
3GERP Workshop

Beyond the crystal ball assumption:
Towards upgradable ERP systems

Sebastien Vaucouleur,
vaucouleur@itu.dk

IT University of Copenhagen.

September 26, 2008

Abstract

Most software engineering techniques that deal with software products
customization are based on anticipation: The software designer has to
foresee, somehow, the future needs for customization so that other pro-
grammers can adapt the software product with as little modifications as
possible (programmers hide implementation details behind previously de-
fined interfaces, or alternatively, they refine some pre-defined properties).
While practical, this approach is unfortunately not completely satisfactory
for Enterprise Resource Planning systems (ERPs). These software prod-
ucts have to be customizable for numerous and various local contexts;
they cover a very large domain, one that cannot be fully comprehended
— hence accurate anticipation is difficult. To solve this problem, an ex-
treme measure is to give the programmers the means to do modifications
in place, directly in the source code. This approach trades control for flex-
ibility. Unfortunately, it also makes the customized software product very
sensitive to upgrades. We propose a more mitigated solution, that does not
require accurate anticipation and yet offers some resilience to evolution of
the base software product through the use of code quantification.

We introduce the Eggther framework for customization of evolvable soft-
ware products in general and ERP systems in particular. Our approach
is based on the concept of code query by example. The technology being
developed is based on an initial empirical study on practices around ERP
systems. We motivate our design choices based on those empirical results,
and we show how the proposed solution helps with respect to the upgrade
problem.

1

1 Introduction

We give a very short introduction to Enterprise Resource Planning Systems
systems (ERPs), and we define informally some of the main concepts. Then
we discuss anticipation and what we call the upgrade problem. Finally, we
give the road-map for the rest of paper.

1.1 ERP systems

We assume that the reader has some basic knowledge about ERP systems.
We will only recall the details that are directly relevant for the discussion. We
refer the reader to Shanks et al. [20] for a detailed treatment of ERP systems.
ERP systems are usually defined as being business support systems, that
deal with the management of the various functions found in modern com-
panies, such as manufacturing, financial, human resources and customer
relationship management. ERP systems are data-oriented: The back-end
database is typically seen as the central element of the infrastructure (while
there is a trend to give better support for processes, ERP systems remains
heavily data-oriented). When a company purchases a license, it can decide to
use an ERP system as it is — the ERP system is fully functional and can be
used off-the-shelf. Nonetheless, many companies prefer to customize their
newly acquired ERP system to the local context in which it will be deployed.
The local context can be for example related to the company’s unique busi-
ness model, or to some local regulations: State regulation, industry specific
regulations, etc. An alternative is to adapt the company to the ERP system
— which does happen in practice.

Customizations can be made directly by customers, but usually they are
done by small software houses that specialize in this activity. The competen-
cies of these software houses consist in their knowledge of the ERP system,
but most importantly in their knowledge of the vertical domains (accoun-
tancy, transport industry, etc.). Their mastery of both the ERP system and
of the vertical domains allow them to quickly develop customizations that fit
the needs their customers. They typically charge high fees for their services,
hence time-to-market is important to the customers.

Our work targets evolvable software products in general, and ERP systems
in particular. We grounded our work in the study of two existing ERP sys-
tems, Microsoft Dynamics AX and Microsoft Dynamics NAV, that we will call
collectively Microsoft Dynamics. Section 2 provides a summary of the empir-
ical study. We refer the reader to [19, 21, 12] for a more complete treatment
about Microsoft Dynamics.

1.2 Definitions

Customizations Customizations add some new and un-foreseen features to a
software system. We contrast customizations with configurations (con-

2

figurations enable or disable features already present in the program).

Software products A software product is software that can be customized for
a specific context. Successful software products are evolving on a regu-
lar basis [19].

Base software product The base software product is the software product be-
fore customizations.

Software product maker The software product maker is the company that de-
sign and implement the base software product. In the case of Dynamics,
Microsoft is the software product maker.

Partners Partners are software houses that specialize in making customiza-
tions for other companies (their customers could be partners themselves
or regular customers). The term “partner” recalls the privileged busi-
ness relationship that they have with the software product maker1.

Customers Customers will simply refer to the companies which are purchas-
ing an ERP system for their own needs. Typically, customers are also
purchasing customizations services or customization code from part-
ners.

Figure 1 on page 4 shows a simple instance of an ERP eco-system. Nodes de-
note actors in the business model. An edge from a node A to a node B denotes
that A is providing some customization code, or a base software product to
B. User3 decides to use the software product as it is. User4 and User5 on the
other hand use some customization services from Partner2. Partner1 does
not deal with customers but only provides customization solutions to some
other partners, Partner3 and Partner4. This last one also uses some further
customizations made by Partner3. This example is very simplified scenario
of the real ecosystem around ERP system: A complex and evolving graph
of business entities, where customization code flows from one entity to an
other.

Microsoft Dynamics follows this business model. Using this unstructured
scheme, Microsoft can scale the scope of their product to a very large market
around the globe, and yet can keep its focus on its main competency: The
core horizontal functionalities of the ERP system (for example the transac-
tional sub-system, a convenient graphical interface, web services, etc.).

This artificial and simplified example illustrates how complex it would be
to attempt to reason about the intent behind a specific part of the system
given the current business model — especially since the code base can very
large, more than l million lines of code, with no explicit specification (modulo
some informal documentation).
1The terminology around Microsoft Dynamics sometimes makes a distinction between compa-

nies that implement customization solutions for particular vertical domain, and companies
that make customizations for a single company. For the sake of simplicity, we will ignore this
distinction in this paper, and use the generic name of partner.

3

Software product maker

��

uukkkkkkkkkkkkkk

))SSSSSSSSSSSSSS

������������������������������

$$

��

Partner1

xxppppppppppp

��

Partner2

�� ��:::::::::::::::::

Partner3

��

// Partner4

��
User1 User2 User3 User4 User5

Figure 1: A simple instance of an ERP systems ecosystem

1.3 The Crystal ball assumption

At the core of many approaches to evolution and customization within the
field of software engineering is, in one form or an other, what we call the
crystal ball assumption: Software designers are supposed to be equipped
with a rather accurate crystal ball, by which they can anticipate the future
needs for customizations and evolution of their software product. A concrete
example in object-oriented programming is the use of virtual methods and
factory patterns that are positioned in strategic positions of the code base to
deal with likely variations. The same need for anticipation (the need for a
“crystal ball”) can be found in most approaches, whether object-oriented or
not [19].

