
c© fb (1)

Agile/Automated Testing

Dr. Laurie Williams 2004

Associate Professor

North Carolina State University

Filip Bruman



c© fb (2)

Testing practices

The article presents two testing practices that are important test
practices in Extreme Programming (XP) . . .

Test Driven Development (TDD) is a software development tech-
nique consisting of short iterations where new test cases covering the
desired improvement or new functionality are written first, then the
production code necessary to pass the tests is implemented, and fi-
nally the software is refactored to accommodate changes. (Wikipedia,
2008)

Acceptance testing is formal testing conducted to determine whet-
her or not a system satisfies its acceptance criteria (the criteria the
system must satisfy to be accepted by a customer) and to enable the
customer to determine whether or not to accept the system. (IEEE,
1990)



c© fb (3)

Open source testing frameworks

. . .and two open source testing frameworks.

JUnit. A white box unit testing framework for Java written by Erich

Gamma (yes, he is one of the four Design Patterns guys) and Kent

Beck (the creator of Extreme Programming).

The Framework for Integrated Test (FIT). The FIT framework

is developed for automation of black box acceptance tests and is

developed by Ward Cunningham (father of the first wiki).



c© fb (4)

Main advantages of automating tests

• Running the tests over and over again gives you confidence that

the new work just added to the system didn’t break or destabilize

anything that used to work and that the new code does what it

is supposed to do.

• Running the tests over and over (particularly acceptance tests)

can also help you understand what portion of the desired fun-

ctionality has been implemented.

• Together, the set of automated tests can form a regression test

suite. The purpose of these regression tests is to show that the

software’s behavior is unchanged unless it is specifically changed

due to the latest software or data change (Beizer, 1990).



c© fb (5)

Test Automation Manifesto (Meszaros,Smith
et al., 2003)

• Concise – Test should be as simple as possible and no simpler.

• Self Checking – Test should report its results such that no human

interpretation is necessary.

• Repeatable – Test can be run repeatedly without human inter-

vention.

• Robust – Test produces same result now and forever. Tests are

not affected by changes in the external environment.

• Sufficient – Tests verify all the requirements of the software being

tested.



c© fb (6)

Test Automation Manifesto (cont.)

• Necessary – Everything in each test contributes to the specifica-
tion of desired behavior.

• Clear – Every-statement is easy to understand.

• Efficient – Tests run in a reasonable amount of time.

• Specific – Each test failure points to a specific piece of bro-
ken functionality (e.g. each test case tests one possible point of
failure).

• Independent – Each test can be run by itself or in a suite with
an arbitrary set of other tests in any order.

• Maintainable – Tests should be easy to modify and extend.

• Traceable – Tests should be traceable to the requirements; requi-
rements should be traceable to the tests.



c© fb (7)

Test-Driven Development (TDD)



c© fb (8)

In TDD production code is developed through rapid iterations of the

following steps.

1. Spending some time doing high- and/or low-level design (optio-

nal);

2. Writing a small number of automated unit test cases;

3. Running these unit test cases to ensure they fail (since there is

no code to run yet);

4. Implementing code that should allow the unit test cases to pass;

5. Re-running the unit test cases to ensure they now pass with the

new code; and

6. Restructuring the production and the test code, as necessary, to

make it run better and/or to have better design.



c© fb (9)

step 3?

1. There’s a problem with the test, and it isn’t testing what you

think it is testing;

2. There’s a problem with the code, and it’s doing something you

didn’t expect it to do (it’s a good idea to check this area of the

code to find out what other unexpected things it’s doing); and

3. Maybe the code legitimately already performs the functionality

correctly – and no more new code is needed (this is a good thing

to know).



c© fb (10)

Advantages to running automated unit tests
often:

• The test results tell us when we inadvertently break some existing

functionality (Martin, 2003).

• You can add functions to a program or change the structure of the

program without fear that you are breaking something important

in the process (Martin, 2003). A good set of tests will probably

tell you if you break something.

