
Data Analysis

Michael Nissen & Ken Friis Larsen

October 21, 2007



Abstract

We present the language FunSETL. FunSETL is a small functional language for capturing the
essence of report generation programs in Enterprise Resource Planning (ERP) systems. The
purpose of FunSETL is twofold: First, we use it as a mean to understand how to optimize
report generation functions with automatic incrementalization in ERP systems. Second, we
hope to gain insights about how to design a domain specific language for report generation.
In this paper we describe the current status of our project.



Data Analysis 1 INTRODUCTION

1 Introduction

Todays ERP systems like Microsoft Dynamics AX and Navision use multi purpose program-
ming languages and/or SQL queries to express reports, where reporting essentially means
computing (simple) functions on large amount of data. In Dynamics AX the multi purpose
language X++ (see [1][p.91-118]) is used to express reports and in Navision C/AL (see [2])
is used. Both X++ and C/AL are state based (imperative) programming languages, which
makes them even more unfit to express reports on data, since a declarative approach seams
more intuitive. Increasing competition in the business field and rapidly growing amount of
data in ERP systems has dictated the need for faster computation of reporting functions and
real time access to the results of all reports, ie. real time access to business intelligence.
General purpose languages are used in ERP systems because sometimes SQL is not expressive
enough to support a specific report. Therefore we suggest that ERP systems should contain
a domain specific language in which to express reports, ie. a language that has the power of
SQL and furthermore it should also be able to express the reports that SQL can not.
In order to increase the computation speed of reports, we would like to be able to make
automatic incrementalization of reporting functions, ie. new versions of the reporting func-
tions, that does not need to traverse all data every time they are computed, which should be
transperant to the user. Therefore it becomes crucial to limit the reporting language to only
the necessary constructs.
We have defined a small functional language called FunSETL with the following properties:

1 It is a functional language.

2 It is strongly normalizing, ie. every program always terminates.

3 It is possible to represent and iterative over large amount of data.

ad 1: The language is made functional (declarative), since this seems more intuitive when
expressing reports.
ad 2: This is a reasonable requirement, since all reporting programs should terminate with a
result.
ad 3: This property is very central, when we need to compute functions over large collections
of data.
The above criteria only apply to the pure FunSETL language, ie. it is possible for the pro-
grammer to call external methods and programs, and thereby bypass the FunSETL properties.
In order to ensure usability of the language we have integrated it with .NET by compiling
FunSETL code to C# code.

1 Michael Nissen & Ken Friis Larsen



Data Analysis 2 DATA ANALYSIS

2 Data Analysis

In an ERP system we need a module that can perform computational tasks e.g. data analysis
on the data stored by the ERP system (ie. computing reports).
This section will describe how our data analysis module will look like, both from a users
perspective and “under the hood” (internally). A very simplified conceptual model of the
architecture of our ERP system is shown in figure 1, page 3.
The following sections will describe the architecture and how the data analysis module should
interact with the users and database, and how it works internally.

2.1 Architecture

In the heart of the architecture we have a database of events, ie. a log of everything that has
happened. Events can be committed by users (note that in this context users also can be
other automated systems) and they are filtered by a module called Filtering & Decoration,
which will not be described here, but the module either accepts an event and commits it to
the database or rejects the event and informs the user.
When an event is committed to the database it is also passed to the data analysis module,
ie. every newly committed event is passed to the analysis module when it is committed by
the Filtering & Decoration module.
This means that the data analysis module has access to all information at commit time.
Later we will get back to why this is important.
A user can interact in two ways with the Data analysis module. Either the user can commit
a report to the module, which is then stored in the report repository, or the user can request
the result of a report computed on the current event database.
In our context a report is a program written in a report language called FunSETL, which is
a declarative programming language. Section 3, page 4 will give a description of FunSETL.
Furthermore it should be noted that conceptually current ERP systems could be considered
as the event database and the filtering and decoration module, and where we have a monotone
growing event log. This means that the data analysis module can be considered as a plug-in
for current ERP systems.

