Software Tools: STLFilt

Adam Hasselbalch Hansen Christian Riis Joakim Hovard
adhh@diku.dk criis@diku.dk chuy@diku.dk

Abstract. This essay describes the usefulness of the tool “STLFilt” for processing
and sanitizing error messages from particularly the GCC C++ compiler.

1. Purpose

STLFilt simplifies and/or reformats long-winded C+ + error and warning
messages, with a focus on STL-related diagnostics. The result renders many
of even the most cryptic diagnostics comprehensible[3].

This is particularly useful with errors originating from template use, as
compilers notoriously generate confusing and unhelpful error messages when
errors are detected in template code.

Comparing the output of a sample test program, designed to produce
template errors, shows a significant improvement in legibility, as illustrated
in the example in Appendix A.

1.1 Compatibility

According to the website[3], STLFilt supports a wide variety of compilers,
including the Microsoft Visual C++ compiler in versions 6.0, 7.0 (.NET)
and 8.0, although the latter is somewhat broken when using Miscrosoft’s
IDE, due to a particularity in the way input is piped to the compiler.

Also, the GNU Compiler Collection, particularly g++, is supported in ver-
sions 2.9x and 3.x. GCC 4.0 support is on the way, but due to a radical
change in the way GCC provides error message output in version 4, the
author needs to rewrite the regular expressions used[4].

Although a wide variety of compilers are supported, we have focused on
g++ in versions below 4.0.

A couple of runs, forcing STLFilt to use g++ 4.0 with supplied testing
programs, however, suggests that even though unupported, the filter yields
results comparable to results with an officially supported version.

1st May 2007

g DN WN -

2. Evaluation

As it is evident from our example, STLFilt does not really do much but filter
error messages, which the name indeed implies. While this does provide
somewhat prettier (i.e. shorter) output, it is in itself pretty useless as the
software does not rewrite error messages to something more readable.

If one does not understand some error message from g++ one will not
be able to understand STLFilt’s output either, but STLFilt can help one find
what exactly is important by weeding out what is not.

Furthermore, if one, after having seen the filtered output from STLFilt,
wants to see the unfiltered or partially filtered output, one would need to
rerun STLFilt which would recompile the source code; potentially a time
consuming process. Though fixing that would require only a semi-trivial
rewrite, it is still somewhat inelegant.

As a last thing it is pretty horrible style-wise to write production ready Perl
code without using the strict pragma or at the very least strict ’subs’.
In our opinion, this makes for an inherently untrustworthy piece of software.

Whether this piece of software is useful or not is entirely up to each in-
dividual person. Our opinion is that it is not helpful enough to warrant
general use. It is, however, useful for template debugging purposes or other
situations when the compiler generates long and incomprehensible error
messages.

3. The code

We have made a slight change to the code which is worth a mention. For
reasons unknown STLFilt outputs to stdout which is wrong since it outputs
errors. We have changed the output file handle to be user defined, but
defaulting to stderr.

As we are not allowed for some reason to have the ports needed for
anonymous svn to DIKU’s DMZ (where our svn-server is located) opened
the source code (of which there’s precious little in this assignment) is avail-
able upon request.

All we have done for this assignment is add the following two lines some-
where near the beginning of gSTLFilt.pl:

my $out thingy = "STDERR";
open (STDOUT, ">&$out thingy")

or die "Can’t_redirect_to_$out thingy,_$!'\n"
if (defined $out thingy);

4. Other Tools

Another tool, “TextFilt”, exists, which, like STLFilt, uses regular expressions
to simplify the errors output by the compiler, but uses “Regex+ +” found in
the Boost-libraries[1]. As such, it is programmed in C+ + rather than Perl,
providing at least a theoretical performance increase.

TextFilt started its life as a specialized tool for error message processing,
but has since been developed to be a general purpose text processing tool.
Its homepage has not been updated since September 2002[2], and the tool
lacks support for other compilers than GCC.

References

[1] Boost, Peer-reviewed portable C+ + source libraries. http://www.boost.org.

[2] D. Frey, TextFilt. http://textfilt.sourcefourge.net.

[3] L. Zolman, STL Filt. http://www.bdsoft.com/tools/stlfilt.html.

[4] L.Zolman, STL Filt Forums, Internet Forum. http://bdsoft.proboards34.com/index.cgi?«
board=talk&action=display&thread=1144527430.

