
c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (1)

Stronger guarantees for standard-library com-
ponents

Jyrki Katajainen (University of Copenhagen)

Main external sources:

British Standards Institute, The C++ Standard: Incorporating Tech-
nical Corrigendum 1, BS ISO/IEC 14882:2003 (2nd Ed.), John
Wiley and Sons, Ltd. (2003), Clause 23

Bjarne Stroustrup, The C++ Programming Language, Special Ed.,
Addison-Wesley (2000), Appendix E

Course home page:
http://www.diku.dk/forskning/

performance-engineering/

Generic-programming/

http://www.diku.dk/forskning/
performance-engineering/
Generic-programming/


c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (2)

STL

“STL is not a set of specific software components but a set of re-

quirements which components must satisfy.”

[Musser & Nishanov 2001]

Element containers:

vector

deque

list

hash [multi]set

hash [multi]map

[multi]set

[multi]map

priority queue

Algorithms:

copy

find

nth element

search

sort

stable partition

unique

. . .



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (3)

Comparators

Function objects that are used in element comparisons. Your will

hear more about function objects (or functors) later on in this course.

template <typename Arg1, typename Arg2, typename Result>

struct binary_function {

typedef Arg1 first_argument_type;

typedef Arg2 second_argument_type;

typedef Result result_type;

};

template <typename V>

class less

: public binary_function<V, V, bool> {

public:

bool operator()(V const& x, V const& y) const {

return x < y;

}

};



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (4)

Locators and iterators

A locator is a mechanism for

maintaining the association be-

tween an element and its loca-

tion in a data structure.

p

Valid expressions: X p; X p =

q; X& r = p; *p = x; x = *p;

p == q; p != q;

An iterator is a generalization of

a locator that captures the con-

cepts location and iteration in a

container of elements

--p ++pp

Bidirectional iterators:

Locator expressions plus ++p

and --p



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (5)

template <typename V, typename D, bool is_const = false>

class bidirectional_iterator {

public:

typedef std::bidirectional_iterator_tag iterator_category;

typedef V value_type;

typedef std::ptrdiff_t difference_type;

typedef typename if_then_else<is_const, V const*, V*>::type pointer;

typedef typename if_then_else<is_const, V const&, V&>::type reference;

typedef typename cphstl::if_then_else<is_const, const D, D>::type node_pointer;

bidirectional_iterator();

bidirectional_iterator(node_pointer);

bidirectional_iterator(bidirectional_iterator<V, D> const&);

operator D () const; // I do not like this!

reference operator*() const;

pointer operator→() const;

bidirectional_iterator& operator++();

bidirectional_iterator operator++(int);

bidirectional_iterator& operator--();

bidirectional_iterator operator--(int);



friend class bidirectional_iterator<V, D, !is_const>;

template <bool both>

bool operator≡(bidirectional_iterator<V, D, both> const&) const;

template <bool both>

bool operator 6≡(bidirectional_iterator<V, D, both> const&) const;

};



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (6)

Property maps

A mapping from range type to domain type; compare the property no-

tation used in [Cormen et al. 2001]: left[x] for node x. To learn more,

read the documentation available at http:://www.boost.org.

template <typename N>

class left_map {

public:

typedef N* domain_type;

typedef N* range_type;

range_type& operator[](domain_type p) const {

return (*p).left;

}

};

http:://www.boost.org


c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (7)

Allocators

Allocators provide an interface to allocate, create, destroy, and deal-

locate objects.

