
Unit testing: cppunit
Jacob de Fine Skibsted

Main purpose

Test individual components of software.

Automation.

Methodology

Usually applied to object oriented
programing.

Uses common baselines known as test
fixtures for individual components.

Typically uses a framework although unit
testing may be done without.

Advantages

Designing software with unit testing in mind
may yield better software - the programmer
is forced to isolate components.

Easy refactoring of code.

The unit test is a form of documentation in
itself.

Drawbacks

Multiple code bases must be maintained.

Time consuming.

Programmers tend to believe everything
works when the unit testing is ok.

Frameworks

Boost test library.

cppunit - no template support or exception
support.

NUnit - unit testing for .NET

cppunit
C++ framework.

Derived from jUnit.

Centered around unit testing as a concept -
C++ language specific constructs are not
supported. (Use TUT instead).

Object oriented.

User defined tests are created by inheriting
cppunit classes.

Using assertion macros.

cppunit - concepts
Test fixtures:

Basis for running test cases.

Establishes a fixed environment in which tests are run.

Test callers:
Wraps the test cases in a fixture by registering each of the
functions which performs the individual test cases.

Test suites:
Added to a test fixture to group test cases together.

Test runners:

Wraps the test suite in each test fixture.

#include <iostream>
#include <stack>
#include "TestCase.h"

class StackFixtureTest : public CppUnit::TestFixture {
private:
 std::stack<int> S;
public:
 void setUp() {}
 void tearDown() {}
 void TestStack()
 {
 CPPUNIT_ASSERT(S.empty() == true);
 S.push(100);
 CPPUNIT_ASSERT(((unsigned int) S.size()) == 1);
 CPPUNIT_ASSERT(S.top() == 100);
 }

 static CppUnit::Test *suite()
 {
 CppUnit::TestSuite *ts = new CppUnit::TestSuite("StackTest");
 ts->addTest(new CppUnit::TestCaller<StackFixtureTest>("testStack",
 &StackFixtureTest::TestStack));
 return ts;
 }
};

CppUnit::TextUi::TestRunner runner;
runner.addTest(StackFixtureTest::suite());
runner.addTest(NextFixture::suite());
runner.run();

Shortcomings

Lack of exception handling.

Lack of template handling.

Does not take advantage of C++ specific
constructs such as functors.

