Generisk programmering og biblioteksudvikling - Week
assignment 2 (Python scripting)

Lasse Jon Fuglsang Pedersen Mads Ruben Burgdorff Kristensen
Anders Sabinsky Tggern

Department of Computing, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

Abstract. The Python scripting language is well known for its extendability and embed-
ded application. Numerous larger open-source software projects use Python in one form
or another to enhance productivity or to automate tedious tasks. It is also used sometimes
as the main component, drawing on an extensive library of usermade extensions.

1. Introduction

Python is a cross platform scripting language invented by Guido van Rossum in
1991 with the philosophy that "‘programmer effort should be over computer ef-
fort"” and the code should rather be readable than fast.

2. The Python language

The language is strongly typed and there is no need to specify the type of variables.
The type of a variable will be assigned by the first use of that variable. The lan-
guage supports classes. Classes’ member functions are all static functions whose
first parameter is always assumed to be the class instance, unlike C where the class
instance is passed to member functions by the hidden this pointer.

Much like C the Python language employs use of scopes for structuring code
in loops and blocks, but unlike C where scopes are declared explicitly with curly-
brackets, scopes in the Python language are delimited by levels of indention and
are as such implicit in the code. A nice effect of scoping by indentation is that the
Python language enforces programmers to indent in similar fashion.

While C only support arrays of static length Python support lists which is an
equivalent to C’s arrays except that the lists in Python are dynamic through ma-
nipulating methods like extend and append. Thus, the programmer does not
have to know beforehand how many elements must fit into a list; he can simply
declare it, and then append more data as more data arrives. This is probably rather
inefficient in terms of memory usage and running time, but on the other hand it is
nice to have for prototyping.

Python also support a special type of lists called a dictionary, whose struc-
ture is similar to a hash table except there are no predefined equivalent to a hash

Written 1 May 2007.



Python C
if x ==42: if(x ==42) {
print "x = 42" printf "x =42";
else: } else {
printf "x !=42" printf "x !=42";
}

Figure 1. Example of the difference between how scopes are written in C and Python. Notice that
Python have no characters delimiting the scopes of the i f and else. Also notice how both scopes
begin with a colon (:).

function. It is possible to think of the dictionary structure as an array or a list where
indexing is done by key instead of by index.

Python has a comprehensive collection of standard libraries that support every-
thing from file-access to HTTP servers. It is also possible to integrate Python
scripts with libraries written in other languages, like C, through its COM integration
which makes Python very agile. Along with this agility it is also possible to em-
bed Python in C/C++ applications to make it possible for the user to customize the
applications by running custom scripts.

If the standard library lack some needed functionality Python has a very large
community in which it might be possible to find an implementation for that func-
tionality.

As a special feature Python supports arbitrarily large integers which sets no lim-
itations for computations. Although this only applies to integers and not fractional
numbers, it potentially enhances the usability of Python for scientific applications:
One might implement very large or precise fractional numbers within an applica-
tion in Python, given the existing support for arbitrarily large integers.

The Python language is a scripting language and programs written in Python
can be run using a Python interpreter. Several interpreters, written in different
languages like C (CPython), Java (Jython), C# (IronPython) and Python itself
(PyPy), exist. The interpreters feature advanced memory management which makes
the dynamic types, like lists, easy to manipulate through native methods. The mem-
ory manager also support garbage collection. This is a requirement of the language
and so you cannot have a correct interpreter of the language without supporting
these features.

For further information about Python, see [1], [2], [3].

3. Common uses

Python can be used for many things, given its extendability, and the fact that it
can be embedded as an interpreter in an existing C/C++ application. Python is
mostly used to do routine work like unit testing, maintenance and batch jobs, not
to mention prototyping and doing quick-and-dirty implementations.

Examples of uses of Python scripts is in the benchmarking tool Benz where
the Python scripts integrates with GNUPlot as an external library. Python is also



Week assignment 2 (Python scripting) 3

extensively used in the MiG (Minimum Intrusion Grid) project at DIKU where it,
among other things, is running a web server.

An example of how to use a Python program to create a nightly build of an
application could be a script that performed the following actions:

1. Check that all dependencies are exists and are valid

2. Create the nightly build

3. Check that the nightly build is valid

4. Publish the nightly build

4. Conclusion

Because of the prioritisation that with Python "‘programmer effort should be over
computer effort"’ the language is not the best choice for real-time critical applica-
tions. On the other hand it is potentially much faster to prototype in Python than
in C/C++ especially because of Python’s language features, dynamic list allocation
and memory management. Large integers is also a huge bonus.

References

[1] G. van Rossum, Extending and Embedding the Python Interpreter,
http://docs.python.org/ext/ext.html (2006).

[2] G. van Rossum, Python Library Reference,
http://docs.python.org/lib/lib.html (2006).

[3] G. van Rossum, Python Reference Manual,
http://docs.python.org/ref/ref.html (2006).


http://docs.python.org/ext/ext.html
http://docs.python.org/lib/lib.html
http://docs.python.org/ref/ref.html