We would like to argue that the problem is particularly prominent in the
field of ERP systems: The domain covered by ERP systems is very large and
diverse. For example, tax rules are obviously not the same in Denmark as in
France. But what about this particular region of France; what about the rules
for a particular industry (say textile); what about the rule for this particular
time of the year, and what about the combination of any of these special
cases? Not only the domain is very large, it is also evolving very quickly: Tax
rules typically come and go as new governments are put in place. In short,
the domain is very large, and evolving — full anticipation is not an option.

ERP systems can be contrasted with software products that deal with
more stable domains. Consider for example graph libraries: Graphs have
been thoroughly studied and the concepts and design alternatives around
graphs are well comprehended, extensively explored and have been well doc-
umented. Of course new important variations around graphs do surface once
in a while — but it is relatively rare. Typically, that new variation would sim-
ply be incorporated in the next version of the library: What is required in this
case is not code customization but code evolution.

4

1.4 Anticipation is not a panacea

Several lines of research have tried to address explicitly the anticipation prob-
lem. For example, the work on Multi-Dimensional Separation of Concerns by
Tarr et al. at IBM Research lead to Hyper/J [18, 19], an ambitious framework
for multiple decomposition of existing software products. Quoting Ossher
and Tarr:

“Anticipation causes ulcers : Deeply ingrained within software en-
gineering is the notion of anticipating and designing for the most
likely kinds of changes, towards the goal of limiting the impact
of future evolution. [...] We believe in anticipating and planning
for changes whenever possible. Anticipation is not, however, a
panacea for evolution. It clearly is not possible to anticipate all
major evolutionary directions. Further, even if it were possible,
building in evolutionary flexibility always comes at a price: it in-
creases development cost, increases software complexity, reduces
performance, or often all of the above.” [18].

The stand of Ossher and Tarr is very close to ours: Anticipation is definitively
useful, but it is not a panacea. As noticed in the previous section, we believe
that the problem becomes prominent in the field of ERP systems: The domain
that they cover is very large and is constantly evolving, hence the software
maker cannot comprehend it. Even if he could, finding a convenient and
useful safe approximation (an abstraction) of all those local variations is likely
to be difficult. We will show how we address the anticipation problem in
Section 3.

1.5 Considering a simple approach

A simple approach to software customization is to let third-parties do cus-
tomization in place, directly in the source code. Using this scheme, the soft-
ware maker makes part of the source code available (typically the part of the
source code that focus on domain functionalities), and let third-parties do
modifications where they need it. This approach is indeed very simple, one
may even say naive, but it is concrete and practical — therefore not to be
dismissed immediately. To some extent, making customizations in-place is
just an application of how software is built on a daily basis: Consider two
people collaborating on a software project; programmer B makes changes in
place to some previous code written by programmer A. Indeed, customiza-
tion in this case is not directly distinguishable from software construction.
We say that in this case the two activities of software evolution and software
customization are symmetric. This approach is very close to the one offered
by Microsoft Dynamics: Partners can modify part of the source code with a
pre-defined granularity of change2, and in the case of Microsoft AX, a system
2For example, the method is the granularity of change for class elements.

5

of layers defines a linear ordering of these changes, see [19] for details.

1.6 The upgrade problem

We now present the upgrade problem. We focus on code upgrade; data migra-
tion is another important problem that we do not discuss here. ERP systems
are being customized by numerous independent partners. Eventually, the
software product maker will release a new version of the product. Figure 1.6
on page 7 is an abstract and simplified representation of the upgrade prob-
lem. Nodes represent a variant of a software product. A directed edge from a
node B towards a node A denotes that B is an evolution or a customization of
A. Horizontal edges denote evolutions, and vertical edges denote customiza-
tions. A particular version of a software product P x

y can be customized by
a partner, leading to the software product P x

y+1. This software product can
be itself further customized by an other partner, leading to P x

y+2, etc. On the
other dimension, P x

y will eventually evolve to a new version P x+1
y , forcing the

partner that produced the software product P x
y+1 to adapt its customizations

in order to come up with P x+1
y+1 .

This idealized commuting diagram is convenient for illustration purposes
but can also be misleading. Indeed, we would like to emphasize that the
very role of customizations is to have an impact on the semantics of the
program. Similarly most software evolution also intentionally changes the
semantics of the program (modulo code-refactoring and pure performance
improvements). Semantic changes are done simultaneously in both dimen-
sions, so it is difficult to reason about the correctness of a particular vari-
ant of the software product. In particular, interactions between evolution
changes and customization changes might actually be required to convey the
intent of both the software maker and of the partner(s). Informally, to be
able to reason about the correctness of particular variant of software product
one would have to differentiate between “good interactions” and “bad interac-
tions”. The absence of any explicit specification make this task particularly
difficult.

Imagine that a partner wants to implement a feature called F as a cus-
tomization. To do this, he identifies a particular code fragment C whose
behavior needs to be modified. In the next version of the software product
several problems can surface when the customization (made the previous
version) need to be ported to the latest version of the base product. First, C
might have been modified, for example a loop was rewritten to use recursion,
or C was moved to an other location in the code base. One can also consider
the extreme case: The code fragment C might have disappeared all together
in the new version. Or maybe the feature F is now provided by default by
the software product maker, in which case the customization should not be
ported to the new version of the software products but should be simply dis-
carded. Yet an other problem can surface: In the new version of the software

6

P 1
1

//

��

P
2

1
//

��

P
3

1
//

��

P
n

1

��
P 1

2
//

��

P 2
2

//

��

P
3

2
//

��

P
n

2

��
P 1

3
//

��

P 2
3

//

��

P 3
3

//

��

P
n

3

��
P 1

m
// P 2

m
// P 3

m
// Pn

m

Figure 2: The upgrade problem

product, C was un-touched, but in addition to C another code fragment now
needs to be modified to support the partner’s intent.

Road-map

Section 2 will give a summary of the empirical study, focusing on the most
relevant results for the discussion. Section 3 will introduce the Eggther
framework for customization of software products, and will carefully motivate
the design choices based on the results from the previous sections. Section 4
will propose to use two well-known measures to quantify exactness and com-
pleteness in the context of our framework. Important implementation details
are addressed in Section 5. Section 6 describes some future work. Some
of the most frequent questions around this work are discussed in Section
7; the same section will briefly point to related work. Finally Section 8 will
conclude.

2 Empirical grounds

Our work on software products is grounded on an initial empirical and qual-
itative study that focused on customizations and upgrades of Microsoft Dy-
namics ERP Systems [6, 7]. We shortly summarize here the most relevant
results for the discussion.

