
Assignment 2 - Configuration tools

Thomas A. Grønneløv1 Axel E. Jensen2

1 di060169@diku.dk
2 di060157@diku.dk

Abstract. When working with larger projects it becomes cumbersome to keep
track of which files needs to be compiled and which files are dependent on other
files. Different solutions exits and in this paper two utilities, make and CMake, are
described and examples of usage are shown.

1. Introduction

Working with large software project often is a iterative process where pro-
grams are written (or rewritten), the source code is compiled and the pro-
grams are run for debugging or performance purpose. When some small
part of the programs are changed maybe only a small part of the programs
needs to be recompiled. It might also be necessary to compile with different
options for optimization and debugging purpose and even for different plat-
forms. This paper gives an overview of two tools, make and CMake, which
handles some of the above tasks and discusses some of their advantages and
disadvantages. The aim of the paper is mainly for people unfamiliar with the
tool and should give basic understanding of the functionality and usefulness.

2. make

make is a high level tool which lets you build a target file from a number
prerequisite (or dependent) files. The target file could be a executable file
and the prerequisites could be C++ source files or the target file could be a
PDF document and the prerequisites could then be a TEX document.

When building a target make handles file dependencies and tracks which
files have been modified since last build and therefore tracks which files
needs to be recompiled. For each target make invokes a series of commands,
typically invoking a compiler with given options and files which needs com-
piling.

Targets, prerequisite and which commands applies are store in files called
Makefiles. Store the Makefile in the same directory as the source files. Below
is shown an example of a simple Makefile.
...
hello: hello.o

4 May 2007

2 Thomas A. Grønneløv and Axel E. Jensen

cc -o hello hello.o

hello.o: hello.c
cc -c hello.c

...

In the first two lines here is the target, hello.o is the prerequisite and
gcc -o hello hello.o is the command invoked. The order of the two
targets does not matter to make. There should be a tab in front of the
command and no where else.

2.1 Variables

Using variables simplifies the management and updating of Makefiles. An
example of using variables follows:
...
OBJECTS = main.o matrix.o vector.o

transform: $(OBJECTS)
cc -o transform $(OBJECTS)

...

In this way it is simple to add another object file to the project. It needs
only to be added to the variable OBJECT. Another useful use of variables is
the ability to override them when running make.
In a Makefile:
...
CFLAGS = -g

matrix.o: matrix.c
cc -c $(CFLAGS) matrix.c

...

Overriding CFLAGS can be done in the following way:
make CFLAGS=’-O’

2.2 Pattern rules

Another useful feature in make is the use of pattern rules. This allows you
to specify targets or prerequisites which matches certain patterns and you
do not need to specify every single file.
...
%.o : %.c
$cc -c $(CFLAGS) $< -o $@
...

This rule compiles every .c file into a corresponding .o file. This also shows
two automatic variables $< and $@ which represents name of the target and
of the prerequisite.

Assignment 2 - Configuration tools 3

For more in depth documentation on GNU Make please refer to the Gnu
Make Manual [4].

2.3 Usage of make

Even though make is able to solve many of the problems related to han-
dling large project it has some drawbacks. One item of complaint is the
syntax of make,which is categorized as beeing ”really stupid” [5] or maybe
somewhat more objective observed as limited, ”...obscure and, consequently,
more difficult than you might think” [2].

Even though make is capable of building and updating libraries and even
building targets in parallel, it lacks (to our knowledge) of a scheduling mech-
anism required when building time is of considerable magnitude.

Although make exist for different platforms like Linux, BSD and Windows,
make-based builds are not necessary portable. As mentioned in [2] this is due
to ”The problem is that the Make tool ... has to rely on shell commands and
on features of the filesystem. These two are notorious sources of platform
incompatibilities.”

Software projects might also be developed in parallel by different people
working in different ways. Some developer are using Integrated Develop-
ments Environment (IDE) and the IDE might administrate source file in
different ways. In the following a tool, CMake, that might overcome this
problem is described.

3. CMake

CMake is a system, that manages the build process across different platforms.
It is able to produce Makefiles on Unix platforms and /projects on MS Visual
C++. CMake supports compilation of source code (using native build tools
like make and MVSC), creation of libraries, instantiation of templates among
many other things.

A. Neundorf mentions in [3] CMake as an alternative to autotools and
similar build systems. And this alternative is cross platform different from
most other.

CMake uses simple configuration files called CMakeLists.txt files, which
are placed in each (sub)directories containing source files. The CMake-
Lists.txt contains a number of commands. The following example shows a
simple CMakeLists.txt and how a Makefile is generated on a Linux system.
CMakeLists.txt contains the following two commands:
PROJECT (MyProject)
ADD_EXECUTABLE(MyProgram hello.c)

and CMake is invoked, a Makefile is generated and subsequently used by
make:
SHELL>cmake .
SHELL>make

In the following sections, some common use commands are explained.

4 Thomas A. Grønneløv and Axel E. Jensen

3.1 Listfile Commands

PROJECT (MyProject)
ADD_EXECUTABLE(MyProgram main.c vektor.c matrix.c)

PROJECT() defines the projects name in MVSC and ADD EXECUTABLE()
adds an executable to the list of target. Here, the program requires a few
files, which also could have been place in a SET:
PROJECT(MYPRO)
SET(MYPRO_SRC main.c vector.c matrix.c)
ADD_EXECUTABLE(MyPro $(MYPRO_SRC)
Analogous to variables in make. Sets can be manipulated e.g. depending on
the platform:
...
IF(WIN32)
SET(MYPRO_SRC $(MYPRO_SRC) WinSupport.c)
ELSE(WIN32)
SET(MYPRO_SRC $(MYPRO_SRC) UnixSupport.c)
ENDIF(WIN32)

A few other usefull commands :
SUBDIRS()
ADD_LIBRARY()
CMake works recursively and the subdirectories are listed in SUBDIRS(). In
the subdirs an additional CMakeLists.txt is placed. ADD LIBRARY() adds a
library to the project and specifies the source files.

Please refer to documentation in [1] for more in depth documentation (or
try cmake --help-html [file]).

3.2 Usage of CMake

As CMake uses native build tools e.g. make one would still have some of the
same problems related to the native build tool. Some problems are overcome
though. Maintaining Makefiles and handling the somewhat difficult syntax
of Makefiles are handled by CMake. Cross platform support is also handled by
CMake. But compiling in parallel would benefit from scheduling mechanism
not supported by CMake.

References

[1] I. Kitware, http://www.cmake.org/HTML/Documentation.html, WWW (2006).
[2] A. Neagu, http://freshmeat.net/articles/view/1702/, WWW (2005).
[3] A. Neundorf, http://lwn.net/Articles/188693/, WWW (2006).
[4] P. Smith, http://www.gnu.org/software/make/manual/make.html, WWW (2006).
[5] M. Welsh, M. K. Dalheimer, and L. Kaufman, Running Linux, O’Reilly (1999).

