

Software Testing Concepts and
Tools

Presented by Lars Yde, M.Sc., at ”Selected Topics in Software Development”, DIKU spring semester 2008

The what's and wherefore's
 To test is to doubt. So why do we doubt ?

− If you're any good, why not just write proper=correct
code ? Specs, typos, and 9 levels of complexity

− Even with perfect code, we cannot control all outside
variables

 The scope of the problem
− Binder, chap. 1: A Small Challenge, 65 permutations
− Rollison, SW Test & Perf, p.33: ”Using only the characters 'A' - 'Z' the

total number of possible character combinations using for a filename with an 8-letter filename and
a 3-letter extension is 268 + 263, or 208,827,099,728”

− The virtue of the pragmatist approach

Verification cost is asymptotic to the desired quality level.
Graphics courtesy Scott Sehlhorst

Systemic levels of testing
 Unit

− Black box, white box, grey box
 Integration

− Shared memory, shared interfaces, shared messages
− Load testing, performance testing, regression testing

 System: full monty, in realistic ”ecosystem”
 Installation / deployment

− Precondition/postcondition, load, regression
 Acceptance testing

− Manual (e.g. GUI), automated (e.g. Formal ver.)

Testing schools of thought
 Formal approaches

− Binder, chap.6, combinatorial: enumerate, cull, verify,
impractical, humbled by complexity

− Binder, chap.7, state machines: flow visualization,
coherence (p.238), useful as cscw artifact

− Binder, chap.9-15, patterns: templates for test design,
good craftsmanship, tools of the trade, heuristics in a
combinatorial explosion. Recognizing the facts.

 Agile approach
− Test often, test repeatedly, test automatically

TDD testing - an agile approach
 Simple recipe

− Design as required
− Write some test cases
− See that they fail (no code yet to exercise)
− Make them pass by writing compliant code
− Goto start

 Write iteratively, code and design iteratively
 Gradual improvement through design and

selection – evolving design + code

TDD testing
 Automated tests that are

− Concise

− Self checking

− Repeatable

− Robust

− Sufficient

− Necessary

− Clear

− Efficient

− Specific

− Independent

− Maintainable

− Traceable

 Also room for automated acceptance testing

TDD challenges / headaches
 Sealed interfaces in legacy code
 Multithreaded designs with intricate lock patterns
 Deeply tiered implementations with no separation
 Automated GUI testing (allow for scripting, please)
 Mismanagement, business decisions
 Database dependencies (consider mock objects)
 Overly long and complex test cases – easier to

crank out than you might think...
 Bugs in testing harnesses and frameworks

Pragmatic testing
 Experiment is part & parcel of the scientific method

− Test to falsify – not to validate. Prove false, not true
− Prove beyond a reasonable doubt. Good enough for

hanging, good enough for testing.
− Strategic levels of testing (not systemic levels)

 Test exhaustively
 Test exploratorily
 Test sporadically
 Test stochastically
 Roll your own

Tactics for targeted testing
 Equivalence classes – formal and heuristic
 Boundary values – peaks and valleys rather than

flatlands
 Risk analysis – unclear, complex, legacy, ”here be

dragons”
 Use coverage tools – which portions of code

exercised: Ncover
 Experience and intuition

Tools
 Unit testing frameworks + extras

− Junit

− Nunit / Ncover / Nant (versatile, GUI, convenient, extendible)

− Boost (organise into cases, suites, extensive assert library, simple and effective)

− CppUnit (extending framework base classes, assert library, clumsy)

 Example (Nunit) – assume class Account
 namespace bank

 {

 public class Account

 {

 private float balance;

 public void Deposit(float amount)

 {

 balance+=amount;

 }

 public void Withdraw(float amount)

 {

 balance-=amount;

 }

 public void TransferFunds(Account destination, float amount)

 {

 }

 public float Balance

 {

 get{ return balance;}

 }

 }

 }

namespace bank
{
 using System;
 using NUnit.Framework;

 [TestFixture]
 public class AccountTest
 {
 Account source;
 Account destination;

 [SetUp]
 public void Init()
 {
 source = new Account();
 source.Deposit(200.00F);
 destination = new Account();
 destination.Deposit(150.00F);
 }

 [Test]
 public void TransferFunds()
 {
 source.TransferFunds(destination,
100.00f);
 Assert.AreEqual(250.00F,
destination.Balance);
 Assert.AreEqual(100.00F,
source.Balance);
 }

 [Test]

