
c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (1)

Selected topics in software development

Today:

Programming style

Speaker:

Jyrki Katajainen

• code idioms (cf. design patterns)

Course home page:

http://www.diku.dk/forskning/performance-engineering/

Software-development/

http://www.diku.dk/forskning/performance-engineering/
Software-development/

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (2)

Potential topics on programming practice

• testing

• debugging

• portability

• performance

• design alternatives

• style

[Brian W. Kernighan & Rob Pike, The practice of programming, p. ix]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (3)

Why is good style important?

Clarity: Well-written code is easier to read and to understand.

Correctness: Sloppy code is often broken.

Simplicity: Well-written code is likely to be smaller than code that

has been carelessly tossed together and never polished.

Maintainability: The best layout schemes hold up well under code

modifications.

[Brian W. Kernighan & Rob Pike, The practice of programming, §1]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (4)

Write clearly — don’t be too clever.

[Brian W. Kernighan & P. J. Plauger, The elements of programming

style, p. 2]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (5)

Say what you mean, simply and directly.

[Brian W. Kernighan & P. J. Plauger, The elements of programming

style, p. 11]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (6)

Write first in an easy-to-understand pseudo-language;

then translate into whatever language you have to use.

[Brian W. Kernighan & P. J. Plauger, The elements of programming

style, p. 39]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (7)

Format a program to help the reader understand it.

[Brian W. Kernighan & P. J. Plauger, The elements of programming

style, p. 123]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (8)

Recall the seven pillars of pretty code

Blend in: Code changes should blend in with the original style.

Bookish: Keep columns narrow.

Disentangle code blocks: Break code into logical blocks and disen-
tangle their purpose so that each does a single thing.

Comment code blocks: Set off code blocks with whitespace and
comments that describe each block.

Declutter: Remove anything that will distract the reader.

Make alike look alike: Two or more pieces of code that do the same
or similar thing should be made to look the same.

Overcome indentation: The left side of the code defines the struc-
ture, the right side the detail. Fight indentation to safeguard this!

[Christopher Seiwald, Seven pillars of pretty code]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (9)

Formatting theorem

Theorem: Good visual layout shows the logical structure of a pro-

gram.

Making the code look pretty is worth something, but it is worth less

than showing the logical structure of the code. If one technique shows

the structure better and another looks better, choose the one that

shows the structure better. Pretty does not necessarily mean readable

or maintainable!

[Steve McConnell, Code complete, 2nd edition, §31.1]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (10)

Typographic styles

Macro-typographic factors:

• program formatting

• global and intermodule com-

menting

• module separation conven-

tions

• identifier-naming conven-

tions

• conventions for special-case

font styles

Micro-typographic factors:

• statement formatting

• indentation and embedded

spacing

• use of blank lines

• intra-module commenting

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (11)

Typographic principles

Macro typography:

1. Make the components and

organization of the program

obvious.

2. Identify the purpose and use

of each component.

3. Make the execution control

and information flow between

components apparent.

4. Make the program readable

and easy to browse through

by providing different access

paths into the code.

Micro typography:

1. Make the sections and orga-

nization of the module obvi-

ous.

2. Identify the purpose and use

of each section.

3. Make the underlying control

and information flow within

the module obvious.

4. Make statements readable

and easy to scan by providing

spatial clues and white space

to indicate statement group-

ing and separation.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (12)

Book-format paradigm

Macro-typographic factors:

• creation of a preface

• table of contents

• chapter divisions

• pagination

• indices

Micro-typographic factors:

• identification/creation of

code sections

• code paragraphs

• sentence structures

• intra-module comments

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (13)

Online exercise (5 min)

Comment the macro-typographic style used in the CPH STL reports

2005-1 and 2007-4.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (14)

Code idioms

Code idioms are the implementation analog of the design patterns

discussed earlier. If we agreed on the code idioms used, it would be

much easier for us to understand each others code.

Pick one coding standard, preferably the one agreed on the project,

use it consistently, and do not waste time in arguing.

I will concentrate on the elements of C/C++ style, but much of what

I say can be applied for other languages too.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (15)

Which variable-naming convention is best?

A: Variable names are all in lower case as in variable_name.

B: Variable names use lower-case letters for the first word, with the

first letter of each following word capitalized as in variableName.