2.2 Data Analysis “under the hood”

The data analysis module contains a report repository where all reports that needs to be
computed are stored.
When a report is committed it is then automatically incrementalized, ie. it is transformed into
a new report, that hopefully will not need to traverse all the data in the event database every
time it is computed. In Section 4, page 7 there will be an explanation of incrementalization
and the advantages it gives us. The analysis module then incrementally maintains in real
time the results of the reports in the repository based on the events that are continuously
added to the event database, and handed to the analysis module. This means that we have
real time access to the results of all the reports.
Furthermore all the advanced incrementalization stuff is transparent to the user, since the
user only sees the declarative specification of the report that he/she writes, and then the
result of the report, when it is requested. The automatically incrementalized versions of the
reports are only used internally in the Data analysis module to provide real time access to

2 Michael Nissen & Ken Friis Larsen



Data Analysis 2 DATA ANALYSIS

Figure 1: Overview of Architecture

the results of the reports in the repository.

3 Michael Nissen & Ken Friis Larsen



Data Analysis 3 FUNSETL

3 FunSETL

As said in the previous section FunSETL is a declarative (functional) language, which means
that the language does not contain statements but only expressions. The syntax of FunSETL
is described by grammars in Backus Naur Form (BNF). Before we can define the syntax of
expressions we need to define the syntax of types, since types are used in expressions.

Definition 3.1 Type syntax.
Let TV ar be an infinite set of type names. Then the syntax of FunSETL types can be expressed
by the following grammar written in BNF:

τ ::= id | bool | int | real | date | τ1 + τ2 | {lab1 : τ1, . . . , labk : τk} | map(τ1, τ2) | mset(τ)

where k ≥ 1 and id ∈ TV ar.

As usual id are type identifiers and int, real and date are the types for integers, real numbers
and dates. τ1 + τ2 is the sum-type and {lab1 : τ1, . . . , labk : τk} is the record type. Elements
of map(τ1, τ2) are finite maps that map elements of type τ1 to elements of τ2, and mset(τ)
is the type for multi-sets of elements of type τ .
The typeidentifiers are only included, such that it is possible to make shorthands for types, ie.
before writing any FunSETL code one can make typedeclarations in the form type id = τ .
Now we are able to define the syntax of FunSETL expressions.

Definition 3.2 Expression Syntax.
Assume V ar is a set of identifiers, FV ar is a set of function identifiers, N is the set of (syn-
tactic) integers and R is the set of (syntactic) reals. The syntax of the FunSETL expressions
(production e) is described by the following grammar written in BNF:

c ::= n | r | yyyy −mm− dd | true | false
binop ::= + | − | ∗ | / | = | <= | < | and | or | with | inter | union | diff | in | subset

unop ::= not | dom | toSet

e ::= x | e1 binop e2 | unop e | inL(e) as τ | inR(e) as τ |
valL(e) | valR(e) | {lab1 := e1, . . . , labk := ek} | #lab(e) | f(e1, . . . , em) |
[] as τ | e[e′] | e[e1 → e′

1] |
{} as τ | if e1 then e2 else e3 | foreach (a, b → e1) e2 e3 | let x = e1 in e2 end

where k ≥ 1, m ≥ 0, n ∈ N , r ∈ R, x ∈ V ar and f ∈ FV ar.

Before we continue to the type-system and the semantics, let us make an informal description
of the language constructs.
Simple Constants: n denotes integers, r denotes reals, yyyy −mm− dd denotes dates and
true and false are the boolean values.
Arithmetic operators: e1+e2, e1−e2, e1/e2 and e1∗e2 are the usual arithmetic expressions
the operators and can only be applied to integers and reals.
Logical operators: e1 and e2, e1 or e2 and not e has the usual semantics and these opera-
tors can only be applied to boolean expressions.
Comparison operators: e1 = e2 denotes equality of e1 and e2 and equality can only be
applied to expressions of type integer, real, boolean or date. e1 <= e2 and e1 < e2 are the