Cost of the upgrade problem It is difficult to precisely measure the cost of
the upgrade problem described in Section 1.6. Our empirical survey points
to a range between 10 and 15% of the price of the original customization
for a single upgrade. These numbers are derived from informal discussions

7

with ERP practitioners and were not collected using a rigorous statistical ap-
proach. Upgrades have to be operated on each deployed project. Customers
typically consider that upgrades are almost mandatory: They fear that they
will not benefit from the latest bug fixes if they do not upgrade. They also
avoid to jump a version because upgrading will be harder later on. Upgrades
happen approximately every two years.

Partners are domain-experts When recruiting new staff members, partners
tend to favor domain experts to highly skilled software programmers. Ide-
ally, they try to form groups of two persons, who work together on the same
customization project: One is the domain expert (for example an accoun-
tant), and the other one is a more technically minded person. Typically,
even the “technically minded” staff members have little formal computing
science education: They either learned programming through internal com-
pany training, or are autodidacts. Staff members share their experience with
their co-workers through informal discussions and pair programming.

Partners rely extensively on code examples Staff members working for part-
ners acquire their knowledge about the ERP system using code examples.
They look at the existing application code (given by the software product
maker), or to some code previously written by a colleague, and imitate the
practices. When it is available, documentation is of course used from time
to time, but we would like to stress that knowledge is mainly acquired by
looking at code examples.

Customizations are varied in kind and granularity Customizations are vari-
ous in their kind, and can target any part of the base source code. Some
part of the code base are referred to as “hot points” since they tend to be cus-
tomized more often than others. But customization can target any part of the
available source code depending on the needs of the customers. Similarly,
customizations have various granularity: Some are extremely fine-grained
and target a small expression inside a specific method, others require rewrit-
ing of numerous methods across various classes.

Mainly incremental Customizations are described by the partners as being
“mainly incremental”: Partners typically avoid to remove functionalities, and
prefer to simply hide unused elements at the graphical user interface level.
It is commonly perceived as “adding functionality” or “adding features”. Note
that the terminology used by partners is informal: Their customizations do
have side-effects and impact the semantics of the existing code base (obvi-
ously a customization that has no impact is of little value).

8

Exit points Customizations are done by inserting exit points to some hook
methods. That is, they avoid to the extent possible to insert a lot of code in
the existing code base and simply insert external calls to their newly defined
methods. This offers a form of textual modularization, albeit not a perfect
one since these method-calls are intrusive.

Time to market is more important than correctness Little systematic testing
is done by the partners. Partners are aware of the consequence of having
weak quality control practices around their customizations. According to
our study, it seems that the root of this choice comes from the customers:
Customers are not willing to pay for the extra-time required for testing. They
prefer to do have quick fixes done directly on production site whenever a
problem comes up. Of course the back-end database is typically backed up
on regular basis to deal with worst-case scenarios.

Partners are unsatisfied by the feedback channels In the Dynamics busi-
ness model partners can report their needs to the software product maker.
According to our survey, partners are not satisfied with the feedback chan-
nels currently in place.

3 Eggther framework

This section introduces the Eggther framework for customization of soft-
ware products. We show that our approach (a) Allows for non-anticipated
customizations, and (b) Provides some resilience to upgrades. The work is
grounded in the empirical work described in section 2, and builds on the
.NET framework [9].

3.1 Overview of the approach

We summarize the approach, and we will come back in details on each step
in the rest of this section.

First, the software product maker designs his software product using the
dominant decomposition mechanism in object-oriented programming: Data
decomposition. This decomposition is based on his knowledge of the vertical
domains, and on his capacity to anticipate future needs for customizations,
see Section 1.3.

Second, the software product maker gives to the partners part of the source
code. The first difference with the scheme described in Section 1 is that
partners only have read-access to the source code: We say that this is a glass-
box approach to code reuse. If the decomposition of the software product fits
their needs, the partner just use the traditional object-oriented extensibility
mechanisms (sub-classing, method redefinition, etc.); if the decomposition

9

is not convenient, the partners write code queries to denote the variability
points, see Section 3.2.

The partner then writes customization code. The binding between the vari-
ability points and the customization code is described in Section 3.3. Cus-
tomizations can be further customized by another partner. Upon upgrade
queries are re-applied, and eventually modified. Customizations code is even-
tually modified. Optionally, the software maker collects the code queries (the
code queries only, not the customization code).

3.2 Code queries

We now enter the core of the problem. We mainly deal here with the limita-
tions posed by the crystal ball assumption and how we can approach these
limitations in a way that allows us at the same time to deal with the upgrade
problem.

From white-box to glass-box As noticed previously, a white-box approach
is not satisfactory since this will make upgrades difficult. A pure black-box
approach is not satisfactory neither since it requires anticipation. Therefore,
we move from a white-box to a glass-box approach: Partners are given part
of the source code, but with a read-only access. The first step for them is to
denote the variability points, the locations in the code where customizations
should happen.

From extensional to intensional definitions The programmer needs to define
the set of code fragments that have to be customized. We distinguish two
ways to define sets: By extension and by intension. An extensional definition
would have the form

CodeFragments = {c1, c2, c3, ...}

whereas an intensional definition would have the form

CodeFragments = {c |P (c)}

where P defines a property of the source code fragment — this is also
known as set comprehension. Using our framework, the variation points will
be described, to the extent possible, by intension rather than by extension.
This will allow the denotations to be more resilient to evolution of the base
code because the variation points are not mentioned explicitly.

One way to express variation points by intension is to use a reflective lan-
guage with a set of user-defined and pre-defined relations, that could include
for example an implementation of the predicates

IsMemberPublic : Member → B

10

IsMemberName : Member × String → B

Using set comprehensions, the partners could then express that all public
members called “F” should considered as variation points:

V ariationPoints = {x ∈ Method | IsMemberPublic(x) ∧ MemberName(x, ”F”)}

This is a perfectly valid approach and it also maps almost directly to a
rule-based engine, such as Prolog. Unfortunately, it requires partners to
think at a higher level of abstraction, at a meta-level. This conflicts with the
fact that partners are not computing science specialists: They are domain
experts, see Section 2. We want to give to partners simple and yet convenient
programming primitives: Primitives that are close to how they approach their
daily programming tasks.

A simple programming primitive: code-query by example As observed in
our empirical study, programmers like to work with code examples. This is
how they work when they face their daily programming tasks: This approach
seems natural and appealing to them. Hence, we propose to use the con-
cept of query-by-example to denote variability points. Query-by-example is
a well-known concept in the field of database systems, we adapt it here to
the domain of code query: What partners are effectively querying is the code
base of part of the software product.

