
Outline
Introduction

Common assertions
Conclusions

The Ongoing Revolution in Software Testing

Presentation by Jon Elverkilde

February 15, 2008

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

1 Introduction
Background
Motivation

2 Common assertions
The role of testers
Test Planning and Documentation
The Practice of Testing

3 Conclusions
Agile and test-driven development
Context Driven Testing
Discussion

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Background
Motivation

Cem Kaner

Professor of Software Engineering, Florida Institute of
Technology.

Ph.D. in experimental psychology and a law degree.

Author and co-author of 4 books.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Background
Motivation

Motivation

Some assumptions about testing are wrong.

Programs where linear and shorter (1960-70).

Software is becoming more complex and so is development.

These assumptions may lead to bad software.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Background
Motivation

Motivation

Some assumptions about testing are wrong.

Programs where linear and shorter (1960-70).

Software is becoming more complex and so is development.

These assumptions may lead to bad software.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Background
Motivation

Motivation

Some assumptions about testing are wrong.

Programs where linear and shorter (1960-70).

Software is becoming more complex and so is development.

These assumptions may lead to bad software.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Background
Motivation

Motivation

Some assumptions about testing are wrong.

Programs where linear and shorter (1960-70).

Software is becoming more complex and so is development.

These assumptions may lead to bad software.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Reasons

Primary reason:
Find bugs

Primary reason:
Prove correctness.

Testers are
advocates of
quality / quality
assurance groups.

Conformance to specification/regulation.
Verify correctness, etc.

You may find what you expect and miss
the rest.

Testers can’t (and shouldn’t) assure
quality, but help by assessing quality.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Reasons

Primary reason:
Find bugs

Primary reason:
Prove correctness.

Testers are
advocates of
quality / quality
assurance groups.

Conformance to specification/regulation.
Verify correctness, etc.

You may find what you expect and miss
the rest.

Testers can’t (and shouldn’t) assure
quality, but help by assessing quality.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Reasons

Primary reason:
Find bugs

Primary reason:
Prove correctness.

Testers are
advocates of
quality / quality
assurance groups.

Conformance to specification/regulation.
Verify correctness, etc.

You may find what you expect and miss
the rest.

Testers can’t (and shouldn’t) assure
quality, but help by assessing quality.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Reasons

Primary reason:
Find bugs

Primary reason:
Prove correctness.

Testers are
advocates of
quality / quality
assurance groups.

Conformance to specification/regulation.
Verify correctness, etc.

You may find what you expect and miss
the rest.

Testers can’t (and shouldn’t) assure
quality, but help by assessing quality.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Reasons

Primary reason:
Find bugs

Primary reason:
Prove correctness.

Testers are
advocates of
quality / quality
assurance groups.

Conformance to specification/regulation.
Verify correctness, etc.

You may find what you expect and miss
the rest.

Testers can’t (and shouldn’t) assure
quality, but help by assessing quality.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Reasons

Primary reason:
Find bugs

Primary reason:
Prove correctness.

Testers are
advocates of
quality / quality
assurance groups.

Conformance to specification/regulation.
Verify correctness, etc.

You may find what you expect and miss
the rest.

Testers can’t (and shouldn’t) assure
quality, but help by assessing quality.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Conventions

Testers should
work
independently of
programmers.

Teams should use
development
models, like the
Waterfall.

Testers should
base tests on
documented
characteristics of
the program.

Based on fears of bias, etc. TDD proves
this wrong and has benefits; Unit tests,
fast bug finding.

Locks down details before implications
(cost, difficulty, etc.) are known. In a
evolutionary model, the trade-off is
between features and time to market (not
reliability).

Specification describes how the program is
supposed to work. This approach may
narrow the testers’ thinking.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Conventions

Testers should
work
independently of
programmers.

Teams should use
development
models, like the
Waterfall.

Testers should
base tests on
documented
characteristics of
the program.

Based on fears of bias, etc. TDD proves
this wrong and has benefits; Unit tests,
fast bug finding.

Locks down details before implications
(cost, difficulty, etc.) are known. In a
evolutionary model, the trade-off is
between features and time to market (not
reliability).

Specification describes how the program is
supposed to work. This approach may
narrow the testers’ thinking.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Conventions

Testers should
work
independently of
programmers.

Teams should use
development
models, like the
Waterfall.

Testers should
base tests on
documented
characteristics of
the program.

Based on fears of bias, etc. TDD proves
this wrong and has benefits; Unit tests,
fast bug finding.

Locks down details before implications
(cost, difficulty, etc.) are known. In a
evolutionary model, the trade-off is
between features and time to market (not
reliability).