C: Variable names include a standardized prefix indicating its type or

its intended use as in strVariableName.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (16)

STL conventions

• c is a character variable

• i, j, and k are integer indexes

• n is a number of something

• p and q are pointers

• s is a string

• Preprocessor macros are all in upper case as in ALL_CAPS

• Variable and routine names are all in lower case as in all_lower_case

• The underscore (_) character is used as a separator between words
as above.

What would be a good single-letter variable name for an iterator?

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (17)

Variable-naming idiom

Use descriptive names for global (and class) variables, and short names

for local variables. To indicate the origin of a variable, a (private/pro-

tected) class variable can be qualified with (*this) and a global vari-

able with :: (meaning that the variable is found in the global name-

space).

Select sensible names for your variables. E.g. it is a good name for

an iterator, but not for a pointer. A misleading name can result in

mysterious bugs.

Use active names for functions. Also, functions that return a boolean

should be named so that the return value is unambiguous (e.g. is empty).

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (18)

Indentation idiom

Indentation should be idiomatic, too. Use 2-4 space indentation to

show the logical structure of a program. If you use tabs, make sure

that your code-beautifier and other tools handle them appropriately.

for (++n; n != 100; ++n) {
field[n] = ’\0’;

}

? for (
? n++;
? n != 100;
? field[n++] = ’\0’;
?)
? {
? ;
? }

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (19)

Which brace style is best?

Pure blocks:

{

}

while (colour == red) {
statement1

statement2

...
}

Braces as block boundaries:

{

}

while (colour == red)
{
statement1

statement2

...
}

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (20)

Basic-loop idiom

Most loops, where the exit test is performed at the beginning, should
have the form:

for (i = 0; i != n; ++i) {
...

}

for (p = list; p != 0; p = (*p).next) {
...

}

? i = 0;
? while (i <= n - 1) {
? ...
? }

? for (i = 0; i < n;) {
? ...
? i++;
? }

? for (i = n; --i >= 0;) {
? ...
? }

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (21)

Infinite-loop idiom

For infinite loops use one of the following alternatives; do not use

other forms.

while (true) {
...

}

for (;;) {
...

}

? while (1) {
? ...
? }

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (22)

End-exit idiom

A do-while loop always executes at least once; in many cases that

behaviour is a bug waiting to bite, but when it is needed, write } in

front of while to indicate clearly that while does not start a while

loop.

safety_counter = 0;
do {

node = (*node).next;
...
++safety_counter;
if (safety_counter >= SAFETY_LIMIT) {

std::cerr << "Internal error: Safety-counter violation.\n"
ASSERT(false);

}
} while ((*node).next != 0);

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (23)

Middle-exit idiom

Few programming languages provide direct support for a loop con-

struct whose exit point is in the middle. An idiomatic way of writing

such a loop is shown in the following example:

while (true) {
c = getchar();
if (c == EOF) {

break;
}
putchar();

}

? while ((c = getchar()) != EOF) {
? putchar();
? }

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (24)

Switch-break idiom

Cases should almost always end with a break, with the rare excep-
tions commented. For an unusual structure, a sequence of else-if
statements can be even clearer.

if (c == ’-’) {
sign = -1;
c = getchar();

}
else if (c == ’+’) {

c = getchar();
}
else if (c != ’.’ && !isdigit(c)) {

return 0;
}

? switch (c) {
? case ’-’: sign = -1;
? case ’+’: c = getchar();
? case ’.’: break;
? default: if (!isdigit(c))
? return 0;
? }

? switch (c) {
? case ’-’:
? sign = -1;
? /* fall through */
? case ’+’:
? c = getchar();
? break;
? case ’.’:
? break;
? default:
? if (!isdigit(c)) {
? return 0;
? }
? break;
? }

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (25)

Operation-per-line idiom

Avoid using multiple operations per line; in particular, be careful with

statements that have side effects.

char* copy_string(char* s, char const* t) {
char* const r = s;
while (*t != ’\0’) {

*s = *t;
++s;
++t;

}
*s = ’\0’;
return r;

}

? void strcpy(char *s, char *t) {
? while (*s++ = *t++)
? ;
? }

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (26)

No performance penalty

jyrki@Per:~/Software-development/Slides/Style$ g++ string-copy.c++
jyrki@Per:~/Software-development/Slides/Style$./a.out
Performance testing ::strcpy ...