Expression Effect
a.allocate(n) Allocates memory for n elements
a.construct(p) Initializes the element to which p refers
a.destroy(p) Destroys the element to which p refers
a.deallocate(p, n) Deallocates memory for n elements to

which p refers

For example, the book [Josuttis 1999] is a good source of information

about allocators.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (8)

template <typename T>

class allocator {

public:

typedef size_t size_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef T const* const_pointer;

typedef T& reference;

typedef T const& const_reference;

typedef T value_type;

template <typename U>

struct rebind {

typedef allocator<U> other;

};

pointer address(reference) const;

const_pointer address(const_reference) const;

allocator() throw();

allocator(allocator const&) throw();



template <class U>

allocator(allocator<U> const&) throw();

~allocator() throw();

size_type max_size() const throw();

pointer allocate(size_type, allocator<void>::const_pointer = 0);

void construct(pointer, T const&);

void destroy(pointer);

void deallocate(pointer, size_type);

};

template <typename T1, typename T2>

bool operator≡(allocator<T1> const&, allocator<T2> const&) throw();

template <typename T1, typename T2>

bool operator 6≡(allocator<T1> const&, allocator<T2> const&) throw();



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (9)

Containers and reversible containers

Read Table 65 (pp. 466–467) and Table 66 (p. 467) from the C++

standard to get the precise definitions of these concepts.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (10)

Stepanov’s contributions

“the task of the library designer is to find all interesting algorithms,
find the minimal requirements that allow these algorithms to work,
and organize them around these requirements”

[Stepanov 2001]

• Algorithm algebra

• Generic programming

• Programming with concepts

• Semi-formal specification of the components, including complexity
requirements

• Generality so that every program works on a variety of types,
including C++ built-in types

• Efficiency close to hand-coded, type-specific programs



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (11)

Products of the CPH STL project

Programs implementing the best solutions known for classical sorting
and searching problems—focus on both positive and negative
results.

Theorems proving improved bounds on the complexity of classical
sorting and searching problems—focus on constant factors and
computer mathematics.

Tools supporting the development of generic libraries—focus on de-
veloping time.

http://www.cphstl.dk

http://www.cphstl.dk


c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (12)

Stronger guarantees

“Time” optimality: Provide the fastest components known today;

in the worst-case sense, not amortized or randomized.

Iterator validity: Iterators are kept valid at all times.

Strong exception safety: In the case an exception is thrown, the

state of a data structure is not changed.

Space efficiency: The amount of space used is linear (or less) on

the number of elements currently stored.

• Reduce the memory load of a programmer.

• And keep the documentation simple.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (13)

Standard specialization approach

In the development of component libraries the standard approach is to

provide a fan of alternative implementations for different combinations

of type parameters.

Since the types of all data arguments are known at compile time, the

best suited component can be selected from the fan of alternatives at

compile time. That is, the template programming techniques learnt

in this course are handy.

Example: Specialize std::copy such that std::memcpy will be called

when the given sequence consists of elements of a POD type.

Problem: There are infinitely many types so components cannot be

specialized for all possible types.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (14)

“Time” optimality

A semi-algorithm is said to be primitive oblivious with respect to f if

it works well for all potential implementations of f even if the imple-

mentations are not known at development time. Of course, optimally

primitive-oblivious algorithms are of particular interest. [CPH STL

Report 2006-5]

Reads/writes: ⇒ Cache oblivi-

ousness

Element comparisons:

Classical comparison com-

plexity, but the cost of

individual comparisons can

vary.

Branches: Branch mispredic-

tion can be expensive.

Element moves: The cost of

individual moves can vary.

Function/template arguments:

. . .



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (15)

Primitive-oblivious algorithm for 0/1 sorting

0/1 sorting: Given a sequence S of elements drawn from a universe E
and a characteristic function f : E → {0,1}, the task is to rearrange

the elements in S so that every element x, for which f(x) = 0, is

placed before any element y, for which f(y) = 1. Moreover, this

reordering should be done stably without altering the relative

order of elements having the same f-value.

Trivial algorithm: Scan the input twice, move 0s and 1s to a tem-

porary area, and copy the elements back to S.

Analysis: Each element read and written O(1) times; only sequen-

tial access; each element moved O(1) times; for each element f

evaluated O(1) times.

Experimentation: Left as a home exercise.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (16)

Efficiency of iterator operations

C++ standard: All the categories of iterators require only those func-

tions that are realizable for a given category in constant time

(amortized).

