TY OF COPENHAGEN Department of Campute

Faculty of Science ()

Architectural Analysis of Microsoft Dynamics NAV

Tom Hvitved
hvitved@diku.dk

Department of Computer Science
University of Copenhagen

3gERP Workshop, November 18th 2008

UNIVERSITY OF COPENHAGEN Department of Computer

Outline

© Introduction

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Introduction

Deeper investigation of one ERP system: Microsoft Dynamics
NAV (formerly Navision)

Small and Medium-sized Enterprises (SMEs)
More than 57,000 customers worldwide
More than 2,700 certified partners worldwide
More than 1,500 certified add-ons (verticals)
(approx 1,000,000 lines of code!)

UNIVERSITY OF COPENHAGEN

Outline

© Motivation

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Motivation

@ Hands-on experience with a real-world ERP system (within the
3gERP project, evolutionary approach)

@ Provide a computer scientific description of NAV
o Address upgradability and performance issues

@ l|deas for a modularized architecture
°

Challenge: Backwards compatibility (NAV supply chain)

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

Outline

© Architectural Analysis

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Architectural Analysis

Financial
Management
Sales &
Marketing
Ressource
Planning

0
]
m Purchase

|t

|
I

/é
3
g
)
\a
a

ANWAWA
Q) fm

2 [10

G
%

/E
E
]
z
3
g
3

| Tables

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Architectural Analysis

Object based analysis

NAV object ~ class (OOP)
NAV object types:

Table

Codeunit

Form

Report

Provide class interface “schema” for each NAV object type

Useful for translation to e.g. C#

Microsoft Dynamics NAV 5.0 W1 SP1, Microsoft SQL Server
2005

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

Outline

© Architectural Analysis
@ Table

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table

Constant

1. Name € String (table name)

2. ¥ : String —g,, SimpleType x P(Property) (signature/table schema)

3. Fields %<f domx

4. PrimaryKey € Fieldst (non-empty primary key definition)
5. Indexes : Fieldst — P(Fields) (table indexes and Sum Index Field def-

initions)

6. TableRelation : Fields — TableRelationExp (table relation definitions)

7. LFlowField : String —g,, FlowFieldExp (FlowField definitions)

8. YplowFilter : String —g,, SimpleType (FlowFilter definitions)

9. dom¥ N dom¥FjowField N domEplowFilter = ? (non-overlapping definitions)

Per instance

10. Built-in methods (“triggers” in NAV terminology, e.g.
OnInsert, OnDelete, etc.)

11. Vars : String —g,, Type (user-definable instance variables)

12. Methods : String —g,, Procedure (user-definable methods, “proce-
dures/triggers’ in NAV terminology)

13. Mutators (built-in methods for updating state,
e.g. set a FlowFilter)

14. Iterator (an iterator for traversing data in the

table. Key features: FIND, INSERT,
MODIFY, DELETE)

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table (triggers)

@ Table “triggers” are not triggers as known from active
databases. Problem if used for validation purposes (invariants)

@ OnInsert, OnModify, etc.
o Actually GUI triggers

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table (SIFT)
@ Sum Index Field Technology is used to support range sum

queries:
> e (r)

rEUFI:le.../\F'-_I:v,-_l/\F;E[vi;v’f](T)

@ Amount € Indexes(G/L Account No.,Posting Date)

G/L Account No. | Posting Date | Amount
rn = | 1010 2008-05-01 100
r, = | 1020 2008-07-01 600
r3 = | 1020 2008-01-01 200
rs = | 1020 2008-12-01 100

Z T Amount (r)

r€0G/L Account No.=1020APosting Datee[2008—07—01;2008—12—31](T)

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table (SIFT)

o Also supports count, average, minimum and maximum

o We present data structure (augmented search tree) with
complexity O(log n) for update of T and for calculating range
sum queries

(1020,2008-07-01)
zAmount: = 1000

(1020,2008-01-01) (1020,2008-12-01)