Query methods .NET attributes can be used to annotate class members [9,
8]. Class members marked with the [Query] attribute will denote code queries.
In the case of methods, we will simply call them query methods. Several
query methods can participate in the same query as we will demonstrate.
For a given query, the framework will look for matching code fragments in the
existing software product. The matching code fragments will be the variability
points. The framework will insert method invocations to the customization
code at the variability points (we will describe customizations in Section 3.3).

Formal arguments of query methods Variables available at the customiza-
tion points will be bound to formal arguments of the query methods. Query
methods formal arguments of type delegate [9] are used to denote an arbi-
trarily large well-formed code fragment whose static type is the return type
of the delegate: For example, Func<int> denotes an arbitrarily large expression
of static type int. A delegate with a void return type denotes arbitrarly large
well-formed sequence of instructions.

An example In the following example, a partner wants to perform a cus-
tomization in all the code locations where a transaction is performed. Using
a code query example, the partner describes his concept of a transaction as a

11

BankAccount being debited from a given amount, some further action taking
place, and a BankAccount being credited, within the same procedure. In the
following listing, the formal argument action is of static type Action (a delegate
with a void return type), hence any arbitrary large sequence of instructions
would match the delegate call, line 5. (Note that all example compiles with a
standard C# compiler.) The query is given a name, here “Transaction”:

1 [Query("Transaction")]
2 void SimpleTransaction(double amount, BankAccount b1, BankAccount b2, Action action)
3 {
4 b1.Debit(amount);
5 action();
6 b2.Credit(amount);
7 }

For example, the query “Transaction” would match the following code frag-
ment from line 2 to line 4:

1 static void F(double x, BankAccount a, BankAccount b, double tax) {
2 a.Debit(x);
3 x -= tax;
4 b.Credit(x);
5 }

Note that here the identifier x is not required to be bound to the same value
for the debit and credit operations: In this case, the action applies a tax, and
rebinds x to a new value. Note also that nothing prevents the identifiers a and
b to be bound to the same object (aliasing). The action can refer to an empty
action, hence the following code fragment would match our first code query:

1 a.Debit(x);
2 b.Credit(x);

and the following code would return four matches:
1 a.Debit(x);
2 a.Debit(x);
3 b.Credit(x);
4 b.Credit(x);

Disjunction of query methods Following on the same example, if the partner
wants to cover the case where a Credit operation is done first, then a new
query method must be added. Note that both query methods below are given
the same query name, hence both of them participate in the definition of
the query “Transaction”. Informally, the code query can be interpreted as
the disjunction of two cases: Code fragments of the form DebitFirst or code
fragments of the form CreditFirst.

1 [Query("Transaction")]
2 void DebitFirst(double amount, BankAccount b1, BankAccount b2, Action action)
3 {
4 b1.Debit(amount);
5 action();
6 b2.Credit(amount);
7 }
8

9 [Query("Transaction")]

12

10 void CreditFirst(double amount, BankAccount b1, BankAccount b2, Action action)
11 {
12 b1.Crebit(amount);
13 action();
14 b2.Debit(amount);
15 }

Full methods matching versus code fragments matching Sometimes it is
convenient to query for full methods, and not just code fragments. To this
extent it seems natural to rely on the concept of a delegate. For example,
the following code query will match any method that has formal arguments
compatible with types double, BankAccount, and BankAccount, exactly in
that order.

1 [Query("Transaction")]
2 Action<double, BankAccount, BanckAccount> transaction;

One can also instantiate this delegate to match any method that has the
corresponding formal arguments (as described above) and additionally have
the full method body matching the delegate body:

1 [Query("Transaction")]
2 Action<double, BankAccount, BanckAccount> transaction = { ... /* delegate body */ ... }

Summary of code-queries To summarize, we moved from a white-box to
a glass-box approach (“see but don’t touch”), by adding a level of indirec-
tion: Code queries. The query language is based on the concept of query-by-
example. This simple programming primitive makes the approach accessible
to partners (non-programmers experts), as they do not have to think at a
meta-level. The code queries are a form of code quantification. This code
quantification allows us to break procedural abstraction and hence to deal
with fine-grain unanticipated customizations. Quantification allows us to
textually localize the definition of the variability points outside of the base
code of the software product.

3.3 Customization code

Once the variability points are defined using code queries, the actual cus-
tomization code can be expressed using a regular .NET language, such as
C#. Methods annotated with the attribute [Customization] are called customiza-
tion methods. Classes that contain customization methods are called cus-
tomization classes. The customization attribute takes as an argument the
name of the code query that denotes a set of variability points that should be
customized.

Example of customization code Continuing on the transaction example,
now that the variability points are defined, the partner wants to log all trans-
actions before they take place.

13

1 [Customization("Transaction")]
2 static public void LogTransaction(double amount, BankAccount b1, BankAccount b2) {
3 Log("Transaction from account {0} to account {1}, amount {3}", b1.Number, b2.Number,amount);
4 }

Binding Formal arguments of customization methods are bound to avail-
able identifiers at the scope of the variability point. The framework builds
a sequence of available identifiers within the scope of the variability point
〈i1, i2, i3, ...〉 respectively of static types 〈I1, I2, I3, ...〉 . The signature of a cus-
tomization method M defines a sequence of formal arguments 〈f1, f2, f3, ...〉
respectively of types 〈F1, F2, F3, ...〉. For each formal argument fn the frame-
work looks sequentially in the sequence of available identifiers for an identi-
fier im, such that im was not already bound to a formal parameter of M , and
such that Im <: Fn, where <: denotes the usual subtyping relation3. If the
framework cannot find such an identifier the customization method will not
be called. Note that only a prefix of the available identifiers at the scope of the
variability point is necessary in the signature of the customization method.
For example, if the customization would simply need to log the amount of the
transaction, the following method signature would be sufficient:

1 [Customization("Transaction")]
2 static public void LogTransaction(double amount) {
3 Log("Transaction amount " + amount);
4 }

On the other hand the following customization would not be called (other-
wise it would be ambiguous which BankAccount we refer to).

1 [Customization("Transaction")]
2 static public void LogTransaction(BankAccount b) {
3 Log("Transaction account " + b.Number);
4 }

The current object Sometimes, it is useful to have access to some members
of the current object (the object where the customization is called). To sup-
port this, the partner can annotate a formal argument fx of a customization
method with the attribute [Current], in which case the framework will bind
the current object to fx. If the variability point is in a static scope, fx will be
bound null. If the current object is not a subtype of Fx, the customization
method will not be called. Note that using this attribute is optional feature,
and can be safely omitted if it is not required. For example suppose that we
want to log the number of all the TransactionManagers when a transaction
takes place:

1 [Customization("Transaction")]
2 static public void LogTransaction(double amount, [Current] TransactionManager tm) {
3 Log("Transaction amount {0} executed by transaction manager {1}", amount, tm.Number);
4 }

3Type compatibility is defined by the ECMA standard [9, 8]

14

Note also that we do not break encapsulation here, since the property Num-
ber of the class TransactionManager should have public access, or at least
the member should be accessible from the customization class.