Example: Successors in associative containers.

SGI STL: The execution of a

sequence of k ++ operations

takes Ω(k+lgn) time, where

n is the current size of the as-

sociative container in ques-

tion.

Solution: Keep the nodes simul-

taneously in two structures,

in a search tree and in a

doubly-linked list. For each

node the latter provides an

O(1)-time access to the suc-

cessor and the predecessor.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (17)

Comments on time optimality

• Primitive obliviousness is a new concept and not much is known

about it yet.

• To obtain fast iterator operations, the amount of space used is

often increased by a linear additive term.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (18)

Iterator validity

A data structure provides iterator validity if the iterators to the
compartments storing the elements are kept valid at all times.

SGI STL:

data structure iterator strength validity

vector, deque random access no
list bidirectional yes∗

hash [multi]set const forward no
hash [multi]map forward, not mutable no
[multi]set const bidirectional yes∗

[multi]map bidirectional, not mutable yes∗

priority queue no iterators no

∗ Erasures invalidate only the iterators to the erased elements.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (19)

Iterator-valid dynamic array

Problem 1: doubling

A

copy

Problem 2: insert/delete

move

Solution: a) handles b) a re-

sizable array that does not

move handles [CPH STL Re-

port 2001-7]



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (20)

Comments on iterator validity

• To obtain iterator validity, the amount of space used is often
increased by a linear additive term.

• Works well, often no difference in efficiency [CPH STL Report
2006-8].

• You may loose the locality of elements ⇒ worse cache behaviour.

• Practical relevance of related iterator concepts is unclear (at least
for me): persistence, snapshots (cf. C# standard library).



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (21)

Exception safety

An operation on an object is said to be exception safe if that op-

eration leaves the object in a valid state when the operation is ter-

minated by throwing an exception. In addition, the operation should

ensure that every resource that it acquired is (eventually) released.

A valid state means a state that allows the object to be accessed

and destroyed without causing undefined behaviour or an exception

to be thrown from a destructor.

[Stroustrup 2000, App. E]



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (22)

Guarantee classification

No guarantee: If an exception is thrown, any container being ma-

nipulated is possibly corrupted.

Strong guarantee: If an exception is thrown, any container being

manipulated remains in the state in which it was before the oper-

ation started. Think of roll-back semantics for database trans-

actions!

Basic guarantee: The basic invariants of the containers being ma-

nipulated are maintained, and no resources are leaked.

Nothrow guarantee: In addition to the basic guarantee, the opera-

tion is guaranteed not to throw an exception.

[Stroustrup 2000, App. E]



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (23)

What can throw?

In general, all user-supplied functions and template arguments.

template <typename E, typename C, typename A>

set<E, C, A>::set(const set&);

In this particular case, the following operations can throw an excep-
tion:

• function allocate() of the allocator (of type A) indicating that no
memory is available,

• copy constructor of the allocator,

• copy constructor of the element (of type E) used by function
construct() of the allocator,

• invocation of the comparator (of type C), and

• copy constructor of the comparator.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (24)

What cannot throw?

• Built-in types—including pointers—do not throw exceptions.

• Types without user-defined operations do not throw exceptions.

• Classes with operations that do not throw exceptions.

• Functions from the C library do not throw exceptions unless they

take a function argument that does.

• No copy constructor or assignment operator of an iterator defined

for a standard container does not throw an exception.

Basically, all classes with destructors that do not throw and which can

be easily verified to leave their operands in valid states are friendly

for library writers.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (25)

Library user’s responsibility

The standard library gives no guarantees if

• user-defined operations leave container elements in invalid states,

• user-defined operations leak resources,

• user-supplied destructors throw exceptions, or

• user-supplied iterator operations throw exceptions.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (26)

Achieving exception safety

These are Stroustrup’s rules:

• When updating an object, do not destroy its old representation
before a new representation is completely constructed and can
replace the old without risk of exceptions.

