A synthetic axiomatization of Map Theory

Chantal Berlinea, Klaus Grueb,1,*

aCNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
bDIKU, Universitetsparken 1, DK-2100 Copenhagen East, Denmark

Abstract

This paper presents a substantially simplified axiomatization of Map Theory and proves the consistency of this axiomatization in ZFC under the assumption that there exists an inaccessible ordinal.

Map Theory axiomatizes lambda calculus plus Hilbert’s epsilon operator. All theorems of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert’s epsilon operator from Map Theory then one is left with a computer programming language. Map Theory fulfills Church’s original aim of introducing lambda calculus.

Map Theory is suited for reasoning about classical mathematics as well as computer programs. Furthermore, Map Theory is suited for eliminating the barrier between classical mathematics and computer science rather than just supporting the two fields side by side.

Map Theory axiomatizes a universe of “maps”, some of which are “well-founded”. The class of wellfounded maps in Map Theory corresponds to the universe of sets in ZFC. Previous versions of Map Theory had axioms which populated the class of wellfounded maps, much like the power set axiom et.al. populates the universe of ZFC. The new axiomatization of Map Theory is “synthetic” in the sense that the class of wellfounded maps is defined inside Map Theory rather than being introduced through axioms.

Keywords: lambda calculus, foundation of mathematics, map theory

Contents

1 Introduction 4

2 Preview of MT 6

2.1 Relation to ZFC 6

*This document is a collaborative effort.
*Corresponding author
Email addresses: berline@pps.jussieu.fr (Chantal Berline), grue@diku.dk (Klaus Grue)
1Present address: Rovsing A/S, Dyregårdsvej 2, DK-2740 Skovlunde, Denmark

Preprint submitted to Elsevier February 16, 2012
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Recursion</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Russell’s paradox</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Programming</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Informal semantics</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>3.2</td>
<td>Syntax</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>Computation</td>
<td>10</td>
</tr>
<tr>
<td>3.4</td>
<td>Further constructs</td>
<td>11</td>
</tr>
<tr>
<td>3.5</td>
<td>Programs</td>
<td>13</td>
</tr>
<tr>
<td>3.6</td>
<td>Equality</td>
<td>13</td>
</tr>
<tr>
<td>3.7</td>
<td>Extensionality</td>
<td>14</td>
</tr>
<tr>
<td>3.8</td>
<td>Hilbert’s choice operator</td>
<td>14</td>
</tr>
<tr>
<td>3.9</td>
<td>Pure existence revisited</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Axioms and inference rules</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Elementary axioms and inference rules</td>
<td>16</td>
</tr>
<tr>
<td>4.2</td>
<td>Monotonicity and Minimality</td>
<td>16</td>
</tr>
<tr>
<td>4.3</td>
<td>Extensionality</td>
<td>18</td>
</tr>
<tr>
<td>4.4</td>
<td>Axioms on E</td>
<td>19</td>
</tr>
<tr>
<td>4.5</td>
<td>Quantification axioms</td>
<td>20</td>
</tr>
<tr>
<td>4.6</td>
<td>The definition of ψ</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Comparing MT and MT$_0$</td>
<td>23</td>
</tr>
<tr>
<td>5.1</td>
<td>Axioms and rules of MT$_0$</td>
<td>23</td>
</tr>
<tr>
<td>5.2</td>
<td>Axioms and rules of MT</td>
<td>24</td>
</tr>
<tr>
<td>5.3</td>
<td>Proof theoretical strength</td>
<td>25</td>
</tr>
<tr>
<td>5.4</td>
<td>Models of MT versus models of MT$_0$</td>
<td>25</td>
</tr>
<tr>
<td>5.5</td>
<td>Levels of difficulty of the groups of axioms</td>
<td>25</td>
</tr>
<tr>
<td>5.6</td>
<td>Models of subsystems of MT</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Approach</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>The κ-Scott semantics</td>
<td>29</td>
</tr>
<tr>
<td>7.1</td>
<td>Notation</td>
<td>29</td>
</tr>
<tr>
<td>7.2</td>
<td>κ-Scott semantics</td>
<td>29</td>
</tr>
<tr>
<td>7.3</td>
<td>κ-Scott domains</td>
<td>29</td>
</tr>
<tr>
<td>7.4</td>
<td>κ-continuous functions</td>
<td>30</td>
</tr>
<tr>
<td>7.5</td>
<td>Syntactic monotonicity</td>
<td>30</td>
</tr>
<tr>
<td>7.6</td>
<td>κ-open sets</td>
<td>30</td>
</tr>
<tr>
<td>7.7</td>
<td>Reflexive objects and models of pure λ-calculus</td>
<td>31</td>
</tr>
<tr>
<td>7.8</td>
<td>Tarski’s minimal fixed point operators</td>
<td>31</td>
</tr>
</tbody>
</table>
13.9 Proof of the lower bound theorem 61

A Computational properties of canonical pre-models 61
A.1 Introduction of T_c and auxiliary concepts 61
A.2 Parallel constructs ... 62
A.3 Definition of T_p and T_c 63
A.4 Semantic and syntactic existence 64
A.5 Computational adequacy .. 65
A.6 Soundness ... 67
A.7 Full abstraction .. 68
A.8 Negative results ... 68

B Summary of MT 72
B.1 Syntax ... 72
B.2 Definitions ... 72
B.3 Axioms and inference rules .. 73

C Index 74

1. Introduction

Map theory is an axiomatic theory which consists of a computer programming language plus Hilbert’s epsilon operator. All theorems of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert’s epsilon operator from Map Theory then one is left with a computer programming language, c.f. Section 2.4.

Map Theory is suited for reasoning about classical mathematics as well as computer programs. Furthermore, Map Theory is suited for eliminating the barrier between classical mathematics and computer science rather than just supporting the two fields side by side.

The first version of Map Theory [8], which we will call MT$_0$ in this paper, had complex axioms and a complex model. [3] provided a simpler model. The present paper provides a simpler and more synthetic, while more powerful, axiomatization that we will call MT, and proves the consistency of the enhanced system starting from the minimal (or canonical) models of MT$_0$ built in [3].

Map Theory is an axiomatic system, but it does not rely on propositional and first order predicate calculus. Rather, it is an equational theory which relies on untyped lambda calculus. In particular, models of Map Theory are also models of untyped lambda calculus. We shall refer to elements of such models as maps. As for λ-calculus, programming is made possible in Map Theory by the adjunction of compatible reduction rules.

Map Theory generates quantifiers and first order calculus via a construct ε, whose semantics is that of Hilbert’s choice operator acting over a universe ψ of “wellfounded maps”. ε is axiomatized through the “quantification axioms” (four equations).
Apart from \(\varepsilon \), MT and \(\text{MT}_0 \) have in common a few elementary constructs and related axioms which take care of the computational part of Map Theory, and simultaneously bear some other meanings [8]. Some “sugar” has also been added to MT, but this is inessential.

Apart from \(\varepsilon \) and the elementary constructs, \(\text{MT}_0 \) has only one construct \(\phi \), which is in spirit the characteristic function of \(\psi \). \(\text{MT}_0 \) has the power to embody ZFC because \(\phi \) satisfies ten equations, each axiomatizing one, specific closure property of \(\psi \), and it also has one inference rule for wellfoundedness. Having ten axioms, even if most of them are very simple, was acceptable (after all ZFC also has many existence axioms) but not satisfactory in that all the closure properties are instances of a single, although non-axiomatizable, Generic Closure Property (GCP, [3]). GCP was one of the founding intuitions behind Map Theory (c.f. [8]), it was satisfied in our models of \(\text{MT}_0 \), and our desire was to reflect it at the level of syntax.

With the present MT not only do we solve this problem (whence “synthetic”) but also eliminate the construct \(\phi \), the ten axioms, and the inference rule, replacing them by \(\ldots \) nothing (whence “simpler”). Moreover, the new system is stronger than \(\text{MT}_0 \). That one construct, ten axioms, and a rule can be replaced by nothing should be taken with three grains of salt as explained in the following.

The main trick is that we take \(\psi \) to be the smallest universe satisfying GCP, and the characteristic function \(\psi \) of that universe happens to be definable from other MT constructs. The first grain of salt is that when we eliminate \(\phi \), we replace it by \(\psi \) in the quantification axioms. The second grain of salt is that for defining \(\psi \) we need to add a construct \(E \) (“pure existence”) and its related axioms. However, and in contrast to \(\phi \), \(E \) is very simple to describe, to axiomatize, and to model, so the cost of that is small. The third grain of salt is that the definition of \(\psi \) also requires a minimal fixed point operator. Fixed point operators come for free with untyped \(\lambda \)-calculus, but forcing minimality at the level of syntax requires to axiomatize it w.r.t. some pertinent and MT-definable order. This too can be done, and at a rather low syntactic and semantic cost.

Finding the right MT was of course already a challenge, but proving its consistency was another one. Fortunately, the consistency of a system only has to be proved once, while hopefully the system will be used many times, so having a simpler system is a gain, even if its consistency proof is demanding.

To give an idea of the difficulty of finding an appropriate and consistent MT, it is worth to recall here that a first “synthetic” version of MT, called \(\text{MT}_c \), conceived in the same spirit, was present in [9], that many proofs have been developed in it (which should be easy to translate to MT), but that the consistency of \(\text{MT}_c \) is still an open problem. We will soon come back to \(\text{MT}_c \) below.

The consistency proof of MT starts from a (canonical) model of \(\text{MT}_0 \), and then occupies several sections. Not all models of \(\text{MT}_0 \) can be enriched to a model of MT; in fact MT has necessarily much fewer models than \(\text{MT}_0 \).

Section 2 gives a preview of MT. Section 3 presents the semantics of MT informally. Section 4 presents the axioms and inference rules. Section 5 compares
MT to MT$_0$ and discusses the axioms. The remaining sections prove the consistency. Appendix A addresses the adequacy, soundness, and full abstraction of canonical pre-models with respect to the programming language underlying MT. Appendix B summarizes the axioms and rules of MT. Appendix C contains an index.

Relation to other systems

MT$_0$ was the first system fulfilling Church’s original aim at the origin of the creation of (untyped) λ-calculus. Church’s aim was to give a common and untyped foundation to mathematics and computation, based on functions (viewed as rules) and application, in place of sets and membership. As is well known, Church’s general axiomatic system was soon proved inconsistent, but its computational part (the now usual untyped λ-calculus) had an immense impact on computer science. The various intuitions behind Map Theory, its very close links to Church’s system, its advantages w.r.t. ZFC, including an integrated programming language, and a much richer expressive power (classes, operators, constructors, etc. also quite directly live in Map Theory), all this was developed in [3, 8].

For a comparison of Map Theory with other foundational+computational systems see [3, 8] and also Section 2.1 below. For a version of MT$_0$ with anti-foundation axioms a la Aczel [1], see [15, 16].

In the present paper we will hence concentrate on: giving enough of the intuitions on Map Theory to motivate the reader, to deepen the understanding of in which sense MT is an improvement over MT$_0$, and to support the technical developments that we will have to implement in order to prove the consistency of MT. Finally, we will also explore the computational properties of the simplest (“canonical”) models of the equational theory MT, w.r.t. the computational rules which are behind it.

2. Preview of MT

2.1. Relation to ZFC

MT is a Hilbert style axiomatic system which comprises syntactic definitions of terms and well-formed formulas as well as axioms and inference rules.

MT has two terms T and F which denote truth and falsehood, respectively, and MT formulas have form $A = B$ where A and B are MT terms. We shall refer to such formulas as equations.

Set membership of ZFC is definable as a term e of MT such that $e_{xy} = T$ iff the set represented by x belongs to the set represented by y. We shall use the infix notation $x \in y$ for e_{xy}. Also definable in MT are universal quantification \forall, negation \neg, implication \Rightarrow, the empty set \emptyset, and so on.

In MT it is trivial to prove $T = \neg F$ and $F = \neg T$, and one cannot (Theorem 2.1.1) prove $T = F$. For suitable definitions of set membership and so on, each formula A of ZFC becomes a term \tilde{A} of MT. The general idea is that if A holds in ZFC then $\tilde{A} = T$ should hold in MT (Theorem 2.1.2). As an example,
∀x:x∉∅ is a formula of ZFC, ∃x:x∉∅ is the corresponding term of MT, and (∃x:x∉∅) = T holds in MT. The term ∃x:x∉∅ is shorthand for ∃(λx. ¬(x∈∅)). We now make the statements above more precise. Let ZFC+SI denote ZFC extended with the assumption that there exists an inaccessible ordinal. Let σ be the smallest inaccessible. Let ¬SI be the assumption that there exist no inaccessible ordinals. Let Vσ be the usual model of ZFC+¬SI in ZFC+SI. Let M be the canonical model of MT in ZFC+SI built in Section 9. The present paper proves:

Theorem 2.1.1 (Main Theorem). M satisfies all the axioms and inference rules of MT and does not satisfy T = F. This proves the consistency of MT.

For arbitrary, closed formulas A of ZFC we have:

Theorem 2.1.2. Vσ satisfies A iff M satisfies A = T.

Theorem 2.1.2 follows easily from [3, Appendix A.4] and the fact that M builds on top of the model built in [3]. As a technicality, MT and MT₀ have slightly different syntax, but for closed formulas A of ZFC, A only uses constructs common to MT and MT₀, and Theorem 2.1.2 carries over from MT₀ to MT without changing the definition of A.

Conjecture 2.1.3. If A is provable in ZFC+¬SI then A = T is provable in MT.

Conjecture 2.1.3 is supported by the following:

Theorem 2.1.4 ([8]). If A is provable in ZFC then A = T is provable in MT₀.

Theorem 2.1.5 ([9]). If A is provable in ZFC then A = T is provable in MTc where MTc is the version of Map Theory defined in [9].

MTc resembles MT, but all attempts at proving MTc consistent have failed. A proof of (¬SI) = T in MTc should be easy. To prove Conjecture 2.1.3 one has to prove (¬SI) = T in MT and to translate the proof of Theorem 2.1.5 to MT. This remains to be done.

It is not really intended that MT should prove (¬SI) = T; it is rather a side effect. The original MT₀ was designed as “as flexible as ZFC”, and is in particular consistent with SI = T as well as (¬SI) = T. The MT₀ system has a constant φ and a group of φ-axioms which comprises the three wellfoundedness axioms, the seven construction axioms, and the inference rule of transfinite induction of [8]. MT replaces the constant φ by a closed term ψ and omits the φ-axioms. That makes MT more rigid than MT₀ and in particular makes (¬SI) = T provable. The definition of ψ is somewhat analogous to the definition of the minimal Vσ in ZFC (σ the first inaccessible).
2.2. Recursion

MT has a number of advantages over ZFC. One is that it allows to combine unrestricted recursion with arbitrary set constructors. As an example, suppose $x \cup y$, $\bigcup x$, $\{x\}$, and $\{A \mid x \in \mathcal{B}\}$ are the binary union, unary union, unit set, and replacement set operators of ZFC, respectively, translated to MT. One may define the ordinal successor x' thus in MT:

$$x' \equiv x \cup \{x\}$$

And then one may define the set rank operator $\rho(x)$ thus:

$$\rho(x) \equiv \bigcup \{\rho(y) \mid y \in x\}$$

In this paper, \equiv is used for definitions. In MT, definitions are allowed to be recursive like the definition of ρ above where the defined concept ρ appears in the right hand side of its own definition. Recursive definitions in MT are shorthand for direct (i.e. non-recursive) definitions which involve the fixed point operator (c.f. Section 3.2).

ZFC only permits direct definitions and includes no fixed point operator. ZFC permits definition by transfinite induction, which resembles primitive recursion, but does not support unrestricted recursion like MT does.

The definition of ρ in MT above does not rely on ordinals or transfinite induction. Rather, in MT, one may define ρ as above and then use it to define the class Ord of ordinals:

$$\text{Ord}(x) \equiv \exists y : x \in \text{Ord}(y)$$

As another example, in MT we may use Hilbert’s choice operator ε recursively to well-order any set A:

$$f(\alpha) \equiv \varepsilon x : x \in g(\alpha)$$
$$g(\alpha) \equiv A \setminus \{f(\gamma) \mid \gamma \in \varepsilon \alpha\}$$
$$x < y \equiv \exists \alpha : x \in A \setminus g(\alpha) \land y \notin g(\alpha)$$

Above, A is a wellfounded map of MT and $< \varepsilon$ well-orders the set represented by A. $\varepsilon : B$ chooses if possible a wellfounded x such that B is true, c.f. Section 4.5.

2.3. Russell’s paradox

In naïve set theory, define $S \equiv \{x \mid x \notin x\}$ and $\mathcal{R} \equiv S \in S$. We have $x \in S \iff x \notin x$ and $\mathcal{R} \iff S \in S \iff S \notin S \iff \neg \mathcal{R}$ which is Russell’s paradox. The paradox states that negation has a fixed point, which is impossible in a consistent, two-valued logic.

In ZFC, the paradox is avoided by banning S, but that is not an option in MT which allows recursion. As an example, one may define Russell’s paradoxical statement \mathcal{R} thus in MT:

$$\mathcal{R} \equiv \neg \mathcal{R}$$
In MT, if \(R = T \) then \(R = \neg T = F \) and if \(R = F \) then \(R = \neg F = T \) so \(R \) equals neither \(T \) nor \(F \). Indeed, MT has a fixed point operator \(\text{Y} \) and an element \(\bot \) playing, among others, the role of the third logical value “undefinedness”; and it is indeed provable in MT that \(R = \text{Y} \neg = \bot \).

2.4. Programming

Another advantage of MT over ZFC is that if one removes Hilbert’s \(\varepsilon \) from the core syntax of MT then one is left with a Turing complete computer programming language. This language is a type free lambda calculus with uhr-elements and the programs are closed \(\varepsilon \)-free MT-terms.

The present paper is about MT as an equational axiomatic theory. That MT can be used for programming should be seen here as motivation only. When speaking of programming with MT it is understood that we have furthermore included compatible reduction rules (c.f. Section 3.3). We now elaborate on the programming motivations.

Having a computer programming language as a syntactical subset of the theory allows to reason about programs without having to model the programs mathematically. That simplifies the field of program semantics considerably. For a simple example of programming and reasoning in MT, see Example 4.2.1. Map Theory also provides good support for reasoning about languages different from its own.

Since MT contains a computer programming language, a programmer may ask questions like:

- Is is possible to implement arbitrary algorithms efficiently in the language?
- Is it possible to download compiler, linker, and runtime system for the language?
- Is it possible in the language e.g. to receive mouse clicks from a user, to write bytes to a disk, and to display graphics on a screen?

The answers to these questions are yes, c.f. \texttt{http://lox.la/}.

Sections 3.3–3.7 describe the computational aspects of MT. Appendix A proves some results on computational adequacy, soundness, and full abstraction. \texttt{http://lox.la/} elaborates on MT as a programming language.

3. Informal semantics

3.1. Introduction

To introduce ZFC one will typically give some examples of finite sets first. Actually, ZFC is nothing but the theory of finite sets extended by an infinite set \(\omega \). Likewise, MT is nothing but the theory of computable functions extended with Hilbert’s non-computable epsilon operator.
3.2 Syntax

The syntax of variables, terms, and well-formed formulas of MT reads:

\[
\begin{align*}
\mathcal{V} & ::= x \mid y \mid z \mid \cdots \\
\mathcal{T} & ::= \mathcal{V} \mid \lambda \mathcal{V}.\mathcal{T} \mid \mathcal{T}\mathcal{T} \mid \top \mid \mathcal{N}\mathcal{T} \mid \mathcal{T}\mathcal{N} \mid \mathcal{E}\mathcal{T} \mid \varepsilon \mathcal{T}
\end{align*}
\]

\(\lambda x.\mathcal{A}\) denotes lambda abstraction and \(fx\) denotes functional application. \(\top\) denotes truth. Falsehood \(\bot\) is not included in the syntax; we define it by \(\bot \equiv x:\top\). \(\mathcal{N}\) denotes selection; we have \(\mathcal{N}[\mathcal{T};b;c] = b\) and \(\mathcal{N}[x:\mathcal{A};b;c] = c\). \(\bot\) denotes undefinedness or infinite looping. \(Y\) denotes a fixed point operator; we have \(Yf = f(Yf)\) for all \(f\). \(\varepsilon\) denotes Hilbert’s choice operator; under reasonable conditions, \(\varepsilon\) is a wellfounded \(x\) such that \(px = \top\).

In Section 8 we introduce the notions of standard quasimodels of MT and the more restricted notion of canonical models, where the latter are unique up to the choice of a regular cardinal \(\kappa\). Canonical models satisfy all axioms and inference rules of MT. Standard quasimodels satisfy some (possibly all) of the axioms and inference rules.

Now let \(Y_{\text{Curry}} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))\) and \(\bot_{\text{Curry}} = Y_{\text{Curry}}\lambda x.x\). In canonical models of MT we will prove that

\[
\begin{align*}
Yf & = Y_{\text{Curry}}f \\
\bot & = \bot_{\text{Curry}} = (\lambda x.xx)(\lambda x.xx)
\end{align*}
\]

Thus, without loss of power and consistency, one might omit \(\bot\) and \(Y\) from the syntax and use \(Y_{\text{Curry}}\) and \(\bot_{\text{Curry}}\) instead. Doing so, however, would reduce the number of possible models of MT. Thus, we include \(\bot\) and \(Y\) in the syntax and prove the two equations above as separate theorems which are only guaranteed in canonical models. Inclusion of \(\bot\) and \(Y\) also simplifies the consistency proof since modelling of \(Yf\) and proving \(Yf = Y_{\text{Curry}}f\) can be treated separately. We shall use MT\(_{\text{def}}\) to denote the version of MT where we omit \(\bot\) and \(Y\) from the syntax.