Running time per character (ns): 5.9
Performance testing ::copy_string ...

Running time per character (ns): 5.8
Performance testing std::strcpy ...

Running time per character (ns): 5.5

jyrki@Per:~/Software-development/Slides/Style$ g++ -O3 string-copy.c++
jyrki@Per:~/Software-development/Slides/Style$./a.out
Performance testing ::strcpy ...

Running time per character (ns): 1.2
Performance testing ::copy_string ...

Running time per character (ns): 1.2
Performance testing std::strcpy ...

Running time per character (ns): 1.1

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (27)

Declaration-per-line idiom

Use only one data declaration per line.

FILE* input_file;
FILE* output_file;

? FILE *input_file, *output_file;

Separate the type names and variable names clearly in data declara-
tions. In C and C++, data declarations are read from right to left (and
from the inside out). Keep this in mind when writing data declara-
tions; typedefs can be used to improve readability.

int const* p; Pointer to a constant integer, i.e. the integer pointed
to does not change.

int* const q; Constant pointer to an integer, i.e. the pointer is kept
constant but the underlying integer can be modified.

typedef char* routine(char*, char const*);
routine* copy = copy_string;

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (28)

Memory-allocation idiom

In a real program, the return value of malloc, realloc, or any other

allocation routine should always be checked.

p = (char*) malloc(strlen(buffer) + 1);
if (p == 0) {

reset();
return 0;

}
strcpy(p, buffer);

? p = malloc(strlen(buffer) + 1);
? strcpy(p, buffer);

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (29)

More comments on readability

Operators: Use spaces around operators: x = y + z;

,: Add a single space after commas: a = f(x, y, z);

!: Negations are hard to understand and should be avoided.

if: Deeply nested if statements are difficult to follow.

->: Arrows clutter the code; my preference is (*p).next.

Instead of following the rules slavishly, it is more important to be

consistent.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (30)

DiffMerge’s chequered past

[Laura Wingerg & Christoper Seiwald, Beautiful code, p. 535]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (31)

Comments on maintainability

• Give names to magic numbers.

• Be prepared for changes.

• Use a commenting style that is easy to maintain.

#define SIZE(array) (sizeof(array) / sizeof(array[0])

char buffer[100];

for (i = 0; i != SIZE(buffer); ++i) {
// Use braces even if the loop body only contains one statement.

}

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (32)

Laying out class interfaces

Header comment: Describe the class and provide any notes about

the overall usage of the class.

Public types:

Public routines: Describe constructors and destructors first.

Protected types:

Protected routines:

Private types, routines, and member data:

[Steve McConnell, Code complete, 2nd edition, §31.8]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (33)

Laying out class implementations

Header comment: Describe the contents of the file where the im-

plementation is in.

Public routines: Describe constructors and destructors first.

Protected routines:

Private routines:

Separate routines in a file clearly, and group related routines together

or put the routines in alphabetical order.

[Steve McConnell, Code complete, 2nd edition, §31.8]

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (34)

Example problem

Task: Remove all comments from a LATEX file; that is, remove private
notes before distributing the file.

\begin{theorem} ...

\end{theorem}

\begin{proof} Omitted. \qed
% Our back-of-the-envelope proof must be spelled out in

% full length. In particular, the tricky special case ...

\end{proof}

LATEX manual: When LATEX encounters a % character while process-
ing an input file, it ignores the rest of the present line, the line
break, and all whitespace at the beginning of the next line. An
escaped % character (\%) does not start a comment.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (35)

Online exercise (5 min)

Write pseudo-code for a program that removes all comments from a

given LATEX file.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (36)

Solution?

/* Poista kommentit tex-tiedostosta. */

#include <stdio.h>
#include <stdlib.h>

void poista_kommentit(FILE *, FILE *);

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (37)

Main routine

void main(void) {
char inname[512], outname[512];
FILE *infile, *outfile;

printf("infile = ");
scanf("%s", inname);
infile = fopen(inname, "r");
if (infile == NULL) {

printf("%s%s\n", "Could not open file", inname);
exit(2);

}
printf("outfile = ");
scanf("%s", outname);
outfile = fopen(outname, "w");
if (outfile == NULL) {

printf("%s%s\n", "Could not open file", outname);
exit(3);