4 Michael Nissen & Ken Friis Larsen



Data Analysis 3 FUNSETL

“less than equal” and “less than” operators and they can only be applied to integers and
reals.
Sum-type construction/destruction: The inL(e) as τ and inR(e) as τ are the sum-type
constructors. τ should have the form τ1 + τ2 and inL(e) as τ1 + τ2 constructs something of
type τ1 + τ2 if e has type τ1. Symmetrically for inR(e). valL(e) returns the value v if e
evaluates to inL(v). Symmetrically for valR(e).
Record construction/destruction: As usual {lab1 := e1, . . . , labk := ek} denotes the
construction of a record with fields lab1, . . . , labk and #lab(e) returns the lab field of e if e
evaluates to a record with a field named lab.
Function Application: As usual f(e1, . . . , en) denotes the application of function f on ar-
guments e1, . . . , en.
Multi-sets: {} as mset(τ) denotes the construction of an empty multi-set, where added
elements should have type τ . e1 with e2 means the resulting multi-set of adding element e2

to the multi-set e1. e1 inter e2, e1 union e2 and e1 diff e2 means the intersection, union and
difference of multi-sets e1 and e2. e1 in e2 returns whether or not element e1 is in multi-set
e2 and e1 subset e2 return whether or not multi-set e1 is a subset of multi-set e2.
Finite Map: [] as map(τ1, τ2) denotes the construction of an empty finite map from ele-
ments of type τ1 to elements of type τ2. e[e′] is the lookup operation on a finite map, ie. if
e′ evaluates to v′ and e evaluates to a finite map with a binding on v then the binding of
v is returned. e[e1 → e2] denotes the update operation on finite maps, ie. the finite map
e is updated (overwritten if a binding already exists) with the binding of e1 to e′

1. dom(e)
returns a multi-set consisting of all elements in the domain of the finite map e and toSet(e)
returns a multi-set of pairs, where each pair denotes a binding from argument to value in the
finite map e.
Conditional: if e1 then e2 else e3 denotes the usual conditional expression.
Iteration: foreach (a, b → e1) e2 e3 is like the usual fold-left from SML (see [3][p. 145-148]).
Hence a, b → e1 should be viewed as a lambda expression, ie. an anonymous function with
arguments a and b and function body e1. b is the accumulating parameter with starting value
e2 and the anonymous function is then folded over the multi-set e3.
Let: let x = e1 in e2 end denotes the computation of e1, where the result is bound to x and
x can then be used in e2.
Fixme: Sig at man skal bruge kommutative funktioner idet der anvendes multisets. Fortæl
hvorfor sproget ikke indeholder lister i stedet (lettere inkrementalisering).
Furthermore we define some extra constructs on finite maps, which are just syntactic sugar
on some of the existing constructs:
Syntactic sugar: [e1 → e′

1, . . . en → e′
n] as map(τ1, τ2) is just syntactic sugar for ([] as map(τ1, τ2))[e1 →

e′
1] . . . [en → e′

n] and e[e1 → e′
1, . . . , en → e′

n] is syntactic sugar for e[e1 → e′
1] . . . [en → e′

n].
Now we can define the syntax for FunSETL programs.

Definition 3.3 Program Syntax.
The production fdecl describes FunSETL function declarations and p describes FunSETL pro-
grams.

fdecl ::= fun id(x1 : t1, . . . , xk : tk) = e

p ::= fdecl1 . . . fdecln

where k ≥ 0 and n ≥ 1.

5 Michael Nissen & Ken Friis Larsen



Data Analysis 3 FUNSETL

A FunSETL program is a series of function declarations. In reality we would like a program
to be a series of function declarations together with an expression, that can make use of the
declared functions. So typically we will refer to a series of declarations and an expression to
be a program, but in order to handle theoretical issues better the definition of a program is
just a series of function declarations.

6 Michael Nissen & Ken Friis Larsen



Data Analysis 4 INCREMENTAL FUNCTIONS

4 Incremental functions

In this section we will see what is meant by a functions incremental counterpart. This will be
described together with a few examples on incremental programs.
Furthermore it will described why incremental programs are interesting in relation to ERP
systems.

4.1 Definition of incremental functions

Let us first define what is meant by an incremental function:

Definition 4.1 Incremental function.
Assume f is a function and ⊕ an update operation then a program f ′ that computes f(x⊕ y)
by making use of the value of f(x) is called an incremental function (incremental version of
f with respect to the update operation ⊕). Furthermore we also allow that the incremental
version makes use of the original input. Hence we want the following implication to hold for
all x, all y and all r:

r = f(x) ⇒ f ′(x, y, r) = f(x⊕ y)

The definition above may be extended, because in some cases the intermediate results of the
computation of f(x) can be used in an incremental computation of f(x ⊕ y), but for now it
is sufficient with the above definition.
Furthermore the definition says nothing about the running time of the functions and their
incremental counterparts, but the idea is that by incrementalizing a function we should gain
an asymptotic speedup in the computation time when we try to compute f(x⊕ y) from f(x).
Let us now see an example of function and its incremental counterpart.