Parallel or \(\parallel\) is neither needed for developing ZFC in MT nor convenient when programming. Parallel \(\parallel\) is merely included for the sake of a full abstraction result. We use full abstraction for explaining equality in Section 3.6.

3.3 Computation

The constructs \(\lambda x.\mathcal{A}\), \(ab\), \(\top\), and \(if[a,b,c]\) together with adequate reduction rules (defined below) form a computer programming language. The language is Turing complete in the sense that any recursive function can be expressed in it.

In the following, \(\mathcal{A}\), \(\mathcal{B}\), and \(\mathcal{C}\) denote terms, \(a\), \(b\), \(c\), and \(r\) denote closed terms, and \(x\), \(y\), and \(z\) denote variables. \(\mathcal{A} \mid x := \mathcal{B}\) denotes substitution with renaming of bound variables as needed.
From a theoretical point of view, and very remote from the implementation in [10], one can define the programming language by the smallest relation \(\overset{1}{\rightarrow} \) which satisfies:

\[
\begin{align*}
T & \rightarrow T \\
(\lambda x.A)B & \rightarrow \lambda x.B \quad (A | x := B) \\
\text{if}[T, B, C] & \rightarrow B \\
\text{if}[\lambda x.A, B, C] & \rightarrow C \\
A \overset{1}{\rightarrow} R & \Rightarrow AB \overset{1}{\rightarrow} RB \\
A \overset{1}{\rightarrow} R & \Rightarrow \text{if}[A, B, C] \overset{1}{\rightarrow} \text{if}[R, B, C]
\end{align*}
\]

As an example of a reduction, \(\text{if}[\lambda x.x, \lambda y.y, \lambda z.z]T \) reduces to:

\[
\text{if}[\lambda x.x, \lambda y.y, \lambda z.z]T \overset{1}{\rightarrow} (\lambda z.z)T \overset{1}{\rightarrow} T
\]

We have specified leftmost reduction order so that e.g. \(\text{if}[T, T, (\lambda x.xx)(\lambda x.xx)] \) reduces to \(T \) without \((\lambda x.xx)(\lambda x.xx) \) being reduced.

Suppose \(a \overset{1}{\rightarrow} b \). Under this assumption, \(a = b \) is provable in MT using only elementary axioms and inference rules. Hence, \(a = b \) holds in all models of MT. Also, \(a = b \) holds in all standard quasimodels, even those which do not model all of MT (c.f. Section 5.4). That holds for the definition of \(a \overset{1}{\rightarrow} b \) given above as well as for the extensions given in the following.

We use \(\lambda xy.A \) to denote \(\lambda x.\lambda y.A \). Furthermore, application \(AB \) is left associative and has higher priority than \(\lambda x.A \) so \(\lambda xy.ABC \) means \(\lambda x.\lambda y.((AB)C) \).

We shall say that a term is a root normal term if it has form \(T \) or \(\lambda x.A \).

Reduction stops when a root normal term is reached. As an example,

\[
(\lambda xy.x)((\lambda x.xx)(\lambda x.xx))
\]

reduces to

\[
\lambda y.((\lambda x.xx)(\lambda x.xx))
\]

which is not reduced further. We shall refer to terms of form \(T \) and \(\lambda x.A \) as true and function normal terms, respectively.

3.4. Further constructs

One may extend the programming language by the constructs \(\perp \), \(\Upsilon a \), \(a \| b \), and \(\mathcal{E}a \). One cannot extend the language by \(\varepsilon a \) because \(\varepsilon \) cannot be seen as computable.

In the following, \(a, b, c, f, \) and \(r \) denote closed, epsilon free terms.

The constructs \(\perp \) and \(\Upsilon \) may be defined or may be included in the syntax. If they are defined, they need no reduction rules. If they are included in the syntax, their reduction rules read:

\[
\begin{align*}
\perp & \overset{1}{\rightarrow} \perp \\
\Upsilon f & \overset{1}{\rightarrow} f(\Upsilon f)
\end{align*}
\]
The construct $a \parallel b$ can be computed thus: Reduce a and b in parallel. If one of them reduces to T, halt the other reduction and return T. If both reduce to function normal terms, return $\lambda x.T$.

The construct Ea can be computed thus: Reduce ab for all closed terms b in parallel. If ab reduces to T for some b, halt all reductions and return T. Otherwise, proceed computing indefinitely.

The construct Ea is not very useful in computer programs since Ea either loops indefinitely or returns T. The construct $a \parallel b$ is slightly more useful since it has two possible return values, T and $\lambda x.T$, but it is still not a popular programming construct, and few programming languages support it. The implementation in [10] supports neither Ea nor $a \parallel b$.

The construct Ea is needed for defining ψ and so is indirectly needed for axiomatizing Hilbert’s choice operator ε. The construct $a \parallel b$ is included for the sake of full abstraction.

Reduction rules for $a \parallel b$ read:

\[
\begin{align*}
T \parallel b & \xrightarrow{1} T \\
(\lambda x.A) \parallel b & \xrightarrow{1} \text{if}[b, T, \lambda x.T] \\
a & \xrightarrow{1} r & \Rightarrow & (a \parallel b) \xrightarrow{1} (b \parallel r)
\end{align*}
\]

A reduction rule for Ea is more complicated. To reduce Ea we need to reduce ab for all closed terms b in parallel. Now define

\[
\begin{align*}
S & \equiv C_1 & \equiv & \lambda xyz.xz(yz) \\
K & \equiv C_2 & \equiv & \lambda xy.x \\
C_3 & \equiv & T \\
C_4 & \equiv & \lambda xyz.\text{if}[x, y, z] \\
C_5 & \equiv & \bot \\
C_6 & \equiv & \lambda x.Yx \\
C_7 & \equiv & \lambda xy.(x \parallel y) \\
C_8 & \equiv & \lambda x.E\!x
\end{align*}
\]

We shall refer to terms built up from the eight combinators above plus functional application as combinator terms. Every closed, epsilon free term of MT is computationally equivalent to a combinator term. Thus, we may compute Ea by applying a to all combinator terms b:

\[
\begin{align*}
Ea & \xrightarrow{1} aC_1 \parallel \cdots \parallel aC_8 \parallel \text{Ex.E}y.a(xy) \\
a & \xrightarrow{1} r & \Rightarrow & Ea \xrightarrow{1} Er
\end{align*}
\]

Above, Ex.A denotes $E(\lambda x.A)$. To see how E works, first note that Ea by definition reduces to

\[
aC_1 \parallel \cdots \parallel aC_8 \parallel \text{Ex.E}y.a(xy)
\]

Second note that the last factor $\text{Ex.E}y.a(xy)$ in turn reduces to

\[
\text{Ey.a}(C_1y) \parallel \cdots \parallel \text{Ey.a}(C_8y) \parallel \text{Eu.Ev.E}y.a((uv)y)
\]

12
Third note that the first factor $E_y.a(C_1y)$ in turn reduces to
\[a(C_1C_1) \mid \cdots \mid a(C_1C_8) \mid Eu.Ev.a(C_1(uv))\]
The penultimate factor $a(C_1C_8)$ shows that a, among other, is applied to the combinator term C_1C_8. In general, reduction of Ea causes a to be applied to all combinator terms in parallel.

We have now given reduction rules for reducing arbitrary closed, epsilon free terms. We shall give no reduction rules for εa since, as mentioned, it is not computable.

3.5. Programs

We shall refer to closed, ε-free MT terms as **MT programs**. Likewise, we shall refer to closed, ε-free MT$_{def}$ terms as **MT$_{def}$ programs** and to closed, ε- and φ-free MT$_0$ terms as **MT$_0$ programs**.

The programs of each of the theories are exactly the closed terms which are reducible by machine. Here we do not require reduction to terminate: a machine is supposed to loop indefinitely when reducing e.g. \perp, and \perp is counted among the programs.

3.6. Equality

Wellformed formulas of MT have form $a = b$ where a and b are terms. We now present some of the intuition behind equality.

Let \mathcal{N}_t be the set of MT programs that reduce to T, let \mathcal{N}_f be the set of MT programs that reduce to function normal form, and let \mathcal{N}_\perp be the set of the remaining MT programs. For MT programs a and b we define *root equivalence* $a \sim b$ thus:

\[a \sim b \iff (a \in \mathcal{N}_t \iff b \in \mathcal{N}_t) \land (a \in \mathcal{N}_f \iff b \in \mathcal{N}_f) \land (a \in \mathcal{N}_\perp \iff b \in \mathcal{N}_\perp)\]

In the definition above, each conjunct follows from the other two, so one could omit one of the conjuncts. We say that the MT programs a and b are *observationally equal*, written $a =_{\text{obs}} b$, if $ca \sim cb$ for all MT programs c.

Intuitively, equality of MT is observational equality. Technically, matters are a bit more complicated:

Let \mathcal{M}_κ be the MT canonical κ-model as defined in Sections 7–9. Modelling ε requires $\sigma < \kappa$ for an inaccessible σ, but modelling the other constructs just requires $\kappa \geq \omega$. Now let $a =_\kappa b$ denote $\mathcal{M}_\kappa \models a = b$. We have:

Theorem 3.6.1 (Full Abstraction of \mathcal{M}_ω). $a =_{\text{obs}} b \iff a =_\omega b$ for MT programs a and b.

See Appendix A for a proof and for related positive and negative results. Full abstraction may help understanding MT minus Hilbert’s epsilon operator.

Now for $a, b \in \mathcal{M}_\kappa$ define

\[a \sim_\kappa b \iff (a =_\kappa T \iff b =_\kappa T) \land (a =_\kappa \perp \iff b =_\kappa \perp)\]

Let $a =_{\text{obs}}^\kappa b$ denote $\forall c \in \mathcal{M}_\kappa : c a \sim_\kappa c b$. The closest one can get to full abstraction in the general case reads:
Fact 3.6.2. $a =^\kappa_{\text{obs}} b \iff a = b$ for $a, b \in \mathcal{M}_\kappa$, $\kappa \geq \omega$, κ regular.

The fact follows trivially from the definition of \mathcal{M}_κ, c.f. Section 9.7.

3.7. Extensionality

Two MT programs a and b happen to be observationally equivalent iff

$$a y_1 \ldots y_n \sim b y_1 \ldots y_n$$

for all $n \geq 0$ and all MT programs y_1, \ldots, y_n. That follows from Theorem 10.1.2 and Appendix A and provides another intuitive description of equality. We also have:

Fact 3.7.1. Let $a, b \in \mathcal{M}_\kappa$. We have $ca \sim cb$ for all $c \in \mathcal{M}$ if $ay_1 \ldots y_n \sim by_1 \ldots y_n$ for all $n \geq 0$ and all $y_1, \ldots, y_n \in \mathcal{M}_\kappa$.

Fact 3.7.1 follows from Theorem 10.1.2. The ZFC equivalent of Fact 3.7.1 reads:

$$a \in c \iff b \in c$$

for all sets c. We shall refer to Fact 3.7.1 as semantic extensionality; we express it axiomatically in Section 4.3.

3.8. Hilbert's choice operator

To explain ε, we shall resort to a standard model \mathcal{M} as presented in Section 8.3 (in particular, we may use the canonical model \mathcal{M}_κ, κ regular, $\kappa > \sigma$, σ inaccessible). We shall refer to elements of \mathcal{M} as maps.

For all closed MT terms A let \overline{A} denote the element of \mathcal{M} denoted by A. Let $\hat{\psi} = \{ x \in \mathcal{M} \mid \psi x = \top \}$ where we define ψ in Section 4.6. We shall refer to elements of $\hat{\psi}$ as wellfounded maps.

As before, let V_σ be the usual model of ZFC inside ZFC+SI. The set $\hat{\psi}$ is a big set in the sense that there exists a surjective function $Z: \hat{\psi} \to V_\sigma$ which allows to represent all sets of V_σ by wellfounded maps.

We shall say that $p \in \mathcal{M}$ is total, written $\text{Total}(p)$, if $\forall x \in \hat{\psi}: px \neq \bot$.

We shall use ε to denote the intended interpretation of Hilbert’s choice operator εp. ε is a function of type $\varepsilon: \mathcal{M} \to \mathcal{M}$. For all $p \in \mathcal{M}$, ε has the following properties:

$$
\begin{align*}
\varepsilon(p) &= \bot \quad &\text{if } \neg \text{Total}(p) \\
\varepsilon(p) &\in \psi \quad &\text{if } \text{Total}(p) \\
p(\varepsilon(p)) &= \top \quad &\text{if } \text{Total}(p) \land \exists x \in \hat{\psi}: px = \top \\
\varepsilon(p) &= \varepsilon q \quad &\text{if } \text{Total}(p) \land \text{Total}(q) \land \forall x \in \hat{\psi}: (px = \top \iff qx = \top)
\end{align*}
$$

In other words, ε is a Hilbert choice operator over $\hat{\psi}$. The last property above is Ackermann’s axiom.

The strictness requirement that $\varepsilon p = \bot$ if $\neg \text{Total}(p)$ has two motivations. First, MT includes an inference rule which implies that application is monotonic.
for a certain order $p \leq q$ so ε must be monotonic in the sense that $p \leq q$ must imply $\varepsilon p \leq \varepsilon q$. Strictness together with Ackermann’s axiom and the definition of $p \leq q$ given later is sufficient to ensure monotonicity of ε. Second, the strictness requirement simplifies the quantification axioms stated later.

When comparing with [3] note that the present ψ is analogous to the ϕ of [3] and the present $\hat{\psi}$ is analogous to the Φ of [3]. The Ψ of [3] is unrelated to ψ and $\hat{\psi}$.

3.9. Pure existence revisited

Let \mathcal{M} and \mathcal{M}_ω be as above. Pure existence E is designed to satisfy in \mathcal{M} that $E p = T$ if $px = T$ for some x and $E p = \bot$ otherwise (c.f. Section 4.4). So $E p = T$ in \mathcal{M} iff $px = T$ for some $x \in \mathcal{M}$ while the reduction rule for $E p$ given in Section 3.4 gives that $E p = T$ iff $px = T$ for some program x. We now compare these two notions of existential quantification. Define

\[
E_{\text{semantic}} \equiv \lambda p. E p
E_{\text{syntactic}} \equiv \lambda p. \left[p \mathcal{C}_1 \mathcal{C} \cdot \ldots \cdot \mathcal{C}_8 \mathcal{C}] \left[E_{\text{syntactic}} \lambda u. E_{\text{syntactic}} \lambda v. p(uv)]\right]
\]

We have

\[
E_{\text{semantic}} p = T \text{ iff } px = T \text{ for some map } x
E_{\text{syntactic}} p = T \text{ iff } px = T \text{ for some program } x
\]

\mathcal{M}_ω happens to be a simple and very pertinent model for modelling the computational and elementary part of MT even if \mathcal{M}_ω is not a model of the full theory. We will see this later on, and we will prove in Appendix A that, among other nice properties, \mathcal{M}_ω satisfies $E_{\text{semantic}} = E_{\text{syntactic}}$ (c.f. Lemma A.4). Now, this equation can be proved to be false in $\mathcal{M}_\kappa, \kappa > \omega$ (c.f. Theorem A.8.1 and its proof), and more generally should be false in all the models of MT built from standard premodels, for a similar reason (these models are in a sense “too big”).

The E of MT is the semantic one. The computational intuition behind E that we provided at the end of Section 3.4 is valid in \mathcal{M}_ω but does not hold in full MT.

4. Axioms and inference rules

MT has five groups of axioms and inference rules:

1. Elementary axioms and inference rules
2. Monotonicity and minimality
3. Extensionality
4. Axioms on E
5. Quantification axioms
4.1. Elementary axioms and inference rules

Let A, B, and C be (possibly open) terms and let x and y be variables. Let $A = B$ denote that A and B are identical except for naming of bound variables. Let $1 \equiv \lambda xy.xy$. The first set of axioms and inference rules of MT reads:

<table>
<thead>
<tr>
<th>Trans</th>
<th>$A = B; A = C \vdash B = C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub</td>
<td>$B = C \vdash AB = AC$</td>
</tr>
<tr>
<td>Gen</td>
<td>$A = B \vdash \lambda x.A = \lambda x.B$</td>
</tr>
<tr>
<td>A1</td>
<td>$TB = T$</td>
</tr>
<tr>
<td>A2 (β)</td>
<td>$(\lambda x.A)B = C$ if $C \equiv (A \mid x := B)$</td>
</tr>
<tr>
<td>A3</td>
<td>$\bot B = \bot$</td>
</tr>
<tr>
<td>I1</td>
<td>if $[T; B; C] = B$</td>
</tr>
<tr>
<td>I2</td>
<td>if $[\lambda x.A; B; C] = C$</td>
</tr>
<tr>
<td>I3</td>
<td>if $[\bot; B; C] = \bot$</td>
</tr>
<tr>
<td>QND</td>
<td>$A\top = \top T; A(1C) = B(1C); A\top = B\top \vdash AC = BC$</td>
</tr>
<tr>
<td>P1</td>
<td>$A \parallel B = T$</td>
</tr>
<tr>
<td>P2</td>
<td>$A \parallel T = T$</td>
</tr>
<tr>
<td>P3</td>
<td>$\lambda x.A \parallel \lambda y.B = \lambda z.T$</td>
</tr>
<tr>
<td>Y</td>
<td>$Y.A = A(Y.A)$</td>
</tr>
</tbody>
</table>

Quartum Non Datur (QND) approximates that every map x satisfies $x = T$ or $x = \bot$ or $x = 1$, there is no fourth possibility.

Example 4.1.1. As an example of use of QND, define

$$
\begin{align*}
F & \equiv \lambda x.T \\
\approx x & \equiv \text{if}[x, T, F] \\
x \land y & \equiv \text{if}[x, \text{if}[y, T, F]], \text{if}[y, F, F]]
\end{align*}
$$

Using the definitions above, QND allows to prove the following:

$$
\begin{align*}
x \land y & = y \land x \\
(x \land y) \land z & = x \land (y \land z) \\
x \land x & = \approx x
\end{align*}
$$

4.2. Monotonicity and Minimality

Define:

$$
\begin{align*}
x \downarrow y & \equiv \text{if}[x, \text{if}[y, T, \bot]], \text{if}[y, \bot, \lambda z.(xz) \downarrow (yz)]] \\
x \preceq y & \equiv x = x \downarrow y
\end{align*}
$$

The recursive definition of $x \downarrow y$ is shorthand for:

$$
x \downarrow y \equiv (Y \lambda f.xy.\text{if}[x, \text{if}[y, T, \bot]], \text{if}[y, \bot, \lambda z.f(xz)(yz)]])xy
$$
In canonical models, \(x \preceq y \) coincides with the order of the model and \(x \downarrow y \) is the greatest lower bound of \(x \) and \(y \).

The rules of Monotonicity and Minimality read:

<table>
<thead>
<tr>
<th>Mono</th>
<th>(\mathcal{B} \preceq \mathcal{C} \vdash \mathcal{A}\mathcal{B} \preceq \mathcal{A}\mathcal{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>(\mathcal{A}_\mathcal{B} \preceq \mathcal{B} \vdash \forall \mathcal{A} \preceq \mathcal{B})</td>
</tr>
</tbody>
</table>

Example 4.2.1. We now introduce a primitive representation of natural numbers. We first do so semantically. Let \(\mathcal{M} \) be a model of MT. We shall refer to elements of \(\mathcal{M} \) as maps.

We shall say that a map \(x \) is wellfounded w.r.t. a set \(G \) of maps if, for all \(y_1, y_2, \ldots \in G \) there exists a natural number \(n \) such that \(xy_1 \cdots y_n = T \). We shall say that a map \(x \) is a natural number map if it is wellfounded w.r.t. \(\{T\} \).

Thus, \(x \) is a natural number map if \(x \) is a wellfounded map and the equation above holds for \(n \). As examples, \(\lambda x y z . T \) is a natural number map and \(\lambda x y z . \bot \) is not. We shall say that a natural number map \(x \) represents the smallest \(n \) which satisfies the equation above so \(\lambda x y z . T \) represents ‘three’.

We now formalize natural numbers in MT in the sense that we give a number of syntactic definitions which allow to reason formally about natural numbers in MT. The definitions read:

\[
\begin{align*}
0 & \equiv T \\
K & \equiv \lambda x y . x \\
x^0 & \equiv Kx \\
\omega & \equiv \lambda f . x \cdot if[x, T, f(xT)] \\
\omega & \equiv \forall \omega \\
x \equiv y & \equiv if[x, if[y, T, F], if[y, F, xT \equiv yT]] \\
E & \equiv \lambda x, x \equiv x
\end{align*}
\]

As an example, \(0^\omega \) denotes one among many maps which represents ‘two’. The semantics of \(\omega \) in the model \(\mathcal{M} \) is that \(\omega x = T \) if \(x \) is a natural number map and \(\omega x = \bot \) otherwise. For that reason we shall refer to \(\omega \) as the characteristic map of the set of natural number maps (c.f. Definition 4.6.1). For natural number maps \(x \) and \(y \) we have \((x \equiv y) = T \) iff \(x \) and \(y \) represent the same number.

In MT, we can prove \(\pi E = \lambda x, if[x, T, xT \equiv xT] \). Furthermore, we can prove \(E = (\lambda x, x \equiv x) = \lambda x, if[x, if[x, T, F], if[x, F, xT \equiv xT]] = \lambda x, if[x, T, xT \equiv xT] \) where the latter equality requires QND. Hence, we can prove \(\pi E = E \) so \(\pi E \preceq E \) (c.f. Example 4.3.2). Hence, we can prove \(\omega \preceq E \) by Min.

