Unit testing: cppunit

Jacob de Fine Skibsted

Main purpose

@ Test individual components of software.

@ Automation.

Methodology

@ Usually applied to object oriented
programing.

® Uses common baselines known as test
fixtures for individual components.

@ Typically uses a framework although unit
testing may be done without.

Advantages

@ Designing software with unit testing in mind
may VYield better software - the programmer
is forced fo isolate components.

@ Easy refactoring of code.

@ The unit test is a form of documentation in
itself.

Drawbacks

@ Multiple code bases must be maintained.
@ Time consuming.

@ Programmers tend fo believe everything
works when the unit testing is ok.

Frameworks

@ Boost test library.

@ cppunit - no template support or exception
support.

@ NUnit - unit ftesting for .NET

cppunit
& C++ framework.

@ Derived from jUnit.

@ Centered around unit testing as a concept -
C++ language specific constructs are not
supported. (Use TUT instead).

@ Object oriented.

@ User defined tests are created by inheriting
cppunit classes.

@ Using assertion macros.

cppunit - concepts

@ Test fixtures:

@ Basis for running test cases.

® Establishes a fixed environment in which tests are run.

® Test callers:

@ Wraps the test cases in a fixture by registering each of the
functions which performs the individual fest cases.

® Test suites:

@ Added to a test fixture to group test cases together.

@ Test runners:

@ Woraps the fest suite in each tfest fixture.

#include <iostream>
#include <stack>
#include "TestCase.h"

class StackFixtureTest : public CppUnit::TestFixture {
private:
std::stack<int> S;
public:
void setUp() {}
void tearDown() {}
void TestStack()
{
CPPUNIT_ASSERT(S.empty() == true);
S.push(100);
CPPUNIT_ASSERT(((unsigned int) S.size()) == 1);
CPPUNIT_ASSERT(S.top() == 100);

}

static CppUnit::Test *suite()
{
CppUnit::TestSuite *ts = new CppUnit::TestSuite("StackTest");
ts->addTest(new CppUnit::TestCaller<StackFixture Test>("testStack",
&StackFixtureTest:: TestStack));
return ts;

}
J

Shortcomings

@ Lack of exception handling.
@ Lack of template handling.

@ Does not take advantage of C++ specific
constructs such as functors.