Example 4.2 Below we see a function sum which computes the sum of the elements of a
multi-set of integers.
1: fun sum(numbers : mset(int)) = foreach (a, b → a + b) 0 numbers

We want to incrementalize this function such that, if we add one element to the multi-set of
integers then we can compute the sum of all the elements in the new multi-set, based on the
new element and the sum of all the old elements.
Ie. we incrementalize with respect to the update operation with on multi-sets and get the
following function
1: fun sum′(numbers : mset(int), y : int, r : int) = r + y

Let us now discuss the example informally.
Using any reasonable measure of running time of FunSETL programs, we would expect that
the sum function has running time proportional to the number of elements in the multi-set.
Furthermore we would expect that the sum′ function can be computed in constant time,
since we only have one arithmetic operation, ie. we have gained an asymptotic speedup in
computation time when trying to compute sum(x with y) if we already know the value of
sum(x) (otherwise we have gained nothing).

4.2 Automatic incrementalization

As we saw above, we could hand code an incremental version of a function with respect to
some update operation, but it would be really interesting, if we could automatize the process

7 Michael Nissen & Ken Friis Larsen



Data Analysis 4 INCREMENTAL FUNCTIONS

of incrementalization of FunSETL functions.
There has been made a lot of work in the field of incrementalization of programs, where
semantics preserving transformations are used to construct the incremental counterpart of a
function. Among the most interesting work can be mentioned [4] and [5].
In [4] there is a description of an incrementalization process for a functional language with
mutual recursion, ie. a language which is more general that FunSETL. The incrementalization
process is split in three steps:

i Caching all intermediate results.

ii Incrementalization

iii Pruning

The incrementalization process incrementalizes a program with respect to a given operation.
ad i: In the hand coded example we saw earlier, we did not use any intermediate results, but
they can often be used when trying to make a more efficient version of a program, fx. when
computing the average of a multi-set of integers. When adding an element to the multi-set
we are not able to compute the new average from the old average and the recently added
element. Hence this part of the process produces from a function f a new function f̂ , which
returns the return value of f together with the intermediate results computed by f .
ad ii: This step incrementalizes the function f̂ from the previous step, with respect to an
update operation ⊕. This step is performed by doing semantics preserving program transfor-
mations and by using the intermediate results. The result of this stage is called f̂ ′

ad iii: In this stage the intermediate results, which are not used by f̂ ′ will be removed pro-
ducing a new function f ′, which is a incremental version of f returning only the necessary
intermediate results in order to compute efficiently.

Steps i and iii can be made fully automatic, but step ii is a bit more involved. Depend-
ing on how powerful the incrementalizer engine will be made it will vary from automatic to
semi-automatic. Our hope is that because we have chosen a language without full recursion
then it will be possible to make an incrementalizer which is very powerful and fully automatic.

4.3 Incremental functions in ERP systems

In this section we will discuss why incremental computations is interesting in relation to ERP
systems.
ERP systems contains a lot of reports that presents the computation of some analytical/fi-
nancial function. Typically these functions are computed by iterating over large collections of
data (usually all the rows from a big database table), and it is suitable to make incremental
versions of functions like these.
In section 5 we will see an implementation of the Microsoft Dynamics AX financial state-
ment in FunSETL. There are many advantages when using incremental computations and
automatic incrementalization. Among the most important we have:

• Efficiency improvement on programs.

• Simpler looking programs.

8 Michael Nissen & Ken Friis Larsen



Data Analysis 4 INCREMENTAL FUNCTIONS

• Reduce the number of errors induced by humans.

• Gain reduction in programming time.

As we have seen in the small example, a program running in linear time have an incremental
counterpart, which run in constant time. This seems to be the case with many computations
in ERP systems, since many reports does not have internal dependencies between the data
when a report is computed. This means that, if the incremental counterpart is used we can
get real time computations of many reports in ERP systems, which today is usually computed
by a nightly bachrun. Hence if the incremental programs are used, one will also be able to
set alerts and put triggers on reports, since they are computed in real time and on the fly.
Furthermore if automatic incrementalization techniques are used, another side-effect will be
that we get simpler looking programs, because the incrementalizing software can be used as
a front-end to the compiler and hence we do not need to look at the incrementalized code.
Automatic incrementalization will probably also lead to fewer programming errors and a
reduction in programming time, since the non-incremental programs are often easier to write.