Semantically, \(\omega \preceq E \) expresses that \((x \equiv x) = T \) for all natural number maps: For each natural number map \(x \) we have \(\omega x = T \) and \(\omega x \preceq E x \) which shows \(E x = T \).
Thus, the syntactic statement $\omega \preceq \mathcal{E}$ formalizes the semantic statement that every natural number equals itself and the syntactic statement $\omega \preceq \mathcal{E}$ has a formal proof in MT.

From a program correctness point of view we have now defined a program $x \equiv y$ inside MT and then proved $\omega \preceq \mathcal{E}$ which expresses that $(x \equiv x) = \top$ for all natural number maps x. While this is a very simple example and even though space does not even permit to write out proofs in details, this still gives a first, small example of the fact that MT allows programming and reasoning inside the same framework. For a continuation of the present example which uses quantifiers see Example 4.5.2.

Note that the definition of $x \equiv y$ only uses the four constructs $\lambda x. \mathcal{A}, ab, \top$, and $\text{if}[a, b, c]$, so one can compile the program $x \equiv y$ and run it on arguments x and y using the system described in [10].

In other logical frameworks than MT, given a recursive program like $x \equiv y$, proofs of theorems like $(x \equiv x) = \top$ for all natural numbers x usually requires some sort of Peano induction. In MT, induction is expressed by Min. Above, we applied Min to the characteristic function ω of natural number maps to get something equivalent to Peano induction (c.f. [9, Section 7.13]). Applying Min to the characteristic map ψ defined in Section 4.6 yields an induction scheme which resembles but is stronger than transfinite induction (c.f. [9, Section 9.13]).

4.3. Extensionality

Recall $\approx x \equiv \text{if}[x, \top, \bot]$ from Example 4.1.1. For all (possibly open) terms $\mathcal{A}, \mathcal{B},$ and \mathcal{C} (possibly containing epsilon), the inference rule of extensionality reads:

| Ext | For variables x, y not free in \mathcal{A} and \mathcal{B} we have $\approx(Ax) = \approx(Bx); \mathcal{A}xy = \mathcal{AC}; \mathcal{B}xy = \mathcal{BC} \vdash Ax = Bx$ |

Note that if the premises of Ext hold and if $c = \lambda xy. \mathcal{C}$ then we have e.g.

$\approx(Axy_1y_2) = \approx(A(cxy_1)y_2) = \approx(A(c(cxy_1)y_2)) = \approx(B(cxy_1)y_2) = \approx(B(cxy_1)y_2)$

More generally, we have $\approx(Axy_1 \cdots y_n) = \approx(Axy_1 \cdots y_n)$. Now, canonical models \mathcal{M} have the semantic extensionality property that if $a, b \in \mathcal{M}$ and if

$\approx(a y_1 \cdots y_n) = \approx(b y_1 \cdots y_n)$

for all natural numbers n and all $y_1, \ldots, y_n \in \mathcal{M}$ then $a = b$. Rule Ext is a syntactical approximation of that fact which works in those cases where one can find a \mathcal{C} for which one can prove the premises of Ext. It is typically rather difficult to find a witness \mathcal{C} but it is possible more often than one should expect.

The relation between Ext and semantic extensionality is: The premises of Ext entail $\approx(Axy_1 \cdots y_n) = \approx(Bxy_1 \cdots y_n)$ which by semantic extensionality entail $Ax = Bx$ which is exactly the conclusion of Ext.
Extensionality in MT corresponds to extensionality in set theory, where the latter says that if \(y \in a \iff y \in b \) then \(a = b \). Here, \(\mathcal{P} \leftrightarrow \mathcal{Q} \) of set theory corresponds to \(\approx \mathcal{P} = \approx \mathcal{Q} \) in MT and \(y \in a \) of set theory corresponds to \(ay_1 \cdots y_n \) in MT.

Example 4.3.1. Let \(i \equiv \lambda x. if[x, \top, \lambda y.i(xy)] \) and \(I \equiv \lambda x. x \). To prove \(ix = Ix \) by \(\text{Ext} \) take \(C \) to be \(xy \) and prove \(\approx (ix) = \approx (Ix) \), \(ixy = i(xy) \), and \(Ixy = I(xy) \). The two first statements above can be proved using QND and the third is trivial.

Example 4.3.2. \(\text{Ext} \) allows to prove \(x \downarrow x = x \), \(x \downarrow y = y \downarrow x \), and \(x \downarrow (y \downarrow z) = (x \downarrow y) \downarrow z \). Those results are useful since they entail \(x \leq x \), \(x \leq y; y \leq x \implies x = y \), and \(x \leq y; y \leq z \implies x \leq z \). (For proofs, see [9]).

When developing ZFC in MT, \(\text{Ext} \) plays a marginal but essential role [9]. In Example 4.2.1, Min replaced usual Peano induction and Min was used in the essential step in proving \((x \equiv x) = \top\), but \(\text{Ext} \) was also in play for proving \(\exists x \leq \mathcal{E} \leq \mathcal{E} \) from \(\exists \mathcal{E} = \mathcal{E} \). Likewise, when developing ZFC, the results listed in Example 4.3.2 are used in many places. Among other, it is used for proving the MT version of transfinite induction which in turn is used for proving most of the proper axioms of ZFC. Concerning \(\text{Ext} \), the development of ZFC only depends on the results listed in Example 4.3.2 and does not make other use of \(\text{Ext} \).

Example 4.3.3. \(\text{Ext} \) also allows to prove \(F_2 = F_3 \) where

\[
\begin{align*}
F_2 & \equiv \lambda x. \lambda y. F_2 \\
F_3 & \equiv \lambda x. \lambda y. \lambda z. F_3
\end{align*}
\]

\(F_2 \) and \(F_3 \) both denote \(\lambda x_1. \lambda x_2. \lambda x_3. \cdots \) and we have \(F_2 =_{\text{obs}} F_3 \). Thus, \(F_2 \) and \(F_3 \) provide an example of two pure lambda terms which are provably equal in MT and observationally equal from the point of view of a computer, but not beta equivalent in lambda calculus.

4.4. Axioms on \(\mathcal{E} \)

Pure existence \(\mathcal{E} \) is designed to satisfy \(\mathcal{E}x = \top \) if \(xy = \top \) for some \(y \) and \(\mathcal{E}x = \bot \) if \(xy = \top \) for no \(y \) in standard models. Its axiomatization is a syntactical approximation of this. Now define:

\[
\begin{align*}
x \circ y & \equiv \lambda z. x(yz) \\
\chi & \equiv \lambda x. \lambda z. \text{if}[xz, \top, \bot] \\
x \rightarrow y & \equiv \text{if}[x, y, F] = \text{if}[x, \top, F]
\end{align*}
\]

The axioms on \(\mathcal{E} \) read:

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ET})</td>
<td>(\mathcal{E}T = \top)</td>
</tr>
<tr>
<td>(\text{EB})</td>
<td>(\mathcal{E}\bot = \bot)</td>
</tr>
<tr>
<td>(\text{EX})</td>
<td>(\mathcal{E}x = \mathcal{E}(\chi x))</td>
</tr>
<tr>
<td>(\text{EC})</td>
<td>(\mathcal{E}(x \circ y) \rightarrow \mathcal{E}x)</td>
</tr>
</tbody>
</table>
Axioms ET and EB are natural since $Tx = T$ and $\perp x = \perp$ are axioms of MT. EX says that Ex does not care about the value of xy if $xy \neq T$. EC says that if $x(yz) = T$ for some z then $xw = T$ for some w.

4.5. Quantification axioms

Define:

\begin{align*}
\forall x &\equiv \text{if } [x, T, T] \\
\exists x &\equiv \text{if } [x, F, T] \\
\exists p &\equiv \exists(p(x)) \\
\exists x: &\ A\equiv \exists \lambda x. A \\
\forall x: A &\equiv \forall \lambda x. A \\
\exists x &\equiv \exists \lambda x. A \\
\forall p &\equiv \forall \lambda x. p
\end{align*}

Note that $\forall, \exists,$ and \neg are part of the syntax of ZFC+SI whereas $\exists, \forall,$ and \neg are terms of MT. The quantifier axioms depend on a term which will be defined in Section 4.6. Recall $\tilde{\psi} \equiv \{x \in M \mid \psi x = T\}$. In canonical models, for maps p, we have

\begin{align*}
\forall p &= T \quad \text{if } \forall x \in \psi; px = T \\
\forall p &= \perp \quad \text{if } \exists x \in \psi; px = \perp \\
\forall p &= F \quad \text{otherwise}
\end{align*}

Hence, \forall expresses universal quantification over ψ. Likewise, \exists expresses existential quantification over ψ. The quantification axioms read:

\begin{center}
\begin{tabular}{ll}
Elim & $(\forall x; px) \land \psi y \rightarrow py$ \\
Ackermann & $\varepsilon x; px = \varepsilon x: (\psi x \land px)$ \\
StrictE & $\psi(\varepsilon x; px) = \forall x: ! (px)$ \\
StrictA & $!(\forall x; px) = \forall x: ! (px)$
\end{tabular}
\end{center}

Above, $p, x,$ and y are variables of MT.

Example 4.5.1. As we shall see, elements of $\hat{\psi}$ are wellfounded w.r.t. $\hat{\psi}$ (see Example 4.2.1 for the definition of wellfoundedness with respect to a set). This allows to use elements of $\hat{\psi}$ to represent sets of ZFC. We define the set represented by $x \in \hat{\psi}$ thus:

\begin{align*}
Z[T] &\equiv \emptyset \\
Z[x] &\equiv \{Z[xz] \mid z \in \hat{\psi}\} \text{ if } x \neq T
\end{align*}

For the usual model V_α of ZFC in ZFC+SI and canonical models M of MT we have $V_\alpha = \{Z[x] \mid x \in \psi\}$ (c.f. [3, Appendix A.4]) so all sets of ZFC are representable by wellfounded maps $x \in \hat{\psi}$. Now define:

\begin{align*}
x &\Rightarrow y \equiv [x, [y, T, F], [x, T, T]] \\
x &\Leftrightarrow y \equiv [x, [y, T, F], [y, T, T]] \\
x &\exists y \equiv [y, F, \exists z: x = yz] \\
x &\exists y \equiv \forall z: (z \in x \Rightarrow z \in y)
\end{align*}
For \(x, y \in \hat{\psi}\) we have \((x \bar{\varepsilon} y) = T\) iff \(Z[x] \in Z[y]\) and \((x \bar{\varepsilon} y) = T\) iff \(Z[x] = Z[y]\). An equivalent definition of \(\bar{\equiv}\) reads:
\[
x \bar{\equiv} y \equiv \text{if}[x, \text{if}[y, T, F], \text{if}[y, F, (\forall u \exists v: xu \bar{\equiv} yv) \land (\forall v \exists u: xu \bar{\equiv} yv)])
\]
The latter formulation of \(\bar{\equiv}\) resembles that of \(\equiv\) in Example 4.2.1.

Using \(\bar{\varepsilon}, \bar{\Rightarrow}, \bar{\exists}\), and \(\bar{\forall}\) we may now express all wellformed formulas of ZFC in MT. All closed theorems of ZFC are satisfied by the standard model \(M\) of MT (Theorem 2.1.2). As a conjecture (Conjecture 2.1.3), closed theorems of ZFC+\(\neg\)SI are provable in MT.

Example 4.5.2. As a continuation of Example 4.2.1, define
\[
x + y \equiv \text{if}[x, y, (xT) + y']
\]
Having a quantifier in MT allows to prove in MT e.g. that the term
\[
\bar{\forall}x, y: x + y \bar{\equiv} y + x
\]
equals \(T\). The proof involves a proof of \(\forall y: x + y \bar{\equiv} y + x\) by induction in \(x\) (or, more precisely, a proof of \(\omega \leq \lambda x.\forall y: x + y \equiv y + x\) by Min). The proof requires the ability to apply induction to a statement which contains both a quantifier (\(\forall\)) and recursive programs (+ and \(\equiv\)) and thus requires the ability to mix recursive programs and quantifiers as is possible in MT.

4.6. The definition of \(\psi\)

We conclude the presentation of axioms by defining \(\psi\). Like in Section 3.8 let \(\mathcal{M}\) be any standard model of MT. We first define some auxiliary concepts.

Definition 4.6.1.
(a) \(a \in \mathcal{M}\) is a characteristic map if \(a \in \mathcal{F}\) and \(ax \in \{T, \bot\}\) for all \(x \in \mathcal{M}\).
(b) \(\text{Dom}[a] = \{x \in \mathcal{M} | ax = T\}\)
(c) \(a \in \mathcal{M}\) is a characteristic map of \(S \subseteq \mathcal{M}\) if \(a\) is a characteristic map and \(S = \text{Dom}[a]\).

In Example 4.2.1 we referred to \(\omega\) as “the characteristic map of the set of natural number maps”.

Definition 4.6.2.
(a) \(\sqcap \equiv \lambda f y. \ex. f xy\)
(b) \(x \sqcap y \equiv \text{if}[x, y, \bot]\)
(c) \(D \equiv \lambda x. \text{if}[x, T, T]\)
(d) \(f \sqcap g \equiv \text{if}[f, T, \lambda x. gx : (!fx / g)]\)

The intuitions behind Definition 4.6.2 are as follows. \(\sqcap\) satisfies \(\text{Dom}[\sqcup a] = \bigcup_{x \in \mathcal{M}} \text{Dom}[ax]\). \(\sqcap y\) is guarded by \(x\) in the sense that if \(x = T\) then \(x \sqcap y = y\) and if \(x \neq T\) then \(x \sqcap y = \bot\). \(Dx\) is true if \(x\) is “defined”, i.e. if \(x \neq \bot\).
f / g is a kind of “transitive restriction” of the function f to the domain $G = \text{Dom}[g]$ in the following sense: Suppose $x_1, \ldots, x_n \in G$ and $fx_1 \cdots x_n \in F$ then

$$(f / g)x_1 \cdots x_n y \sim \begin{cases} fx_1 \cdots x_n y & \text{if } y \in G \\ \bot & \text{otherwise} \end{cases}$$

where root equality $u \sim v$ was defined in Section 3.6. One may also think of f / g as a projection in the sense that $(f / g) = f / g \leq_M f$. The intuitions given above hold in all standard models M, c.f. Section 11.7 and Fact 13.3.2(b). f / g equals $\downarrow_G f$ of [3].

In Section 3.8 we defined $\hat{\psi} = \{x \in M \mid \psi x = T\}$. We now go on to define ψ. To do so we need to define a number of auxiliary terms. In M, the terms $\psi, s, S, \bar{S}, P, Q, R, R_1, R_0$ will have the following properties:

For all a, b, c, d we will have that $\psi, sa, Ssa, \hat{S}sa, P, Q(sa), Rsbc, and R_0$ are characteristic maps. For all $a, \text{Dom}[sa]$ will be essentially σ-small in the sense that there exists a set $A \subseteq \hat{\psi}$ of cardinality less than σ such that $\text{Dom}[sa] = \{w \in \hat{\psi} \mid \exists u \in A: u \leq w\}$. The function Q mentioned above will have the property that if $\text{Dom}[v]$ is essentially σ-small and if $Qvy = T$ then y is wellfounded. See Sections 11–13 for proofs.

The definition of ψ and the auxiliary terms reads:

Definition 4.6.3.

(a) $\psi \equiv \sqsubseteq s$

(b) $s \equiv YS$

(c) $S \equiv \lambda f. \hat{S}f(\sqsubseteq f)$

(d) $\bar{S} \equiv \lambda f \theta a. i[f[a, P, i[f[aT, Q(f(aF)), Rf\theta(aT)(aF)]]]$

(e) $P \equiv \lambda y. i[y, T, \bot]$.

(f) $Q \equiv \lambda v. Dv ! \lambda y. \forall z. v(y(z / v))$

(g) $R \equiv \lambda f \theta bc. \theta c ! [R_1, f \theta bc ! R_0f\theta bc$

(h) $R_1 \equiv \lambda f \theta bc. \forall z. D(f(b cz / \theta))$

(i) $R_0 \equiv \lambda f \theta bc. \exists z. (\theta z ! [f(b cz / \theta))]y$

The definition of ψ replaces the φ-axioms of MT$_0$ (ten axioms and one inference rule). The definition of ψ in MT corresponds to the following in ZFC: the null set axiom, the pair set axiom, the power set axiom, the union set axiom, the axiom of replacement, the axiom of infinity, and the axiom of restriction.
Note that $s = YS = S(YS) = Ss = Ss(\uparrow s) = \hat{S}s\psi$. Hence, in (d-i) above one may think of f and θ as s and ψ, respectively.

We have $\psi \uparrow s = \uparrow sy = Ea, say$. So, in \mathcal{M}, y is wellfounded iff $say = T$ for some a.

Example 4.6.4. We now prove that T is wellfounded by proving $sTT = T$.

To do so we first prove $say = \hat{S}s\psi ay$ as follows: $say = (YS)ay = S(YS)ay = Ssay = \hat{S}s(\uparrow s)ay = \hat{S}s\psi ay$. Then we note that $sTT = Ss\psi TT = PT = T$.

We now prove that $u:T$ is wellfounded by proving that $s(T::(u:T)) = sTT = T$.

Define $b::c \equiv z:\{x:T \mid x = sc\}$. We have $(b::c)T = b$ and $(b::c)F = c$. Hence, if $D(sc) = T$ then $s(T::x)y = \hat{S}s\psi(T::x)y = \hat{S}(sc)y = \hat{S}(sc)(\uparrow z,sc(y/s))$. Hence, $s(T::T)(\lambda u,T) = \forall z, sT((\lambda u,T)(z/sT)) = sTT = T$.

Recall that we defined $0 = T$, $1 = \lambda u.T$, $2 = \lambda uv.T$, and so on in Example 4.2.1. We have now proved that 0 and 1 are wellfounded. Furthermore, $s(T::(T::T))2 = T$ proves that 2 is wellfounded. We may go on and prove that 3 is wellfounded and so on into the transfinite. For the complete development, see the proof of Theorem 11.1.3 in Section 13.

The ability of MT to model ZFC stems from several sources. First, the quantification axioms reference ψ in a way which forces MT quantifiers to quantify over the universe $\psi = \{x \in \mathcal{M} \mid x \subseteq T\}$. Second, as shown in Example 4.6.4, recursive use of $s = YS$ populates $\hat{\psi}$, putting a lower bound on the size of the universe. Third, the minimality of Y permits a kind of transfinite induction over $\hat{\psi}$, putting an upper bound on the size of the universe. Fourth, Ext plays a marginal but essential role in that it forces \subseteq to be a partial order.

When modelling ZFC in MT, one may define $\bar{\in}$, $\bar{\forall}$, $\bar{\exists}$, and $\bar{\forall}$ as in Section 4.5. Then, to prove e.g. the power set axiom one may find an MT term $P(x)$ such that $\mathcal{P}(x)$ represents the power set of the set represented by x. Then one may prove $\forall x, y: (y \bar{\in} P(x) \iff \exists z, y \bar{\in} z \bar{\in} x)$ and $\forall x: \psi(P(x))$ from which the power set axiom is easy to prove. Proving $\forall x: \psi(P(x))$ makes use of the second point above by using that ψ makes the universe big enough to contain $P(x)$. But it also uses the third point above because the proof requires a kind of transfinite induction in x and thereby uses that the universe is so small that all sets have powersets.

5. Comparing MT and MT₀

We now deepen the comparison between MT and MT₀ which was only hinted at in the introduction.

5.1. Axioms and rules of MT₀

MT₀ consisted of only three groups of axioms, using constructors T, \bot, if, ε, and ϕ (the innocuous $||$ could have been added as well):

- Elementary axioms and rules (same as for MT).
• Quantification axioms.

• The \(\phi \)-axioms

The \(\phi \)-axioms comprise the three wellfoundedness axioms, the seven construction axioms, and the inference rule of transfinite induction of [8]. The role of the \(\phi \)-axioms was to force \(\phi \) to behave as the characteristic function of the universe \(\Phi \) of wellfounded sets. Most of the \(\phi \)-axioms were easy (e.g. \(\phi \top = \top \)), two were highly non-obvious, and the rule was just expressing wellfoundation. But in fact all were (independent) instances of a single recursive set-theoretical equation \(\Phi = F_\sigma(\Phi) \) on \(\Phi \) which involves an inaccessible cardinal \(\sigma \) and will be recalled in Definition 8.3.2. This recursive equation was the formalization in \(\mathcal{M} \) of the main intuition behind map theory, which was, as for Church ([4, 5]) to have a universe whose primitives were the notions of “functions and application” instead of “sets and membership”.

5.2. Axioms and rules of MT

The next intended step was hence to succeed to reflect the equation on \(\Phi \) at the axiomatic level. This resulted in the present MT, where \(\phi \) is now replaced by the MT-term \(\psi \), whose definition requires the supplementary constructs \(Y \) and \(E \). \(E \) is easy to axiomatize and to model, so the real technical cost is the addition of the extra rules \(\text{Ext} \), \(\text{Mono} \), and \(\text{Min} \), and the (hard) proof that \(\psi \) truly represents \(\Phi \). \(\text{Mono} \) and \(\text{Min} \) force the constant \(Y \) to behave, at the level of the syntax, as a fixed point operator which is minimal w.r.t. the syntactic order \(\preceq \).

