --model

Specify which .pdb file should be used as the model.

-d or --data

Specify one or more .pdb files to be used as data site(s) to fit to the
model. This option is actually superfluous as

./superimpose --model foo.pdb --data bar.pdb --data xxx.pdb

is equivalent to

./superimpose --model foo.pdb bar.pdb xxx.pdb

-i or --input

Specify from which source to input data into the program. At the mo-
ment this option has no meaning because the only way to input data into
the program is by loading from .pdb files.
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-v or --visualize

Specify a file containing locations of the files containning model and
data binding site descriptions aswell as the .pdb files containing the full
protein. When specifying this option the transformations performed on
the site will also be perfomed on the full proteins and the output file will
contain the model site, data site, the corresponding model protein and
the corresponding data protein in that order. This option overrides the
--model and --data options. The argument is a file which contains
lines in the following format:

# MODEL <site file> <full pdb>;DATA <site file> <full pdb>
#
MODEL 1x11_PTB.pdb 1x11.pdb ; DATA 1shc_PTB.pdb 1shc.pdb
MODEL test.pdb testF.pdb ; DATA data.pdb dataF.pdb

It is not important if the MODEL or DATA entry appears first or second.

-o or --outdir

Specify a directory in which to place all files output from the program.
The default is the current directory.

-x or --prefix

Specify a prefix to prepend to each output file written

-f or --config_file

Specify a file to read the program configuration from. It defaults to
${HOME}/.superimposerc. Options specified on the commandline will
override options in the config file.

-t or --initialize

How to initialize the two protein binding sites before starting the
PSO and ICP superimpositions. There are two possible arguments:
centroid specifies to just move the binding sites so that their cen-
troid is located at the center of the coordinate system. align specifies
to also align the directional vector of the binding site with the z-axis
and also to find the broadest part of the binding site and align this with
the x-axis.

-e or --seed

Specify a value to use as seed for the random number generator used.
This can be useful if one wants to recreate a run that is identical to a
previous run. The default is to use the value returned by time(2).
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B.3 PSO specific options
-p or --pso_particles

Value that specifies how many particles to use in the swarm.

-n or --pso_iterations

Specifies how many iterations we should run the PSO before returning
a result.

-c or --pso_cognitive

Specify the cognitive component weight in the formula used to update
the velocity of each particle.

-l or --pso_social

This option is used to specify the weight of the social component in the
formula used to update the particle velocities.

-f or --pso_min_fitness

If we arrive at a fitness value below this threshold the program stops and
the result is written to the outfile.

-w or --pso_wiggle

This specifies the amount to "wiggle" a particle according to its own
previous best position when we restart it. Each particle value is added a
random number in the range -(wiggle/2) to (wiggle/2).

-z or --pso_divisor

This argument is used to set the divisor used to divide the initial veloci-
ties of the particles in the swarm.

B.4 ICP specific options
-x or --icp_iterations

Maximum number of iterations to run the ICP algorithm before return-
ing a best fit.

-y or --icp_min_points

The minimum number of atoms that should be included in the fitting of
data site to the model.

-z or --icp_matching

Specifies the method to use when performing a match between atoms of
the data and model binding sites.
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-r or --icp_fraction_method

Specifies how to remove outliers from the matched points. Outliers
will not be used in the calculation of the transformations to bring the
data atoms closer to the model. There are some possibilities: none
Do not remove outliers. fixed The argument to --icp_lambda
specifies a fixed whole number that indicates exactly how many pairs
of atoms from the matching to regard as inliers. limit Set a hard
limit to cut away outliers. The value of --icp_lambda determines
the allowed distance between atoms that separates inliers and outliers.
frmsd Use the frmsd method of separating inliers and outliers. The
value of --icp_lambda will be used to specify the lambda value as
specified in the paper on the Fractional Iterative Closest Point algorithm.
qscore Use the qscore function to determine where to separate in-
liers and outliers. The value of --icp_lambda will be used to set the
divisor R0 as used by the function.

-b or --icp_lambda

This double value acts as argument to the chosen --icp_-
fraction_method

-A or --icp_max_angle

This option specifies the maximum angle displacement allowed be-
tween the model and data sites directional vectors. If a superimposition
has a greater angle it is discarded.

-W or --icp_weight

The method of weighting to apply. Currently options are: none spec-
ifies to not use weighting. simple A simple weighting to apply. Is
currently not fully implemented.

