
c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (1)

Selected topics in software development

Today:
Habits and tools

Speaker:
Jyrki Katajainen

• habits — of individual developers

• processes — of larger development teams

Course home page:
http://www.diku.dk/forskning/performance-engineering/

Software-development/

http://www.diku.dk/forskning/performance-engineering/
Software-development/


c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (2)

Development environment

The IDE used for the development was Emacs, selected for its power,

extensibility, and excellent portability, including portability to hand-

held and wearable devices that I often used for development on the

move. I also appreciated the availability of Emacs’s cperl mode, which

manages to offer pretty good auto-formating for Perl code, even

though “only perl can parse Perl”.

[Ashish Gulhati, Beautiful code, p. 168]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (3)

Iterative design

I typically write out little snippets of pseudocode that describe how I

want something to work (a “code story”), play a bit with input and

output formats, do a bit of coding, and—if I’m not satisfied with how

the system is fitting together—go back and rework the code story. For

anything larger than a toy application, I implement little bits of the

system and test them out in stand-alone programs before deciding

whether to move forward with that part of the design. I keep my

notes in a “stream of consciousness” text file, and commit code to

my CVS repository often. I try to make all the code visually appealing

and elegant. If it isn’t elegant, something is wrong with the design,

and I go back to the drawing board.

[Lincoln Stein, Beautiful code, p. 192]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (4)

Hands dirty early

I’m a firm believer in diving right into coding as soon as possible.

You can only learn so much from a book, an article on a web site,

or a set of API documents. By getting your hands dirty early on in

the process, you’ll uncover a lot of things you may not have thought

about by simply studying the problem.

[Andrew Patzer, Beautiful code, p. 458]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (5)

Work processes vs. tools

While debugging with ddd is usually more fun than using a command-

line tool, it does not necessarily make you a more efficient debugger.

For this, the debugging process is far more important than the tool.

[Andreas Zeller, Beautiful code, p. 464]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (6)

Debugging TEX

Watching the program execute itself in this “dynamic order” has al-

ways been insightful for me, after I’ve desk-checked it in the “static

order” of my original code.

the code for typesetting mathematics; this took another four days.

(Well, the “days” were nights actually; I worked during the night to

avoid delays due to time-sharing.)

How big was TEX at the time? I estimated...the total number of

statements...4600. Thus the debugging strategy I used allowed me to

verify about 35 statements per hour.

[Donald E. Knuth, The errors of TEX]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (7)

Figures from his notebook

I kept track of how long this process took, so that I’d be better able

to estimate the duration of future programming projects.

Day Time (hours) Day Time (hours)

10 Mar 1978 6 19 Mar 1978 7.5

11 Mar 1978 7 20 Mar 1978 10

12 Mar 1978 8 21 Mar 1978 8

13 Mar 1978 7 22 Mar 1978 6

14 Mar 1978 8 23 Mar 1978 7.5

15 Mar 1978 8 25 Mar 1978 7

16 Mar 1978 7 26 Mar 1978 6

17 Mar 1978 7 27 Mar 1978 8

18 Mar 1978 8 29 Mar 1978 6



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (8)

Assembler programming →
structured programming →
literate programming

The total debugging time, 132 hours, was extremely encouraging to

me, because it was much less than the 41 days it had taken me to

write the program. Previously I had needed to devote about 70%

of program development time to debugging, but now the figure had

dropped to about 30%. I considered this to be a tremendous victory

for structured programming, since my programming time had also

decreased from what it had been with old habits. Later, with the WEB

system, I noticed even further gains in productivity.

[Donald E. Knuth, The errors of TEX]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (9)

Step through your code

The best way to write bug-free code is to actively step through all

new or modified code to watch it execute, and to verify that every

instruction does exactly what you intended it to do.

And what’s the best way programmers can test their code? It’s by

stepping through it and taking a microscopic look at the intermediate

results. I don’t know many programmers who consistently write bug-

free code, but the few I do know habitually step through all of their

code.

remember that that the goal is to catch bugs at the earliest possible

moment. Stepping through code helps to achieve that goal.

[Steve Maguire, Writing solid code, §4]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (10)

Online notebook

• Open a window and keep an editor running while you work; cut

& paste

• An online notebook can be used both for design and programming

• Experiences from other places confirm that this is one of the most

valuable skills learnt

For an example of an online notebook, see

CPH STL repository:

CPHSTL/Program/Bitset Jeppe’s ChangeLog



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (11)

Literate programming

Consider programs to be works of literature.