MT consists of five groups of axioms and rules, and uses constructors \(T \), \(\bot \), \(\text{if} \), \(|| \), \(Y \), \(E \), and \(\varepsilon \):

• Elementary axioms and rules plus \(Y \) is a fixed point operator.

• Axioms on \(E \).

• Axioms of Monotonicity (\(\text{Mono} \)) and Minimality (\(\text{Min} \)).

• The inference rule of Extensionality (\(\text{Ext} \)).

• Quantification axioms

The quantification axioms are the same\(^2\) as for MT\(_0\) except that the \(\phi \) of MT\(_0\) is replaced by \(\psi \) in MT; but the proof that these axioms can be satisfied is much harder and very different, c.f. Section 8.4.

\(^2\)This variant, containing 4 axioms, already appears in [3, Appendix C], and is equivalent to the original set of 5+1 axioms where the five ones were stated in [8] and the sixth one, as pointed out by Thierry Vallée, was used but not stated in [8]
5.3. Proof theoretical strength

MT_0 can prove neither $SI = T$ nor $(\neg SI) = T$ since it can be consistently extended by either one. In contrast, $(\neg SI) = T$ is conjectured to be provable in MT (Conjecture 2.1.3). Furthermore, MT can prove more pure lambda terms equivalent (e.g. $F_2 = F_3$, c.f. Example 4.3.3, which we conjecture is not provable in MT_0). MT is very likely stronger than MT_0:

Conjecture 5.3.1. If $A = B$ is provable in MT_0 and if A' and B' arise from A and B, respectively, by replacing all occurrences of ϕ by ψ, then $A' = B'$ is provable in MT.

If $(\neg SI) = T$ is provable in MT then Conjecture 2.1.3 follows from Conjecture 5.3.1 and Theorem 2.1.4. Conjecture 5.3.1 is true if the ε-axioms of MT_0 are provable in MT. Less support exists for Conjecture 5.3.1 than for Conjecture 2.1.3.

5.4. Models of MT versus models of MT_0

Now let $\kappa \geq \omega$ be a regular cardinal. Modelling ε requires an inaccessible $\sigma < \kappa$, while modelling the other constructs only requires $\kappa \geq \omega$. Sections 7–9 recall the notions of κ-Scott semantics and κ-continuity and introduce a number of concepts which have the following names and forms:

- Underlying set M^0
- κ-Scott domain $M^1 = (M^0, \leq)$
- κ-premodel $M^2 = (M^1, A, \lambda)$
- Canonical κ-premodel A particular κ-premodel
- MT_0 standard κ-σ-quasimodel $M^3_0 = (M^2, T, \varepsilon, \sigma, \phi)$
- MT_0 canonical κ-σ-quasimodel same as above where M^2 is canonical
- MT standard κ-σ-quasimodel $M^3 = (M^2, T, \varepsilon, \sigma, \perp, Y, \|, E)$
- MT canonical κ-σ-quasimodel same as above where M^2 is canonical

We use M to denote any one of M^0, M^1, M^2, M^3_0, and M^3, depending on context. For MT_0 (MT) κ-σ-quasimodels we drop “quasi” when the quasimodel satisfies MT_0 (MT), and we drop σ when σ is understood.

As stated in Theorem 8.3.5, when σ is inaccessible, all MT_0 standard κ-σ-quasimodels satisfy MT_0. The main result of the present paper is that when σ is the first inaccessible, all MT canonical κ-σ-quasimodels satisfy MT. Thus, satisfying MT is harder than satisfying MT_0: One both needs canonicity and needs that σ is the first inaccessible.

5.5. Levels of difficulty of the groups of axioms

We now move on to consider the “difficulty” of the group of elementary axioms, the group of E-axioms, and so on. “Difficulty” is a multi-dimensional notion. When looking at groups of axioms it is natural to ask oneself the following questions:
• **Naturality.** Are the axioms intuitive or “natural” in some sense, i.e. is there a natural or simple or motivated intuition behind?

• **Strength,** here in the following sense: where is the existence of an inaccessible cardinal \(\sigma \) required? Which axioms can we model at not cost? meaning here that \(\kappa = \omega \) would be enough, and/or that they can be modeled in all premodels?

• **Conceptual hardness.** Do we need to introduce original and/or high level tools for modeling them?

• **Technical hardness.** Do we need difficult computations?

The Elementary Axioms are natural (if one is used to \(\lambda \)-calculus) and can be modelled at not cost (i.e. in any \(\kappa \)-premodel, \(\kappa \geq \omega \)); the four \(E \)-axioms are at first look purely technical, in fact they are easy from all the above points of view, the reason being that they are just four instances of a single, simple intuition, which allows us to model them easily and at “no cost”.

Of course, all the axioms of MT are natural in some sense, since they were designed from semantical and computational intuitions (c.f. [8]), but this naturality can be lost when approximating the ideas through formalization.

Mono and Min are semantically natural (syntactically a little less because of the definition of \(\leq \)), and can be modelled at no cost in terms of strength (\(\kappa \geq \omega \)), but fixing a syntactic definition of the order induces a technical cost which drastically reduces the class of possible models, c.f. Section 7.5.

Concerning the quantifier axioms, it is interesting to note that replacing \(\phi \) of MT\(_0\) by \(\psi \) in MT induces no change in strength in the sense that an inaccessible is used (and apparently needed) for modelling MT\(_0\) as well as MT, but that they are conceptually somewhat harder for MT (because they refer to the defined \(\psi \) which incorporates the \(\phi \)-axioms) and technically much harder (c.f. Sections 11–13).

We pursue and summarize the comparison between MT and MT\(_0\) in the following section.

5.6. Models of subsystems of MT

Recall from Section 3.2 that MT\(_{\text{def}}\) is the version of MT where \(Y \) and \(\perp \) are omitted and are replaced by \(Y_{\text{Curry}} \) and \(\perp_{\text{Curry}} \), respectively. This concerns mainly A3, I3, QND, Mono, Min, Elim, Ackermann, and StrictE where \(Y \) or \(\perp \) appear explicitly or implicitly.

We now introduce two subsystems of MT for which we keep the same syntax and which hence have the same terms. First, MT\(^-\) is MT from which the quantifier axioms are removed. Second, MT\(^{--}\) is MT\(^-\) from which Ext, Mono, and Min are removed. We have:

• Modeling MT\(^{--}\) can be done from any \(\kappa \)-premodel, \(\kappa \geq \omega \).

• Modeling MT\(^-\) can be done from any canonical \(\kappa \)-premodel, \(\kappa \geq \omega \).
• Modeling MT and MT$_{\text{def}}$ can be done from any canonical κ-premodel, $\kappa > \sigma$, using the first inaccessible σ.

• Modelling MT$_0$ can be done from any κ-premodel, $\kappa > \sigma$, using any inaccessible σ.

6. Approach

The aim of the rest of this paper is to show that some of the models of MT$_0$ in [3] (the canonical ones) can be adjusted into models of MT.

Models have to be adjusted because MT$_0$ and MT have different syntax. Among others, MT$_0$ does not have the E of MT and MT does not have the ϕ of MT$_0$. To go from a model of MT$_0$ to a model of MT one must first delete the interpretation of ϕ and then add interpretations of \bot, Y, $||$, and E. One then has to check that all axioms and inference rules of MT are satisfied under adequate hypotheses on the model of MT$_0$ one started from. The most difficult part will be to show that the quantifier axioms can be satisfied when replacing the construct ϕ of MT$_0$ by the defined term ψ of MT.

We delay as far as possible the specialization to canonical models. Working like this first increases our conceptual understanding, but will moreover facilitate for the future the design of consistent variations of Map Theory that users might wish to introduce.

We work in ZFC+SI where SI asserts the existence of an inaccessible ordinal.

κ-premodels

For all regular cardinals $\kappa \geq \omega$, [3] defines the notion of κ-premodels of map theory. The notion of a κ-premodel reflects the basic intuitions which were behind map theory. In particular, all the constructors of MT and MT$_0$, namely \bot, T, if, $||$, Y, E, ε, and ϕ have natural interpretations as functions in all premodels, as we will see.

The definition of a κ-premodel (c.f. Section 8.2) involves Scott’s semantics, which is the most classical mathematical way for modeling type-free λ-calculus. Looking for a model as powerful as a model of ZFC, we will have to use generalizations (weakenings) of Scott’s semantics, called here κ-Scott semantics (where Scott semantics is the case $\kappa = \omega$). Until specified otherwise, κ is any regular cardinal such that $\kappa \geq \omega$. κ-Scott semantics will be treated in more detail in Section 7.

A κ-premodel has a domain which is a partially ordered set plus some structure which indicates how to interpret lambda abstraction, functional application, T, \bot, and arbitrary κ-continuous constructs. A κ-premodel is a reflexive object in κ-Scott semantics, which furthermore satisfies a simple domain equation Eq_κ (c.f. Section 8.1). As explained in [3, Section 3], the role of Eq_κ is to force standard models to satisfy the elementary axioms and rules of MT$_0$ (or MT).
Canonical \(\kappa\)-premodels

For all regular cardinals \(\kappa \geq \omega\), [3, Section 8] constructs a canonical \(\kappa\)-premodel of Map Theory. This was done in [3] in order to prove the existence of \(\kappa\)-premodels, which was the first step of the consistency proof of \(MT_0\). The next step in [3] was to prove that all \(\kappa\)-premodels, \(\kappa > \sigma, \sigma\) inaccessible, could be enriched to \(MT_0\) models.

For each regular \(\kappa \geq \omega\) there are many \(\kappa\)-premodels but only one canonical one. The canonical \(\kappa\)-premodel is the minimal solution to \(Eq_\kappa\). It is computationally adequate for the computational part of \(MT_0\) in the sense described in Section A.5.

In the present paper, canonical \(\kappa\)-premodels play an even more crucial role than in [3], since it is only the canonical \(\kappa\)-premodels, \(\kappa > \sigma, \sigma\) the first inaccessible, that we prove can be enriched to \(MT\) models.

Canonical \(\kappa\)-premodels admit an elementary and direct construction which we will recall in the sequel. By “elementary” we mean in particular that the construction uses no category theory which is crucial for being able to work in practice with the model.\(^3\)

\(MT_0\) standard \(\kappa\)-models

Given an inaccessible ordinal \(\sigma\) and a regular cardinal \(\kappa > \sigma\), [3, Sections 4 and 7] defines a method for enriching any \(\kappa\)-premodel to a model of \(MT_0\). The method adds interpretations of \(T, i, \varepsilon, \phi\) to the \(\kappa\)-premodel in such a way that all the axioms and inference rules of \(MT_0\) are satisfied. We shall refer to models constructed this way as \(MT_0\) standard models.

The function interpreting \(i\) is \(\kappa\)-continuous for all regular \(\kappa \geq \omega\). The function interpreting \(\varepsilon\) is only \(\kappa\)-continuous if \(\kappa > \sigma\) for some inaccessible ordinal \(\sigma\).

MT standard \(\kappa\)-quasimodels

Later, we adjust \(MT_0\) standard models by deleting the interpretation of \(\phi\) and adding interpretations of \(\bot, Y, ||, E\) by \(\kappa\)-continuous functions (\(\kappa \geq \omega\)) in an obvious way. We shall refer to the result of that as \(MT\) standard quasimodels. Such \(MT\) standard quasimodels need not satisfy all axioms and inference rules of \(MT\) but they do satisfy some of them.

The MT canonical \(\kappa\)-model \(M_\kappa\)

Given an inaccessible ordinal \(\sigma\) and a regular cardinal \(\kappa > \sigma\), one may enrich the canonical \(\kappa\)-premodel into an \(MT\) standard quasimodel. If \(\sigma\) is the first inaccessible ordinal then the quasimodel can be proved to satisfy all axioms and inference rules of \(MT\). Hence, we shall refer to the model constructed this way as the MT canonical \(\kappa\)-model \(M_\kappa\).

\(3\)A classical but far less feasible alternative would have been to build the canonical model as an inverse limit of an ordinal sequence, similar to what Scott did with his first model \(D_\omega\) in the case \(\kappa = \omega\).
Summary

To summarize, the notions of κ-premodels and canonical κ-premodels are the same for MT and MT₀. The notions of models of MT and MT₀ differ slightly due to differences in syntax. Furthermore, for canonical models of MT we assume that σ is the first inaccessible.

7. The κ-Scott semantics

7.1. Notation

Let \(\omega \) denote the set of finite ordinals (i.e. the set of natural numbers).

For all sets \(G \) let \(G^{\omega} \) denote the set of tuples (i.e. finite sequences) of elements of \(G \). Let \(\langle \rangle \) denote the empty tuple.

For all sets \(G \) let \(G^{\omega} \) denote the set of infinite sequences of elements of \(G \).

Let \(f : G \rightarrow H \) denote that \(f \) is a total function from \(G \) to \(H \).

Given any partially ordered or preordered set \((R, \leq)\) and \(S \subseteq R \), we let \(\uparrow S \) and \(\downarrow S \) be respectively the upward and downward closure of \(S \) for \(\leq \) in \(R \).

We shall say that a set \(G \) is κ-small if \(G \) has cardinality smaller than κ. Let \(\mathcal{P}(G) \) denote the power set of \(G \) and let \(\mathcal{P}^{\kappa}(G) \) denote the set of κ-small subsets of \(G \).

7.2. κ-Scott semantics

The κ-Scott category is the Cartesian closed category whose objects are the κ-Scott domains and morphisms the κ-continuous functions. As κ grows there are more and more κ-Scott domains and κ-continuous functions.

The theory of Scott domains (case κ = \(\omega \)) is well known, and its κ-analogue was developed in full details in [3]. For the reader familiar with Scott domain theory, passing from Scott to κ-Scott is straightforward and just amounts to changing everywhere “finite” by “κ-small”. The regularity of κ is essential. We recall some key definitions and results in the following.

κ-Scott semantics was first used around 1987-89 in [6, 7] and was used independently in [3], but Scott was aware of the notion from the beginning, and κ-Scott semantics appeared in German lecture notes by Scott which are probably lost now.

7.3. κ-Scott domains

Let \((D, \leq)\) be a partially ordered set (p.o. for short). A subset \(S \) of \(D \) is κ-directed if all its κ-small subsets have an upper bound in \(S \). The p.o. \((D, \leq)\) is a κ-Scott domain if it has a least (or bottom) element, is such that all κ-directed and all upper-bounded subsets have sups (suprema), and finally if it is κ-algebraic as defined below. As κ grows there are more and more κ-Scott domains. The simplest example of κ-Scott domains is that of the full powerset \((\mathcal{P}(D), \subseteq)\) of some set \(D \), which is a κ-Scott domain for all κ. The domain underlying the canonical model \(M \) of MT₀ will not be a full power set, but will still be a set of sets, ordered by inclusion.
An element u of \mathcal{D} is compact (resp. prime) if, whenever $u \leq \sup(S)$ for some κ-directed (upper bounded) set S, then $u \leq v$ for some $v \in S$. \mathcal{D} is κ-algebraic if for every $u \in \mathcal{D}$ the set of compact elements below u is κ-directed, and has u as its sup. A κ-Scott domain is prime-algebraic if each element of \mathcal{D} is the sup of the primes below it.

Definition 7.3.1. $\mathcal{K}(\mathcal{D})$ is the set of compact elements of the κ-Scott domain \mathcal{D}.

$(\mathcal{P}(\mathcal{D}), \subseteq)$ and \mathcal{M} are prime algebraic κ-Scott domains. The compact elements of $(\mathcal{P}(\mathcal{D}), \subseteq)$ are the κ-small subsets of \mathcal{D} and its primes are the singletons. In the case of \mathcal{M}, compact elements are downward closures of adequate κ-small subsets of \mathcal{D}, while primes are downward closures of singletons.

7.4. κ-continuous functions

A function between two κ-Scott domains is κ-continuous if it is monotone and commutes with all sups of non-empty κ-directed sets.

Given κ-Scott domains $\mathcal{D}, \mathcal{D}'$ we use $[\mathcal{D} \to \mathcal{D}']$ to denote the κ-Scott domain whose carrier set is the set of κ-continuous functions from \mathcal{D} to \mathcal{D}' ordered pointwise. As κ grows there are more and more κ-continuous functions.

7.5. Syntactic monotonicity

Monotonicity, which was part of the founding intuitions behind map theory (c.f. [8]) comes for free in models living in Scott’s semantics, but of course only relative to the order $x \preceq_M y$ of the underlying domain.

In MT, monotonicity is explicitly required in the axiomatisation (by Mono), but necessarily for a syntactic order. We shall prove (Theorem 8.5.2) that the syntactic order $x \preceq y$ coincides with the model order $x \preceq_M y$ in canonical κ-quasimodels and we shall conclude (Corollary 8.5.3) that the canonical κ-quasimodel satisfies Mono.

The Mono rule was not part of MT$_0$.

7.6. κ-open sets

$G \subseteq \mathcal{D}$ is κ-open if $G = \uparrow K$ for some set $K \subseteq \mathcal{K}(\mathcal{D})$. Equivalently, G is κ-open if $G = \uparrow G$ and whenever G contains $\sup(S)$ for some directed set S then it contains some element of S. This defines a topology, the κ-Scott topology, and the κ-continuous functions, as defined above, are exactly the functions which are continuous with respect to this topology. Finally, it is easy to check, and crucial to note, that the intersection of a κ-small family of κ-open sets is still κ-open.

$G \subseteq \mathcal{D}$ is essentially κ-small if $V \subseteq G \subseteq \uparrow V$ for some κ-small V. It follows that G is an essentially κ-small open set if and only if $G = \uparrow K$ for some κ-small $K \subseteq \mathcal{K}(\mathcal{D})$.

30
7.7. Reflexive objects and models of pure \(\lambda\)-calculus

By definition a reflexive object of the \(\kappa\)-category is a triple \((M, A, \lambda)\) where \(M\) is a \(\kappa\)-Scott domain and \(A: M \to [M \to_{\kappa} M]\) and \(\lambda: [M \to_{\kappa} M] \to M\) are two morphisms such that \(A \circ \lambda\) is the identity. This gives a model of untyped \(\lambda\)-calculus, i.e. of rules Trans, Sub, Gen, and A2, when we use \(A\) and \(\lambda\) to interpret the pure \(\lambda\)-terms, in the standard way (c.f. Section 9.6).

Most of the time \(A(u)(v)\) will be abbreviated as \(uv\), and \(uv_1 \cdots v_n\) will mean \(((\cdots((u)v_1)\cdots)v_n)\). Furthermore, \(\bar{w} \equiv uv_1 \cdots v_n\) if \(\bar{w} = w_1 \cdots w_n\) \((n \geq 0)\).

All \(n\)-ary \(\kappa\)-continuous functions, \(n \in \omega\), can be internalized in \(M\): for any such \(f\) there is an element \(v \in M\) such that \(f(u_1, \ldots, u_n) = vu_1 \cdots u_n\) for all \(u_1, \ldots, u_n \in M\). In the case \(n = 1\) we can take \(v = \lambda(f)\).

7.8. Tarski’s minimal fixed point operators

Let \(D\) be a \(\kappa\)-Scott domain and let \(f \in [D \to_{\kappa} D]\). If \(\kappa = \omega\) then \(f\) has a fixed point and even has a minimal such. That does not always hold for \(\kappa > \omega\). As an example, \((\omega, \leq)\) is a \(\kappa\)-Scott domain for all regular \(\kappa > \omega\) but the successor function has no fixed point.

We now turn to sufficient conditions for the existence of fixed points. For all \(f \in [D \to_{\kappa} D]\), \(x \in D\), and ordinals \(\alpha\) define

\[f^\alpha(x) = \sup\{f(f^{\beta}(x)) \mid \beta \in \alpha\} \]

whenever the sup exists. Furthermore, define

\[Y_{\text{Tarski}}(f) \equiv f^\alpha(\bot) \]

We shall say that \(v\) is a pre-fixed point of \(f\) if \(f(v) \leq_M v\).

Lemma 7.8.1. If \(f^\alpha(\bot)\) is defined then \(f^\alpha(\bot)\) is defined for all \(\alpha\), \(f^\alpha(\bot) = f^\alpha(\bot)\) for all \(\alpha > \kappa\), \(f\) has a fixed (and pre-fixed) point, it has a unique minimal fixed (and pre-fixed) point, and \(Y_{\text{Tarski}}(f) = f^\alpha(\bot)\) is that minimal fixed point.

Proof of 7.8.1 Easy and classical.

Lemma 7.8.2.

(a) If \(\kappa = \omega\) then \(Y_{\text{Tarski}} \in [D \to_{\kappa} D] \to D\) is total.

(b) If \(f\) has a fixed point then \(Y_{\text{Tarski}}(f)\) is defined.

(c) If there are \(A, \lambda\) making \((D, A, \lambda)\) a reflexive object then \(Y_{\text{Tarski}}\) is total and \(\kappa\)-continuous.

Proof of 7.8.2

(a) Easy.

(b) Note that if \(f\) has a fixed point \(x\) then \(x\) is an upper bound for each \(\{f(f^{\beta}(\bot)) \mid \beta \in \alpha\}\) which thus has a sup because \(D\) is \(\kappa\)-Scott.

(c) Totality follows from (b) because \(Y_{\text{Curry}}\lambda(f)\) is a fixed point where \(Y_{\text{Curry}}\lambda\) is definable when \(A\) and \(\lambda\) exist. Continuity can be proved by a rather standard proof (which can be found e.g. in [15]).

31
Now suppose \(\mathcal{M} = (\mathcal{D}, A, \lambda) \) is a reflexive object and define \(\Upsilon_{\text{Tarski}} \in \mathcal{M} \) by

\[
\Upsilon_{\text{Tarski}} \equiv \lambda(\Upsilon_{\text{Tarski}} \circ A)
\]

where \(\circ \) is composition.

