
Generic Programming assignment 2

Jens Rasmussen Anders H. Pedersen

Department of Computing, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen East, Denmark

Abstract. In this paper we explore the syntax and uses of the macro processing
tool m4. Our aim is to provide the reader with enough information to be able to
use the tool’s most principal features right away. References to more complete
coverings will also be given.

Introduction

m4 is a macro processing language, and as such, when fed input, will output
a modified copy based on commands given in the input for expansion and
manipulation. Its principal features are:

– String manipulation
– File insertion
– Use of system calls
– Integer arithmetic
– Conditionals

m4 is found on most UNIX/Linux systems, and has various implementations;
we will focus on GNU’s version, which has also been ported to Windows.

Invoking the tool can be done as follows:

> m4 inputfile

where output is directed to standard output, the inputfile is usually named
filename.m4.

Macro names and quoting

Macros are defined either on the command line with the -D option:

> m4 -Dmacro_name=body inputfile

or with a define command:

define(macro_name,body)

Written 3 May 2007.

2 Jens Rasmussen and Anders H. Pedersen

which will expand all occurences of macro name to body. Macro names must
consist of alphanumeric characters and the underscore, first letter must be a
nondigit. Macros are parsed by making a token out of all character sequences
that are surrounded by characters not usable in a name (i.e. longest valid
sequences). To avoid unwanted expansion, quoting is used:

define(M,B)

define(B,‘M’)

This evaluates B to M instead of B, as would be the case of quotes were omit-
tet. m4 removes one level of quotes under evaluation thus ‘‘B’’ evaluates
to ‘B’. Output of macro evaluation is continually rescanned until no more
macros are identified. (There are some pitfalls here so the reader should see
[1]).

File inclusion

To include a file the following commands are used:

include(file) includes file, throws error if non-existant.

sinclude(file) as include, only errors are not reported.

Arguments to macros

Arguments are passed to macros thus:

define(M,‘$0 called with: $1 and $2’)

M(arg1,arg2)

Which outputs M called with: arg1 and arg2, calling the macro with
fewer arguments than supported evaluates the missing $n to the empty string
and calling it with more just ignores the unmatched arguments.

Conditional expressions

We describe two of the five built-in conditionals (rest deal with iteration and
recursion, see [1]):

ifdef(macro,do if defined[,else]) where else is optional.

ifelse(s1,s2,if equal[,else]) does if equal if strings s1 and
s2 are equal, the if equal part can have the form
if equal,s’1,s’2,if equal’ if the latter is used the op-
tional else must be omitted.

Example:

Generic Programming assignment 2 3

define(s1,‘a’)

define(s2,‘b’)

ifelse(s1,s2,‘if_equal’,s2,s2,‘else’)

In this example the first string comparison returns not equal, so the remain-
ing three arguments are processed in the same way and yield else.

Integer arithmetics

Integer arithmetic is built in through the command,

eval(expression,[radix],[width])

where radix and width are optional. The argument expression is a mathe-
matical expression using C-like syntax, that may consist of any of the basic
mathematical operators, logical operators, bitwise operations and shifts. A
complete list of operators can be found in [1]. A number in expression can
be represented as a decimal, octal, hexadecimal, binary and radix. Exactly
how these are represented can be seen in [1].

The optional radix argument in the eval expression, specifices the radix to
be used in the expansion, where 10 is default, and it must be between 0 and
36. The width argument describes the minimum output width.

Example:

eval(‘2 ** (0r2:0111 + 0b1000 - 015)’, 2, 4)

In this example, 2 is raised to the exponent in the paranthesis. This exponent
is calculated using three different number representations, i.e. radix
(base 2), binary and octal. The output of the example is 0100, radix (also
base 2), with its minimum width of 4 characters.

String manipulation

String manipulation is handled by the built-in commands (all indexing starts
from zero):

len(s) length of s.

index(s,substr) index of substr in s, returns−1 if unmatched.

regexp(s,regexp[,replacement]) searches for and optionally
replaces with replacement first match of regular expression
regexp in s, returns index or replacement of match, returns
−1 if unmatched.

substr(s,start index[,length]) extracts substring of s from
start index and length−1 characters forward, or to end of
s if length is omitted.

4 Jens Rasmussen and Anders H. Pedersen

translit(s,chars[,replacement]) deletes occurrences of char-
acters chars or replaces them with other characters, where
each character index in chars is matched to corresponding
index in replacement.

patsubst(s,regexp[,replacement]) deletes or replaces with
replacement all matches of regular expression regexp in s,
returns the modified string.

format(s,...) basically a form of C’s printf, see [1].

The regular expressions use GNU Emacs’s syntax, see [2].

Example:

regexp(‘This is it!’,‘\<[i]’)

patsubst(‘This is it!’,‘\<[i]’)

regexp returns 5, while patsubst returns This s t!

Example:

translit(‘tmf’,‘a-z’,‘Z-A’)

Which returns GNU.

System commands

System shell-commands can utilized with the following commands:

syscmd(cmd) calls the shell command cmd, it does not process
(and thus expand) its output.

esyscmd(cmd) as syscmd, but output is processed.

sysval returns the exit status of the last syscmd or esyscmd run,
returns 0 of none have been run.

maketemp(s) creates a temporary file named s, is should be post-
fixed by six X’s which the command replaces by six randomly
generated characters to create a unique id. (If the X’s are
omitted, the six random will be concatenated to s.).

Example:

define(‘echo’,‘‘echo’ ‘echo’’)

sys: syscmd(echo) | esys: esyscmd(echo)

will result in: sys: echo | esys: echo echo as the output of the latter
is processed but not that of the first.

Generic Programming assignment 2 5

References

[1] The GNU Project, Gnu m4 manual, Worldwide Web Document (2007). Available at
http://www.gnu.org/software/m4/manual/.

[2] The GNU Project, Gnu emacs manual, Worldwide Web Document (2007). Available
at http://www.gnu.org/software/emacs/manual/.