ZAmount =300 zAmount =700
PN PN
n n rn

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table (SIFT)

@ Current solution in Microsoft SQL Server has complexity
O(log n) for updates and O(n) for range sum queries. Only
supports sum, count and average.

o Uses materialized (indexed) views

@ Programmer specifies SIFT indexes

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table (relations)

@ NAV supports complex table relations

@ Not maintained by DBMS and not invariants: No referential
integrity

e Conditional table relations = unnormalized database design

@ Proposed solution: Only allow SQL relations (invariants,
checked by DBMS)

e Unnormalized database: Harder to upgrade/customize (e.g.
“items” table has 175 columns)

Proposed solution: Normalize database by introducing joins
(views)

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Table (FlowFields)

Tables contain derived data (FlowFields/FlowFilters)
Utilizes SIFT
Derived data should be separated from “raw” data

Proposed solution: Views

Backwards compatible

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

Outline

© Architectural Analysis

o Codeunit

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Codeunit

e C/AL (imperative programming language, Pascal like)
o Statements (w/ side effects), expressions

o (Almost) strongly typed

o Typed database access (!)

@ Strict type annotations = code duplication (cf.
upgradability /customization)

@ Strict type annotations = unnormalized tables (“pseudo
polymorphism”)

@ Proposed solution: Polymorphism/sub typing

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

Outline

© Architectural Analysis

@ Form

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Form

Form can be bound to a single table

Easy (and automatic) integration with data

Easiest solution for compound data (multiple tables): Make
one product table

Implicitly encourages unnormalized database design

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

Outline

© Architectural Analysis

@ Report

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Report

Report = Data set + post processing

Post processing = C/AL

Data set = pairwise join of multiple tables:
Ti<p, To<i---<p, 1 Th

pi only mentions T; and T; 1

Current solution: nested looping

Proposed solution: (indexed) joins

UNIVERSITY OF COPENHAGEN Department of Computer

Outline

@ Modularized architecture

UNIVERSITY OF COPENHAGEN

Modularized architecture

Encapsulation/abstraction is desirable (well-known in CS)

Today: Logically related code spread across multiple NAV
objects

Needed: Code refactorization
Today: Denormalized tables, sparse

Needed: Decomposition to normalized tables (views provide
means for backwards compatibility)

One reason for denormalized database: history problem.
Copying of data is OK, but data schema should be reused, not
copied.

Claim: Will make customization/upgrading easier

Department of Computer Science

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Modularized architecture

First approach: Module = collection of existing NAV objects
Did not work (cf. previous slide)

Modularization is necessary (weak coupling)

Current code base: 1 MLOC

High level of interdependency (“spaghetti’): On average each
object has 10 dependencies (not taking all dependency types
into account!)

Remove code duplication (ITU student project)

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Modularized architecture

o Immediate benefits: Easier to maintain, extend, customize
o Future possibilities:

o Module contracts (stateful types)
o Aspect oriented programming (cf. Sebastien Vaucouleur)

Y OF COPENHA

Outline

© Conclusion

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Conclusion

@ Lack of (formal) documentation
@ Performance issues (“straightforward” to solve)

@ No modular design (harder to solve: database decomposition
+ code refactorization + elimination of duplicated code)

e Claim: Modularized architecture will lower TCO (MS
development, partner customization, upgrades)

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

Outline

@ Future Work

UNIVERSITY OF COPENHAGEN Department of Cormputer Science

Future Work

@ Tools to support modularization (dependency analysis, code
refactorization)

o Code analysis relies on a formal grammar — provided in our
analysis.

@ Investigate possibility of using updatable views

o Incrementalized views instead of SIFT (FunSETL, Michael
Nissen)

@ Student projects at DIKU

UNIVER

Thank Youl

	Introduction
	Motivation
	Architectural Analysis
	Table
	Codeunit
	Form
	Report

	Modularized architecture
	Conclusion
	Future Work