[ExpectedException(typeof(InsufficientFundsE
xception))]
 public void TransferWithInsufficientFunds()
 {
 source.TransferFunds(destination,
300.00F);
 }

 [Test]
 [Ignore("Decide how to implement
transaction management")]
 public void
TransferWithInsufficientFundsAtomicity()
 {
 try
 {
 source.TransferFunds(destination,
300.00F);
 }
 catch(InsufficientFundsException
expected)
 {
 }

 Assert.AreEqual(200.00F,source.Balance);

Assert.AreEqual(150.00F,destination.Balance)
;
 }
 }
}

Nunit testing cont'd

Jyrki Slide on Testing Tools

Jyrki slide on testing tools

ANKHSvn test case – studio plugin
// Id
#pragma once
#include "stdafx.h"
using namespace NUnit::Framework;

namespace NSvn
{
 namespace Core
 {
 namespace Tests
 {
 namespace MCpp
 {
 [TestFixture]
 public __gc class ManagedPointerTest
 {
 public:
 /// <summary>Test that the thing works</summary>
 [Test]
 void TestBasic();

 [Test]
 void TestAssignment();

 [Test]
 void TestCopying();

 };
 }
 }
 }
}

 A
N

K
H

S
vn

 te
st

 c
as

e
–

st
ud

io
 p

lu
gi

n // Id
#include "StdAfx.h"
#include "../NSvn.Core/ManagedPointer.h"
#include "managedpointertest.h"
#using <mscorlib.dll>
using namespace System;
namespace
{
 void voidFunc(void* ptr)
 {
 String* string = *(static_cast<NSvn::Core::ManagedPointer<String*>* >(ptr));
 Assert::AreEqual(string, S"Moo world");
 }
}

void NSvn::Core::Tests::MCpp::ManagedPointerTest::TestBasic()
{
 String* str = S"Moo world";
 ManagedPointer<String*> ptr(str);

 //check that the implicit conversion works
 Assert::AreEqual(ptr, S"Moo world");

 //implicitly convert to void*
 voidFunc(ptr);
}

void NSvn::Core::Tests::MCpp::ManagedPointerTest::TestAssignment()
{
 String* str = S"Moo world";
 ManagedPointer<String*> ptr1(str);
 ManagedPointer<String*> ptr2(S"Bleh");

 ptr2 = ptr1;
 Assert::AreEqual(ptr1, ptr2);
 Assert::AreEqual(ptr2, S"Moo world");
}
void NSvn::Core::Tests::MCpp::ManagedPointerTest::TestCopying()
{
 String* str = S"Moo world";
 ManagedPointer<String*> ptr1(str);
 ManagedPointer<String*> ptr2(ptr1);

 Assert::AreEqual(ptr1, ptr2);
}

Exhausting your Test Options – Doug Hoffmann

We designed a test where each of the
64K CPUs started with a different value
and tested each value 65,536 greater
than the last one. Then, each CPU
would ask a neighbor to compute the
square root differently to check the original
result.

Two Errors in Four Billion
Two hours later, we made the first run
using our biggest processor configuration.
The test and verification ran in
about six minutes or so, but we were
confused a bit when the test reported
two values in error. Both the developer
and I scratched our heads, because the
two values didn� t appear to be special in
any way or related to one another. Two
errors in four billion. The developer
shook his head and said, � No& This is
impossi& Oh!& Okay?� He thumbed
through the microcode source listing and
stabbed his finger down on an instruction.
� Yeah� there it is!� There was
only one thing that could cause those
two values to be wrong, and a moment� s
thought was all it took to discover what
that was!

He gleefully tried to explain that the
sign on a logical micro instruction shift
instruction was incorrect for a particular
bit pattern on a particular processor
node at 11 P.M. on the night of a full
moon (or some such� it didn� t make a
lot of sense to me at the time� but we
caught, reported, and fixed the defect,
fair and square). We submitted the defect
report, noting only the two actual
and expected values that miscompared
and attaching the test program. Then, in
just a few minutes, he fixed the code
and reran the test, this time with no reported
errors. After that, the developers
ran the test before each submission, so
the test group didn� t ever see any subsequent
problems.
I later asked the developer if he
thought the inspection we had originally
planned would likely have found the error.
After thinking about it for a minute,
he shook his head. � I doubt if we� d have
ever caught it. The values weren� t obvious
powers of two or boundaries or anything
special. We would have looked at
the instructions and never noticed the
subtle error.�

Failures can lurk in incredibly obscure
places. Sometimes the only way to catch
them is through exhaustive testing. The
good news was, we had been able to � exhaustively
test� the 32-bit square root
function (although we checked only the
expected result, not other possible errors
like leaving the wrong values in micro
registers or not responding correctly to
interrupts). The bad news was that there
was also a 64-bit version, with four billion
times as many values� that would
take about 50,000 years to test exhaustively.