9 Michael Nissen & Ken Friis Larsen



Data Analysis 5 APPLICATION OF FUNSETL

5 Application of FunSETL

This section will show how the Financial statement from Microsoft Dynamics AX can be
implemented in FunSETL.

5.1 Microsoft Dynamics AX Financial Statement

The Microsoft Dynamics AX ERP system contains a database with a lot of tables, and the
Financial statement makes use of only a couple of these tables.
The Financial statement is in principle an aggregate function, which aggregates information
on different financial accounts. Dynamics AX has an accounting system where accounts are
numbered from 0 and up. The financial statement computes the following information

• Sumclass computations (balance of account intervals X000−X999, where X = 1, 2, 3, 4, 5, 6, 7, 8
and from 9000 and up. These summation data are named SumclassX for each X.

• Assets and liabilities

• Other summation data.

All these numbers have in common that they are aggregate information on the Microsoft
Dynamics AX table, which contains all transactional data on the different accounts in the
system.

5.2 Implementation of Financial Statement in FunSETL

In Section B, page 13 we see an implementation of the financial statement function which is
computed by Microsoft Dynamics AX 4.0.
The FunSETL implementation is based on the code which can be viewed from Microsoft
Dynamics Application Object Tree.
However we have made a couple of simplifications, since the database table containing all
the transactional data contains more columns than necessary when computing the Financial
statement.
Therefore we have made a projection on the transaction table, such that each transaction
only contains accountnr, amount and date. accountnr is the number of the account where
there has been made a transaction of amount on date.

5.3 Data used in testing

We have retried a real dataset from a company, where the transaction table contains more
than 200.000 entries.

10 Michael Nissen & Ken Friis Larsen



Data Analysis 6 SUMMARY & FUTURE WORK

6 Summary & Future work

In this paper we have given a rough sketch of the architecture of the next generation of ERP
systems.
Particularly we have been interested in the Data analysis aspect of the ERP system, and how
it should work. Therefore this paper proposes the next generation of ERP systems should
have the following properties:

i There system should contain a domain specific language to express reports, and the
language should be powerful enough to eliminate the need for general purpose languages.

ii The system should support real time access to all business intelligence.

ad i: This paper proposes the language FunSETL described in Section 3, which is thought to
have the desired properties. In section 5 we made an empirical study and implemented an
existing ERP system report using FunSETL and used the implementation of a real dataset.
ad ii: This is the most important property of the system. Microsoft Navision contains some
aspects of this, since some reports are maintained using the SIFT technology. We have pro-
posed a generalization of the SIFT technology.

Currently there exist an implementation of a compiler from FunSETL to C#, ie. FunSETL
runs on .NET. The next steps in the development of the next generation ERP system will be

• Implement a prototype of the architecture.

• Develop incrementalization tools.

11 Michael Nissen & Ken Friis Larsen



Data Analysis REFERENCES

A Literature

References

[1] [GPO+06] Inside Microsoft Dynamics AX 4.0
Arthur Greef, Michael Fruergaard Pontoppidan, Lars Dragheim Olsen, and experts from
the Microsoft Dynamics AX team
ISBN: 0-7356-2257-4
Microsoft Press

[2] http://www.consultec.es/DocTutoriales/Introduction to CAL Programming.pdf

[3] [HR99] Introduction to Programming Using SML
Michael R. Hansen & Hans Rischel
ISBN: 0-20139820-6
Biddles Ltd., Guildford and King’s Lynn

[4] [LST98] Static Caching for Incremental Computation
Yanhong A. Liu, Scott D. Stoller & Tim Teitelbaum
ISSN: 0164-0925
ACM Press

[5] [RP81] Formal Differentiation: A Program Synthesis Technique
Robert Paige
ISBN: 0-83571213-3
UNI Research Press