Corollary 7.8.3.

\begin{align*}
(a) & \ U_{\text{Tarski}}^u = u(U_{\text{Tarski}}^u) \quad \text{(Y)} \\
(b) & \ uv \preceq_{\mathcal{M}} u \Rightarrow U_{\text{Tarski}}^u \preceq_{\mathcal{M}} v \quad \text{(Min)}
\end{align*}

Proof of 7.8.3

First note that \(A \circ \lambda \) is the identity since \(\mathcal{M} \) is reflexive so \(U_{\text{Tarski}}^u \equiv A(\lambda(U_{\text{Tarski}} \circ A))(u) = (U_{\text{Tarski}} \circ A)(u) \). Then (a) and (b) follow from the fact that \(U_{\text{Tarski}} \) is the minimal fixed and pre-fixed operator.

\(U_{\text{Tarski}} \) would hence be a good candidate for interpreting \(\Upsilon \), provided the syntactic order \(x \preceq y \) and the model order \(x \preceq_{\mathcal{M}} y \) coincide, as they do when \(\mathcal{M} \) is canonical.

8. Premodels of Map Theory

8.1. The domain equation \(Eq_\kappa \)

Given a \(\kappa \)-Scott domain \(\mathcal{D}' \) we denote by \(\mathcal{D}' \oplus_{\bot} \{ T' \} \) the \(\kappa \)-Scott domain obtained by adding to \(\mathcal{D}' \) an element \(T' \) which we decide to be incomparable to all the elements of \(\mathcal{D}' \), and a bottom element \(\bot' \) which we decide to be below \(T' \) and all the elements of \(\mathcal{D}' \).

Definition 8.1.1. \(Eq_\kappa \) is the domain equation \(\mathcal{D} \simeq [\mathcal{D} \rightarrow_{\kappa} \mathcal{D}] \oplus_{\bot} \{ T' \} \).

\(Eq_\kappa \) asserts that the two sides of \(\simeq \) are order isomorphic \(\kappa \)-Scott domains. It is the most natural semantic counterpart of rule QND, and the heart of the notion of a premodel. Proving the existence of solutions of \(Eq_\kappa \) within Scott’s semantics is a well mastered technique, and passing from \(\omega \) to \(\kappa \) is straightforward. \(Eq_\kappa \) admits moreover a minimal solution, which will be re-built in Section 9.

8.2. Premodels

In this subsection \(\kappa \) is any regular cardinal, and we do not need any \(\sigma \).

Given a solution \(\mathcal{M} \) of \(Eq_\kappa \) and an order isomorphism \(\lambda \) from \([\mathcal{M} \rightarrow_{\kappa} \mathcal{M}] \oplus_{\bot} \{ T' \} \) to \(\mathcal{M} \), let \(T \) and \(\bot \) denote \(\lambda(T') \) and \(\lambda(\bot') \), respectively. Thus, \(\bot \) is the bottom element of \(\mathcal{M} \) while \(T \) only compares to \(\bot \). The following theorem is easy to prove and the details can be found in [3, Section 3.1]:

Theorem 8.2.1. Let \(\mathcal{M} \) be a solution of \(Eq_\kappa \) and let \(\lambda \) be an order isomorphism from \([\mathcal{M} \rightarrow_{\kappa} \mathcal{M}] \oplus_{\bot} \{ T' \} \) to \(\mathcal{M} \). There exists a reflexive object \((\mathcal{M}, A, \lambda) \) such that

\begin{align*}
(a) & \text{ for all } u \in \mathcal{M} \text{ we have } A(T)(u) = T \text{ and } A(\bot)(u) = \bot. \\
(b) & \ F \equiv \{ \lambda(f) \mid f \in [\mathcal{M} \rightarrow \mathcal{M}] \} = \{ u \in \mathcal{M} \mid u = 1_u \} = \mathcal{M} \setminus \{ \bot, T \} \\
(c) & \ F \text{ and } \{ T \} \text{ are disjoint } \kappa \text{-open subsets of } \mathcal{M}.
\end{align*}
Note that in (b) above, only the last equation uses that \mathcal{M} is a solution to Eq_κ. The first equation is classic.

In fact \mathcal{F} is the isomorphic image of $[\mathcal{M} \to \kappa \mathcal{M}]$ under λ, and $\lambda x, \bot \equiv \lambda(x \mapsto \bot)$ is the bottom element of \mathcal{F}.

Conversely, any object $(\mathcal{M}, A, \lambda)$ satisfying the above theorem can easily be turned into a solution of Eq_κ.

Definition 8.2.2. A κ-premodel \mathcal{M}^2 is a triple $(\mathcal{M}^3, A, \lambda)$ satisfying the above requirements.

Definition 8.2.3. The canonical κ-premodel is the premodel associated to the minimal solution to Eq_κ.

Definition 8.2.3 will become more concrete in Section 9.6.

Theorem 8.2.4. Given any κ-premodel \mathcal{M} ($\kappa \geq \omega$), there are elements if, \parallel, and \mathcal{E} in \mathcal{M} such that \mathcal{M} satisfies the elementary axioms and rules of MT and the axioms on \mathcal{E} when the syntactic constructs \bot, \top, if, \parallel, and \mathcal{E} are interpreted by \bot, \top, if, \parallel, and \mathcal{E}, respectively.

Proof. \mathcal{M} satisfies rules Trans, Sub, Gen, and A2 since it is a reflexive object of a Cartesian closed category, \mathcal{M} satisfies A1 and A3 and rule QND by Theorem 8.2.1. We now turn to the axioms concerning if, \parallel, and \mathcal{E}. The argument is the same for the three constructors, and the case of if was already treated in [3].

The function If defined by $\text{If}(u, v, w) = v$ if $u = \top$, w if $u \in \mathcal{F}$, and \bot if $u = \bot$ is clearly κ-continuous. Hence, there is some element $\text{if} \in \mathcal{M}$ such that $uvw = \text{If}(u, v, w)$ for all $u, v, w \in \mathcal{M}$. Then it is easy to see that \mathcal{M} satisfies Axioms I1, I2, and I3.

The function Paror defined by $\text{Paror}(u, v) = \top$ if u or v is \top, $x: \top$ if $u, v \in \mathcal{F}$, and \bot otherwise is clearly κ-continuous. Hence, there is some element $\parallel \in \mathcal{M}$ such that $uv = \text{Paror}(u, v)$ for all $u, v \in \mathcal{M}$. Then it is easy to see that \mathcal{M} satisfies Axioms P1, P2, and P3.

The function Exist defined by $\text{Exist}(u) = \top$ if $uv = \top$ for some $v \in \mathcal{M}$ and \bot otherwise is clearly κ-continuous. Hence, there is some element $\mathcal{E} \in \mathcal{M}$ such that $Eu = \text{Exist}(u)$ for all $u \in \mathcal{M}$. Then it is easy to see that \mathcal{M} satisfies the four axioms on \mathcal{E}. \square

We now turn to \mathcal{Y} and to the monotonicity and minimality axioms Mono and Min.

Theorem 8.2.5. Given any κ-premodel \mathcal{M} ($\kappa \geq \omega$), when the syntactic construct \mathcal{Y} is interpreted by $\mathcal{Y}_{\text{Tarski}}$, \mathcal{M} satisfies the Monotonicity and the Minimality axioms for the model order $\geq_\mathcal{M}$ (but possibly not for the syntactic order $\geq_\mathcal{S}$).

Proof. Monotonicity is for free when \mathcal{M} lives in Scott’s semantics and the rest follows from Corollary 7.8.3. \square

We now turn to the quantifier axioms. These axioms were easy to model in MT$_0$ (the difficulty was carried by some of the ϕ-axioms), but in MT they
become very difficult to model since the constant ϕ of MT_0 is replaced here by a complex term ψ, whose definition involves ε and Y. Our trick will be to use that they hold for the characteristic function ϕ of Φ, and to prove later on (Sections 12 and 13) that, provided σ is the first inaccessible cardinal, ψ and ϕ coincide in all premodels when Y is interpreted as in the proof above (i.e. by Y_{Tarski}).

Recall $\text{Dom}[w] \equiv \{u \in M \mid wu = T\}$ from Definition 4.6.1 and define:

Definition 8.2.6. For $U \subseteq M$ and $w \in M$ we let:

(a) $wU \equiv \{wu \mid u \in U\}$

(b) $\chi_{U}: M \rightarrow M$ is defined by $\chi_{U}(x) = T$ if $x \in U$ and $\chi_{U}(x) = \bot$ otherwise.

Remark 8.2.7.

(a) $\text{Dom}[w]$ is a κ-open set for all $w \in M$

(b) U is κ-continuous iff U is κ-open

Theorem 8.2.8 ([3]). Let M be a κ-premodel ($\kappa \geq \omega$), and let $\Phi \subseteq M$ be such that $\Phi = \uparrow U$ for some κ-small set U such that $T \in U$ and $\bot \notin U$. Then there is an $\varepsilon \in M$ such that, when the syntactical ε is interpreted by this ε, M satisfies the quantifier axioms, but for $\phi \equiv \lambda(\chi_{\Phi})$ instead of the MT-term ψ.

Proof. Sketch of proof (details in [3, Section 4.1]): Let ξ be a choice function on Φ, i.e. a function $\xi: P(\Phi) \rightarrow \Phi$ such that $\xi(V) \in V$ for all non-empty $V \subseteq \Phi$. Let $e: M \rightarrow \Phi \cup \{\bot\}$ be defined by: $e(u) = \bot$ if $\bot \in u \Phi$, $e(u) = T$ if $w \Phi \subseteq F$, and $e(u) = \xi(x \in \Phi \mid ux = T)$ otherwise. Then e is κ-continuous (it is already clear that $u \preceq_{\text{MT}} v$ implies $e(u) = \bot$ or $e(u) = e(v)$) and can hence be internalized by an element $\varepsilon \in M$ which has the required properties. □

8.3. Standard and canonical models of MT_0

We suppose now that there is some inaccessible σ such that $\sigma < \kappa$. And we recall the method which allows us to enrich any κ-premodel into a model of MT_0, under this hypothesis.

We define σ-small sets and essentially σ-small sets as was done for κ (c.f. Section 7.1 and 7.6), and we note that a κ-open set O is essentially σ-small if and only if $O = \uparrow K$ for some σ-small set of compact elements of M.

Definition 8.3.1. [3] For any $U, V, H \subseteq M$ where H is open we let:

(a) $O^\sigma(U)$ be the set of all essentially σ-small open subsets of U

(b) $U^\sigma \equiv \{x \in M \mid xU \subseteq V\}$

(c) $U^n \equiv \{x \in M \mid \forall u_1, \ldots, u_n \in U^n \exists n \in \omega: xu_1 \cdots u_n = T\}$

(d) $F_{\sigma}(H) \equiv \{T\} \cup \bigcup \{G^o \rightarrow G \mid G \in O^\sigma(H)\}$

Definition 8.3.2. $\Phi \subseteq M$ is the smallest solution of the equation $\Phi = F_{\sigma}(\Phi)$.

Definition 8.3.2 is equivalent to the definition used in [3] and several other definitions as studied in [3]. The property $\Phi = F_{\sigma}(\Phi)$ is called the Generic Closure Property (GCP) in [3].
Theorem 8.3.3 ([3]). Φ is an essentially κ-small open subset of \mathcal{M}.

Definition 8.3.4. An \mathcal{M}_0 standard κ-σ-quasimodel is a tuple $(\mathcal{M}, T, \text{if}, \varepsilon, \phi)$ where \mathcal{M} is a κ-premodel, T, if, and ε are defined as in the previous section, and $\phi = \lambda(\chi_{\Phi})$.

Theorem 8.3.5 ([3]). If σ is inaccessible and $\kappa > \sigma$ then any \mathcal{M}_0 standard κ-σ-quasimodel satisfies \mathcal{M}_0.

Thus, we can drop "quasi" for σ inaccessible, $\kappa > \sigma$. For each κ, \mathcal{M}_0 has many κ-models but of course only one canonical κ-model: the one corresponding to the minimal solution to Eq_κ. We now proceed to \mathcal{M} models.

8.4. Towards modelling the quantification axioms

Now define $\hat{\psi} = \text{Dom}[\psi]$. To model the quantification axioms of \mathcal{M} it remains to show that, if σ is the first inaccessible cardinal, then $\hat{\psi} = \Phi$. This is by far the most difficult proof of the paper, and it is split into two parts, called the Upper Bound Theorem (UBT) and the Lower Bound Theorem (LBT).

UBT says $\hat{\psi} \subseteq \Phi$. It puts an upper bound on $\hat{\psi}$ and is proved in Section 12. The proof uses the existence of an inaccessible σ (actually, the mere definition of Φ needs it). The proof also uses that the construct \mathcal{Y} (which is part of the definition of ψ) is interpreted by $\mathcal{Y}_{\text{Tarski}}$.

LBT says $\Phi \subseteq \hat{\psi}$. It puts a lower bound on $\hat{\psi}$ and is proved in Section 13. The proof of LBT uses UBT and also uses the assumption that σ is the first inaccessible ordinal (the proof of UBT does not use it). UBT and LBT together entail the following:

Theorem 8.4.1. If σ is the first inaccessible and $\kappa > \sigma$, then:

(a) Any MT standard κ-σ-quasimodel \mathcal{M} satisfies the quantifier axioms of \mathcal{M}.

(b) If \mathcal{M} is furthermore canonical then it satisfies the quantifier axioms of \mathcal{M}_{def}.

As already noticed in the introduction, \mathcal{M}_{def} is a priori more difficult to model than \mathcal{M}. Fortunately, canonical models \mathcal{M} are suited for it. Indeed, (b) above follows from (a) plus the results stated in Section 8.5.

Remark 8.4.2. We avoid using Ψ for $\text{Dom}[\psi]$ because Ψ has another meaning in [3].

8.5. Towards modelling of Mono, Min, and Ext

Modelling Mono, Min, and Ext can be done in ZFC (no inaccessible is needed), but canonicity is crucial here.

Theorem 8.5.1. For all $\kappa \geq \omega$ the canonical κ-quasimodel \mathcal{M} satisfies Ext.
Proof. Section 10.2 □

Now recall that we define the syntactic order \(\leq \) and the syntactic infimum \(\downarrow \) in a roundabout way in that we define \(\downarrow \) first and then define \(\leq \) as the order induced by \(\downarrow \). Theorem 8.5.2 is equally roundabout:

Theorem 8.5.2. For all \(\kappa \geq \omega \) the canonical \(\kappa \)-quasimodel \(M \) satisfies that infimum in the model coincides with the syntactic infimum \(\downarrow \) and, as a corollary, the model order \(\leq_{M} \) coincides with the syntactic order \(\leq \).

Proof. Section 10.3 □

Now recall that \(Y \) is interpreted by \(Y_{\text{Tarski}} \).

Corollary 8.5.3. \(M \) satisfies Mono and Min of MT.

Theorem 8.5.4. For all \(\kappa \geq \omega \), the canonical \(\kappa \)-quasimodel \(M \) satisfies

\[Y_{\text{Tarski}} = Y_{\text{Curry}} \]

Proof. Section 10.4 □

Corollary 8.5.5. \(M \) satisfies \(Yf = Y_{\text{Curry}}f \) and \(\bot = \bot_{\text{Curry}} \).

Corollary 8.5.6. \(M \) satisfies Mono and Min of MT_{def}.

9. Building the canonical \(\kappa \)-premodel

The aim is here to recall the elementary construction we gave in [3, Section 8] of the canonical premodel, i.e. of the minimal solution of the domain equation \(Eq_{\kappa} \) (which proves in passing the existence of such a solution). This premodel is a webbed model in the sense that it is built as an (enriched) powerset of some lower level structure, called its web, which here can be taken to be a reflexive pcs. The terminology of “webbed model” was introduced in [2] and pcs’s are defined below.

9.1. Pcs’s

A pre-pcs is a tuple \(D = (D_{D}, \leq_{D}, \circ_{D}) \) for which \(\leq_{D} \) and \(\circ_{D} \) are binary relations on \(D_{D} \).

A pcs is a pre-pcs \(D = (D, \leq, \circ) \) with the following properties:

- Partial order \(\leq \) is reflexive and transitive.
- Coherence \(\circ \) is reflexive and symmetric.
- Compatibility \(x \leq x' \land y \leq y' \land x' \circ y' \Rightarrow x \circ y \).

From now on, \(D = (D, \leq, \circ) \) and \(D' = (D', \leq', \circ') \) denote pre-pcs’s.

\(D \) is a sub-pcs of \(D' \), written \(D \subseteq D' \), if the following hold:

\[\forall x, y \in D: \quad x \leq y \iff x \leq' y \]
\[\forall x, y \in D: \quad x \circ y \iff x \circ' y \]
A set \(S \) of pre-pcs's is a **chain** if \(\forall D, D' \in S: D \subseteq D' \lor D' \subseteq D \). For all pre-pcs's \(D \), all \(u, v \subseteq D \), and \(p \in D \) define

\[
\begin{align*}
 u \leq_D v & \iff \forall x \in u \exists y \in v : x \leq_D y \\
 u \sqsubseteq_D v & \iff \forall x \in u \forall y \in v : x \sqsubseteq_D y \\
 \text{Co}h_D u & \iff u \sqsubseteq_D u \\
 \downarrow_D u & = \{ y \in D \mid \exists x \in u : y \leq x \} \\
 \downarrow_D p & = \downarrow_D \{ p \} \\
 \mathcal{I}(D) & = \{ \downarrow_D u \mid u \subseteq D \land \text{Co}h_D u \}
\end{align*}
\]

Above \(\mathcal{I}(D) \) denotes the set of coherent, initial segments of \(D \).

Fact 9.1.1. For all pcs's \(D \), \((\mathcal{I}(D), \subseteq) \) is a prime algebraic \(\kappa \)-Scott domain whose sets of prime and compact elements are \(\{ \downarrow_D p \mid p \in D \} \) and \(\{ \downarrow_D u \mid u \in \mathcal{P}^c(D) \land \text{Co}h_D u \} \), respectively.

The goal of Section 9.2–9.3 is to define a pcs \(P \) such that \((\mathcal{I}(P), \subseteq) \) satisfies \(\text{Eq}_\kappa \).

9.2. Pcs generators

Let \(D \uplus D' \) denote disjoint union (i.e. \(D \cup D' \) when \(D \cap D' = \emptyset \) and undefined otherwise). Let \(D, D' \) be pre-pcs’s and let \(S \) be a set of such structures. We now define the pre-pcs’s \(U(t), D_f, \cup S, D \uplus D', D \rightarrow D' \), and \(\mathcal{P}^c_{\text{coh}}(D) \):

\[
\begin{array}{cccc}
R & D_R & x \leq_R y & x \sqsubseteq_R y \\
U(t) & \{ \} & \text{true} & \text{true} \\
D_f & D \uplus \{ f \} & x = f \lor x \leq y & x = f \lor x \sqsubseteq y \\
\cup S & \cup_{D \in S} D_D & \exists D \in S : x \leq_D y & \exists D \in S : x \sqsubseteq_D y \\
D \uplus D' & D \uplus D' & x \leq y \lor x \leq y' & x \sqsubseteq y \lor x \sqsubseteq y' \\
D \rightarrow D' & D \times D' & y_1 \leq x_1 \land x_2 \leq y_2 & x_1 \sqsubseteq x_1 \land x_2 \sqsubseteq y_2 \\
\mathcal{P}^c_{\text{coh}}(D) & \{ a \in \mathcal{P}^c(D) \mid \text{Co}h_{D_D} a \} & x \leq^* y & x \sqsubseteq^* y
\end{array}
\]

As an example of reading the table, the fourth line says that \(D \uplus D' \) is the unique pre-pcs \(R \) for which

\[
\begin{align*}
 D_R & = D \uplus D' \\
 x \leq_R y & \iff x, y \in D_R \land (x \leq y \lor x \leq y') \\
 x \sqsubseteq_R y & \iff x, y \in D_R \land (x \sqsubseteq y \lor x \sqsubseteq y')
\end{align*}
\]

In the line defining \(D \rightarrow D' \), we define \(D \times D' = \{ \langle x_1, x_2 \rangle \mid x_1 \in D \land x_2 \in D' \} \).

For all \(x \in D \times D' \) we define \(x_1 \) and \(x_2 \) to be the first and second component, respectively, of the tuple \(x \).

Under reasonable conditions, the above pre-pcs’s are pcs’s:

Fact 9.2.1. \(U(t) \) is a pcs for all objects \(t \) (of ZFC).

Fact 9.2.2. If \(D \) is a pcs and \(f \notin D \) then \(D_f \) is a pcs.
Fact 9.2.3. If \(S \) is a chain of pcs’s then \(\cup S \) is a pcs.

Fact 9.2.4. If \(D \) and \(D' \) are pcs’s and \(D \) and \(D' \) are disjoint, then \(D \oplus D' \) is a pcs.

Fact 9.2.5. If \(D \) and \(D_0 \) are pcs’s and \(D \) and \(D_0 \) are disjoint, then \(D \oplus D_0 \) is a pcs.

Fact 9.2.6. If \(D \) is a pcs and \(\kappa \) is a cardinal, then \(\mathcal{P}^\kappa_\text{coh}(D) \) is a pcs.