• Automated unit tests prevent backtracking and maintain develop-

ment momentum (Kaner, Bach et al., 2002).



c© fb (11)

A Simple Monopoly Board Game



c© fb (12)

JUnit

http://junit.org/index.htm

http://junit.org/index.htm


c© fb (13)

JUnit

The test code is independent from the program being tested.

There is no need to instrument code i.e. add lines of code to the
program that are only intended to help in the testing.

The extra (instrumented) lines of code could cause errors, affect per-
formance, and/or may need to be commented out when testing is
complete.



c© fb (14)

An example of some JUnit code

public class GameboardTest extends TestCase {

:

public void testAddCell() {
GameBoard gameboard = new GameBoard();
assertEquals(1, gameboard.getCellNumber());
Cell cell = new Cell();
gameboard.addCell(cell);
assertEquals(2, gameboard.getCellNumber());

}

public void testFirstCell() {
GameBoard gameboard = new GameBoard();
Cell firstCell = gameboard.getCell(0);
assertEquals(‘‘Go’’, firstCell.getName);

}
}



c© fb (15)

The Framework for Integrated Test (FIT)

http://fit.c2.com

http://fit.c2.com


c© fb (16)

The Framework for Integrated Test (FIT)

Acceptance test cases are created in (HTML) tables of tests and their

associated expected results.

FIT uses “runners” to parse the HTML tables, feed data to a “fixtu-

re”, run test and generate test results.

The fixtures exercise the objects that are part of the test.



c© fb (17)

There are three types of fixtures that can be extended: RowFixture,
ColumnFixture and ActionFixture.

Example of ColumnFixture



c© fb (18)

Example of ActionFixture



c© fb (19)

An example of some ActionFixture code

public class GoCellAward extends ActionFixture {
private GameMaster gameMaster;
public void initializeGameBoard() {

gameMaster = GameMaster.instance();
gameMaster.reset();
gameMaster.setGUI(new MockGUI());
gameMaster.setGameBoard(new SimpleGameBoard());

}

public void numberOfPlayers(int number) {
gameMaster.setNumberOfPlayers(number);

}

public void playerDiceRoll(int diceRoll) {
gameMaster.movePlayer(0, diceRoll);

}

public int playerMoney() {
return gameMaster.getCurrentPlayer().getMoney();

}
}



c© fb (20)

Summary – ideas for Automated Test

• Running automatic tests often will help you see if your new code
broke any existing functionality. Collect all the tests from the
entire time for the entire code base. Run these tests often – at
least once per day.

• In automating tests, consider the advice in the Test Automation
Manifesto.

• When a defect is found in your code, add automated tests to
reveal the defect. Then, fix the defect and re-run the automated
tests to make sure they all pass now.

• Work with your customer to create acceptance tests – then auto-
mate them. You can use the number (or percent) of acceptance
test cases that pass as the means of determining the progress of
your project.



c© fb (21)

Questions?



c© fb (22)

References

Beizer, B. (1990). Software Testing Techniques. London, Internation-
al Thompson Computer Press.

IEEE (1990). IEEE Standard 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology.

Kaner, C., J. Bach, et al. (2002). Lessons Learned in Software Testing.
New York, John Wiley and Sons, Inc.

Martin, R. C. (2003). Agile Software Development: Principles, Pat-
terns, and Practices. Upper Saddle River, NJ, Prentice Hall.

Meszaros, G., S. M. Smith, et al. (2003). The Test Automation Mani-
festo. Extreme Programming and Agile Methods – XP/Agile Universe
2003, Lncs 2753. F. Maurer and D. Wells. Berlin, Springer.

Wikipedia, (2008-03-05) www.wikipedia.org

www.wikipedia.org

	Title page
	Testing practices
	Open source testing frameworks
	Main advantages of automating tests
	Test Automation Manifesto (Meszaros,Smith et al., 2003)
	Test Automation Manifesto (cont.)
	step 3?
	Advantages to running automated unit tests often:
	JUnit
	An example of some JUnit code
	The Framework for Integrated Test (FIT)
	An example of some ActionFixture code
	Summary -- ideas for Automated Test
	Questions?
	References

