
Assignment 2 (tools)

Jacob de Fine Skibsted jacob@defineskibsted.net

1. Unit testing

The purpose of unit testing is to validate the individual components of

source code automatically. These components are typically defined as dif-

ferent classes when unit testing is applied to object oriented programming.

The method involves writing separate applications which explores the func-

tionality of the components and ensures that the functionality is maintained

every time an update is applied to the component. Thus, when a program-

mer modifies some source code, the test application is run to check if the de-

sired functionality of the component is maintained. Intuitively, this method

involves changing not only the source code but also the test application

if the functionality of the component is changed and/or extended. Other-

wise the test application could erroneously report an error even though the

component does perform the desired functionality. As a result, unit testing

can be quite time-consuming due to the fact that two code bases must be

maintained.

On the other hand, when it works, unit testing is an invaluable tool for

determining if some update works as intended. This is especially true when

code refactoring is performed. Furthermore, when working in open source

communities, where a number of developers from all over the world con-

tribute to some code base, having some way of determining if an update to

some smaller component influences the working of others is important. This

is where maintaining a test suite becomes handy.

As a result, a number of frameworks for performing unit testing has been

proposed.

Written 3 May 2007.

2

1.1 cppunit

cppunit1 is a unit testing framework used in a C++ programming environ-

ment. It is based upon the popular Junit2 framework developed for java

programming environments. A thorough documentation for cppunit can be

at http://cppunit.sourceforge.net/doc/lastest/index.html.

1.1.1 Installation and prerequisites

cppunit is developed for Microsoft windows (95/98/NT/2000/XP) and all

POSIX compliant operating systems. It includes an MSDN integration for

quick reference to the cppunit functionality.

To install cppunit using linux, the source code can be retrieved from

http://sourceforge.net/projects/cppunit. Installation is done by ex-

ecuting the commands:

shell>./configure

shell>make

shell>make install

This will compile and install the framework libraries.

1.1.2 Usage of cppunit

As stated, cppunit is a framework consisting of a number of classes which

can be instantiated, derived and modified. cppunit, as most other unit

testing frameworks uses a test fixture as a basis for running test cases. The

purpose of the test fixture is to ensure that there is a well known and fixed

environment in which tests are run, so that results are repeatable.

In order to group the different test cases defined by a test fixture, cppunit

uses a test suite. Test suites can contain other test suites suites in order to

create a large hierarchy of test cases, which comes in handy when the code

base becomes large.

As a tool for executing tests, cppunit uses a test caller to execute a single

test case. In extension to this, a test runner is used to execute the complex

tests defined by a test suite. The test suite itself, uses test callers to perform

the individual test cases.

1 http://sourceforge.net/projects/cppunit
2 www.junit.org

3

1.1.3 An example

Tests are created using a fixture which is a class for creating a common

environment for a set of test cases. It is constructed by inheriting the class

CppUnit::TestFixture, and must implement the procedures setUp() and

tearDown(). These procedures may be used to perform initialization and

clean-up. Each test case which is to be examined by the fixture is defined

as public procedures. An example is given below:

#include <iostream>

#include <stack>

#include "TestCase.h"

class StackFixtureTest : public CppUnit::TestFixture {

private:

std::stack<int> S;

public:

void setUp() {}

void tearDown() {}

void TestStack()

{

CPPUNIT_ASSERT(S.empty() == true);

S.push(100);

CPPUNIT_ASSERT(((unsigned int) S.size()) == 1);

CPPUNIT_ASSERT(S.top() == 100);

}

};

For each of the test cases defined in a fixture, a test caller template must

be instantiated. The instantiation of the TestCaller template class is done

using the address of the test case procedure as given below:

CppUnit::TestCaller<StackFixtureTest> test("Testing of a stack",

&StackFixtureTest::TestStack);

Thus, when the test caller is run the specified method will be executed. In

order to perform a number of individual tests, a test suite is used inside the

fixture. Thus, the class TestSuite is used in the fixture, again in a separate

procedure. Thus the code given below is added to the constructed fixture.

static CppUnit::Test *suite()

{

CppUnit::TestSuite *ts = new CppUnit::TestSuite("StackTest");

ts->addTest(new CppUnit::TestCaller<StackFixtureTest>(

"testStack",

&StackFixtureTest::TestStack));

return ts;

4

}

Thus, a caller to every test case is added to the test suite in order to maintain

a structure which separates the different fixtures from each other. Every

fixture has its own test suite which defines which of the test cases are to be

performed by the suite.

When the test is to be run, a TestRunner class must be used which can run

a number of different suites. Thus, a test runner wraps all the suites defined

in the different fixtures:

CppUnit::TextUi::TestRunner runner;

runner.addTest(StackFixtureTest::suite());

runner.addTest(NextFixture::suite());

runner.run();

1.2 Conclusion

cppunit offers a simple and very extensive way to perform unit testing of

C++ source code. Due to this complexity, this essay focuses on a subset of

the features. However, the documentation of cppunit found at

http://cppunit.sourceforge.net/doc/lastest/ is good. Unfortunately,

the amount of books written on the subject is few, but as cppunit is a port

of Junit, most of the material on Junit can be helpful.