Appendix A. Sample output

Appendix A.1 Using g++

testvec.cpp: In function ‘int main(int, char*x)’:
testvec.cpp:13: error: invalid conversion from ‘const char*’ to ‘unsigned int’
testvec.cpp:13: error: initializing argument 1 of ‘std::vector<_Tp,
_Alloc>::vector(unsigned int) [with _Tp = int, _Alloc = std::allocator<int>]
b
testvec.cpp:14: error: no matching function for call to ‘std::vector<Widget,
std::allocator<Widget> >::vector(int, int, int, int, int, int)’
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-200560130/include/g++-v3/bits/stl_vector
.h:265: error: candidates
are: std::vector<_Tp, _Alloc>::vector(const std::vector<_Tp, _Alloc>&) [with
_Tp = Widget, _Alloc = std::allocator<Widget>]
/usr/lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-200560130/include/g++-v3/bits/stl_vector
.h:252: error:
std::vector<_Tp, _Alloc>::vector(unsigned int) [with _Tp =
Widget, _Alloc = std::allocator<Widget>]
/usr/lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-200560130/include/g++-v3/bits/stl_vector
.h:240: error:
std::vector<_Tp, _Alloc>::vector(unsigned int, const _Tp&,
typename std::_Vector_base<_Tp, _Alloc>::allocator_type&) [with _Tp =
Widget, _Alloc = std::allocator<Widget>]
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/stl_vector
.h:229: error:
std::vector<_Tp, _Alloc>::vector(typename
std::_Vector_base<_Tp, _Alloc>::allocator_type&) [with _Tp = Widget, _Alloc
= std::allocator<Widget>]
testvec.cpp:15: error: ‘foobar’ undeclared (first use this function)
testvec.cpp:15: error: (Each undeclared identifier is reported only once for
each function it appears in.)

testvec.cpp:16: error: no matching function for call to ¢

std::basic_string<char, std::char_traits<char>, std::allocator<char> >::
basic_string(int, int, int, int, int)’
/usr/lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:233: error: candidates
are: std::basic_string<_CharT, _Traits, _Alloc>::basic_string(typename
_Alloc::size_type, _CharT, const _Alloc&) [with _CharT = char, _Traits =
std::char_traits<char>, _Alloc = std::allocator<char>]
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:226: error:
std::basic_string<_CharT, _Traits,
_Alloc>::basic_string(const _CharT*, const _Alloc&) [with _CharT = char,
_Traits = std::char_traits<char>, _Alloc = std::allocator<char>]
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:220: error:
std::basic_string<_CharT, _Traits,
_Alloc>::basic_string(const _CharT*, typename _Alloc::size_type, const
_Alloc&) [with _CharT = char, _Traits = std::char_traits<char>, _Alloc =
std::allocator<char>]
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:213: error:
std::basic_string<_CharT, _Traits,
_Alloc>::basic_string(const std::basic_string<_CharT, _Traits, _Alloc>&,
typename _Alloc::size_type, typename _Alloc::size_type, const _Alloc&) [with
_CharT = char, _Traits = std::char_traits<char>, _Alloc =
std::allocator<char>]
/usr/lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:205: error:
std::basic_string<_CharT, _Traits,
_Alloc>::basic_string(const std::basic_string<_CharT, _Traits, _Alloc>&,
typename _Alloc::size_type, typename _Alloc::size_type) [with _CharT = char,
_Traits = std::char_traits<char>, _Alloc = std::allocator<char>]
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:192: error:
std::basic_string<_CharT, _Traits,
_Alloc>::basic_string(const std::basic_string<_CharT, _Traits, _Alloc>&)
[with _CharT = char, _Traits = std::char_traits<char>, _Alloc =
std::allocator<char>]
/usr/1lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.tcc:199: error:
std::basic_string<_CharT, _Traits,
_Alloc>::basic_string(const _Alloc&) [with _CharT = char, _Traits =
std::char_traits<char>, _Alloc = std::allocator<char>]
/usr/lib/gcc-1ib/i686-pc-linux-gnu/3.3.5-20050130/include/g++-v3/bits/basic_stri
ng.h:862: error:
std::basic_string<_CharT, _Traits, _Alloc>::basic_string()
[with _CharT = char, _Traits = std::char_traits<char>, _Alloc =
std::allocator<char>]

Appendix A.2 Using STLFilt

BD Software STL Message Decryptor v2.47a for gcc
testvec.cpp: In function ‘int main(int, char *x*)°’:
testvec.cpp:13: error: invalid conversion from ‘const char *’ to ‘unsigned int’
testvec.cpp:13: error: initializing argument 1 of
‘vector<int>::vector(unsigned int)’
testvec.cpp:14: error: No match for
‘vector<Widget>::vector(int, int, int, int, int, int)’
testvec.cpp:15: error: ‘foobar’ undeclared (first use this function)
testvec.cpp:16: error: No match for ’string(int, int, int, int, int)’

STL Decryptor reminder:
Use the /cand:L option to see all suppressed template candidates