-X or --icp_weight_fraction

Specifies the fraction of the distance between two atoms that can be
influenced by the simple --icp_weight method.

-P or --icp_fixed_pairing

Specify a file from which to read information of a fixed pairing of atoms.
This options is for refining the output of a manual superimposition by
using only the ICP method. There will not be any use of the particle
swarm with this option. When using this option the following settings
are implied: --icp_weight none, --initialize centroid,
--icp_iterations 500
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-F or --icp_fitness

Specify which fitness method to use. Legal values are rmsd or drms.
rmsd is the default.
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C The modified .pdb file format
As input, Superimpose takes files in a format that is similar to that of
.pdb files [rcs09] with some specific differences that have been added to
accommodate our needs.

It was decided to use a similar format as that used by the PDB be-
cause this would allow us to easily produce data for testing because the
PDB format is also used in other contexts.

The first difference to mention is that Superimpose uses only the
ATOM and HETATM lines of the PDB. Additionally, the differences to the
data in the columns of a file in the PDB format are as follows:

tempfactor In our format the tempfactor is a number defining the number
of atoms that the given atom has been reduced to.

occupancy This column describes how many interactions there are for this
atom.

These columns have been specified like this with the weighting of atoms
in mind.

element In our format the element section describes if the atom is hy-
drophilic or hydrophobic. A W denotes a hydrophilic atom and an O
a hydrophobic atom.

Finally, Superimpose expects that the ATOM section is terminated by a
TER line and that a HETATM follows which holds the coordinates of the cen-
ter of mass of the protein. This information is used together with the center
of mass of the binding site to create a vector which is used to determine the
directionality of the binding site.

Figure 18: an example of the modified .pdb file format as found in the .site files. The last
column denotes the hydrophobicity or hydrophilicity of the atom. The two columns before denote
the number of atoms used to create the pseudo atom and the total number of interactions that the
pseudo atom represents.
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D Class description
The following are descriptions of the main classes and files that Superimpose
consists of. To save some trees the program listing is not included, but the
source code may be found at the following location:

http://bladre.dk/superimpose

D.1 atom
This class contains the description of atoms as used in the program. Class
atom contains fields that are similar to the fields in the .pdb, although there
are some variations. The description of the atom in the .pdb format can be
found here:

http://www.wwpdb.org/documentation/format32/sect9.html#ATOM
The variations in our format are as follows:

• We do not use the occupancy and tempfactor fields for the same thing
as described in the .pdb. Instead the occupancy field describes how
many atoms have been used in averaging to get the atom. The temp-
factor field we use to list how many interactions there are for this atom.

• The element column is used to denote if the atom can be considered to
be hydrophilic or hydrophobic, denoted with W and O respectively.

D.2 config
The config class holds all configuration of the program. It uses Boost
Program Options to parse commandline options, or to read settings form a
configuration file.

Class config implements the Singleton pattern and is used mainly by the
factory class for initializing newly created objects.

A macro CONF() is provided for easy access to configuration parame-
ters.

D.3 constraints
This file contains the implementation of the constraints that are imposed on
a resulting superimposition. The constraints include a maximum angle that
there can be between the directional vector of the Model and Data sites and
also the maximum displacement that is allowed for a sites centroid away
from the center of the coordinate system.

The method call() returns a boolean, indicating if the constraints have
been violated or not.
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D.4 defines
This file contains constants and convenient macros that are used throughout
the program.

Default values for configuration parameters are also found here.

D.5 factory
The factory class implements a variant of the factory pattern. All of
the central objects in the program are created by the factory class. The
config class is used heavily by the factory class.

All object creating methods in this class return a std::auto_ptr
which assures that the memory occupied by the object will be deallocated at
scope exit.

No instance of the factory class should be created, so the constructor
is private.

D.6 fitness
This file defines classes implementing the RMSD and dRMS fitness mea-
sures.

D.7 fraction
The fraction class is the superclass for specifying how to separate inliers
and outliers from the sorted matching list. For most of these the -icp_-
lambda option declares a parameter to be passed.

fraction_none Do not compute outliers, but regard everything as
inlies

fraction_limit is used for setting a hard limit on allowed distance
between 2 atoms

fraction_fixed Is used to set a fixed number of pairs to always be
considered as inliers

fraction_frmsd Uses the FRMSD method for determining which
are outliers.

fraction_qscore This uses the q-score for calculating the boundary
between inliers and outliers.