12 Michael Nissen & Ken Friis Larsen



Data Analysis B FINANCIAL STATEMENT

B Financial statement

1 type event = {accountnr : int , amount : r ea l , time : date}
type event s e t = mset ( event )
type i n t e r v a l = { s t a r t da t e : date , enddate : date}
type classmap = map( int , r e a l )

6 fun i n I n t e r v a l ( e : event , I : i n t e r v a l ) =
#s ta r tda t e ( I ) <= #time ( e ) and #time ( e ) <= #enddate ( I )

fun akt iv ( e : event , I : i n t e r v a l ) =
l e t

11 accnr = #accountnr ( e )
in

i f ( (0 <= accnr and accnr <= 449) or
(451 <= accnr and accnr <= 539) or
(541 <= accnr and accnr <= 679) or

16 (681 <= accnr and accnr <= 2999)) and
i n I n t e r v a l ( e , I )

then #amount ( e )
else 0 .0

end
21

fun ak t i v e r (E : eventset , I : i n t e r v a l ) =
fo r each (a , b => b + akt iv (a , I ) ) 0 . 0 E

26
fun pas s i v ( e : event , I : i n t e r v a l ) =

l e t
accnr = #accountnr ( e )

in
31 i f ((3000 <= accnr and accnr <= 3999) or

(9000 <= accnr and accnr <= 999999)) and
i n I n t e r v a l ( e , I )

then #amount ( e )
else 0 .0

36 end

fun pa s s i v e r (E : eventset , I : i n t e r v a l ) =
fo r each (a , b => b + pas s i v (a , I ) ) 0 .0 E

41

fun aufwandSub ( e : event , I : i n t e r v a l ) =
l e t

accnr = #accountnr ( e )
46 in

i f ( accnr = 450 or
accnr = 540 or
accnr = 680 or
(5000 <= accnr and accnr <= 7999) or

51 (8110 <= accnr and accnr <= 8299) or
(8351 <= accnr and accnr <= 8357) or
accnr = 8500) and

i n I n t e r v a l ( e , I )
then #amount ( e )

56 else 0 .0
end

fun aufwand (E : eventset , I : i n t e r v a l ) =
fo r each (a , b => b + aufwandSub (a , I ) ) 0 .0 E

61
fun ertragSub ( e : event , I : i n t e r v a l ) =

l e t
accnr = #accountnr ( e )

in
66 i f ((4000 <= accnr and accnr <= 4999) or

(8010 <= accnr and accnr <= 8100) or
accnr = 8300 or
accnr = 8400 or
accnr = 8450 or

71 (8600 <= accnr and accnr <= 8970)) and
i n I n t e r v a l ( e , I )

then #amount ( e )
else 0 .0

end
76

fun e r t r ag (E : eventset , I : i n t e r v a l ) =

13 Michael Nissen & Ken Friis Larsen



Data Analysis B FINANCIAL STATEMENT

f o r each (a , b => b + ertragSub (a , I ) ) 0 .0 E

81 fun bestandsKontenSub ( e : event , I : i n t e r v a l ) =
l e t

accnr = #accountnr ( e )
in

i f ( (0 <= accnr and accnr <= 449) or
86 (451 <= accnr and accnr <= 539) or

(541 <= accnr and accnr <= 679) or
(681 <= accnr and accnr <= 3999)) and

i n I n t e r v a l ( e , I )
then #amount ( e )

91 else 0 .0
end

fun bestandsKonten (E : eventset , I : i n t e r v a l ) =
fo r each (a , b => b + bestandsKontenSub (a , I ) ) 0 . 0 E

96
fun er fo lgsKontenSub ( e : event , I : i n t e r v a l ) =

l e t
accnr = #accountnr ( e )

in
101 i f ( accnr = 450 or

accnr = 540 or
accnr = 680 or

(4000 <= accnr and accnr <= 8999)) and
i n I n t e r v a l ( e , I )

106 then #amount ( e )
else 0 .0

end

fun er fo lg sKonten (E : eventset , I : i n t e r v a l ) =
111 fo r each (a , b => b + erfo lgsKontenSub (a , I ) ) 0 .0 E

fun ge tC la s s ( e : event ) =
116 l e t

accnr = #accountnr ( e ) / 1000
in

i f accnr <= 9
then accnr

121 else 9
end

fun SumClassesSub ( e : event , I : i n t e r va l , f : c lassmap ) =
i f i n I n t e r v a l ( e , I )

