
Design Patterns

Claus Jensen

What is a Design Pattern?

A design pattern
Abstracts a recurring design structure
Distils design experience
Promotes reuse of design and code
Gives an opportunity to see how the expert
designs
Provide a vocabulary for talking about design

Background

Software design patterns are based
(somewhat) on work by the architect
Christopher Alexander
Gamma, Helm, Johnson, and Vlissides
(the “Gang of Four”) – Design Patterns,
Elements of Reusable Object-Oriented
Software

Structure of a pattern

Name
Intent
Motivation
Applicability
Structure
Consequences
Implementation
Known Uses
Related Patterns

Some design patterns

Bridge
Factory method
Iterator
Proxy
Strategy
Command

Factory method

Intent
Define an interface for creating an object, but
let subclasses decide which class to
instantiate.

Factory method

Motivation
Consider a framework for applications that can present multiple
documents to the user. Two key abstractions in this framework
are the classes Application and Document. Both classes are
abstract, and clients have to subclass them to realize their
application-specific implementations.
Because the particular Document subclass to instantiate is
application-specific, the Application class can't predict the
subclass of Document to instantiate—the Application class only
knows when a new document should be created, not what kind
of Document to create.

Factory method

Factory method

Factory method

Applicability
When a class can't anticipate the class of
objects it must create.
When a class wants its subclasses to specify
the objects it creates.
When classes delegate responsibility to one
of several helper subclasses, and you want to
localize the knowledge of which helper
subclass is the delegate.

Factory method

Java code (Hello):
public class Person {

public String name; // name string
private String gender; // gender : M or F
public String getName() {

return name; }
public String getGender() {

return gender; }
}

Factory method

public class Male extends Person {
public Male(String fullName) {

System.out.println("Hello Mr. "+fullName);}
}
public class Female extends Person {

public Female(String fullNname) {
System.out.println("Hello Ms. "+fullNname);}

}

Factory method
public class SalFactory {

public static void main(String args[]) {
SalFactory factory = new SalFactory();
factory.getPerson(args[0], args[1]);

}
public Person getPerson(String name, String gender) {

if (gender.equals("M"))
return new Male(name);

else if(gender.equals("F"))
return new Female(name);

else
return null;}

}
Java Gamma M -> “Hello Mr. Gamma”

Bridge

Intent
Decouple an abstraction from its implementation so
that the two can vary independently.

Motivation
To avoid that inheritance binds an implementation to
the abstraction permanently and thereby decrease
the flexibility of the design.

Bridge

Bridge

Bridge

Applicability
Want to avoid a permanent binding between
an abstraction and its implementation.
Both the abstractions and their
implementations should be extensible by
subclassing.
Changes in the implementation of an
abstraction should have no impact on clients

Bridge
class XWindowImp : public WindowImp {

public:
XWindowImp();

virtual void DeviceRect(Coord, Coord, Coord, Coord);
// remainder of public interface...

private:
// lots of X window system-specific state, including:
Display* _dpy;
Drawable _winid; // window id
GC _gc; // window graphic context };

Bridge

DeviceRect is implemented for X as follows:
void XWindowImp::DeviceRect (

Coord x0, Coord y0, Coord x1, Coord y1
) {

int x = round(min(x0, x1));
int y = round(min(y0, y1));
int w = round(abs(x0 - x1));
int h = round(abs(y0 - y1));
XDrawRectangle(_dpy, _winid, _gc, x, y, w, h); }

Exercise

Find concrete examples where the
presented patterns can be used.

Proxy

Intent
Provide a surrogate or placeholder for another
object to control access to it.

Proxy

Motivation
One reason for controlling access to an object is to
defer the full cost of its creation and initialization until
we actually need to use it. Consider a document
editor that can embed graphical objects in a
document. Some graphical objects can be expensive
to create while opening a document.
The solution is to use another object, an image
proxy, that acts as a stand-in for the real image. The
proxy acts just like the image and takes care of
instantiating it when it's required.

Proxy

Proxy

Proxy

Proxy

Here's a possible object diagram of a proxy
structure at run-time:

Proxy
class ImageProxy : public Graphic {
public:

ImageProxy(const char* imageFile);
virtual ~ImageProxy();
virtual void Draw(const Point& at);
virtual void HandleMouse(Event& event);
virtual const Point& GetExtent();
virtual void Load(istream& from);
virtual void Save(ostream& to);

protected:
Image* GetImage();

private:
Image* _image;
Point _extent;
char* _fileName; };

Proxy
ImageProxy::ImageProxy (const char* fileName) {

_fileName = strdup(fileName);
_extent = Point::Zero; // don't know extent yet
_image = 0; }

Image* ImageProxy::GetImage() {
if (_image == 0) {
_image = new Image(_fileName);
}
return _image; }

Strategy

Intent
Define a family of algorithms, encapsulate
each one, and make them interchangeable.
Strategy lets the algorithm vary independently
from clients that use it.