Specification describes how the program is
supposed to work. This approach may
narrow the testers’ thinking.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Conventions

Testers should
work
independently of
programmers.

Teams should use
development
models, like the
Waterfall.

Testers should
base tests on
documented
characteristics of
the program.

Based on fears of bias, etc. TDD proves
this wrong and has benefits; Unit tests,
fast bug finding.

Locks down details before implications
(cost, difficulty, etc.) are known. In a
evolutionary model, the trade-off is
between features and time to market (not
reliability).

Specification describes how the program is
supposed to work. This approach may
narrow the testers’ thinking.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Conventions

Testers should
work
independently of
programmers.

Teams should use
development
models, like the
Waterfall.

Testers should
base tests on
documented
characteristics of
the program.

Based on fears of bias, etc. TDD proves
this wrong and has benefits; Unit tests,
fast bug finding.

Locks down details before implications
(cost, difficulty, etc.) are known. In a
evolutionary model, the trade-off is
between features and time to market (not
reliability).

Specification describes how the program is
supposed to work. This approach may
narrow the testers’ thinking.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Conventions

Testers should
work
independently of
programmers.

Teams should use
development
models, like the
Waterfall.

Testers should
base tests on
documented
characteristics of
the program.

Based on fears of bias, etc. TDD proves
this wrong and has benefits; Unit tests,
fast bug finding.

Locks down details before implications
(cost, difficulty, etc.) are known. In a
evolutionary model, the trade-off is
between features and time to market (not
reliability).

Specification describes how the program is
supposed to work. This approach may
narrow the testers’ thinking.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Test Planning and Documentation

Testers should
specify the
expected result of
tests in advance.

Testers should
design most tests
early in
development.

Testers should
document manual
tests in great
detail so [...]

A program can fail in many ways. “High
volume automated tests” (i.e. random)
exposes memory leaks, etc.

Testers (and developers) learns the
program during the development.
Resources will be wasted, if program
changes. Early key decisions make greater
inertia.

(Other) testers supposedly learns about
the test and program design. This is not
proved, rather testers are likely to be
influenced. Industry worst practice(!)

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Test Planning and Documentation

Testers should
specify the
expected result of
tests in advance.

Testers should
design most tests
early in
development.

Testers should
document manual
tests in great
detail so [...]

A program can fail in many ways. “High
volume automated tests” (i.e. random)
exposes memory leaks, etc.

Testers (and developers) learns the
program during the development.
Resources will be wasted, if program
changes. Early key decisions make greater
inertia.

(Other) testers supposedly learns about
the test and program design. This is not
proved, rather testers are likely to be
influenced. Industry worst practice(!)

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Test Planning and Documentation

Testers should
specify the
expected result of
tests in advance.

Testers should
design most tests
early in
development.

Testers should
document manual
tests in great
detail so [...]

A program can fail in many ways. “High
volume automated tests” (i.e. random)
exposes memory leaks, etc.

Testers (and developers) learns the
program during the development.
Resources will be wasted, if program
changes. Early key decisions make greater
inertia.

(Other) testers supposedly learns about
the test and program design. This is not
proved, rather testers are likely to be
influenced. Industry worst practice(!)

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Test Planning and Documentation

Testers should
specify the
expected result of
tests in advance.

Testers should
design most tests
early in
development.

Testers should
document manual
tests in great
detail so [...]

A program can fail in many ways. “High
volume automated tests” (i.e. random)
exposes memory leaks, etc.

Testers (and developers) learns the
program during the development.
Resources will be wasted, if program
changes. Early key decisions make greater
inertia.

(Other) testers supposedly learns about
the test and program design. This is not
proved, rather testers are likely to be
influenced. Industry worst practice(!)

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Test Planning and Documentation

Testers should
specify the
expected result of
tests in advance.

Testers should
design most tests
early in
development.

Testers should
document manual
tests in great
detail so [...]

A program can fail in many ways. “High
volume automated tests” (i.e. random)
exposes memory leaks, etc.

Testers (and developers) learns the
program during the development.
Resources will be wasted, if program
changes. Early key decisions make greater
inertia.

(Other) testers supposedly learns about
the test and program design. This is not
proved, rather testers are likely to be
influenced. Industry worst practice(!)

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

Test Planning and Documentation

Testers should
specify the
expected result of
tests in advance.

Testers should
design most tests
early in
development.

Testers should
document manual
tests in great
detail so [...]

A program can fail in many ways. “High
volume automated tests” (i.e. random)
exposes memory leaks, etc.