Before versus after customizations By default customizations are triggered
just before the matched code fragments execute. If partners want a cus-
tomization to be called just after the variation points, he can simply set to
true the After property on the [Customization] attribute. For example the follow-
ing will log the balance of the debited account after the transaction has taken
place:

1 [Customization("Transaction", After = true)]
2 static public void LogDebitedAccount(double amount, BankAccount b) {
3 Log("After transaction of {0}, balance of the debited account is {1}", amount, b.Balance);
4 }

Side effects in code customizations

So far our customizations mainly added behavior. This corresponds to a great
part of customizations tasks performed by partners, see Section 2. Given the
techniques that we already covered, a partner can already introduce side
effects in customization methods, for example by writing b.Debit(1) in a cus-
tomization method.

Nonetheless, it is useful to be able to modify the binding of identifiers
within the scope of the variability points. To do this, partners can anno-
tate the formal arguments of customization methods with the standard ref

modifier. The value of a reference parameter is the same as the argument in
the method member invocation [9, 8] (they represent the same storage loca-
tion). The framework will take care to bind the variables of the matched code
fragments by reference. In the following customization method, a partner
wants to convert the transaction amount from Euros to Danish Kroners:

1 [Customization("Transaction")]
2 static public void ConvertAmountToDKK(ref double amount) {
3 amount *= EuroToDKK ;
4 }

The effect of this customization is that the amount identifier will be rebound to
an new value. As a further example, the following (hazardous) customization
swaps the debit and the credit accounts before the transaction takes place!

1 [Customization("Transaction")]
2 static public void SwapAccounts(ref double amount, ref BankAccount a, ref BankAccount b) {
3 var tmp = a;
4 b = a;
5 a = tmp;
6 }

15

Short notation for customizations So far code queries and their corresponding
code customizations were textually separated. Sometimes it is useful to ex-
press both concerns using a more compact notation. To this extent, partners
can annotate class members using both attributes [Query] and [Customization].
This notation is considered by the framework as syntactic sugar for two class
members: The formal arguments being the code query and the body being
the code customization. For example, the following class member M is an
example of the short notation:

1 [Query]
2 [Customization]
3 static void M(T t) {
4 /* customization code */
5 }

Note that in this case, the query name does not need to be mentioned. The
code above is considered as syntactic sugar for the following two members:

1 [Query(X)]
2 Action<T> MQuery;
3

4 [Customization(X)]
5 static MCustomization(T t) {
6 /* customization code */
7 }

The name X is an automatically generated and unique string identifier. As
a concrete example, the following code will log all method calls to procedures
that have a double as their first (and possibly unique) formal argument:

1 [Query]
2 [Customization]
3 static public Action(double d) {
4 Log(d);
5 }

3.4 Interrupting the flow of control

Note that the approach that we propose is mainly incremental: Functional-
ity is added to some specific places in the code base. This fits closely with
the result of the empirical study on customization practices, see Section 2.
Nonetheless, it is possible to interrupt the flow of execution at the variability
points by throwing an exception in the customization code. We take advan-
tage of the fact that exceptions are unchecked in .NET [9]. Throwing an
exception to interrupt the flow of control is, arguably, a reasonable thing to
do: We want to warn callers (at run-time), up in the call-stack, that the ex-
pected execution of part of the base code did not take place. Continuing on
the transaction example, a partner wants to forbid transactions of more than
1.000.000 Euros:

1 [Customization("Transaction")]
2 static void NoLargeTransaction(double amount)
3 {
4 if(amount > 1000000) throw new LargeTransactionException();
5 }

16

Another customization, now using two formal arguments, checks whether
the debit account is large enough for the transaction:

1 [Customization("Transaction")]
2 static void CheckAccountBalance(double amount, BankAccount account)
3 {
4 if(amount > account.Balance) throw new InsufficientFundsException();
5 }

Note once again that the partner only has to declare a prefix of the available
identifiers in the scope of the variability points.

3.5 Unit testing

Customization methods are directly amenable to the usual unit testing proce-
dures. For example, a unit test for the CheckAccountBalance customization would
look like:

1 [Test]
2 [ExpectedException(typeof(InsufficientFundsException))]
3 public void TransferWithInsufficientFunds()
4 {
5 BankAccount b1 = new Account(1000);
6 BankAccount b2 = new Account(1000);
7 TransactionManager.Instance.Transaction(b1,b2,2000);
8 }

3.6 Stateful customizations

As mentioned in Section 1, data and state are an important part of modern
ERP systems, therefore it is important to support stateful customizations:
The framework must allow the partners to preserve some state across sev-
eral invocations of the same customization method. In our framework, cus-
tomization classes can simply declare some class or instance variables that
will preserve state across invocations of customization methods. The follow-
ing example counts the daily number of debit operations (made as part of a
transaction) for all bank accounts, and throws an exception if a threshold is
crossed:

1 // Daily initialize NumberOfDebitOperations to 0 for all existing accounts
2 Dictionary<BankAccount, int> NumberOfDebitOperations { get { ... } }
3

4 [Customization("Transaction")]
5 void CheckNumberDebitOperations(double amount, BankAccount account)
6 {
7 var num = NumberOfDebitOperations[account];
8 if(num > 100) throw new TransactionThresholdException();
9 NumberOfDebitOperations[account] = num + 1;

10 }

3.7 Extension of customizations

Customizations done by partners can be extended or modified by another
partner using the usual redefinition mechanisms provided by inheritance:

17

As shown in the previous example customization methods do not have to be
static. Alternatively, code changes can also be done by modifying the code
queries or, by quantifying on the customization code written by the other
partner. Note that since customizations are more textually localized it is
easier for the partner to modify some existing customizations.

4 Exactness and completeness of code queries

Upon upgrade, existing code queries might not denote exactly code fragments
that fit the partner’s intentions since the customizations were developed for
the previous version of software product. Similarly, code queries might not
refer completely to the code fragments that should be customized to fit the
partner’s intention. A measure of exactness and completeness of code queries
would be helpful to characterize these issues. To this extent, we introduce
precision and recall.