Testing patterns - example
Name: Architecture Achilles Heel Analysis

Elisabeth Hendrickson, Grant Larsen

Objective: Identify areas for bug hunting – relative to the architecture

Problem: How do you use the architecture to identify areas for bug hunting?

Forces:

· You may not be able to answer all your own questions about the architecture.

· Getting information about the architecture or expected results may require

additional effort.

· The goals of the architecture may not have been articulated or may be unknown.

Solution:

An architectural diagram is usually a collection of elements of the system, including

executables, data, etc., and connections between those elements. The architecture

may

specify the connections between the elements in greater or lesser detail. Here’s an

example deployment architecture diagram. This technique works for deployment,

physical, functional, or dynamic architecture maps.

Testing patterns - example

In analyzing the architecture, walk through each item and connection in
the diagram.
Consider tests and questions for each of the items in the diagram.
Connections
• Disconnect the network
• Change the configuration of the connection (for example, insert a
firewall with
maximum paranoid settings or put the two connected elements in
different NT
domains)
• Slow the connection down (28.8 modem over Internet or VPN)
• Speed the connection up.
• Does it matter if the connection breaks for a short duration or a long
duration? (In
other words, are there timeout weaknesses?)

User Interface
• Input extreme amounts of data to overrun the buffer
• Insert illegal characters
• Use data with international and special characters
• Use reserved words
• Enter zero length strings
• Enter 0, negatives, and huge values wherever numbers are accepted
(watch for
boundaries at 215=32768, 216=65536, and 231=2147483648).
• Make the system output huge amounts of data, special characters,
reserved
words.
• Make the result of a calculation 0, negative, or huge.
Server Processes
• Stop the process while it’s in the middle of reading or writing data
(emulates
server down).
• Consider what happens to the clients waiting on the data?
• What happens when the server process comes back up? Are
transactions rolled
back?
Databases
• Make the transaction log absurdly small & fill it up.
• Bring down the database server.
• Insert tons of data so every table has huge numbers of rows.
• In each case, watch how it affects functionality and performance on
the server and
clients.

Testing patterns – a code example
Call Stack Tracer
Motivation
Assume you are using a runtime library that can throw exceptions4.
The runtime library can throw
exceptions in arbitrary functions. However, you have a multitude of
places in your code, where you call
functions of the runtime library.
In short: How do you find out, where the exception has been thrown (,
while avoiding too much “noise” in
the debug trace)?
Forces
1. You want to avoid “noise” in the debug trace.
2. The tracing facility must be easy to use.
3. You want to exactly know, where the function was called, when the
exception has been thrown.

Te
st

in
g

pa
tte

rn
s

–
a

co
de

 e
xa

m
pl

e
Solution
Implement a class CallStackTracer, that internally traces the call stack, but writes to the debug trace only,
if an exception has occurred.
The mechanism is as follows: An instance of the class is bound to a block (this works for at least C++ and
SmallTalk). The constructor for that instance takes as a parameter information about where the instance has
been created, e.g. file name and line number.
If everything is OK, at the end of the block, the function SetComplete() is invoked on the instance of
CallStackTracer.
When the instance goes out of scope the destructor is called. In the implementation of the constructor, the
instance checks, whether the SetComplete() function was called. If not, an exception must have been
thrown, so the destructor of the instance writes the information, e.g. file name, line number, etc., to the
debug trace. If the SetComplete() function was called before, then the instance traces nothing thus avoid the
“noise” in the debug trace.
class CallStackTracer {
CallStackTracer(string sourceFileName,
int sourceLineNumber) {
m_sourceFileName = sourceFileName;
m_sourceLineNumber = sourceLineNumber;
m_bComplete = false;
};
~CallStackTracer() {
if(!m_bComplete) {
cerr << m_sourceFileName << m_sourceLineName;
}
}
void SetComplete() {
m_bComplete = true;
}
private:
string m_sourceFileName;
int m_sourceLineNumber;
};
// Some code to be covered by a CallStackTracer
void foo() {
CallStackTracer cst(__FILENAME__, __LINENUMBER__);
// all normal code goes here.
cst.SetComplete();
}
Note, that __FILENAME__ and __LINENUMBER__ are preprocessor macros in C++, which will be
replaced during compilation by their value.