• Before throwing an exception, release every resource acquired that
is not owned by some object.

• Before throwing an exception, make sure that every operand is in
a valid state.

• Rely on the language rule that when an exception is thrown from
a constructor, sub-objects (such as bases) that have already been
completely constructed will be properly destroyed (cf. the “re-
source acquisition is initialization” technique).



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (27)

Exception-safe copy assignment for sets

1. Copy the allocator to a temporary storage. If this fails, stop.

2. Copy the comparator to a temporary storage. If this fails, release
the created copy of the allocator and stop. Q: Is this operation
reversible?

3. Create a dummy header for the new tree. If this fails, release the
created copies of the allocator and the comparator, and stop.

4. Traverse the tree to be copied, and create a counterpart for each
node visited. If this fails, release all nodes created so far, release
the created copies of the allocator and the comparator, and stop.

5. Finally, update the pointers in the header pointing to the minimum
and the maximum, the handles to the allocator, the comparator,
and the header, and the counter indicating the number of elements
stored.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (28)

Comments on exception safety

• Basically, there is no efficiency penalty (on paper), just more (a

lot more) careful programming is required.

• D has better support for exception-safe programming than C++.

• Testing, whether your code is exception safe or not, is not fun!

• Exception-safe components cannot be easily combined. There are

some fundamental problems to be solved that are not algorithmic.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (29)

Space efficiency

Try to minimize the memory overhead, i.e. the amount of storage

used by a data structure beyond what is actually required to store the

elements manipulated (measured in words and/or in elements)

Example: Circular list of n apples;

memory overhead 2n + O(1) words

n: # of elements currently stored



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (30)

Space bounds

C++ standard: No explicit space bounds are specified.

SGI STL: Normally, the amount of space used is linear, but for the

vector implementation the allocated memory is freed only at the

time of destruction.

CPH STL: Data structures should require linear space, linear on the

number of elements currently stored. For each container class,

there should exist an implementation alternative that is space

optimal or almost space optimal, still meeting the running-time

requirements specified in the standard.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (31)

Space-efficient sets

template <typename E>

struct node {

node* child[2];

node* parent;

bool colour;

E element;

};

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Memory overhead: 4n + O(1)

words or more, due to word

alignment

O(n/b) words

b . .4b elements per list; elements sorted

O(n/b) headers

n nodes

Iterators implemented as point-

ers to list nodes.

Memory overhead after the diet:

n + O(n/b) words [CPH STL

Report 2007-1]



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (32)

Comments on space efficiency

• Pointer packing may be a portability hazard.

• According to our experience, only simple compaction techniques

work well in practice.



c© Performance Engineering Laboratory Generic programming and library development, 22 May 2007 (33)

Concluding remarks

• Our focus is not only on time and space, but also on safety,

reliability, and usability.

• CPH STL offers off-the-shelf components that provide raw speed,

iterator validity, exception safety, and space efficiency.

• Based on the work with my students—and the complicated pro-

gramming errors experienced by them—I firmly believe that safe

and reliable components are warmly welcomed by many program-

mers.

You are welcome to donate your code to the CPH STL.


	Stronger guarantees for standard-library components
	STL
	Comparators
	Locators and iterators
	Property maps
	Allocators
	Containers and reversible containers
	Stepanov's contributions
	Products of the CPH STL project
	Stronger guarantees
	Standard specialization approach
	``Time'' optimality
	Primitive-oblivious algorithm for 0/1 sorting
	Efficiency of iterator operations
	Comments on time optimality
	Iterator validity
	Iterator-valid dynamic array
	Comments on iterator validity
	Exception safety
	Guarantee classification
	What can throw?
	What cannot throw?
	Library user's responsibility
	Achieving exception safety
	Exception-safe copy assignment for sets
	Comments on exception safety
	Space efficiency
	Space bounds
	Space-efficient sets
	Comments on space efficiency
	Concluding remarks