4.1 Precision and recall

Precision and recall are two measures widely throughout science used, and
especially in the field of information retrieval, to evaluate the quality of re-
sults, focusing respectively on exactness and completeness [2]. We introduce
precision and recall as they provide a convenient and well-defined terminol-
ogy for the rest of the discussion. The two measures are traditionally defined
in terms of a set of retrieved documents, and a set of relevant documents.
Precision is the percent of retrieved documents that are relevant to the search
(exactness):

Precision = |{Relevant documents}∩ {Retrieved documents}|
|{Retrieved documents}|

In turn, recall is the fraction of documents relevant to the query that are
successfully retrieved (completeness):

Recall = |{Relevant documents}∩ {Retrieved documents}|
|{Relevant documents}|

One can immediately observe that a recall of 1 can be easily obtained by
returning all documents in response to any query. Dually, one can very easily
obtain a high precision by returning no documents to any query. Hence, it is
useful to use those two measures together.

18

4.2 Precision, recall and code queries

When a partner writes a code query, he wants to denote the variability points
for customization purposes. We will say that precision is high when the code
query returns mostly variability points that are necessary for the customiza-
tion. Dually, recall will be high when most required variability points to
implement the customization are returned by the code query.

When precision is lower than 1 some customizations will happen at places
where they should not happen. Similarly when recall is lower that 1, then
some locations in the code base where customization should happen will not
take place.

4.3 Exactness and completeness problems upon upgrade

Upon upgrade, a partner takes the new version of the base software product
and reapplies the code queries. We simplify the discussion by considering
that the customization consists of only one code query. We can immediately
identify two problematic cases:

(1) The query result now points to some code fragments that should not be
customized in the new version,

(2) The query fails to match some code fragments that should be customized
in the new version of the base code.

From a practical point of view, the first problem is less problematic: The part-
ner is presented with the result of the code query, and can inspect whether
the new customizations points fit his intentions. If he identifies a problem,
he can decide to rewrite the customization query to fit his needs. The second
problem seems more difficult to tackle. We identify two sub-cases to problem
(2):

(i) Some new code that should be customized is not part of the query result,

(ii) Some old code that should not be customized in the previous version
should now be customized in the new version.

Helping with (i) can be done by simply providing a diff of the new version
versus the old version to partners, and requiring them to study very carefully
the changes. This is highly impractical, of course. Alas, (ii) seems even more
difficult to deal with; it is not clear at this point how to approach this last
problem in a scalable way in the absence of any explicit specification.

4.4 Giving control back to the partners

Ideally, one would like to have both high precision and high recall. Nonethe-
less, one can sense that there is a tension between the two: Design decisions

19

that favor precision will hamper recall and vice versa. Since these design
decisions directly impact the upgrade process, it would be good if partners
could regain control of them. In other words, let them decide whether exact-
ness or completeness is more important to them. Our framework allows for
this:

• Partners can abstract their code queries by making use of delegate calls
to denote typed expressions. Making extensive use of delegate calls in
code queries will increase recall but decrease precision.

• Dually, partners can add more context code in their queries (make their
code query more lengthy than strictly necessary) and will thereby in-
crease precision but decrease recall.

• Similarly, partners can increase or decrease the number of formal ar-
guments in their code query, which will respectively increase precision
(but decrease recall), and increase recall (but decrease precision).

Section 6, which describe some further work, details yet an other way by
which partners could favor precision or recall.

5 Implementation aspects

We quickly describe the current implementation of the Eggther framework
since the design choices have some important implication on the application
of the framework. A more precise account of the implementation will be
presented in an other paper.

5.1 General design choices

An obvious design choice for our framework would have been to reuse an
existing parser for .NET language (or to generate one), and to do the code
queries on the abstract syntax tree instantiated by this parser. Unfortunately
this has major drawbacks:

• For each language that we would like to support we would have to im-
plement a new variant of the framework.

• Every time that one of the high-level language evolve we would have to
evolve our framework.

• Conceiving a high-performance parser for a complex high-level language
is difficult.

• We would loose integration with current development environments.

Therefore, we decided against this approach, and instead settled to work at
the intermediate code level.

20

Software productoriginal
illusion //

st
an

d
ar

d
co

m
p
il
er

��

Software productinstrumented

��
ILoriginal

instrumentation
// ILinstrumented

Figure 3: Customization scheme

Implementation details We give an outline of our current implementation:

• First, the base code is compiled to .NET intermediate code (IL) [8, 9] us-
ing one of the standard compilers for the corresponding high-level lan-
guage (the standard C# compiler, the standard VB.NET compiler etc.),
and the same is done with code query and the customization code.

• At design time, the framework will work at the IL level, and for each code
query will look for matching IL code in the compiled base code. When a
match is found the framework will instrument the bytecode by injecting
a method call to a proxy method, binding the formal arguments of the
proxy method to the available identifiers in the scope of the method call.

• At run-time, the framework will construct a list of the customization
methods and instantiate a delegate for each them. A singleton [11] is
instantiated of each customization classes. When a proxy method is
called, it will look for the customization methods that subscribed to
this particular customization points (the query name), and will invoke
the corresponding delegates. Binding of formal arguments is done as
described in Section 3.

Note that even if matching and instrumentation is done at the IL level, part-
ners get the illusion that is performed at the same level at which they write
high-level code, see Figure 5.1 on page 21.

5.2 Advantages

We summarize some of the advantages of this approach:

• Our framework re-uses the standard high-level compilers, and we can
rely on Microsoft and others to maintain them and evolve them as new
version of the languages surface.

21

• The standard compilers have been well-tuned for many years and are
highly performant.

• We get support out of the box not just for one high-level language for a
large number of them (C#, VB.NET, Eiffel, etc.): The only requirement is
that the base software product and the code queries are written in the
same language and are compiled using the same compiler.

• Partners enjoy the full development environment that is already avail-
able to them and that they know well (the interactive development en-
vironment of Visual Studio that includes a type checker, syntax high-
lighting, refactoring tools, etc.). We would like to stress that our use of
the standards type checkers allows us to make sure at design time that
the query and customization methods are well-formed.

5.3 User interface

The concrete user interface that will be offered to partner is an add-in for
Visual-Studio that will allow them at design time to execute the code queries
and visualize the variability points in the base software product.

6 Further work

We shortly introduce some further work that are potential extensions to the
framework we introduced in Section 3.

6.1 Non-Boolean matching

So far, code matching was defined as a simple predicate, taking as arguments
two code fragments, and returning true or false depending on whether the
two code fragments match each other. We can generalize this approach by
defining a measuring function M that will give the distance between any two
code fragments:

M : CodeFragment × CodeFragment→ R+
0

We will call this distance the code distance. We are considering to use
two well-studied algorithms as the foundation for code distance: The first is
the Levenshtein distance (also called edit distance), and second, the tree-edit
distance [4].

