
c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (1)

Selected topics in software development

Today:

Notation (domain-specific languages)

Speaker:

Jyrki Katajainen

Course home page:

http://www.diku.dk/forskning/performance-engineering/

Software-development/

http://www.diku.dk/forskning/performance-engineering/
Software-development/

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (2)

Why to talk about notation?

The difference between a regular expression and a C++ program is

big, but both are just notations for solving problems. Good notation

makes it easier to say what we want and harder to say the wrong

thing by mistake.

As tasks become so focused and well understood that programming

them feels almost mechanical, it may be time to create a notation

that naturally expresses the tasks and a language that implements it.

[Brian W. Kernighan & Rob Pike, The practice of programming, §9]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (3)

Format specifiers

Where used: In printf control sequences and packet handling in a
network protocol

int pack_type1(uchar* buffer, ushort count, uchar value, ulong data) {
uchar* bp = buffer;
*bp++ = 0x01;
*bp++ = count >> 8;
*bp++ = count;
*bp++ = value;
*bp++ = data >> 24;
*bp++ = data >> 16;
*bp++ = data >> 8;
*bp++ = data;
return bp - buffer;

}

int pack_type1(uchar* buffer, ushort count, uchar value, ulong data) {
return pack(buffer, "cscl", 0x01, count, value, data);

}

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.1]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (4)

Specification languages

Where used: In FreeBSD kernel to specify the types of function call
arguments and their locking pre- and postconditions

#
#% read vp L L L
#
vop_read {

IN struct vnode* vp;
INOUT struct uio* uio;
IN int ioflag;
IN struct ucred* cred;

}

588 lines of domain-

specific code −→
4 339 lines of C code

and declarations

An Awk script creates:

• C code for packing the arguments into a

single structure

• Declarations for structures holding the ar-

guments and functions doing the work

• Initialized data specifying the contents of

the structures

• The C code for implementing file-system

layers

• Assertions for verifying the state of the

locks when the function enters and exits.

[Diomidis Spinellis, Beautiful code, §17]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (5)

Regular expressions

Where used: In many Unix tools like lex, grep, awk

jyrki@Per$ cd ~/CPHSTL/Presentation
jyrki@Per$ grep "landscape-slides" */*.tex

jyrki@Per$ cd ~/CPHSTL/Release/List-based-stack
jyrki@Per$ ~/CPHSTL/Script/search_and_replace * "\\bC\\b" "R"
/home/jyrki/CPHSTL/Release/List-based-stack/list_based_stack.c++

template <typename E, typename A, typename C>
C ==> R: (y/n/!/q)?

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.2]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (6)

Scripting languages

Where used: In non-performance-critical software development when
programmer productivity is of prime importance

"""
split.py: split input into one word per line
"""

import sys
import re

input_file = sys.argv[1]
h = open(input_file, ’r’)
content = h.read()
h.close()
result = re.sub(r’\s+’, ’\n’, content)
print result

The book shows how to implement a simple web server as a single-line
shell script using Tcl, Perl, and Awk.

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.3]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (7)

Grammars

Where used: In yacc parser generator

program:
program statement ’\n’
|
;

statement:
expr { printf("%d\n", $1); }
| VARIABLE ’=’ expr { symboltable[$1] = $3; }
;

expr:
INTEGER
| VARIABLE { $$ = symboltable[$1]; }
| expr ’+’ expr { $$ = $1 + $3; }
| expr ’-’ expr { $$ = $1 - $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| expr ’/’ expr { $$ = $1 / $3; }
| ’(’ expr ’)’ { $$ = $2; }
;

[Brian W. Kernighan & Rob Pike, The practice of programming, §6.4]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (8)

Semantic comments

Where used: In PostScript (%%), in Java to create documentation

(/**), and in literate-programming tools

Andy’s way of writing C++ code to check that the compiler catches

program errors. The actual checking is done by a combination of shell

and Awk scripts.

int f() {}
/// warning.* non-void function .* should return a value

void g() {return 1;}
/// error.* void function may not return a value

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.5]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (9)

Specialized languages for book writing

Where used: In tools used for producing graphs (gnuplot), pictures

(pstricks), tables, mathematical formulas (eqn), and indices.

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.5]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (10)

Visual languages

Where used: In visual development systems and wizards that syn-

thesize user-interface code out of mouse clicks.

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.5]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (11)

Macros

Where used: In C preprocessor, LATEX, m4

#define MEASURE(code) { \
std::cout << "Testing routine " \

<< #code \
<< " ..." << std::endl; \

clock_t start = clock(); \
code; \
clock_t ticks = clock() - start; \
float s = 1.0 / float(CLOCKS_PER_SEC); \
std::cout << "Running time (s): " \

<< s * float(ticks) \
<< std::endl; \

}
#define TEST(routine, x, y, n) \

generate(x, n, ’x’); \
generate(y, n, ’y’); \
MEASURE((void) routine(x, y)); \
assert(strcmp(x, y) == 0)

int main(void) {

const unsigned int n = 1000000;
char a[n], b[n];

TEST(::strcpy, a, b, n);
TEST(::copy_string, a, b, n);
TEST(std::strcpy, a, b, n);

return 0;
}

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.6]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (12)

On-the-fly code generation

Where used: In performance-critical image processing (e.g. BitBlt

in Windows 1.0) and just-in-time compilers

The idea is to generate specialized code on the fly for the particular
situation so that handling of any special cases can be avoided. For
example, write a mini compiler that translates the current regular
expression into special code optimized for that expression.

int matchchar(int literal, char* text) {
return *text == literal;

}

int matchchar(char* text) {
return *text == ’x’;

}

[Charles Petzold, Beautiful code, §8]

[Brian W. Kernighan & Rob Pike, The practice of programming, §9.6]

c© Performance Engineering Laboratory Selected topics in software development, 7 Mar 2008 (13)

Summary

• A practicing programmer’s arsenal holds not only general-purpose

languages like C++, but also programmable shells, scripting lan-

guages, and lots of application-specific languages.

• There are countless opportunities to create domain-specific lan-

guages for specialized applications. And designing and implement-

ing such a language can be a lot of fun.

• Torben and Julia regularly offer a graduate course on domain-

specific languages. This may be of interest for you!

• Possible topics for a master’s thesis: self-testing and test automa-

tion.

• Think big!

	Selected topics in software development
	Why to talk about notation?
	Format specifiers
	Specification languages
	Regular expressions
	Scripting languages
	Grammars
	Semantic comments
	Specialized languages for book writing
	Visual languages
	Macros
	On-the-fly code generation
	Summary

