
Architectural Analysis of Microsoft Dynamics NAV

Tom Hvitved
hvitved@diku.dk

Department of Computer Science
University of Copenhagen

3gERP Workshop, November 18th 2008



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Introduction

Deeper investigation of one ERP system: Microsoft Dynamics
NAV (formerly Navision)
Small and Medium-sized Enterprises (SMEs)
More than 57,000 customers worldwide
More than 2,700 certified partners worldwide
More than 1,500 certified add-ons (verticals)
(approx 1,000,000 lines of code!)



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Motivation

Hands-on experience with a real-world ERP system (within the
3gERP project, evolutionary approach)
Provide a computer scientific description of NAV
Address upgradability and performance issues
Ideas for a modularized architecture
Challenge: Backwards compatibility (NAV supply chain)



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Architectural Analysis



Architectural Analysis

Object based analysis
NAV object ! class (OOP)
NAV object types:

Table
Codeunit
Form
Report

Provide class interface “schema” for each NAV object type
Useful for translation to e.g. C#
Microsoft Dynamics NAV 5.0 W1 SP1, Microsoft SQL Server
2005



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Table

Constant
1. Name ∈ String (table name)
2. Σ : String ⇀fin SimpleType × P(Property) (signature/table schema)
3. Fields def

= domΣ
4. PrimaryKey ∈ Fields+ (non-empty primary key definition)
5. Indexes : Fields+ → P(Fields) (table indexes and Sum Index Field def-

initions)
6. TableRelation : Fields ⇀ TableRelationExp (table relation definitions)
7. ΣFlowField : String ⇀fin FlowFieldExp (FlowField definitions)
8. ΣFlowFilter : String ⇀fin SimpleType (FlowFilter definitions)
9. domΣ ∩ domΣFlowField ∩ domΣFlowFilter = ∅ (non-overlapping definitions)

Per instance
10. Built-in methods (“triggers” in NAV terminology, e.g.

OnInsert, OnDelete, etc.)
11. Vars : String ⇀fin Type (user-definable instance variables)
12. Methods : String ⇀fin Procedure (user-definable methods, “proce-

dures/triggers” in NAV terminology)
13. Mutators (built-in methods for updating state,

e.g. set a FlowFilter)
14. Iterator (an iterator for traversing data in the

table. Key features: FIND, INSERT,
MODIFY, DELETE)



Table (triggers)

Table “triggers” are not triggers as known from active
databases. Problem if used for validation purposes (invariants)
OnInsert, OnModify, etc.
Actually GUI triggers



Table (SIFT)
Sum Index Field Technology is used to support range sum
queries: ∑

r∈σF1=v1∧...∧Fi−1=vi−1∧Fi∈[vi ;v
′
i ](T)

πF(r)

Amount ∈ Indexes(G/L Account No., Posting Date)
G/L Account No. Posting Date Amount ...

r1 = 1010 2008-05-01 100 ...
r2 = 1020 2008-07-01 600 ...
r3 = 1020 2008-01-01 200 ...
r4 = 1020 2008-12-01 100 ...

∑

r∈σG/L Account No.=1020∧Posting Date∈[2008−07−01;2008−12−31](T)

πAmount(r)



Table (SIFT)

Also supports count, average, minimum and maximum
We present data structure (augmented search tree) with
complexity O(log n) for update of T and for calculating range
sum queries

(1020,2008-07-01)
ΣAmount = 1000

(1020,2008-01-01)
ΣAmount = 300

r1 r3

(1020,2008-12-01)
ΣAmount = 700

r2 r4



Table (SIFT)

Current solution in Microsoft SQL Server has complexity
O(log n) for updates and O(n) for range sum queries. Only
supports sum, count and average.
Uses materialized (indexed) views
Programmer specifies SIFT indexes



Table (relations)

NAV supports complex table relations
Not maintained by DBMS and not invariants: No referential
integrity
Conditional table relations ⇒ unnormalized database design
Proposed solution: Only allow SQL relations (invariants,
checked by DBMS)
Unnormalized database: Harder to upgrade/customize (e.g.
“items” table has 175 columns)
Proposed solution: Normalize database by introducing joins
(views)



Table (FlowFields)

Tables contain derived data (FlowFields/FlowFilters)
Utilizes SIFT
Derived data should be separated from “raw” data
Proposed solution: Views
Backwards compatible



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Codeunit

C/AL (imperative programming language, Pascal like)
Statements (w/ side effects), expressions
(Almost) strongly typed
Typed database access (!)
Strict type annotations ⇒ code duplication (cf.
upgradability/customization)
Strict type annotations ⇒ unnormalized tables (“pseudo
polymorphism”)
Proposed solution: Polymorphism/sub typing



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Form

Form can be bound to a single table
Easy (and automatic) integration with data
Easiest solution for compound data (multiple tables): Make
one product table
Implicitly encourages unnormalized database design



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Report

Report = Data set + post processing
Post processing = C/AL
Data set = pairwise join of multiple tables:

T1 "#p1 T2 "# · · · "#pn−1 Tn

pi only mentions Ti and Ti+1

Current solution: nested looping
Proposed solution: (indexed) joins



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Modularized architecture

Encapsulation/abstraction is desirable (well-known in CS)
Today: Logically related code spread across multiple NAV
objects
Needed: Code refactorization
Today: Denormalized tables, sparse
Needed: Decomposition to normalized tables (views provide
means for backwards compatibility)
One reason for denormalized database: history problem.
Copying of data is OK, but data schema should be reused, not
copied.
Claim: Will make customization/upgrading easier



Modularized architecture

First approach: Module = collection of existing NAV objects
Did not work (cf. previous slide)
Modularization is necessary (weak coupling)
Current code base: 1 MLOC
High level of interdependency (“spaghetti”): On average each
object has 10 dependencies (not taking all dependency types
into account!)
Remove code duplication (ITU student project)



Modularized architecture

Immediate benefits: Easier to maintain, extend, customize
Future possibilities:

Module contracts (stateful types)
Aspect oriented programming (cf. Sebastien Vaucouleur)



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Conclusion

Lack of (formal) documentation
Performance issues (“straightforward” to solve)
No modular design (harder to solve: database decomposition
+ code refactorization + elimination of duplicated code)
Claim: Modularized architecture will lower TCO (MS
development, partner customization, upgrades)



Outline

1 Introduction

2 Motivation

3 Architectural Analysis
Table
Codeunit
Form
Report

4 Modularized architecture

5 Conclusion

6 Future Work



Future Work

Tools to support modularization (dependency analysis, code
refactorization)
Code analysis relies on a formal grammar – provided in our
analysis.
Investigate possibility of using updatable views
Incrementalized views instead of SIFT (FunSETL, Michael
Nissen)
Student projects at DIKU



Thank You!


	Introduction
	Motivation
	Architectural Analysis
	Table
	Codeunit
	Form
	Report

	Modularized architecture
	Conclusion
	Future Work