6.2 Partial ordering of customizations

It would be useful to be able to specify an order in which customization
methods should be executed for a given variability point. A partner should

22

be able to define a simple partial order between customizations (that includes
his own customization as well as customizations from other partners), and
the framework should simply compute a linearization compatible with this
partial order. This seems, a priori, quite straight-forward to implement. We
believe that the challenge is more on the language design side: How to allow
partners to express this order relation in a convenient way, and make it at
the same time seamlessly integrated with the programming primitives that
we introduced. Furthermore, it is not clear what the framework should do
if it is not possible to compute a linearization given the constraints given by
the partners: Should it throw an exception? And if so, where and when?

6.3 Toward behavioral customizations

The customizations that we described were based on matching of the code
structure. While it is a practical and convenient solution to many customiza-
tions scenarios, sometimes the customizations are not driven by specific code
patterns but by more behavioral aspects.

Example Continuing on the previous example, consider the following cus-
tomization scenario: Suppose that when the balance of a bank account ex-
ceeds a threshold, the local bank branch should get an alert (for example to
send to the client some commercial offers for the latest financial products).
This particular scenario is more abstract that the previous ones, since here
the customization is not geared toward specializing the software product at
some specific places in the code text, but rather to take some action un-
der certain conditions, irrespective of the location in the code that made the
bank account cross the threshold. Moving from this informal requirement
towards a more precise specification, we define predicate BalanceTreshold :
BankAccount × R → B, which evaluate to true if given a bank account and
a threshold, the balance of the bank account is greater than the threshold.
Whenever the predicate first evaluates to true, the customization should be
triggered, namely sending an alert to the local bank.

Possible approach Consistent with our goal of reusing existing .NET tech-
nology as much as possible we envisage to use to Spec# to our benefit. Spec#
is an extension of C# that adds to the language, among other things, the con-
cept of invariants and pre and post-conditions. Spec# is based on the foun-
dations laid down by the work on axiomatic semantics, pioneered by Floyd,
Hoare and others. The definition given by Hoare [14] is based on the concept
of a triple {A}B{C} that defines partial correctness: Whenever A is true and
B executes and terminates, then C will be true (where A and B are predicates
on the state and B is a command). Similarly, but from a more concrete point
of view, a method can be equipped with pre and post-conditions, where the

23

precondition defines what has to be true at the beginning of method exe-
cution (to be satisfied by the client, i.e. a benefit to the supplier), and the
post-condition what has to be satisfied by the supplier when the method
terminates (to be satisfied by the supplier, i.e. a benefit to the client).

In a previous work [22], we redefined the notion of pre-condition in the
concurrent case to move closer to the concept of conditional critical regions
(first proposed by Hoare then championed by Brinch Hansen [13]). Simi-
larly, we envisage to redefine the semantics of the pre-condition in the case
of a customization: Whenever a customization method is equipped with a
pre-condition, this precondition will define a condition for triggering the cus-
tomization. More concretely, and using the concrete example introduced
above, the condition is the predicate, expressed as pre-condition to the cus-
tomization:

1 [Customization]
2 void AlertThresholdCrossed([Current] BankAccount b)
3 requires b.Balance > 10000;
4 {
5 SendAlert(b.LocalBank, b);
6 }

The semantics of this customization is to be interpreted as follows4: For all
bank accounts b that are instantiated in the runtime such that AlertThresholdCrossed
was not already executed with b as an actual argument, whenever the balance
of b is more than 10.000 Euros, then execute AlertThresholdCrossed.

7 Discussion and Related work

This section discusses informally some of the questions related to the ap-
proach that we presented, and points to some related work.

What if one is completely satisfied with the crystal ball assumption? If antic-
ipation can be done accurately in a way that satisfies the partners (that is,
if customization points are well defined and the granularity of future cus-
tomizations is well-understood), then usual customization techniques can be
used: For example dynamic binding, together with a flexible software prod-
uct design that makes use of a subset of the various extensibility-related
design patterns : Factory methods, visitor pattern, adapter etc. Interface
specifications can then be made more precise using for example design-by-
contract (see Spec# [3], or JML [15], etc.). On the language side, the issue of
co-variance versus contra-variance will then surface, and one will favor one
option or the other, making a choice between openness and type safety [1, 5].
All this is now folklore in the software engineering community: It has been
well-studied and well-documented. Of course more research in this field is
certainly useful (see for example the work on ownership type systems [17]),

4Notice that, in this case, the semantics of the pre-condition is close to one of a guard.

24

but we believe that this does not address a problem which is characteris-
tic of ERP systems. Once again, we believe that the main characteristic of
ERP systems is the difficulty to anticipate the future needs for customization
accurately.

What about Versioning Systems? Versioning systems bear some resem-
blance with our work but have a more textual approach to code evolution.
Versioning systems rely on a “diff” program to show the difference between
two files [16]. One can consider diff as a more general approach to what
we have described: Using diff any text files can be compared, whether it is
source-code or not. By targeting only .NET languages, we can implement
some useful specific functionalities: For example, our use of delegates to
denote typed expressions in our code queries, or simply ignoring irrelevant
differences between code queries and the base code (such as lines indenta-
tion). An alternative approach to our work could have been to conceive a
special version of an existing versioning system and specialize it to deal only
with C# code. We decided for different approach which makes extensive use
of the existing .NET infrastructure (re-use of the existing compilers, etc.).

Is there some connection with Software Product Lines? A part of the soft-
ware engineering community now focus on a line of research called software
product lines (SPL). The goals behind SPLs bears some similarities with our
work: Both allow for the customization of software systems by third-parties.
Nonetheless, there is one fundamental difference: SPLs have a close-world
assumptions. That is, the SPL community usually assumes that the set of
possible customizations is well-known in advance, by a central agent such as
chief architect [19]. ERP systems cannot rely on this assumption, see Section
1.3. From this perspective ERP systems are not SPLs.

Is this aspect-oriented programming? According to Filman and Friedman
aspect-oriented programming (AOP) is quantification and obliviousness [10].
The code-query by example of our framework provides quantification: The
result of the code queries are the joint-points in AOP parlance. Obliviousness
is achieved when the programmers should not be required to insert join-
points markers into they source code. Our approach provides obliviousness
since no special markers are introduced. According to this definition, our
framework is AOP, and code query by example is a point-cut language.