D.8 icp
This class implements a variant of the Iterative Closest Point algorithm. It
uses the implementation of the Kabsch algorithm as found in rmsd.c
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The class uses an object of type matching to perform the pairing be-
tween points. Class fraction is used to determine which pairs should be
regarded as inliers and which should be regarded as outliers.

D.9 initializer
The initializer class is used to initialize a binding site so that all atoms
in the site are moved to the center of the coordinate system by placing them
such that the centroid of the protein is in the center of the coordinate system.

There are two kinds of initializers: initializer_centroid simply
moves the points in the protein so that the protein centroid is at the center
of the coordinate system. initializer_align additionally aligns the
directional vector of the site with the z-axis and also aligns the broadest
part of the binding site with the x-axis.

D.10 loader
This file contains classes for loading data into the program. The classes are:

loader is an abstract class with some methods for loading files in our
special .pdb format.

loader_file An instance of this class will be used to load .pdb file
data from files.

loader_visualize This loader is used when we are getting data
from a file specified with the -visualize option.

fixed_pairing_loader is used to load a file with two columns of
the atom serial number describing which pairs of atoms to fix.

visualize_file_loader is used to load the file containing model
and data binding sites to load and also a reference to the full .pdb file so that
the rotations and translations applied to the binding sites can be seen in the
context of the whole protein. It is an auxilliary class used by loader_-
visualize.

D.11 matching
This file contains classes that implement different approaches to performing
a pairing between atoms from two different binding sites.

The name matching has been preferred to pairing when describing the
process of finding a match for an atom. The word pairing is used to describe
a matching that has been performed.

There are different approaches to matching. These are implemented in
different sub classes:

match is the abstract base class for performing matchings between the
atoms of two sites.
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match_fixed is used to implement a fixed matching that must be
specified by the user in a file given as argument to the -icp_fixed_-
pairing option.

match_munkres performs the matching by first computing a grid of
all distances between atoms of the two sites, and then uses the Munkres
algorithm to find atom pairs such that all atoms have a pair and the summed
distance between atom pairs is minimized.

match_simple This is a simple variant of the approach of computing
a grid without using the Munkres algorithm. Not all atoms will have a cor-
responding pair in all cases when using this approach, but it is much faster.
The method is rather ad hoc.

D.12 randomXX
This class is just a wrapper around the random number generators that are
provided by the GNU Scientific Library.

D.13 scene
In the scene class all objects are put together and the actual superimposition
is started by executing the run() method.

D.14 site
The site class is used to describe a binding site as loaded by the loader
class. All transformations done to a site are done through the move()meth-
ods.

When the -visualize option has been specified, invoking move()
will also perform the same transformation to the full site.

The site class contains all information about a binding site, including
atoms and the center of the protein and the center of the binding site.

D.15 swarm
Implements the Particle Swarm and is the main entry point for the whole
machinery in the program.

This file contains the following classes:
particle is a class implementing the particles that are used by the

swarm class.
swarm is an abstract class describing the interface for the two different

"swarms".
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swarm_iterate implements the Particle Swarm Optimization. It
uses the icp implementation to get a fitness value for determining the fit-
ness of a particle.

swarm_only_icp is a dummy Particle Swarm which is used in the
case where one wishes to optimize an input using only the icp algorithm.

D.16 utils
This file contains general utility functions that are used throughout the pro-
gram and have not been associated well with a class.

D.17 vec
The file vec.h contains an implementation of 3D vectors and matrixes
used, is found in this file. It is a convenience for being able to do basic
transformations in a nice way.

D.18 weights
Contains the basic implementation of weights as used in the program. The
basic method of weighting is to increase or decrease the distance between
atom pairs in a matching according to the number of interactions for the
two atoms and also the number of atoms that have gone into the atom when
averaging it. Besides the abstract class weight there are the following sub
classes :

weight_none This is a dummy class that is used when no weighting
is applied to a matching.

weight_simple is an implemntation of a weighting that can be ap-
plied for modifying the distance between an atom pair.

weight_better is an attempt to try another method of weighting. It
is currently not used.

The method of weighting atom pairings should be extended in future
work.

D.19 writer
The writer class is a base class for classes implementing the writing of
the resulting superimposition. Currently this includes only writing output to
a .pdb file which follows our internal variant of the .pdb. This is convenient
because the resulting output can be loaded into programs that can be used to
visualize the superimposition.

When the -visualize option is specified the file written will contain
the different parts in the following order:
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• Model binding site

• Data binding site

• Model "full" site

• Data "full" site Each separated with a TER
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