9.3. The web of the canonical \(\kappa \)-premodel

Now let \(\kappa \) be a regular cardinal greater than \(\sigma \) and, for all pre-pcs’s \(D \), define

\[
H(D) = (\mathcal{P}^\kappa_\text{coh}(D) \rightarrow D) \oplus U(t)
\]

Furthermore let \(Eq'_\kappa \) be the equation

\[
H(P) = P
\]

Fact 9.3.1. If a pcs \(P \) satisfies \(Eq'_\kappa \), then \((\mathcal{I}(P), \subseteq) \) satisfies \(Eq_\kappa \).

Now define

\[
\begin{align*}
P_0 &= \langle \emptyset, \emptyset, \emptyset \rangle \\
P_{\beta+1} &= H(P_\beta) \\
P_\delta &= \cup\{ P_\beta \mid \beta \in \delta \} \\
P &= P_\kappa
\end{align*}
\]

It is easy to prove by transfinite induction that \(P_\beta \) is a pcs, that \(\{ P_\beta \mid \beta \in \delta \} \) is a chain of pcs’s, and that the pcs \(P \) is the minimal solution of \(Eq_\kappa \). Note that \(P_1 = \{ t, f \} \).

We define the rank \(rk(p) \) of \(p \in P \) as the smallest ordinal \(\alpha \) for which \(p \in P_\alpha \). Recall that \(P_0 = \emptyset \) and \(P_1 = \{ t, f \} \) (as sets).

9.4. Some properties of the web

From now on \(\downarrow \) means \(\downarrow P \). Define \(C = \mathcal{P}^\kappa_\text{coh}(P) \). For \(p \in P \) and \(\bar{a} = (a_1, \ldots, a_n) \in C^{<\omega} \) let \(\ell(\bar{a}) \) denote \(n \) (i.e. the length of \(\bar{a} \)) and define

\[
\langle \bar{a}, p \rangle = \langle a_1, \ldots, (a_n, p) \ldots \rangle
\]

In particular, \(\langle \bar{a}, p \rangle = p \) if \(\ell(\bar{a}) = 0 \). Using that there are no decreasing infinite sequences of ordinals we easily get:

Lemma 9.4.1 ([3]). For each \(p \in P \) there is a unique decomposition of \(p \) as \(p = \langle \bar{a}, t \rangle \) or \(p = \langle \bar{a}, f \rangle \) where \(\bar{a} \in C^{<\omega} \).

For \(p = \langle \bar{a}, t \rangle \) (\(p = \langle \bar{a}, f \rangle \)) we define \(\ell(p) = \ell(\bar{a}) + 1 \) and refer to \(t \) (\(f \)) as the head of \(p \).

Remark 9.4.2.

\(\langle a, p \rangle \leq r \in P \) implies \(r = \langle b, q \rangle \) for some \(b, q \).

\(\langle a, p \rangle \leq \langle b, q \rangle \) iff \(b \subseteq \downarrow a \) and \(p \leq q \).
9.5. The domain of the canonical κ-premodel

The κ-Scott domain M of the canonical κ-premodel is defined by

$$M \equiv (I(P), \subseteq)$$

We have:

Fact 9.5.1.

$M_p = \{\downarrow p \mid p \in P\}$ is the set of prime maps of M.

$M_c = \{\downarrow a \mid a \in C\}$ is the set of compact maps of M.

In M, sups are unions and infs are intersections.

M_c was called $K(M)$ in Section 7.3.

9.6. The canonical κ-premodel

Let T' and \bot' be arbitrary objects such that $T' \neq \bot'$ and $T', \bot' \notin [M \to \kappa M]$. Then define λ, T, \bot, and A by

$$\begin{align*}
\lambda(T') &\equiv T \equiv \{t\} \\
\lambda(h) &\equiv \{f\} \cup \{(a, p) \in C \times P \mid p \in h(\downarrow a)\} \quad \text{for } h \in [M \to \kappa M] \\
\lambda(\bot') &\equiv \bot \equiv \emptyset \\
A(T)(v) &= T \quad \text{for } v \in M \\
A(u)(v) &= \{ p \in P \mid \exists a \subseteq v : (a, p) \in u\} \quad \text{for } u \in F, v \in M \\
A(\bot)(v) &= \bot \quad \text{for } v \in M
\end{align*}$$

We have:

Fact 9.6.1.

(a) $\lambda : [M \to \kappa M] \oplus_{\bot'} \{T'\} \to M$ is an order isomorphism.

(b) M is the minimal solution to Eq_κ.

(c) (M, A, λ) is a reflexive object.

Definition 9.6.2. The canonical κ-premodel is the triple (M, A, λ) with λ and A defined as above. M_κ is the associated MT canonical κ-quasimodel (c.f. Section 5.4).

Note that we have $T = \{t\}$, $\bot = \emptyset$, and $F = M \setminus \{T, \bot\}$ with F defined as for Theorem 8.2.1. We have:

Fact 9.6.3.

(a) $u \in F$ iff $u \in M$ and $f \in u$.

(b) $\bot, T, \{f\} \in M_c$ and $\{f\}$ models $\lambda x.\bot$.

9.7. Tying up a loose end

Now recall the definitions of $a \sim_\kappa b$, $a =_{\text{obs}} b$, and $a =_\kappa b$ from Section 3.6. Note that if $\forall c \in M_c : ca \sim_\kappa cb$ then, in particular, $(\downarrow \{p\}, t)ca = T \Leftrightarrow (\downarrow \{p\}, t)b = T$ so $p \in a \Leftrightarrow p \in b$. Thus, $a =_{\text{obs}} b \Rightarrow a =_\kappa b$ which is the non-trivial direction of Fact 3.6.2.
10. Canonical premodels satisfy Mono, Min, and Ext

In Section 10 we only suppose $\kappa \geq \omega$, and that \mathcal{M} is the canonical κ-premodel described above; in particular its domain is the minimal solution of Eq_{κ}.

We prove that \mathcal{M} satisfies Mono, Min, and Ext, that the model order \subseteq coincides with the syntactic order \preceq, and that we can eliminate the constant Y in favor of Curry’s paradoxical combinator.

Monotonicity of application w.r.t. \subseteq will be used constantly, most often without mention.

10.1. A characterization of the order of \mathcal{M} via application

The following applicative characterization of the model order \subseteq of \mathcal{M} is the key for proving later on that the model order coincides with the syntactic order \preceq and that \mathcal{M} satisfies Ext.

Definition 10.1.1. Let $r = \lambda u. [u, T, \lambda x. \bot]$.

Thus in \mathcal{M} we have that $ru = T$ if $u = T$, $ru = \emptyset$ if $u = \emptyset$, and $ru = \{ f \}$ if $u \in \mathcal{F}$.

Theorem 10.1.2. For all $u, v \in \mathcal{M}$ the following are equivalent:

(i) $u \subseteq v$

(ii) For all $\bar{w} \in \mathcal{M}^{<\omega}$ we have $r(u\bar{w}) \subseteq r(v\bar{w})$

Proof. (i) \Rightarrow (ii) because application is monotone.

(ii) \Rightarrow (i). Let $U = \mathcal{M} \setminus \{ \emptyset, T, \{ f \} \}$. The only non-trivial case is when $u \in U$. Let V be the set of triples (u, v, p) such that $u \in U$, u and v satisfy (ii), and $p \in u \setminus v$. Note that $v \in \mathcal{F}$ and $p \neq t, f$. Suppose $V \neq \emptyset$, choose a triple $(u, v, p) \in V$ such that $\ell(p)$ is minimal. Since $\ell(p) \geq 2$ let $(c, q) \in C \times P$ be such that $p = \langle c, q \rangle$, which implies $\ell(q) < \ell(p)$ and $q \in \downarrow p \subseteq uv$, where $w \equiv \downarrow c$. Since the pair (uv, vw) satisfies (ii), by the minimality hypothesis we have that $q \in vw$. Now, by definition of application in \mathcal{M}, and since $v \neq T$, there is a $c' \subseteq \downarrow c \equiv w$ such that $\langle c', q \rangle \in v$ and $p = \langle c, q \rangle \leq \langle c', q' \rangle \in v$, thus $p \in v$. A contradiction which proves $V = \emptyset$, i.e. (ii) \Rightarrow (i). \square

Corollary 10.1.3. For all $u, v \in \mathcal{M}$ we have

(i) $u \subseteq v$ if $r(u) \subseteq r(v)$ and $\forall w: (uw \subseteq vw)$

(ii) $u = v$ if $r(u) = r(v)$ and $\forall w: (uw = vw)$

Proof. (i) is an immediate consequence of the theorem, from which (ii) follows. In fact both are also direct consequences of the fact that \mathcal{M} was a premodel (\mathcal{M} is not required to be canonical for the corollary). \square
It is interesting to compare this last result (which only applies to canonical premodels of MT) to the following one, which deserves to be known: the order of a reflexive Scott domain is always definable by a first order formula using only application (and which is the same for all these domains). This result, proved by Plotkin in 1972, and only published twenty years later in [14], was rediscovered independently by Kerth [11], who proved that it also holds in Berry’s and Girard’s stable semantics, and Ehrhard’s strongly stable semantics [12] (with different formulas).
10.4. \(\mathcal{Y} \) and minimality

We now show that \(\mathcal{M} \) interprets Curry’s fixed point combinator as \(\mathcal{Y}_{\text{Tarski}} \).
A first proof was worked out by Thierry Vallée (private communication, 2002),
the present one is slightly more direct.

Definition 10.4.1. For all \(u, v \in \mathcal{M} \) and ordinals \(\alpha \) let \(u_\alpha \equiv \downarrow(u \cap P_\alpha) \in \mathcal{M} \).

Lemma 10.4.2. For all \(u, v \in \mathcal{M} \) we have:

(i) \(u_0 = \emptyset \) and \(u_\omega = u \).
(ii) \(u_\delta v = \cup_{\beta < \delta} (u_\beta v) \) for all limit ordinals \(\delta \).
(iii) \(u_{\beta+1} v = u_{\beta+1} v_\beta \) for all ordinals \(\beta \).

Proof.

(ii) \(\cup_{\beta < \delta} (u_\beta v) \subseteq u_{\delta v} \) by monotonicity. Now assume \(p \in u_{\delta v} \). Choose \(a \subseteq v \) such that \(\langle a, p \rangle \in u_\delta \equiv \downarrow(u \cap P_\delta) \).
Choose \(q \in u \cap P_\delta \) such that \(\langle a, p \rangle \leq q \). Choose \(\beta < \delta \) such that \(q \in P_\beta \). Choose \(a', p' \) such that \(q = \langle a', p' \rangle \). We have \(p \leq p' \) and \(a' \subseteq \downarrow a \), c.f. Remark 9.4.2. Furthermore, \(q \in P_\beta \) implies \(a' \subseteq P_\beta \). Now \(p \leq p' \) \(42 \) implies \(a' \subseteq u_{\beta v} \) so \(p \in u_{\beta+1} v \).

(iii) \(u_{\beta+1} v_\beta \subseteq u_{\beta+1} v \) by monotonicity. Now assume \(p \in u_{\beta+1} v \). Choose \(a \subseteq v \) such that \(\langle a, p \rangle \in u_{\beta+1} \equiv \downarrow(u \cap P_{\beta+1}) \).
Choose \(q \in u \cap P_{\beta+1} \) such that \(\langle a, p \rangle \leq q \). Choose \(a', p' \) such that \(q = \langle a', p' \rangle \). We have \(p \leq p' \) and \(a' \subseteq \downarrow a \), c.f. Remark 9.4.2. Furthermore, \(q \in P_{\beta+1} \) implies \(a' \subseteq P_{\beta+1} \). Now \(p \leq p' \) implies \(\langle a' \rangle \subseteq u_{\beta+1} v_\beta \) so \(p \in u_{\beta+1} v_{\beta+1} \).

Theorem 10.4.3. \(\mathcal{M} \models \mathcal{Y}_{\text{Curry}} = \mathcal{Y}_{\text{Tarski}} \).

Proof.

Since \(\mathcal{Y}_{\text{Tarski}} \) acts as the least fixed point operator on \(\mathcal{M} \) it is enough to prove that, for all \(u \in \mathcal{M} \), we have \(w w \subseteq Y_{\text{Tarski}} u \), where \(w \equiv \lambda x. u(xx) \). We prove \(w_\alpha w \subseteq Y_{\text{Tarski}} u \) by induction on \(\alpha \leq \kappa \). The case \(\alpha = 0 \) is clear and the limit case is by Lemma 10.4.2(ii). If \(\alpha = \beta + 1 \) we have \(w_{\beta+1} w = w_{\beta+1} w_\beta \subseteq w_\beta = u_{(w_\beta) \beta} \subseteq u \) \({\text{Y}}_{\text{Tarski}} u \) \(Y_{\text{Tarski}} u \), the first equality coming from Lemma 10.4.2(iii) and the last inclusion by induction hypothesis.

Remark 10.4.4. Most usual models are stratified, in the sense (very roughly speaking) that it is possible to find a way of decomposing them in such a way that each \(u \) is the inf of an increasing sequence \(u_\alpha, \alpha \in \kappa \), \(\kappa \) usually satisfying all the properties listed in Lemma 10.4.2 except \(u_1 v = u_1 v_0 \). This last equation is really the key point here as for, say, Scott’s first model \(\mathcal{D}_\infty \), for which it holds; it is false for Park’s variant of \(\mathcal{D}_\infty \), which does not satisfy Min.

11. Concepts for proving UBT and LBT

11.1. Main theorem

In the following, \(\sigma \) denotes the smallest inaccessible ordinal (in \([3]\), \(\sigma \) denotes an arbitrary, inaccessible ordinal). Let \(\kappa \) be a regular cardinal greater than \(\sigma \). We work in a standard \(\kappa \)-model \(\mathcal{M} \). We refer to elements of \(\mathcal{M} \) as maps. Unless otherwise noted, variables range over \(\mathcal{M} \).
Define Φ and \(\phi \) as in [3]. \(\phi \) satisfies
\[
\phi x = \begin{cases}
T & \text{when } x \in \Phi \\
\perp & \text{otherwise}
\end{cases}
\]
Recall Definition 4.6.1 and 4.6.3 and define \(\hat{\psi} = \text{Dom}[\psi] \). The elements of \(\Phi \) and \(\hat{\psi} \) are the wellfounded maps of \(\text{MT}_0 \) and \(\text{MT} \), respectively. We now prove that the two notions of wellfoundedness coincide:

Theorem 11.1.1 (Main Theorem). \(\hat{\psi} = \Phi \) (or, equivalently, \(\psi = \phi \))

To do so, we prove that \(\Phi \) is both an upper and a lower bound of \(\hat{\psi} \):

Theorem 11.1.2 (Upper Bound Theorem/UBT). \(\hat{\psi} \subseteq \Phi \).

Theorem 11.1.3 (Lower Bound Theorem/LBT). \(\Phi \subseteq \hat{\psi} \).

We prove UBT and LBT in Sections 12 and 13, respectively. Section 11 analyzes \(\psi \) and \(\Phi \).

The proof of LBT uses UBT (e.g., Fact 13.6.2(c) and Lemma 13.8.3(e)).

The proof of LBT uses that \(\sigma \) is the smallest inaccessible ordinal (in Lemma 13.7.3).

11.2. Elementary observations

Fact 11.2.1.
(a) \(\perp \preceq_M y \)
(b) \(x \preceq_M y \wedge x = T \Rightarrow y = T \)
(c) \(x \preceq_M y \wedge x \in \mathcal{F} \Rightarrow y \in \mathcal{F} \)

Fact 11.2.2.
(a) \((\exists x. A) = T \Leftrightarrow \exists x \in \mathcal{M}: (A = T) \)
(b) \((\forall x. A) = T \Leftrightarrow \forall x \in \Phi: (A = T) \)
(c) \(\phi x = T \Leftrightarrow x \in \Phi \)

Fact 11.2.3.
(a) \((x ! y) \neq \perp \Leftrightarrow x = T \wedge y \neq \perp \)
(b) \((x ! y) \neq \perp \Leftrightarrow x ! y = y \)
(c) \((x ! y ! z) = x ! (y ! z) \)
(d) \((x ! y ! z) \neq \perp \Leftrightarrow x = T \wedge y = T \wedge z \neq \perp \)
(e) \((x ! y ! z) \neq \perp \Leftrightarrow x ! y ! z = z \)

Fact 11.2.4.
(a) \(D x = T \Leftrightarrow x \neq \perp \)

Fact 11.2.5.
(a) \(\text{Dom}[\cup f] = \bigcup_{x \in \mathcal{M}} \text{Dom}[fx] \)
11.3. Duals, boundaries, closure, and functions

Definition 11.3.1. Let $G, H \subseteq M$

(a) $G^0 \equiv \{ g \in M \mid \forall x_0, x_1, \ldots \in G \exists n \in \omega : gx_0 \cdot \cdot \cdot x_n = T \}$ for $G \neq \emptyset$

(b) $\emptyset^0 \equiv M \setminus \{ \bot \}$

(c) $G^\delta \equiv \{ g \in G \mid \forall f \in G : (f \preceq_M g \Rightarrow f = g) \}$

(d) $G^\uparrow \equiv \{ h \in M \mid \exists g \in G : g \preceq_M h \}$

(e) $G \rightarrow H = \{ f \in M \mid \forall x \in G : fx \in H \}$

We shall refer to G^0, G^δ, and G^\uparrow as the dual, boundary, and upward closure, respectively, of G. Definition (a) above repeats Definition 8.3.1(c). Definition (e) above repeats Definition 8.3.1(b). Definition (b) above makes explicit how to understand \emptyset^\uparrow.

Fact 11.3.2.

(a) $G \subseteq H \Rightarrow H^0 \subseteq G^0$

(b) $G \subseteq H \Rightarrow G^\gamma \subseteq H^\gamma$

(c) $G^0 \subseteq G \wedge H \subseteq H^' \Rightarrow G \rightarrow H \subseteq G^0 \rightarrow H^'$

(d) $G \subseteq H \Rightarrow G^\gamma \rightarrow G \subseteq H^\gamma \rightarrow H$

(e) $G \neq \emptyset \Rightarrow G^\gamma = G \rightarrow G^\gamma$

(f) $G \subseteq H \subseteq H^\gamma \Rightarrow G^\gamma \rightarrow G \subseteq H^\gamma \rightarrow H^\gamma = H^\gamma$

Lemma 11.3.3. $G^\delta \uparrow = G^\gamma$ for all open G.

Proof of 11.3.3 Trivial for $G = \emptyset$. Follows from [3, Theorem 6.1.11] for $G \neq \emptyset$.

11.4. Cardinality

We shall use $G \triangleleft \preceq H$ to denote that G has smaller cardinality than H and define $G \preceq \preceq H$ likewise. For $G \subseteq M$ recall from Sections 7.1, 7.6, and 8.3 that G is essentially σ-small if there exists a σ-small V such that $V \subseteq G \subseteq V^\uparrow$. Recall from Definition 8.3.1(a) that $O^\sigma(G)$ denotes the set of essentially σ-small open subsets of G. We only use this notation for open G.

Lemma 11.4.1.

(a) If $G \in O^\sigma(M)$ then $G^\sigma \in O^\sigma(M)$.

(b) If $G \in O^\sigma(\Phi)$ then $G^\sigma \rightarrow G \in O^\sigma(\Phi)$.

Proof of 11.4.1

(a) [3, Theorem 6.1.11].

(b) This follows directly from the definition of Φ (Definition 8.3.2).

11.5. Hierarchies

Definition 11.5.1.

(a) $\Phi_0 = \{ T \}$

(b) $\Phi_\alpha = \Phi_\alpha^\delta \rightarrow \Phi_\beta$

(c) $\Phi_\delta = \bigcup_{\beta \in \delta} \Phi_\beta$ for limit ordinals δ.

(d) $\mathcal{H}_0 = \{ T \}$
Lemma 11.5.2.
(a) $\alpha \in \beta \Rightarrow \Phi_\alpha \subseteq \Phi_\beta$
(b) $\alpha \in \beta \Rightarrow \mathcal{H}_\alpha \subseteq \mathcal{H}_\beta$
(c) $\Phi_\alpha \subseteq \mathcal{H}_\alpha$
(d) $\Phi = \Phi_\sigma = \mathcal{H}_\sigma$
(e) $\forall G \in O^\sigma(\Phi) \exists \alpha \in \sigma: G \subseteq \Phi_\alpha \subseteq \mathcal{H}_\alpha$
(f) $\Phi \subseteq \Phi_\sigma$
(g) $\Phi_\alpha \subseteq \mathcal{H}_\alpha \subseteq \Phi \subseteq \Phi_\sigma \subseteq \mathcal{H}_\sigma \subseteq \Phi_\sigma$

Proof of 11.5.2
(a) By transfinite induction using Fact 11.3.2(d).
(b) By transfinite induction using Fact 11.3.2(b).
(c) We have $\mathcal{H}_\alpha \subseteq \mathcal{H}_\alpha^{\circ\circ}$ by Lemma 11.5.2(b) and Definition 11.5.1(e).
(d) For $\Phi = \Phi_\sigma$ see the proof of [3, Lemma A.1.1]. For $\mathcal{H}_\sigma \subseteq \Phi$ see [3, Theorem A.2.1] and its proof. $\Phi_\sigma \subseteq \mathcal{H}_\sigma$ is given by (c).
(e) For each $g \in G$ let $\rho(g)$ be the smallest ordinal for which $g \in \Phi_{\rho(g)}$. Take $\alpha = \cup_{g \in G} \rho(g)$.
(f) [3, Theorem 7.1.1].
(g) Follows trivially from (a-d,f) and Fact 11.3.2(a).