126 then let
c = getC la s s ( e )

in
f [ c −> f [ c ] + #amount ( e ) ]

end
131 else f

fun SumClasses (E : eventset , I : i n t e r v a l ) =
fo r each ( e , f => SumClassesSub ( e , I , f ) ) ( [ 0 −> 0 . 0 , 1 −> 0 . 0 , 2 −> 0 . 0 ,

3 −> 0 . 0 , 4 −> 0 . 0 , 5 −> 0 . 0 ,
136 6 −> 0 . 0 , 7 −> 0 . 0 , 8 −> 0 . 0 ,

9 −> 0 . 0 ] as classmap ) E

141 fun sumAmountsSub( e : event , I : i n t e r v a l ) =
i f i n I n t e r v a l ( e , I )
then #amount ( e )
else 0 .0

146 fun sumAmounts (E : eventset , I : i n t e r v a l ) =
fo r each ( e , s => s + sumAmountsSub( e , I ) ) 0 .0 E

fun nrOfEventsSub ( e : event , I : i n t e r v a l ) =
i f i n I n t e r v a l ( e , I )

151 then 1 .0
else 0 .0

fun nrOfEvents (E : eventset , I : i n t e r v a l ) =
fo r each ( e , c => c + nrOfEventsSub ( e , I ) ) 0 . 0 E

156

14 Michael Nissen & Ken Friis Larsen



Data Analysis B FINANCIAL STATEMENT

fun getReturn ( aa : r ea l , ab : r e a l ) =
i f ab = 0 .0
then 0 .0

161 else aa / ab

fun averageAmount (E : eventset , I : i n t e r v a l ) =
l e t suma = sumAmounts (E, I ) in
let nre = nrOfEvents (E, I ) in

166 getReturn (suma , nre )
end end

fun Financ ia lStatement (E : eventset , I : i n t e r v a l ) =
171 l e t f = SumClasses (E, I ) in

let ak t i v e r = ak t i v e r (E, I ) in
let pa s s i v e r = pa s s i v e r (E, I ) in
let aufwand = aufwand (E, I ) in
let e r t r ag = e r t r ag (E, I ) in

176 l e t bestandskonten = bestandsKonten (E, I ) in
let e r f o l g s kon t en = er fo lg sKonten (E, I ) in
let average = averageAmount (E, I ) in
{SumClass0 := f [ 0 ] ,
SumClass1 := f [ 1 ] ,

181 SumClass2 := f [ 2 ] ,
SumClass3 := f [ 3 ] ,
SumClass4 := f [ 4 ] ,
SumClass5 := f [ 5 ] ,
SumClass6 := f [ 6 ] ,

186 SumClass7 := f [ 7 ] ,
SumClass8 := f [ 8 ] ,
SumClass9 := f [ 9 ] ,
Akt iver := akt iver ,
Pas s ive r := pas s ive r ,

191 Aufwand := aufwand ,
Ertrag := ert rag ,
BestandsKonten := bestandskonten ,
Erfo lgsKonten := er f o l g skonten ,
Average := average }

196 end end end end
end end end end

let sdate = { s t a r t da t e := 2007−05−05, enddate := 2007−06−05} in
201 l e t e s e t = {{ accountnr := 12 , time := 2010−05−07, amount := 15 .0} ,

{accountnr := 1200 , amount := 17 .0 , time := 2007−05−07} ,
{amount := 19 .0 , accountnr := 2212 , time := 2007−05−07} ,
{amount := 150 .0 , time := 2007−05−07, accountnr := 3000} ,
{ time := 2007−05−07, accountnr := 4000 , amount := 15 .0} ,

206 { time := 2007−05−07, amount := 15 .0 , accountnr := 5000} ,
{accountnr := 6000 , amount := 15 .0 , time := 2007−05−07} ,
{accountnr := 7000 , amount := 15 .0 , time := 2007−05−07} ,
{accountnr := 8000 , amount := 15 .0 , time := 2007−05−07} ,
{accountnr := 9000 , amount := 15 .0 , time := 2007−05−07} ,

211 {accountnr := 1201 , amount := 7 . 5 , time := 2007−05−07}} as event s e t in
Financ ia lStatement ( eset , sdate )

end
end

15 Michael Nissen & Ken Friis Larsen