What seems to be, at this point, the pros and cons? It is still early to give a
precise evaluation of our approach, since we are designing and developing
the framework and experimenting with the expressiveness of the code query
primitives. Nonetheless, we would like to emphasize the following pros and
cons that seem, a priori, to characterize the framework. First, ease-of-use is

25

an important aspect of this work: The programming primitives are simple;
they do not force domain experts to think at a meta-level and do not force
them to learn a complete new language; partners can think at the level of
abstraction they are used to, using for a great part the same high-level lan-
guage that they already know – They do not say what they want to customize
but they show it. Second, adoption of our approach is completely incremen-
tal (no change is required to the existing code base). This is important since
many software products such as Dynamics have a very large existing code
base. Third, partners have control over the discussed precision-versus-recall
trade-off by adding more or less context code to their query, and by abstract-
ing more or less the code queries using delegates. An other positive aspect of
our approach is that we are re-using extensively existing .NET technologies:
For example, we rely on the standard .NET compiler for C# or VB.NET, which
means that support for the next version of these languages is much simpli-
fied. One issue is that we have to support the evolution of the intermediate
language (IL), but the recent history has shown that IL evolves at a slower
pace than high-level languages. The approach seems to allow for fast code
queries, but this has to be confirmed by experimentation. Also, it seems that
the framework supports almost out of the box many high-level languages
that were written for the .NET platform, since most of the work is done at
IL level. Customizations can be further customized but it is not clear at this
point how convenient this is. The main con seems to be that query is mainly
done by matching code patterns, and it is not clear how convenient this is to
denote complex variability points. Nonetheless, we hope that this potential
issue could be addressed by what we called behavioral customizations, see
Section 6.

8 Conclusions

We described the upgrade problem and we emphasized that anticipation, one
of the pillars of modern software engineering technology, is not completely
adequate for modern ERP systems. We presented the Eggther customiza-
tion framework that mitigates the upgrade problem while at the same time
allowing for un-anticipated and fine-grained customizations. We introduced
precision and recall as two useful measures for exactness and completeness.
We gave an outline of the implementation and presented the pros ans cons
of our main design decisions. After a discussion we briefly introduced some
future work, and finally we mentioned some related research.

Acknowledgments

We would like to thanks Antonio Cisternino with whom we developed many
of the ideas during a stay at University of Pisa. This stay was made possible

26

thanks to the kind invitation of Egon Börger. Thanks to Peter Sestoft, Yvonne
Dittrich, and Morten Rhiger for their help and support. This work takes place
under the umbrella of the Evolvable Software Project, and is sponsored by
NABIIT under the Danish Strategic Research Council, Microsoft Development
Center Copenhagen, DHI Water and Environment, and the IT University of
Copenhagen.

References

[1] ABADI, M., AND CARDELLI, L. A Theory of Objects. Springer-Verlag,
1996. 24

[2] BAEZA-YATES, R., AND RIBEIRO-NETO, B. Modern Information Retrieval.
Addison-Wesley, 1999. 18

[3] BARNETT, M., LEINO, K. R. M., AND SCHULTE, W. The Spec# program-
ming system: an overview, 2005. 24

[4] BILLE, P. A survey on tree edit distance and related problems. Theoreti-
cal Computer Science 337, 1-3 (2005), 217–239. 22

[5] CASTAGNA, G. Covariance and contravariance: Conflict without a cause.
ACM Transactions on Programming Languages and Systems 17, 3 (May
1995), 431–447. 24

[6] DITTRICH, Y., AND VAUCOULEUR, S. Customizing and upgrading ERP
systems: a reality check. Tech. Rep. TR2008-105, IT University of
Copenhagen, 2008. 7

[7] DITTRICH, Y., AND VAUCOULEUR, S. Practices around customization of
standard systems. 7

[8] ECMA. ECMA-335: Common Language Infrastructure (CLI), second ed.
European Association for Standardizing Information and Communica-
tion Systems, 2002. 11, 14, 15, 21

[9] ECMA. ECMA-334: C# Language Specification. European Association
for Standardizing Information and Communication Systems, 2005. 9,
11, 14, 15, 16, 21

[10] FILMAN, R. E., AND FRIEDMAN, D. P. Aspect-Oriented Programming
Is Quantification and Obliviousness. Addison-Wesley, Boston, 2005,
pp. 21–35. 25

[11] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994. 21

27

[12] GREEF, A., ET AL. Inside Microsoft Dynamics AX 4.0. Microsoft Press,
2006. 2

[13] HANSEN, P. B. Structured multiprogramming. Commun. ACM 15, 7
(1972), 574–578. 24

[14] HOARE. An axiomatic basis for computer programming. CACM: Commu-
nications of the ACM 26 (1983). 23

[15] LEAVENS, G. T., POLL, E., CLIFTON, C., CHEON, Y., RUBY, C., COK,
D. R., MÜLLER, P., KINIRY, J., CHALIN, P., AND ZIMMERMAN, D. M. JML
Reference Manual. May 2008. 24

[16] MACKENZIE, D., EGGERT, P., AND STALLMAN, R. Comparing and Merging
Files With Gnu Diff and Patch. 2002. 25

[17] MÜLLER, P., POETZSCH-HEFFTER, A., AND LEAVENS, G. T. Modular
invariants for layered object structures, 2006. 24

[18] OSSHER, H., AND TARR, P. Multi-dimensional separation of concerns
and the hyperspace approach. In Symposium on Software Architectures
and Component Technology: The State of the Art in Software Development
(2000). 5

[19] SESTOFT, P., AND VAUCOULEUR, S. Evolvable software products. In
Springer LNCS volume Advances in Software Technology (2008). 2, 3, 4,
5, 6, 25

[20] SHANKS, G., SEDDON, P. B., AND WILLCOCKS, L. P. Second-wave Enter-
prise Resource Planning Systems. Cambrige Press, 2003. 2

[21] STUDEBAKER, D. Programming Microsoft Dynamics NAV. Packt Publish-
ing, 2007. 2

[22] VAUCOULEUR, S., AND EUGSTER, P. Atomic features. In OOPSLA Work-
shop on Synchronization and concurrency in object-oriented languages
(SCOOL) (2005). 24

28

	Introduction
	ERP systems
	Definitions
	The Crystal ball assumption
	Anticipation is not a panacea
	Considering a simple approach
	The upgrade problem

	Empirical grounds
	Eggther framework
	Overview of the approach
	Code queries
	Customization code
	Interrupting the flow of control
	Unit testing
	Stateful customizations
	Extension of customizations

	Exactness and completeness of code queries
	Precision and recall
	Precision, recall and code queries
	Exactness and completeness problems upon upgrade
	Giving control back to the partners

	Implementation aspects
	General design choices
	Advantages
	User interface

	Further work
	Non-Boolean matching
	Partial ordering of customizations
	Toward behavioral customizations

	Discussion and Related work
	Conclusions