Strategy

Motivation
Support multiple algorithms.
Different algorithms will be appropriate at
different times. We don't want to support
multiple algorithms if we don't use them all.
It's difficult to add new algorithms and vary
existing ones when the algorithm is an
integral part of the client.

Strategy

Strategy

Strategy
Suppose a Composition class is responsible the linebreaks of text
displayed in a text viewer. Linebreaking strategies aren't
implemented by the class Composition, but instead by subclasses of
the abstract Compositor class.
Compositor subclasses implement different strategies:

SimpleCompositor implements a simple strategy that determines
linebreaks one at a time.
TeXCompositor implements the TeX algorithm for finding linebreaks.
This strategy tries to optimize linebreaks globally, that is, one paragraph
at a time.
ArrayCompositor implements a strategy that selects breaks so that
each row has a fixed number of items. It's useful for breaking a
collection of icons into rows, for example.

Strategy

Applicability
When many related classes differ only in their
behaviour.
When you need different variants of an
algorithm. For example, you might define
algorithms reflecting different space/time
trade-offs.
When an algorithm uses data that clients
shouldn't know about.

Strategy
class Composition {
public:

Composition(Compositor*);
void Repair();

private:
Compositor* _compositor;
Component* _components; // the list of components
int _componentCount; // the number of components
int _lineWidth; // the Composition's line width
int* _lineBreaks; // the position of linebreaks in components
int _lineCount; // the number of lines };

Strategy

class Compositor {
public:

virtual int Compose(
Coord natural[], Coord stretch[], Coord shrink[],
int componentCount, int lineWidth, int breaks[]

) = 0;
protected:

Compositor(); };

Strategy

class TeXCompositor : public Compositor {
public:

TeXCompositor();
virtual int Compose(

Coord natural[], Coord stretch[], Coord shrink[],
int componentCount, int lineWidth, int breaks[]
);
// ...

};

Strategy

To instantiate Composition, you pass it the
compositor you want to use:

Composition* quick = new Composition(new
SimpleCompositor);

Composition* slick = new Composition(new
TeXCompositor);

Composition* iconic = new Composition(new
ArrayCompositor(100));

Iterator

Intent
Provide a way to access the elements of an
aggregate object sequentially without
exposing its underlying representation.

Iterator

Motivation
It should possible to access an aggregate
object without exposing its internal structure
(for example a lists elements).
It should also be possible to traverse the list in
different ways.

Iterator

Iterator

Iterator

Iterator

Applicability
Want to access an aggregate object's
contents without exposing its internal
representation.
Want to support multiple traversals of
aggregate objects.
Want to provide a uniform interface for
traversing different aggregate structures.

Iterator
template <class Item>
class ListIterator : public Iterator<Item> {
public:

ListIterator(const List<Item>* aList);
virtual void First();
virtual void Next();
virtual bool IsDone() const;
virtual Item CurrentItem() const;

private:
const List<Item>* _list;
long _current; };

Iterator

template <class Item>
ListIterator<Item>::ListIterator (

const List<Item>* aList
) : _list(aList), _current(0) { }

template <class Item>
void ListIterator<Item>::Next () {

current++; }

Iterator

void PrintEmployees
(Iterator<Employee*>& i) {

for (i.First(); !i.IsDone(); i.Next()) {
i.CurrentItem()->Print();

}
}

	Design Patterns
	What is a Design Pattern?
	Background
	Structure of a pattern
	Some design patterns
	Factory method
	Factory method
	Factory method
	Factory method
	Factory method
	Factory method
	Factory method
	Factory method
	Bridge
	Bridge
	Bridge
	Bridge
	Bridge
	Bridge
	Exercise
	Proxy
	Proxy
	Proxy
	Proxy
	Proxy
	Proxy
	Proxy
	Proxy
	Strategy
	Strategy
	Strategy
	Strategy
	Strategy
	Strategy
	Strategy
	Strategy
	Strategy
	Strategy
	Iterator
	Iterator
	Iterator
	Iterator
	Iterator
	Iterator
	Iterator
	Iterator
	Iterator