}
poista_kommentit(infile, outfile);
fclose(infile);
fclose(outfile);
return;

}

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (38)

Key subroutine

void poista_kommentit(FILE *infile, FILE *outfile) {
int c, e;

e = getc(infile);
while (e != EOF && e == ’%’) {

do {
e = getc(infile);

} while (e != EOF && e != ’\n’);
if (e != EOF) e = getc(infile);
while (e == ’ ’) e = getc(infile);

}
if (e != EOF) {

do {
c = getc(infile);
while (c != EOF && e != ’\\’ && c == ’%’) {

do {
c = getc(infile);

} while (c != EOF && c != ’\n’);
if (c != EOF) c = getc(infile);
while (c == ’ ’) c = getc(infile);

}
putc(e, outfile); e = c;

} while (e != EOF);
}

}

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (39)

Using make for testing

options=-ansi -pedantic -Wall -O3
program=nocomments.c
input=lecture.tex
output=temp.tex
input-base=$(basename $(input))
input-pdf=$(addsuffix .pdf, $(input-base))
output-base=$(basename $(output))
output-pdf=$(addsuffix .pdf, $(output-base))

nocomments:
@gcc $(options) $(program)
@echo "$(input)\n$(output)" | ./a.out
@make -s -f../makefile copy; latex $(input) 1>/dev/null
@make -s -f../makefile copy; latex $(output) 1>/dev/null
@diff --brief $(input-pdf) $(output-pdf)
@rm $(output) $(output-pdf)
@make -s clean

shell> make nocomments input=lecture.tex output=temp.tex
nocomments.c:9: warning: return type of ’main’ is not ’int’
infile = outfile =
Files lecture.pdf and temp.pdf differ
make: *** [nocomments] Error 1

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (40)

Bug reports

I wrote the program in Mar 1997; I expected that it would be used only

once, but my co-author took it in production and used it routinely.

Mar 1997: Code is difficult to understand.

Mar 1997: It does not remove comments of the form \omitted{. . . }.

Mar 1997: It may create very long lines, which is dangerous for trans-

mission by email.

Jul 1997: It fails for a two-line (TEX) input \bye%CTorbenC. (The

output is \byeTorbenC.)

Feb 2008: It removes “comments” inside a verbatim environment

even if it shouldn’t.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (41)

Other criticism

• Bilingualism is disturbing for non-Finnish readers.

• The key subroutine, which does the actual job, is unreadable.

• Compilation produces a warning that is not corrected.

• Unix command-line idiom is not used for inputting the file names.

• The error messages are not printed to stderr as they should.

• Declaration-per-line idiom is not followed.

• Operation-per-line idiom is not followed.

• Indentation is not idiomatic for all if and while statements.

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (42)

Online exercise (5 min)

Comment the programming style used in the CPH STL component

cphstl::stack, see files stack.h++ (bridge class), stack.c++ (implemen-

tation of the bridge class), list_based_stack.h++ (realization class),

and list_based_stack.c++ (implementation of the realization class).

c© Performance Engineering Laboratory Selected topics in software development, 4 Mar 2008 (43)

Summary

• At macro level, the main concerns are: obvious organization of

the program, easy navigation through the code, and apparent

interconnections between different components.

• At micro level, the main concerns are: descriptive names, clarity

in expressions, straightforward control flow, readability of code

and comments, the importance of consistent use of conventions

and idioms.

	Selected topics in software development
	Potential topics on programming practice
	Why is good style important?
	Recall the seven pillars of pretty code
	Formatting theorem
	Typographic styles
	Typographic principles
	Book-format paradigm
	Online exercise (5 min)
	Code idioms
	Which variable-naming convention is best?
	STL conventions
	Variable-naming idiom
	Indentation idiom
	Which brace style is best?
	Basic-loop idiom
	Infinite-loop idiom
	End-exit idiom
	Middle-exit idiom
	Switch-break idiom
	Operation-per-line idiom
	No performance penalty
	Declaration-per-line idiom
	Memory-allocation idiom
	More comments on readability
	DiffMerge's chequered past
	Comments on maintainability
	Laying out class interfaces
	Laying out class implementations
	Example problem
	Online exercise (5 min)
	Solution?
	Main routine
	Key subroutine
	Using make for testing
	Bug reports
	Other criticism
	Online exercise (5 min)
	Summary