The practitioner of literate programming can be regarded as essayist,
whose main concern is with exposition and excellence of style.

WEB = TEX + Pascal

CWEB = TEX + C

TEX

Pascal

WEA
VE

TANGLE

WEB

TEX DVI

PAS REL

[Donald E. Knuth, Literate programming]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (12)

Online exercise (5–10 min)

What is your first impression of Silvio Levy’s and Donald E. D. Knuth’s

word-count program?

Explain how the word counting is actually done.



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (13)

Defensive programming

In defensive programming, the main idea is that if a routine is passed

bad data, it won’t be hurt, even if the bad data is another routine’s

fault.

The best form of defensive coding is not inserting errors in the first

place. Using iterative design, writing pseudocode before code,

writing test cases before writing the code, having low-level design

inspections are all activities that help prevent inserting defects.

The whole point of defensive programming is guarding against errors

you don’t expect.

[Steve McConnell, Code complete, §8]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (14)

Assertions

code will work in every case except the one in which malloc fails.

The compiler can’t catch this bug or any like it. Nor can the compiler

catch bugs in your algorithms, verify your assumptions, or in general

check the validity of data being passed around.

Finding these kinds of bugs is hard. It takes a skilled programmer or

tester to consistently root them out. But finding these kinds of bugs

automatically is easy, if you know how.

[Steve Maguire, Writing solid code, §2]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (15)

Implementing ASSERT

#ifdef DEBUG
void __assert(char*, unsigned int); /* prototype */

#define ASSERT(condition) \
if (condition) { \
} \
else { \

__assert(__FILE__, __LINE__) \
}

#else
#define ASSERT(condition)

#endif

void __assert(char* strFile, unsigned int uLine) {
fflush(NULL);
fprintf(stderr, "\nAssertion failed: %s, line %u\n",

strFile, uLine);
fflush(stderr);
abort();

}

[Steve Maguire, Writing solid code, §2]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (16)

Guidelines for using assertions

• Use assertions to validate function arguments.

• Strip undefined behavior from your code, or use assertions to
catch illegal uses of undefined behavior.

• Don’t waste people’s time. Document unclear assertions.

• Either remove implicit assumptions, or assert that they are valid.

• Use assertions to detect impossible conditions.

• Don’t hide bugs when you program defensively.

• Use a second algorithm to validate your results.

• Don’t wait for bugs to happen; use startup checks.

[Steve Maguire, Writing solid code, §2]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (17)

Barricades

Barricades are similar to firewalls in a building. A building’s firewalls
prevent fire from spreading from one part to another.

Command-line
interface

Real-time
data feed

External
files

Grafical
user interface Validation

component

Validation
component

Validation
component

Other external
components

Internal
component

Internal
component

Internal
component

Internal
component

Internal
component

[Steve McConnell, Code complete, §8.5]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (18)

Offensive programming

• Make sure asserts abort the program.

• Completely fill any memory allocated so that you can detect mem-

ory allocation errors.

• Be sure the code in each case statement’s default or else clause

fails hard (aborts the program) or is otherwise impossible to over-

look.

• Set up the program to e-mail error log files to yourself so that

you can see the kinds of errors that are occurring in the released

software, if that’s appropriate for the kind of software you’re de-

veloping.

[Steve McConnell, Code complete, §8.6]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (19)

Removing debugging aids

• Maintain both ship and debug versions of your program.

• Use version-control tools to build different versions of a program

from the same source files.

• Use build tools like make to include all the debug code in develop-

ment mode, and exclude any debug code in production mode.

• Use built-in preprocessor to include or exclude debug code at the

flick of a compiler switch.

• Or write your own preprocessor for including and excluding debug

code.

[Steve McConnell, Code complete, §8.6]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (20)

Pair programming

When pair programming, one programmer types in code at the key-

board and the other programmer watches for mistakes and thinks

strategically about whether the code is being written correctly and

whether the right code is being written.

Compare this to pair writing; most of my recent joint work (with

Christopher Derek Curry and Claus Jensen) is done using pair writing.

That is, the technique can be used for non-construction activities as

well.