Testers (and developers) learns the
program during the development.
Resources will be wasted, if program
changes. Early key decisions make greater
inertia.

(Other) testers supposedly learns about
the test and program design. This is not
proved, rather testers are likely to be
influenced. Industry worst practice(!)

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

The Practice of Testing

Tests should cover
every line and
branch in the
program.

We can tell how
close we are to
release by
examining the
“bug curve”.

Again this can narrow attention on specific
test attributes. Programs might have inter
dependencies, these tests will miss.

A project will (perhaps) naturally fit a
curve. By using this, e.g. to predict a
release, the model no longer fits.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

The Practice of Testing

Tests should cover
every line and
branch in the
program.

We can tell how
close we are to
release by
examining the
“bug curve”.

Again this can narrow attention on specific
test attributes. Programs might have inter
dependencies, these tests will miss.

A project will (perhaps) naturally fit a
curve. By using this, e.g. to predict a
release, the model no longer fits.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

The Practice of Testing

Tests should cover
every line and
branch in the
program.

We can tell how
close we are to
release by
examining the
“bug curve”.

Again this can narrow attention on specific
test attributes. Programs might have inter
dependencies, these tests will miss.

A project will (perhaps) naturally fit a
curve. By using this, e.g. to predict a
release, the model no longer fits.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

The role of testers
Test Planning and Documentation
The Practice of Testing

The Practice of Testing

Tests should cover
every line and
branch in the
program.

We can tell how
close we are to
release by
examining the
“bug curve”.

Again this can narrow attention on specific
test attributes. Programs might have inter
dependencies, these tests will miss.

A project will (perhaps) naturally fit a
curve. By using this, e.g. to predict a
release, the model no longer fits.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Agile and test-driven development

Agile development is characterized by iterations (of weeks);

Each iteration consists of planing, analysis, design, coding,
etc.

Every iteration starts with a complete review and ends with a
(working) release.

In TDD the project cycle starts with adding a test, then
writing the code, then refactoring.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Agile and test-driven development

Agile development is characterized by iterations (of weeks);

Each iteration consists of planing, analysis, design, coding,
etc.

Every iteration starts with a complete review and ends with a
(working) release.

In TDD the project cycle starts with adding a test, then
writing the code, then refactoring.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Agile and test-driven development

Agile development is characterized by iterations (of weeks);

Each iteration consists of planing, analysis, design, coding,
etc.

Every iteration starts with a complete review and ends with a
(working) release.

In TDD the project cycle starts with adding a test, then
writing the code, then refactoring.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Agile and test-driven development

Agile development is characterized by iterations (of weeks);

Each iteration consists of planing, analysis, design, coding,
etc.

Every iteration starts with a complete review and ends with a
(working) release.

In TDD the project cycle starts with adding a test, then
writing the code, then refactoring.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

The Seven Basic Principles of the Context-Driven School

The value of any practice depends on its context.

There are good practices in context, but there are no best
practices.

People, working together, are the most important part of any
project’s context.

Projects unfold over time in ways that are often not
predictable.

The product is a solution. If the problem isn’t solved, the
product doesn’t work.

Good software testing is a challenging intellectual process.

Only through judgment and skill, exercised cooperatively
throughout the entire project, are we able to do the right
things at the right times to effectively test our products.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

The Seven Basic Principles of the Context-Driven School

The value of any practice depends on its context.

There are good practices in context, but there are no best
practices.

People, working together, are the most important part of any
project’s context.

Projects unfold over time in ways that are often not
predictable.

The product is a solution. If the problem isn’t solved, the
product doesn’t work.

Good software testing is a challenging intellectual process.

Only through judgment and skill, exercised cooperatively
throughout the entire project, are we able to do the right
things at the right times to effectively test our products.

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Discussion

What “school”/style is DIKU preaching?

Can some of this be applied at DIKU? (academia in general?)

If not, could it pose a problem?

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Discussion

What “school”/style is DIKU preaching?

Can some of this be applied at DIKU? (academia in general?)

If not, could it pose a problem?

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing



Outline
Introduction

Common assertions
Conclusions

Agile and test-driven development
Context Driven Testing
Discussion

Discussion

What “school”/style is DIKU preaching?

Can some of this be applied at DIKU? (academia in general?)

If not, could it pose a problem?

Presentation by Jon Elverkilde The Ongoing Revolution in Software Testing


	Outline
	Introduction
	Background
	Motivation

	Common assertions
	The role of testers
	Test Planning and Documentation
	The Practice of Testing

	Conclusions
	Agile and test-driven development
	Context Driven Testing
	Discussion


