

Processes in Software Development
Presented 11.3.2008 by Lars Yde, M.Sc., at ”Selected Topics in Software Development”, DIKU spring semester 2008

S
of

tw
ar

e
”h

al
l o

f s
ha

m
e”

C
la

ss
ic

 m
is

ta
ke

s

ACM Code of Ethics
As an ACM member I will

Contribute to society and human well-being.
Avoid harm to others.
Be honest and trustworthy.
Be fair and take action not to discriminate.
Honor property rights including copyrights and patent.
Give proper credit for intellectual property.
Respect the privacy of others.
Honor confidentiality.

Catastrophic bugs

July 28, 1962 -- Mariner I space probe.
1982 -- Soviet gas pipeline.
1985-1987 -- Therac-25 medical accelerator.
1988 -- Buffer overflow in Berkeley Unix finger daemon.
1988-1996 -- Kerberos Random Number Generator.
January 15, 1990 -- AT&T Network Outage.
1993 -- Intel Pentium floating point divide.
1995/1996 -- The Ping of Death.
June 4, 1996 -- Ariane 5 Flight 501.
November 2000 -- National Cancer Institute, Panama City.

What users do, not what they say
Source: steampowered.com

The 10th edition of the annual CHAOS report from The Standish Group

”The 2004 CHAOS report, entitled “CHAOS Chronicles,” found total U.S.
project waste to be $55 billion, made up of $38 billion in lost dollar value
and $17 billion in cost overruns. Total project spending was found to be
$255 billion in the 2004 report.

In 1994, The Standish Group estimated U.S. IT projects wasted $140
billion—$80 billion of that from failed projects—out of a total of $250
billion in project spending. ”

Standish Chairman Jim Johnson says, “The primary reason is the projects
have gotten a lot smaller. Doing projects with iterative processing as
opposed to the waterfall method, which called for all project requirements
to be defined up front, is a major step forward.”

Softwaremag.com, January Issue 2004

Brief history of software dev meth

Scripted methodology / framework
● Waterfall / Big Design Up Front (BDUF)
● Spiral
● Unified Process
● Microsoft Solutions Framework
● CMM / CMMI
● ITIL
● Six Sigma
● Et al

The virtuous cycle that never was
Source: notetech.com

Scripted methodology #2: spiral
Boehm, Barry: ”A Spiral Model of Software Development and Enhancement”, 1988

Scripted methodology #1 : waterfall

Rational Unified Process
● Adapt the process

● Balance stakeholder priorities

● Collaborate across teams

● Demonstrate value iteratively

● Elevate the level of abstraction

● Focus continuously on quality

● Develop a Vision

● Manage to the Plan

● Identify and Mitigate Risks

● Assign and Track Issues

● Examine the Business Case

● Design a Component Architecture

● Incrementally Build and Test the Product

● Verify and Evaluate Results

● Manage and Control Changes

● Provide User Support

CMM / CMMI

Agile Manifesto
Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.
· Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.
· Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.
· Business people and developers must work together daily throughout the
project.
· Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.
· The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.
· Working software is the primary measure of progress.
· Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.
· Continuous attention to technical excellence and good design enhances agility.
· Simplicity--the art of maximizing the amount of work not done--is essential.
· The best architectures, requirements, and designs emerge from self-organizing
teams.
· At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Agile practices
● Scrum (sprints, product owners, daily

scrumming, deliverables, retrospective)
● XP (pair programming ,refactoring, simplicity,

courage)
● Crystal (people focus)
● DSDM (pareto principle, MoSCoW, good-

enough delivery)
● Lean

Lean software development
● Eliminate waste (redundancies, duplicate code, lack of clarity,

etc) – identify through eg. code review, remedy through eg.
generic programming / refactoring / mercilessness

● Amplify learning (small iterations, 1:1's, customer interaction)
● Decide as late as possible (small increments, RAD, thoughtful

design, loosely coupled code)
● Deliver as fast as possible (clear goals, achievable goals, high

velocity, daily scrumming, removing churn/context switching)
● Empower the team (trust, high-level instruction)
● Build integrity in (transparency, loyalty to the vision, clear focus)
● See the whole (system in context)

Deming's deadly diseases
● Lack of constancy of purpose.
● Emphasis on short-term profits.
● Evaluation by performance, merit rating, or annual review of performance.
● Mobility of management.
● Running a company on visible figures alone.
● Excessive medical costs.
● Excessive costs of warranty, fueled by lawyers who work for contingency

fees.

Six Sigma

Cost of correction relative to phase

