
The SCons build system –

“...make as simple as possible, but not simpler”

Marek Kochańczyk1

1Interfaculty Studies of Natural Science,

Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland

kochanczyk@bioinformatics.org

Abstract. Any advanced software package that is distributed in the form of source
code requires an adequately powerful build system. As there are many tools of this
kind available, the choice of the most suitable one should be done owing to its
management capabilities for developers and the ease of use and portability for
potential users. The user’s perspective is usually very narrow, hence this short
report is an effort to provide comparative analysis of a new rising star – the SCons
build system – in relation to the old and ubiquitous GNU Autotools from the
developer’s point of view. This is by no means a guide or another fancy evidence

that the author managed to follow mentally the introductory manual.

1. Landscape

Out of plethora of more or less exotic build systems, usually basing on
derivations of the common make tool, there are some that attempt to enable
specification of dependencies in source code and build rules within a fresh
mindset. Some more eminent Open Source solutions in this category are:

– Apache Ant – aimed to be general but widely considered and therefore
applied as Java-specific,

– Boost.Build and Bjam – designed with generality in mind, found their
niche mainly in projects written in C++,

– Cons and SCons – introducing new concepts in a very terse way, far
from being complete yet of generality proved in manifold applications.
Because of its growing popularity and some author’s experience with
this tool, SCons became the hero of this report.

2. What is SCons

The fact that during the years many clones of make had appeared (just
to enumerate some: tmake, cmake, nmake, imake, qmake – all of them
not backward-compatibile) leans towards impression that the paradigm was
robust yet the canonical implementation was missing some essential features.

The SCons is a software build tool that is intended to be a replacement
for make and related tools. Written in Python, that impacted strongly

Written 4 May 2007.



2 Marek Kochańczyk

overall attitude to circumscription of building rules, it draws from more than
20 years of make experience and recapitulates many architectural solutions
introduced in its direct Perlish successful predecessor, Cons.

3. SCons vs GNU Autotools

3.1 Language of configuration files. ⇒ Portability.

In order to use Autotools successfully one should know:

– the m4 language – a living fossil amongst domain-specific languages,

– syntax of Makefiles – lacking if-the-else construction and any scoping,

– eventually, the Bourne shell scripting – not available on every system.

To get rid of obvious operating system dependences manifestating in ex-
plicit commands and references to the file system, SCons introduces con-
figuration files as Python scripts, that are written in a declarative manner
with the access to a complete general-purpose programming language just
at hand.

3.2 Organization of configuration files. ⇒ Scalability.

For the purpose of resolving source code dependencies, in the big picture
Autotools seem to introduce inevitably even more dependences, just for
auto-management. Configuration files in SCons are organized hierarchically.

Figure 1. Comparison of build system workflows for a simple project with a nested
source directory. Visibly, dependencies among Autotools cannot be even depicted in a
planar graph. Prepared by the author.

Cyclic recursive dependencies that could be encountered in Makefiles (es-
pecially in generated ones) are not allowed in SCons.



SCons – “...make as simple as possible, but not simpler” 3

3.3 Dependency extraction. ⇒ Performance.

Autotools extract dependencies relying on built-in dependency analysis of
GCC, so only a very limited fraction of languages is supported. Unlikely,
SCons uses more naive and slower yet quite universal and easily-configurable
regular expression scanning. Additionally, in order to rebuild targets of
which source code was modified since last build, MD5 signatures are har-
nessed by default instead of timestamps (that increases safety in case of use
of a shared file system).

SCons works with global view of all dependencies, so only a single target
ordering and build pass is performed. Moreover, the cache can store inter-
mediate compilation products of virtually any type, not only for C/C++
builds.

3.4 Built-in support and extensibility.

While Autotools are C/C++-oriented, SCons supports equivalently most
popular (imperative) programming languages and interface/stub generators.
Moreover, it is able to fetch files through version control systems, is aware
of automated documentation generation (including LATEX) and basic unit
testing.

Other languages or file types can be supported via user-defined Builders
(class inheritance).

3.5 Parallel builds.

SCons is capable of parallel builds and can perform those more smoothly
that make because, when possible, does not take into account the way di-
rectories are nested.

4. Author’s use cases

4.1 Generated source files.

When some source or header files are to be generated during the build pro-
cess (eg. files containing parametrization that is preferred to be hardcoded),
SCons is able to discover appropriate dependencies on-the-fly.

4.2 Discarding symbols from object files.

As the configuration file is an imperative python code, it is not straightfor-
ward as in Makefiles to arbitrarily call a system command on a file. Unfor-
tunately, quite advanced knowledge of the SCons is required to extend an
existing Builder class with a simple strip call.



4 Marek Kochańczyk

4.3 Debug levels specified in the command line.

If the source code is meddled with macrodefs dependent on the debug level,
in SCons it is straightforward to specify the level on the command line
(eg. issuing scons debug=3), then parse it with a simple Python code and
finally append appropriate compiler flag. In the same way, compilers with
their whole building environments can be selected.

5. Who uses SCons

Unlikely the old Cons, its Pythonic incarnation seems to be quite vivid:
recently, the SCons Foundation was awarded two student projects for Google
Summer of Code 2007. Among projects using SCons are VMware, Blender
and Quake III.

Author of this paper has been using SCons for 3 years now, often starting
new projects with both build systems in parallel and ending up with the
SCons because of its flexibility and expressiveness.

6. Conclusions

The SCons constuction tool is a serious modern competitor of the clas-
sic GNU Autotools. Despite the lack of the version 1.0, it is feature-rich.
Awareness of variety of common tasks, ease of use and a gentle learning
curve would probably cause an upsurge of its popularity. Probably, is worth
of consideration as an aid in building and maintenance of your next project.

Disclaimer

Although the border in this report is blurred, it should be underlined that
“a make replacement” usually does not stand for “another complete build
system”.

References

[1] S. Knight, The SCons project website,

http://www.scons.org.
[2] A. McCall, Stop the autoconf insanity! Why we need a new build system,

http://freshmeat.net/articles/view/889.
[3] P. Miller, Recursive Make Considered Harmful,

http://aegis.sourceforge.net/auug97.pdf.
[4] A. Neagu, Make alternatives,

http://freshmeat.net/articles/view/1715/.
[5] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor, “The Goat Book”,

http://sourceware.org/autobook/.