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (21)

Key to success with pair programming

• Support pair programming with coding standards

• Do not let pair programming turn into watching

• Do not force pair programming of the easy stuff

• Rotate pairs and work assignments regularly

• Encourage pairs to match each other’s pace

• Make sure both partners can see the monitor

• Do not force people who do not like each other to pair

• Avoid pairing all newbies

• Assign a team leader

[Steve McConnell, Code complete, §21.2]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (22)

Programming tools

Refactoring
tools

Analysing
tools

Compilers and
linkers

Build
tools

Code
libraries

Macro
processors

Debugging
tools

Execution
profilers

Testing
tools

Editing
tools

Version
control

Design
tools

Source-code
beautifiers

Documentation
tools

you are here!



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (23)

Debugging tools

Compiler warning messages: Set your compiler’s warning level to

the highest and fix the errors/warnings it reports.

Test scaffolding: Use any of the numerous test frameworks available

to provide scaffolding for your programs (CppUnit, UnitTest++).

Execution profilers: Recall the folk theorem that less than 4% of a

program usually accounts for more than 50% of its run time.

Interactive debuggers: Recall that a debugger isn’t a substitute for

good thinking. But, in some cases, thinking isn’t a substitute for

a good debugger either.

[Steve McConnell, Code complete, §§23, 30]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (24)

Testing tools

Automated test frameworks: E.g. CppUnit and UnitTest++

Automated test generators: Topic for a master’s thesis!

Coverage monitors: E.g. logic analysers and trace monitors

System perturbers: E.g. memory fillers, memory shakers, selective

memory failers, memory-access checkers

Diff tools: E.g. for comparing data files and captured output

Defect-injection tools: E.g. for testing exception safety

Defect-tracking software: E.g. error databases

[Steve McConnell, Code complete, §§22, 30]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (25)

Specific tools relevant for your assignment

IDE: Eclipse, emacs

Scripting: Python, make

Shell commands: diff, grep, find

Version control: cvs (includes diff, merge, and log facilities)

Concept correctness: Boost concept archetypes

Debugging: ddd

Memory-usage monitoring and profiling: valgrind

Benchmarking: benz

20% of the tools tend to account for 80% of the tool usage.



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (26)

Read manuals!

Manual phobia is rampant among programmers. Manuals tend to be

poorly written and poorly organized, but for all their problems, there’s

much to gain from overcoming an excessive fear of paper products.

Manuals contain the keys to the castle, and it’s worth spending time

reading them.

[Steve McConnell, Code complete, 1st edition, p. 760]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (27)

Summary

• Programmers sometimes overlook some of the most powerful
tools for years before discovering them.

• Good tools can make your life a lot easier.

• Tools are readily available for editing, analysing code quality, refac-
toring, version control, debugging, testing, and code tuning.

• You can make many of the special-purpose tools you need.

• Good tools can reduce the more tedious aspects of software de-
velopment, but they can’t eliminate the need for programming,
although they will continue to reshape what we mean by program-
ming.

[Steve McConnell, Code complete, §30]



c© Performance Engineering Laboratory Selected topics in software development, 19 Feb 2008 (28)

Discussion: Are your tools in order?

• Do you have an effective IDE?

• Does your IDE support integration with source-code control; build,
test, and debugging tools; and other useful functions?

• Do you have tools that automate common refactorings?

• Are you using version control to manage source code, content,
requirements, designs, project plans, and other project artifacts?

• Are you making use of an interactive debugger?

• Do you use make or other dependency-control software to build
programs efficiently and reliably?

• Does your test environment include an automated test framework,
automated test generators, coverage monitors, system perturbers,
diff tools, and defect-tracking software?

[Steve McConnell, Code complete, §30]


	Selected topics in software development
	Development environment
	Iterative design
	Hands dirty early
	Work processes vs. tools
	Debugging TeX
	Figures from his notebook
	Assembler programming  structured programming  literate programming
	Step through your code
	Online notebook
	Literate programming
	Online exercise (5--10 min)
	Defensive programming
	Assertions
	Implementing ASSERT
	Guidelines for using assertions
	Barricades
	Offensive programming
	Removing debugging aids
	Pair programming
	Key to success with pair programming
	Programming tools
	Debugging tools
	Testing tools
	Specific tools relevant for your assignment
	Read manuals!
	Summary
	Discussion: Are your tools in order?