11.6. Self-extensionality

We now recall the definition of self-extensionality plus some auxiliary concepts from [3, Appendix A.2]. First recall $r = \lambda u, if[u, T, \lambda x, \top]$ from Definition 10.1.1. Then recall the definition of $x =_G y$ from [3]:

Definition 11.6.1. $x =_G y$ iff $\forall z \in G^{<\omega}: r(xz) = r(yz)$

Note that $x = y$ iff $x =_N y$ according to Theorem 10.1.2. Now the definition of self-extensionality reads:

Definition 11.6.2. $G \subseteq \mathcal{M}$ is self-extensional if
(a) $\emptyset \neq G \in O^\sigma(\Phi)$
(b) $G \subseteq G^{\circ\circ}$
(c) $x =_G y \Rightarrow x \downarrow y \in G$ for all $x, y \in G$

The name “self-extensionality” refers to the property $x =_G y \Rightarrow x =_\Phi y$ which follows from property (c) above.

Note that $G^{\circ\circ} = G^\circ \rightarrow G^{\circ\circ}$ for all G [3, Fact 6.2.1].

Lemma 11.6.3.
(a) \mathcal{H}_α is self-extensional for all $\alpha \in \sigma$.
(b) For all $G \in O^\sigma(\Phi)$ there exists a self-extensional H such that $G \subseteq H$.
(c) $\mathcal{H}_\alpha \in O^\sigma(\Phi)$ for all $\alpha \in \sigma$.

45
∀\(G \in \mathcal{O}(\Phi)\): \(G^{\circ} \in \mathcal{O}(\Phi)\).

Proof of 11.6.3

(a) By transfinite induction in \(\alpha\) using [3, Corollary 6.1.6 and Theorem A.2.1].

(b) Follows from (a) and Lemma 11.5.2(e).

(c) Follows from (a) and the definition of self-extensionality.

(d) Choose \(\alpha \in \sigma\) such that \(G \subseteq \mathcal{H}_\alpha\). We have \(G \subseteq \mathcal{H}_\alpha \Rightarrow G^{\circ} \subseteq \mathcal{H}_\alpha'^{\circ} = \mathcal{H}_\alpha \subseteq \Phi\). Furthermore, \(G^{\circ}\) is open and essentially \(\sigma\)-small according to Lemma 11.4.1(a).

11.7. Restriction

Recall that \(f \equiv g\) if \([f; T; \lambda x.gx! (fx / g)]\) (Definition 4.6.2(d)). If \(G = \text{Dom}[g]\) then \(f / g\) equals \(\llcorner_G f\) of [3]. Two maps \(x, y \in \mathcal{M}\) are said to be *incompatible* if they have no upper bound in \(\mathcal{M}\) w.r.t. \(\preceq\).

Lemma 11.7.1. Let \(G = \text{Dom}[g] \neq \emptyset\).

(a) \(G^{\circ} = \{f / g \mid f \in G^\circ\}\)

(b) \(G^{\circ}\) is a set of pairwise incompatible elements.

Proof of 11.7.1 [3, Theorem 6.1.11].

Lemma 11.7.2. Let \(G = \text{Dom}[g]\) and \(f \in G^\circ\).

(a) \(f / g \preceq_M f\)

(b) \(f \preceq_M f' \Rightarrow f / g = f' / g\)

Proof of 11.7.2 (a) By lemma [3, Lemma 6.1.9].

(b) Assume \(f \preceq_M f'\). Now \(f / g \preceq_M f' / g\) by monotonicity. Furthermore, \(f' \in G^\circ\) because \(G^\circ\) is upward closed. Thus, \(f / g = f' / g\) by Lemma 11.7.1.

Lemma 11.7.3. Let \(G = \text{Dom}[g] \subseteq \Phi\).

(a) \(\{f / g \mid f \in \Phi\} \subseteq G^{\circ}\)

(b) \(\{f / g \mid f \in \Phi\} = G^{\circ}\) if \(G\) is self-extensional.

(c) \(\{az = \phi \mid z \in \Phi\} \in \mathcal{P}(\Phi^{\circ})\) if \(a \in \Phi\).

Proof of 11.7.3

(a) \(G \subseteq \Phi\) gives \(\Phi \subseteq \Phi^{\circ} \subseteq G^{\circ}\) by Lemma 11.5.2(f) and Fact 11.3.2(a). We conclude using Lemma 11.7.1.

(b) We now prove the reverse inclusion of (a). Let \(x \in G^{\circ}\) and take \(y = \triangleright_G x\) where \(\triangleright_G\) is defined in [3, Section A.2]. According to [3, Lemma A.2.4] we have \(y \in G^{\circ}\) and \(x \preceq_M y\). Lemma 11.6.3(d) and \(y \in G^{\circ}\) gives \(y \in \Phi\). From Lemma 11.7.2 we have \(y / g \preceq_M y\). From (a) we have \(y / g \in G^{\circ}\). According to Lemma 11.7.1, \(G^{\circ}\) is a set of incompatible maps. Hence, \(x \in G^{\circ}, y / g \in G^{\circ}, x \preceq_M y,\) and \(y / g \preceq_M y\) gives \(x = y / g \in \{f / g \mid f \in \Phi\}\).
(c) Choose \(\alpha < \sigma \) such that \(a \in \Phi_{\alpha'} = \Phi_\alpha^\uparrow \rightarrow \Phi_\alpha \). Since \(\Phi \subseteq \Phi_\alpha^\uparrow \) (c.f. Lemma 11.5.2) we have \(a\Phi \subseteq \Phi_\alpha \subseteq \Phi \). Let \(A = \{az / \phi \mid z \in \Phi \} = \{x / \phi \mid x \in a\Phi \} \). By (a) we have \(A \subseteq \Phi^{\sigma\downarrow} \). From Lemma 11.6.3(a) we have \(\mathcal{H}_\alpha \in \mathcal{O}^\sigma(\Phi) \). Choose \(K <_c \sigma \) such that \(\mathcal{H}_\alpha = K^\uparrow \). We have \(A \subseteq \{x / \phi \mid x \in \Phi_\alpha \} \subseteq \{x / \phi \mid x \in \mathcal{H}_\alpha \} = \{x / \phi \mid x \in K \} <_c \sigma \).

Lemmas 11.7.3 (a) and (b) are central; they are used thus:

11.7.3(b) \(\Rightarrow 11.8.1(b,c) \Rightarrow 12.3.5 \Rightarrow 12.3.6 \Rightarrow \text{UBT} \).

11.8. Closure properties of \(\mathcal{O}^\sigma(\Phi) \)

For \(\theta \in \mathcal{M} \) let \(\hat{\theta} \) denote \(\text{Dom}[\theta] \). This is consistent with \(\hat{\psi} = \text{Dom}[\psi] \).

We use below the definitions of \(\mathcal{P}, \mathcal{Q} \), and \(\mathcal{R} \) given in Definition 4.6.3 and \(\Phi = \text{Dom}[\phi] \). We have:

Lemma 11.8.1.

(a) \(Qv \neq \perp \Rightarrow \text{Dom}[Qv] = K \rightarrow \text{Dom}[v] \) where \(K = \{z / v \mid z \in \Phi \} \).

(b) \(\text{Dom}[v] \in \mathcal{O}^\sigma(\Phi) \wedge Qv \neq \perp \Rightarrow \text{Dom}[Qv] \supseteq \text{Dom}[v]^\circ \rightarrow \text{Dom}[v] \).

(c) \(\text{Dom}[v] \in \mathcal{O}^\sigma(\Phi) \wedge Qv \neq \perp \Rightarrow \text{Dom}[Qv] = \text{Dom}[v]^\circ \rightarrow \text{Dom}[v] \)

if \(\text{Dom}[v] \) is self-extensional.

(d) \(\text{Dom}[v] \in \mathcal{O}^\sigma(\Phi) \Rightarrow \text{Dom}[Qv] \in \mathcal{O}^\sigma(\Phi) \).

(e) \(RF\theta bc \neq \perp \Rightarrow \text{Dom}[RF\theta bc] = \cup_{\phi \in \theta} \text{Dom}([f(b(cz / \theta))] \}

(f) \(\text{Dom}[P]\} = \{T\} \)

Proof of 11.8.1

(a) \(Qv \neq \perp \) and the definition of \(Q \) gives \(Dv = T \). We have

\[
\Rightarrow Qvy = \top \quad \text{Definition of Dom}
\]

\[
\Rightarrow \forall z. v(y(z / v)) = \top \quad \text{Dv = T and the definition of Q}
\]

\[
\Rightarrow \forall z \in \Phi. v(y(z / v)) = \top \quad \text{Properties of } \hat{v}
\]

\[
\Rightarrow \forall z \in \Phi. y(z / v) \in \text{Dom}[v] \quad \text{Definition of Dom}
\]

\[
\Rightarrow y \in K \rightarrow \text{Dom}[v] \quad \text{Definition of K and } \rightarrow
\]

(b) Follows from (a) and Lemma 11.7.3(a)

(c) Follows from (a) and Lemma 11.7.3(b).

(d) Using Lemma 11.6.3(b), choose \(H \in \mathcal{O}^\sigma(\Phi) \) such that \(H \) is open, self-extensional, and contains \(\text{Dom}[v] \) as a subset. Let \(w \) be the characteristic map of \(H \). Now \(v \preceq_M w \) so \(Qv \preceq_M Qw \) by monotonicity. Hence, \(\text{Dom}[Qv] \subseteq \text{Dom}[Qw] \subseteq \text{Dom}[w]^\circ \rightarrow \text{Dom}[w] \in \mathcal{O}^\sigma(\Phi) \) by 11.8.1(c) and 11.4.1(b). Thus, \(\text{Dom}[Qv] \subseteq \Phi \). It remains to prove \(\text{Dom}[Qv] \in \mathcal{O}^\sigma(\mathcal{M}) \).

If \(v = \perp \) then \(\text{Dom}[Qv] = \emptyset \in \mathcal{O}^\sigma(\mathcal{M}) \). Now assume \(v \neq \perp \). Let \(G = \text{Dom}[v] \). Assume \(G \in \mathcal{O}^\sigma(\Phi) \). Choose a \(\sigma \)-small \(H \subseteq \mathcal{M} \) such that \(G = \uparrow H \) and let \(K \) be as in (a). Now \(K \) and \(K \rightarrow H \) are \(\sigma \)-small and \(\text{Dom}[Qv] = K \rightarrow \uparrow H = \uparrow(K \rightarrow H) \in \mathcal{O}^\sigma(\mathcal{M}) \).

(e) \(RF\theta bc \neq \perp \) and the definition of \(R \) gives \(bc = T \) and \(R_1f\theta bc = T \). Now:
\[y \in \text{Dom}[Rf\theta bc] \]
\[\iff Rf\theta bc y = T \]
\[\iff R_0 f\theta bc y = T \]
\[\theta c = T, R_1 f\theta bc = T, \]
and definition of \(R \).
\[\iff E_z: (\theta z ! f(b(cz / \theta))) y = T \]
\[\iff \exists z \in M: \theta z = T \land f(b(cz / \theta)) y = T \]
Properties of \(E \).
\[\iff \exists z \in M: z \in \theta \land f(b(cz / \theta)) y = T \]
Definition of \(\theta \).
\[\iff \exists z \in \theta; y \in \text{Dom}[f(b(cz / \theta))] \]
Definition of \(\theta \).
\[\iff y \in \bigcup_{z \in \theta} \text{Dom}[f(b(cz / \theta))] \]
Trivial.

12. Proof of the Upper Bound Theorem (UBT)

Recall that UBT states that \(\hat{\psi} \subseteq \Phi \). In this section we only need that \(\sigma \) is inaccessible, that \(M \) is an MT standard \(\kappa \)-quasimodel where \(\kappa > \sigma \) is regular, that \(Y \) acts as \(Y_{\text{Tarski}} \), the least fixed point operator of \(M \) w.r.t. the model order \(\preceq_M \), and that application is monotonic w.r.t. \(\preceq_M \).

12.1. Flat order

For \(u, v \in M \) define the “flat order” \(u \leq_{\perp} v \) thus:

Definition 12.1.1. \(u \leq_{\perp} v \iff u = \perp \lor u = v \)

We have \(u \leq_{\perp} v \Rightarrow u \preceq_M v \).

Lemma 12.1.2. Assume

1. \(a \preceq_M b \)
2. \(\forall c, d \in M: (c \preceq_M d \Rightarrow f c \leq_{\perp} g d) \)
3. \(\theta \preceq_M \phi \)

We have

4. \(\bar{S}f\theta a \leq_{\perp} \bar{S}g\theta b \)

Proof of 12.1.2 The lemma is trivial if \(\bar{S}f\theta a = \perp \). Now assume

5. \(\bar{S}f\theta a \neq \perp \)

From (5) and the definition of \(\bar{S} \) we have that (6), (7), or (8) holds:

6. \(a = T \)
7. \(a \in F \land a T = T \)
8. \(a \in F \land a T \in F \)

We proceed by a proof by cases.

Case 1. Assume (6). From (1) and (6) we have \(b = T \). By the definition of \(\bar{S} \) we then have \(\bar{S}f\theta a = P = \bar{S}g\theta b \) which proves \(\bar{S}f\theta a \leq_{\perp} \bar{S}g\theta b \).

Case 2. Assume (7). We have

9. \(b \in F \land b T = T \)
10. \(\bar{S}f\theta a = Q(f(aF)) \)

by 1, 7
by 7, def. of \(\bar{S} \)
Case 3. Assume (8). We have

12.2. Limited size

Lemma 12.2.1. Assume \(f, a, b, c, v, \theta \in \mathcal{M}, \theta \preceq \mathcal{M} \phi \), and \(\forall x \in \mathcal{M} : \text{Dom}[f x] \in \mathcal{O}^\phi (\Phi) \). We have:

(a) \(\text{Dom}[P] \in \mathcal{O}^\phi (\Phi) \)
(b) \(\text{Dom}[Q(f v)] \in \mathcal{O}^\phi (\Phi) \)
(c) \(\text{Dom}[R f \theta b c] \in \mathcal{O}^\phi (\Phi) \)
(d) \(S f \theta a \in \{ \bot, P, Q(f a F), R f \theta (a T)(a F) \} \)
(e) \(\text{Dom}[S f \theta a] \in \mathcal{O}^\phi (\Phi) \)

Proof of 12.2.1

(a) Follows from 11.8.1(f)
(b) Follows from 11.8.1(d)
(c) If \(R f \theta b c = \bot \) then \(\text{Dom}[R f \theta b c] = \emptyset \in \mathcal{O}^\phi (\Phi) \). Now assume \(R f \theta b c \neq \bot \). From the definition of \(R \) we have \(b c = \top \) so \(c \in \Phi \). Hence, \(\{ c z / \phi \mid z \in \Phi \} \subseteq \Phi^b \) is \(\sigma \)-small by Lemma 11.7.3(c). Thus, \(\{ b(z c / \phi) \mid z \in \Phi \} \) is \(\sigma \)-small so \(\{ b(z c / \phi) \mid z \in \Phi \} \) is also \(\sigma \)-small. Hence, \(\cup_{z \in \Phi} \text{Dom}[f(b(z c / \phi))] \in \mathcal{O}^\phi (\Phi) \). Combined with 11.8.1(e) this gives \(\text{Dom}[R f \theta b c] \in \mathcal{O}^\phi (\Phi) \).
(d) \(S f \theta a \)
\(= \text{if } a, P, \text{if } [a T, Q(f(a F)), R f \theta (a T)(a F)] \}
\(y \text{ \ Definition of } \tilde{S} \)
\(\in \{ \bot, P, Q(f(a F)), R f \theta (a T)(a F) \} \text{ \ Properties of if} \)
(e) Follows from 12.2.1(a-d).
12.3. Proof of UBT

For UBT we need the minimality of Y w.r.t. \preceq_M, i.e. that Y is interpreted as Y_{Tarski}.

Definition 12.3.1. Define $s_\alpha \in M$ by:

(a) $s_0 = \bot$
(b) $s_{\alpha'} = \bar{S}s_\alpha(\sqcup s_\alpha)$
(c) $s_\delta = \sup_{\alpha \in \delta} s_\alpha$ for limit ordinals δ

Note that $\sqcup s_\alpha$ denotes the map \sqcup applied to the map s_α. Above, α is a free variable in $\sqcup s_\alpha$ but a bound variable in $\sup_{\alpha \in \delta} s_\alpha$.

Fact 12.3.2.

(a) $\alpha \leq \beta \Rightarrow s_\alpha \preceq_M s_\beta$
(b) $\sup_{\alpha \in \delta} s_\alpha$ exists.
(c) $s = \forall S = s_k$
(d) $\psi = \sqcup s_k$

We now define $\bar{\theta}_\alpha$ for all ordinals α and all $\theta \in M$. We shall use $\bar{\theta}_\alpha$ for $\theta = \phi$ and $\theta = \psi$. In the case $\theta = \phi$ we are going to have $s_\alpha \preceq_M \phi_\alpha$ and $\sqcup \phi_\alpha \preceq_M \phi$ so that $\psi = \sqcup s_k \preceq_M \sqcup \phi_\alpha \preceq_M \phi$ which is the essence of UBT.

Definition 12.3.3. For ordinals α and for $\theta \in M$ define $\bar{\theta}_\alpha$ thus:

(a) $\bar{\theta}_0 = \bot$
(b) $\bar{\theta}_{\alpha'} = \bar{S}\bar{\theta}_\alpha \theta$
(c) $\bar{\theta}_\delta = \sup_{\alpha \in \delta} \bar{\theta}_\alpha$ for limit ordinals δ

Fact 12.3.4.

(a) $\alpha \leq \beta \Rightarrow \bar{\theta}_\alpha \preceq_M \bar{\theta}_\beta$
(b) $\sup_{\alpha \in \delta} \bar{\theta}_\alpha$ exists.
(c) $s = \psi_k$.
(d) $\psi = \sqcup \psi_k$.

Lemma 12.3.5. For $\theta \preceq_M \phi$ and for all ordinals β we have

(a) $\forall u \in M:\dom[\bar{\theta}_\beta u] \in O(\Phi)$
(b) $\forall \gamma \in \beta \forall u, v \in M: (u \preceq_M v \Rightarrow \bar{\theta}_\beta u \leq_{\bot} \bar{\theta}_\beta v)$

Proof of 12.3.5 We now prove (a) and (b) together using complete induction.

The proof has six parts: We prove (a) and (b) for $\beta = 0$, we prove (b) and (a) for $\beta = \delta$ assuming (a) and (b) for $\beta < \delta$ for limit ordinals δ, and we prove (a) and (b) for $\beta = \alpha'$ assuming (a) and (b) for $\beta \leq \alpha$. The proof of (b) for $\beta = \alpha'$ in turn uses induction in γ.

Recall that $\dom[u]$ is open for all $u \in M$, c.f. Remark 8.2.7.

Proof of (a) for $\beta = 0$: $\dom[\bar{\theta}_0 u] = \dom[\bot] = 0 \in O(\Phi)$.

Proof of (b) for $\beta = 0$: Trivial.

Proof of (b) for $\beta = \delta$: Assume $\gamma \in \delta, u, v \in M$, and $u \preceq_M v$. The proof is trivial for $\bar{\theta}_\gamma u = \bot$. Now assume $\bar{\theta}_\gamma u \neq \bot$. (b) for $\beta < \delta$ gives $\bar{\theta}_\gamma u \leq_{\bot} \bar{\theta}_\beta v$ if $\gamma \leq \beta < \delta$ so $\bar{\theta}_\gamma u = \bar{\theta}_\beta v$ if $\gamma \leq \beta < \delta$. Thus, $\bar{\theta}_\gamma u = \bar{\theta}_\beta v$ so $\bar{\theta}_\gamma u \leq_{\bot} \bar{\theta}_\beta v$.

50
For ordinals
We have

\[
\theta_\beta u = \bot \text{ for all } \beta < \delta \text{ then } \theta_\delta = \bot \text{ so Dom}[\theta_\delta u] = \emptyset \in O^\alpha(\Phi). \text{ If } \theta_\gamma u \neq \bot \text{ for some } \gamma < \delta \text{ then } \theta_\gamma u = \theta_\delta u \text{ for } \gamma \leq \beta < \delta \text{ as above so } \theta_\gamma u = \theta_\delta u. \text{ (a) for } \beta < \delta \text{ gives } \exists_\gamma u \in O^\alpha(\Phi) \text{ so } \theta_\beta u \in O^\alpha(\Phi).
\]

Proof of (a) for \(\beta = \alpha'\): Assume \(u \in M\). If \(\varphi_\alpha u = \bot\) then \(\varphi_\beta u = \bot\) \(\forall \beta < \alpha\). Assume \(\exists u \in M\) such that \(\varphi_\gamma u = \bot \text{ for some } \gamma < \alpha\). By Definition 4.6.2(a), \(\varphi_\beta u \in O^\alpha(\Phi)\).

Proof of (b) for \(\beta = \alpha'\): The proof is by induction on \(\gamma\), but we only use the inductive hypothesis on \(\gamma\) in the limit case. In the successor case we use the inductive hypothesis on \(\beta\).

For \(\gamma = 0\) we have \(\exists_\gamma u = \bot \leq \varphi_{\alpha'} v\).

If \(\gamma \in \beta = \alpha'\) is a successor ordinal then let \(\tilde{\gamma}\) be the predecessor of \(\gamma\). Now \(\tilde{\gamma}' = \gamma \in \beta = \alpha'\) so \(\exists_\gamma u = \varphi_{\tilde{\gamma}} u\). From (b) applied to \(\gamma\) and \(\alpha\) we have \(\forall c, d \in M : (c \perp \leq M d \Rightarrow \varphi_{\tilde{\gamma}} c \leq \bot \leq \varphi_\alpha d)\). Thus, by 12.1.2 we have \(\exists_\gamma u = \varphi_{\tilde{\gamma}} u \leq \bot \leq \varphi_\alpha v\).

