
c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (1)

Selected topics in software development

Today:
Design patterns used in the CPH STL

Speaker:
Jyrki Katajainen

Course home page:
http://www.diku.dk/forskning/performance-engineering/

Software-development/

http://www.diku.dk/forskning/performance-engineering/
Software-development/


c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (2)

Adapter pattern

Convert the interface of a class into another that clients expect.

Adapter lets classes work together that would not be otherwise pos-

sible because of incompatible interfaces.

• Old structures can be used in a new context.



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (3)

Stack as an adapter

template <
typename E,
typename R = cphstl::deque<E>

>
class stack {
public:

typedef E value_type;
typedef std::size_t size_type;
typedef R container_type;

protected:
R sequence;

public:
explicit stack(R const& = R());
bool empty() const;
size_type size() const;
E& top();
E const& top() const;
void push(E const&);
void pop();

};

template <
typename E,
typename A = std::allocator<E>

>
class deque {
public:

...
typedef E& reference;
typedef E const& const_reference;
...
E& front();
E const& front() const;
E& back();
E const& back() const;
...
void push_front(E const&);
void push_back(E const&);
void pop_front();
void pop_back();
...

};



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (4)

Bridge pattern

Decouple an abstraction from its implementation so that the two can

vary independently.

• Possible to provide several implementations with the same inter-

face.

• Clients can select the best implementations for their purposes.

• Implementations can be smaller than the bridge (that is, pieces

identical to all implementations are implemented at the bridge).



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (5)

Bridge pattern implemented using inheritance

operationA();
operationB();

operationA();
operationB();

operationA();
operationB();
operationC();

virtual operationA() = 0;
virtual operationB() = 0;

R

R* realization;

B

implemention 2implemention 1

Source: [Vandevoorde and Josuttis 2003, §14.4]



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (6)

Bridge pattern implemented using templates

operationA();
operationB();

operationA();
operationB();

operationA();
operationB();
operationC();

R
B

implemention 2implemention 1

R realization;

Source: [Vandevoorde and Josuttis 2003, §14.4]



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (7)

Stack as a container

template <
typename E,
typename A = std::allocator<E>,
typename R = cphstl::list_stack<E, A>

>
class stack {
public:

...
size_type size() const;
bool empty() const;

protected:
R container;

};
template <typename E, typename A, typename R>
typename stack<E, A, R>::size_type
stack<E, A, R>::size() const {

return container.size();
}
template <typename E, typename A, typename R>
bool
stack<E, A, R>::empty() const {

return (*this).size() == 0;
}

template <
typename E,
typename A = std::allocator<E>,
typename R = std::list<E, A>

>
class list_stack {
public:

...
typedef std::size_t size_type;
...
size_type size() const;
...

};



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (8)

Iterator pattern

Provide a way to access the elements of a container sequentially

without exposing its underlying representation.

• In the STL, iterators come in several different flavours: locators

(or trivial iterators), input iterators, output iterators, forward it-

erators, bidirectional iterators, and random-access iterators.

• Iterators are generalizations of pointers.



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (9)

Iterators as the clue

iterators

generic algorithms

containers



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (10)

Generic merge routine
#include <list>
#include <deque>
#include <algorithm>
#include <cassert>

template <typename sequence>
sequence make(char const s[]) {

return sequence(&s[0], &s[std::strlen(s)]);
}

int main () {
char* vowels = "aeiouy";
int len = std::strlen(vowels);

std::list<char> consonants = make<std::list<char> >("bcdfghjklmnpqrstvwxz");

std::deque<char> alphabet(26, ’ ’);

std::merge(&vowels[0], &vowels[len], consonants.begin(), consonants.end(),
alphabet.begin());

assert(alphabet == make<std::deque<char> >("abcdefghijklmnopqrstuvwxyz"));
return 0;

}



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (11)

Strategy pattern

Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from

clients that use it.

• Again there are two variations depending on whether the pattern

is used at compile time or at run time.

• Clients can select the best algorithm for their purposes.



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (12)

Sorting

template <
typename I, // random access iterator
typename C, // comparator
typename R = cphstl::mergesort(I, I, C)

>
void
sort(I, I, C, R = R());

template <
typename I,
typename C = std::less<E>

>
class mergesort {
public:

operator()(I, I, C = C());
};
template <

typename I,
typename C = std::less<E>

>
class quicksort {
public:

operator()(I, I, C = C());
};
template <

typename I,
typename C = std::less<E>

>
class heapsort {
public:

operator()(I, I, C = C());
};



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (13)

Proxy pattern

Provide a surrogate or placeholder for another object to control access

to it.



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (14)

References to bits

class reference {
private:

bitset<N, word_t>& bs;
size_t pos;

friend class bitset;

reference();
reference(bitset<N, word_t>&, size_t);

public:
~reference()
reference& operator=(bool x); // for b[i] = x;
reference& operator=(reference const&); // for b[i] = b[j];
bool operator~() const; // flips the bit
operator bool() const; // for x = b[i];
reference& flip(); // for b[i].flip();

};



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (15)

Factory-method pattern

Define an interface for creating an object, but let subclasses decide

which class to instantiate. factory method lets a class defer instanti-

ation to subclasses.

• Again there are two incarnations depending on whether we rely

on inheritance (subclasses) or templates (partial specialization).



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (16)

Factory of universal hash functions
template <

typename D,
typename R

>
class universal_hash_function {
public:

typedef D domain_type;
typedef R range_type;

};

template <
typename integer,
typename R = std::size_t

>
class universal_hash_function<integer, R> {
public:

typedef integer domain_type;
typedef R range_type;

universal_hash_function();
R evaluate(integer);
void reconstruct();

private:
...

};



c© Performance Engineering Laboratory Selected topics in software development, 15 Feb 2008 (17)

Conclusion

• Continue reading until you understand the short descriptions of

the design patterns given on the cover of the pattern-catalogue

book.


	Selected topics in software development
	Adapter pattern
	Stack as an adapter
	Bridge pattern
	Bridge pattern implemented using inheritance
	Bridge pattern implemented using templates
	Stack as a container
	Iterator pattern
	Iterators as the clue
	Generic merge routine
	Strategy pattern
	Sorting
	Proxy pattern
	References to bits
	Factory-method pattern
	Factory of universal hash functions
	Conclusion