Now let \(\epsilon\) be a limit ordinal and assume
\[
(c) \forall u, v \in M : (u \perp \leq M v \Rightarrow \varphi_\gamma u \leq \bot \varphi_{\alpha'} v)
\]

for all \(\gamma \in \epsilon\). Assume \(u, v \in M\) and \(u \perp \leq M v\). If \(\varphi_\gamma u = \bot\) then \(\varphi_\gamma u = \bot\) \(\forall \gamma \in \epsilon\) then \(\varphi_\gamma u = \bot\varphi_{\alpha'} v\) by (c).

Lemma 12.3.6. For ordinals \(\alpha\) and \(a \in M\) we have
\[
(a) \varphi_\alpha u \perp \leq M \varphi_\phi \phi\alpha
(b) s_\alpha \perp \leq M \varphi_\phi \phi\alpha
(c) \psi \perp \leq M \phi
(d) \text{Dom}[s_\alpha] \in O^\phi(\Phi)
\]

Proof of 12.3.6
\[
(a) \text{From Lemma 12.3.5(a) we have Dom}[\varphi_\alpha u] \in O^\phi(\Phi). \text{ Hence, } \varphi_\alpha uv = T \Rightarrow v \in \Phi. \text{ Using the properties of } E \text{ we get } (Eu, \varphi_\alpha uv) = T \Rightarrow v \in \Phi \text{ and } (Eu, \varphi_\alpha uv) \in \{\bot, T\}. \text{ Hence, } \varphi_\alpha u \perp \leq M \varphi_\phi \phi\alpha \text{ using the definition of } \perp \text{ (Definition 4.6.2(a)).}
\]

(b) The proof is by transfinite induction in \(\alpha\). The cases where \(\alpha\) is zero or a limit ordinal are trivial. We now assume \(s_\alpha \perp \leq M \varphi_\phi \phi\alpha\) and prove \(s_{\alpha'} \perp \leq M \varphi_{\alpha'} \phi\alpha\). From Lemma 12.3.6(a) we have \(\varphi_\alpha u \perp \leq M \phi\). From \(s_\alpha \perp \leq M \varphi_\alpha u\) and monotonicity we have \(\exists_{s_\alpha} \perp \leq M \varphi_\phi \phi\alpha\). Hence, \(\exists_{s_\alpha} \perp \leq M \phi\) and \(s_{\alpha'} = Ss_{\alpha} (\exists_{s_\alpha}) \leq M \varphi_{\alpha'} \phi\alpha\).

(c) \(\psi = \exists_{\psi_\alpha} \perp \leq M \varphi_\phi \phi\alpha \perp \leq M \phi\) by Fact 12.3.2(d), Lemma 12.3.6(b), and 12.3.6(a).

(d) We have \(\psi \perp \leq M \phi\) by (c) so \(\exists_{s_\alpha} \in O^\phi(\Phi)\) by Lemma 12.3.5(a).

Thus, \(\text{Dom}[s_\alpha] \in O^\phi(\Phi)\) since \(s = \psi_\alpha\) by Fact 12.3.4(c).

The Upper Bound Theorem (Theorem 11.1.2) follows trivially from Lemma 12.3.6(c) above. Lemma 12.3.6(d) is a strengthening of UBT which we shall need for proving LBT.

13. Proof of the Lower Bound Theorem (LBT)

Having proved UBT, we proceed by proving LBT, thus completing the proof of the Main Theorem. As already mentioned, the proof of LBT uses UBT (e.g.
Fact 13.6.2(c) and Lemma 13.8.3(e)) and that σ is the smallest inaccessible (only used in Lemma 13.7.3).

13.1. A countable collection of maps

Definition 13.1.1.

(a) $T_0 \equiv T$

(b) $T_{n+1} \equiv \lambda x. T_n$

(c) $N \equiv \{T_0, T_1, T_2, \ldots \}$

13.2. Characteristic maps

Recall that we refer to elements of $\chi \equiv (M \to \{T, \bot\}) \cap F$ as characteristic maps. For $G \subseteq M$ we have $\text{Dom}[g] = G$ for at most one $g \in \chi$. We shall refer to that g, if any, as the characteristic map of G. Define $\chi_\perp \equiv \chi \cup \{\bot\}$. Also recall the following facts:

Fact 13.2.1.

(a) For $g, h \in \chi$ we have $g \preceq_M h \iff \text{Dom}[g] \subseteq \text{Dom}[h]$

(b) ϕ is the characteristic map of Φ

(c) ψ is the characteristic map of $\hat{\psi}$

(d) $h \in \chi_\perp \land g \preceq_M h \implies g \in \chi_\perp$

Lemma 13.2.2.

(a) $sa = \bar{S}s a$

(b) $sa \in \chi_\perp$

(c) $sa \preceq_M \hat{\psi}$

(d) If $\text{Dom}[sa] \neq \emptyset$ then $sa \preceq_M sb \iff \text{Dom}[sa] \subseteq \text{Dom}[sb]$.

Proof of 13.2.2

(a) sa

= YSa Definition of s

= $S(YS)a$ Property of Y

= Sa Definition of s

= $\bar{S}s(\perp)a$ Definition of S

= $\bar{S}s\psi a$ Definition of ψ

(b) From $i[f[y, T, \bot] \preceq_M T$ we have $P = \lambda y. i[f[y, T, \bot] \preceq_M \lambda y. T = T_1$.

From $QT_1 = DT_1 ! \lambda y. \forall z. T_1(y(z/v)) = \lambda y. T = T$ we have $QT_1 \preceq_M T_1$.

From $\exists z, \ldots \preceq_M T$ we have $RT_2(\cup T_2)a = \lambda y. \exists z. \ldots \preceq_M \lambda y. T$. From $ST_2(\cup T_2)a = [a, P, \lambda T, QT_1, RT_2(\cup T_2)a] \subseteq M$ we have $ST_2(\cup T_2)a \subseteq \lambda a. T_1$.

Hence, $ST_2 = \lambda a. ST_2(\cup T_2)a \preceq_M \lambda a. T_1 = T_2$ so, by the minimality of Y we have $s = YS \preceq_M T_2$ and $sa \preceq_M T_2a = T_1$. $sa \preceq_M T_1$ combined with $T_1 \in \chi$ gives $sa \in \chi_\perp$.

(c) From $\psi = \cup s$ we have $\text{Dom}[\psi] = \cup a \in M \text{Dom}[sa]$ so $\text{Dom}[sa] \subseteq \text{Dom}[\psi]$ which proves $sa \preceq_M \psi$.

52
If \(sa \neq \perp \) and \(sb \neq \perp \) then the lemma follows from 13.2.1(a) and 13.2.2(b).
The lemma is trivially true if \(sa = \perp \). Actually, \(sa \not\subseteq \mathcal{M} sb \Rightarrow \text{Dom}[sa] \subseteq \text{Dom}[sb] \) only fails for \((sa = \lambda x.\perp) \land (sb = \perp) \), which is prevented by \(\text{Dom}[sa] \neq \emptyset \).

13.3. Cardinality

Definition 13.3.1. For all \(g, h \in \mathcal{M} \) define \(f \equiv g \equiv \{ x = g | x \in \text{Dom}[f] \} \).

Fact 13.3.2. Assume \(\text{Dom}[g] \subseteq \text{Dom}[h] \)

(a) \(gy \downarrow z = gy \downarrow (hy \downarrow z) \)

(b) \(f / g = (f / h) / g \)

Recall from Section 11.4 that \(G <_{c} H \) if \(G \) has smaller cardinality than \(H \).

Lemma 13.3.3.

(a) \(\text{Dom}[h] \subseteq \text{Dom}[h'] \Rightarrow g // h \leq_{c} g // h' \)

(b) \(\text{Dom}[g] \subseteq \text{Dom}[g'] \land \text{Dom}[h] \subseteq \text{Dom}[h'] \Rightarrow g // h \leq_{c} g' // h' \)

Proof of 13.3.3

(a) Define \(k(x) = x / h \). We prove the lemma by proving that \(k \) is a surjective function from \(g // h' \) to \(g // h \): Suppose \(g \in g // h = \{ x / h | x \in \text{Dom}[g] \} \). Select \(x \in \text{Dom}[g] \) such that \(y = x / h \). Define \(z = x / h' \). We have \(z \in \{ x / h' | x \in \text{Dom}[g] \} = g / h' \) and \(k(z) = (x / h') / h = x / h = y \).

(b) \(\text{Dom}[g] \subseteq \text{Dom}[g'] \) trivially gives \(g // h \leq_{c} g' // h \) which combined with 13.3.3(a) gives \(g // h \leq_{c} g' // h' \).

13.4. Pairs

Define \(x::y \equiv \lambda z.\text{if}[z, x, y] \).

Fact 13.4.1.

(a) \((x::y) \in \mathcal{F} \)

(b) \((x::y)T = x \)

(c) \((x::y)F = y \)

13.5. Analysis of \(s \)

Lemma 13.5.1.

(a) \(sT = P \)

(b) \(\text{Dom}[sT] = \{ T \} \)

Proof of 13.5.1

(a) \[
\begin{align*}
\text{Dom}[sT] &= \hat{S} \text{sv} a \\
&= P \\
&= \text{Dom}[P] \\
&= \{T\}
\end{align*}
\]

(b) \[
\begin{align*}
\text{Dom}[sT] &= \text{Dom}[sT] \\
&= \text{Dom}[P] \\
&= \{T\}
\end{align*}
\]

53
Lemma 13.5.2.

(a) \(s(T::a) = Q(sa) \)
(b) \(sa \neq \bot \Rightarrow Q(sa) \neq \bot \)
(c) \(sa \neq \bot \Rightarrow \text{Dom}[s(T::a)] \supseteq \text{Dom}[sa] \circ \rightarrow \text{Dom}[sa] \)

Proof of 13.5.2

(a) \(s(T::a) \)
 \[= \bar{S}s(T::a) \] 13.2.2(a)
 \[= Q(s((T::a)F)) \] Definition of \(\bar{S} \)
 \[= Q(sa) \] 13.4.1(c)

(b) From \(sa \neq \bot \) we have \(D(sa) = T \) so
 \[Q(sa) = D(sa) ! \lambda y. \cdots \] Definition of \(Q \)
 \[= T ! \lambda y. \cdots \] From the assumption
 \[= \lambda y. \cdots \] Definition of guards
 \[\neq \bot \] Trivial

(c) We have \(\text{Dom}[sa] \in \mathcal{O}^\circ(\Phi) \) by 12.3.6(d) and \(Q(sa) \neq \bot \) by 13.5.2(b). Hence,
 \[\text{Dom}[s(T::a)] = Q(sa) \] 13.5.2(a)
 \[\supseteq \text{Dom}[sa] \circ \rightarrow \text{Dom}[sa] \] 11.8.1(b)

Lemma 13.5.3. Assume \(f \in F, \psi a = T, \) and \(\forall z \in \Phi: s(f(az / \psi)) \neq \bot \)

(a) \(R_1s\psi(f::a) = T \)
(b) \(s(f::a) = \lambda y. \exists z: (\psi z ! s(f(az / \psi)) y) \)
(c) \(s(f::a) \neq \bot \)
(d) \(\text{Dom}[s(f::a)] = \cup_{z \in \Phi} \text{Dom}[s(f(az / \psi))] \)

Proof of 13.5.3

(a) \(R_1s\psi(f::a) \)
 \[= \forall z. D(s((f::a)T((f::a)F z / \psi))) = T \] Definition of \(R_1 \)
 \[= \forall z. D(s(f(az / \psi))) = T \] 13.4.1
 \[= T \] Third assumption

(b) \(s(f::a) \)
 \[= \bar{S}s\psi(f::a) \] 13.2.2(a)
 \[= Rs\psi(f::a) \] Definition of \(\bar{S} \)
 \[= \psi((f::a)F) ! R_1s\psi(f::a) ! R_0s\psi(f::a) \] Definition of \(R \)
 \[= \psi a ! R_1s\psi(f::a) ! R_0s\psi(f::a) \] 13.4.1
 \[= R_1s\psi(f::a) ! R_0s\psi(f::a) \] Second assumption
 \[= R_0s\psi(f::a) \] 13.5.3(a)
 \[= \lambda y. \exists z: (\theta z ! s((f::a)T((f::a)F z / \theta)) y) \] Definition of \(R_0 \)
 \[= \lambda y. \exists z: (\theta z ! s(f(az / \theta)) y) \] 13.4.1

(c) Follows from 13.5.3(b)
Proof of 13.6.3

(a) \(s[sf:a] \)
\[
\Rightarrow s[f:a]y = T \quad \text{Definition of Dom}^1
\]
\[
\Rightarrow \exists z. ((\forall z ! s(f(az / \psi))y = T) \quad 13.5.3(b)
\]
\[
\Rightarrow \exists z. M : (\forall z ! s(f(az / \psi))y = T \quad \text{Properties of E}
\]
\[
\Rightarrow \exists z. M : (z \in \text{Dom}[\psi] \land s(f(az / \psi))y = T \quad \text{Definition of Dom}
\]
\[
\Rightarrow \exists z. M : (z \in \psi \land s(f(az / \psi))y = T \quad \text{Definition of } \psi
\]
\[
\Rightarrow \exists z. \psi : s(f(az / \psi))y = T \quad \text{Trivial}
\]
\[
\Rightarrow \exists z. \psi : y \in \text{Dom}[s(f(az / \psi))] \quad \text{Definition of Dom}
\]
\[
\Rightarrow y \in \bigcup_z \psi \text{Dom}[s(f(az / \psi))] \quad \text{Definition of Dom}
\]

13.6. Lower bounds

Recall \(f \parallel g \equiv \{ x / g \mid x \in \text{Dom}[f] \} \) from Definition 13.3.1. Now define:

Definition 13.6.1. \(\text{self}[g] \equiv g \parallel g \)

Fact 13.6.2. Suppose \(x \in \Phi \) and \(G = \text{Dom}[g] \subseteq \Phi \) and let \(b \) be any map.

(a) \(x / g \in G^{\delta \delta} \) (Lemma 11.7.3(a))

(b) \(\text{self}[g] \subseteq G^{\delta \delta} \)

(c) \(\text{self}[sb] \subseteq \text{Dom}[sb]^{\delta \delta} \) (because of UBT)

A key to proving LBT is to prove that \(\text{self}[sb] \) can have arbitrarily large cardinality below \(\sigma \) which uses both that \(\text{self}[sb] \) can be large and that \(\sigma \) is the smallest inaccessible.

Lemma 13.6.3.

(a) \(\text{self}[sT] = \{ T \}
\]

(b) \(\text{self}[sb] \neq \emptyset \Rightarrow sb \neq \perp
\]

(c) \(T \in \text{self}[sb] \Rightarrow 2 \leq c \text{self}[s(T:b)]
\]

(d) \(2 \leq c \text{self}[sb] \Rightarrow \omega \leq c \text{self}[s(T:b)] \)

(e) \(2 \leq c \text{self}[sb] \Rightarrow P(\text{self}[sb]) \leq c \text{self}[s(T:b)] \)

Proof of 13.6.3

(a) \(\text{self}[sT] \)
\[
= sT \parallel sT \quad \text{Definition of self[x]}
\]
\[
= \{ x / sT \mid x \in \text{Dom}[sT] \} \quad \text{Definition of x / y}
\]
\[
= \{ x / sT \mid x \in T \} \quad 13.5.1(b)
\]
\[
= \{ T / sT \} \quad \text{Trivial}
\]
\[
= \{ T \} \quad \text{Definition of x / y}
\]

(b) We have \(\text{self}[\perp] = \perp \parallel \perp = \{ x / \perp \mid x \in \text{Dom}[\perp] \} = \{ x / \perp \mid x \in \emptyset \} = \emptyset \). Hence, \(\text{self}[\perp] \neq \emptyset \Rightarrow x \neq \perp \Rightarrow x \neq \perp.
\]

(c) Assume \(T \in \text{self}[sb] \). Let \(G = \text{Dom}[sb] \). We have \(T \in \text{self}[sb] = sb \parallel sb = \{ x / sb \mid x \in \text{Dom}[sb] \} \) so \(\exists x \in \text{Dom}[sb] : x / sb = T \). Since \(x / sb = T \) holds only for \(x = T \) this proves \(T \in \text{Dom}[sb] = G \). From \(T \in \text{self}[sb] \) and 13.6.3(b) we have \(sb \neq \perp \Rightarrow \text{Dom}[s(T:b)] \subseteq G^{\delta} \Rightarrow G \) by 13.5.2(c).

Since \(T \in G \) we have \(\{ T, \forall x. T \} \subseteq G^{\delta} \Rightarrow G \subseteq \text{Dom}[s(T:b)] \). Now let
Let $H = \text{self}[s(T:b)]$ and $u = (\lambda x. T) / s(T:b)$. We have $(\lambda x. T) / s(T:b) \in \mathcal{F}$ so $\{T, u\}$ has two, distinct elements. Furthermore, self$[s(T:b)] = s(T:b) / s(T:b) = \{x / s(T:b) \mid x \in \text{Dom}[s(T:b)]\} \supseteq \{x / s(T:b) \mid x \in \{T, \lambda x. T\}\} = \{T / s(T:b), (\lambda x. T) / s(T:b)\} = \{T, u\}$ proving self$[s(T:b)] \geq 2$.

(d) Let $G = \text{Dom}[sb]$ and $V = \text{self}[sb]$. Assume $2 \leq \text{self}[sb] = V$. Choose $u, v \in V$ such that $u \neq v$. We have $\{u, v\} \subseteq \text{self}[sb] = sb / sb = \{x / sb \mid x \in \text{Dom}[sb]\} = \{x / sb \mid x \in G\}$. Choose $p, q \in G$ such that $p / sb = u$ and $q / sb = v$. From self$[sb] \neq \emptyset$ we have sb $\neq \perp$ by 13.6.3(b) so Dom$[s(T:b)] \supseteq G^2 \to G$. Now define

$$f_n = \lambda x. \text{if } x_{\overline{nu}} \cdots u, p, q$$

We have $f_n \in G^2 \to G \subseteq \text{Dom}[s(T:b)]$ for all $n \in \omega$. Now define

$$g_n = \lambda x. \text{if } x_{\overline{nu}} \cdots u, u, v$$

We have $g_n = f_n / sb \in s(T:b) / sb$ and all the g_n are distinct, proving $\omega \subseteq s(T:b) / sb$.

(e) Define G, V, u, v, p, q as above. Assume $2 \leq \text{self}[sb] = V$. According to [3], $V \subseteq G^{\alpha\delta}$ is a set of incompatible maps. For all $W \subseteq V$ let f_W be the unique element of \mathcal{F} for which

$$f_W x = \begin{cases} p & \text{if } x \in W^2 \\ q & \text{if } x \in (G^{\alpha\delta} \setminus W)^\uparrow \\ \perp & \text{otherwise} \end{cases}$$

We have $f_W \in G^2 \to G \subseteq \text{Dom}[s(T:b)]$ for all $W \subseteq G$. Now define

$$g_W x = \begin{cases} u & \text{if } x \in W^\uparrow \\ v & \text{if } x \in (G^{\alpha\delta} \setminus W)^\uparrow \\ \perp & \text{otherwise} \end{cases}$$

We have $g_W = f_W / sb \in s(T:b) / sb$ and all the g_W are distinct, proving $\mathcal{P}(V) \subseteq s(T:b) / sb$.

13.7. Beth numbers

For all ordinals α we now give a non-standard definition of the Beth number/cardinal B_α. The definition is non-standard in that B_0 and B_1 are non-standard and B_α is shifted two places for finite α.

We use $\text{card}(S)$ to denote the cardinality of S (i.e. the smallest ordinal equinumerous to S).

Definition 13.7.1.

(a) $B_0 \equiv 1$

(b) $B_1 \equiv 2$

(c) $B_\omega \equiv \omega$

(d) $B_\delta = \text{card}(\mathcal{P}(B_\alpha))$ for $\alpha \geq 2$

(e) $B_\delta \equiv \cup_{\alpha<\delta} B_\alpha$ for limit ordinals δ

We proceed by giving some definitions related to co-finality.

Definition 13.7.2.
(a) \(\text{cf}(\alpha)\) denotes the co-finality of \(\alpha\), i.e. \(\text{cf}(\alpha)\) is the smallest ordinal such that there exists an \(f: \text{cf}(\alpha) \to \alpha\) which is unlimited in \(\alpha\).
(b) \(\text{ccf}(\alpha)\) denotes the smallest ordinal \(\beta\) such that \(\text{cf}(\alpha) \leq_c B\beta\).

Thus \(\text{cf}(\alpha)\) is always a cardinal and \(\leq_c\) could be replaced by \(\leq\) in (b) above. \(\text{ccf}(\alpha)\) does not need to be a cardinal.

We note that \(\text{cf}(\alpha) = 1\) if \(\alpha\) is a successor ordinal and that \(\text{cf}(\alpha) = \alpha\) if, among others, \(\alpha = 0, 1, \omega\), or an infinite successor cardinal. We recall that an ordinal \(\alpha\) is a regular cardinal if, by definition, \(\text{cf}(\alpha) = \alpha \geq \omega\). Finally recall that \(\sigma\) is inaccessible if \(\sigma > \omega\) and \(\sigma\) is a regular cardinal and \(\gamma < \sigma \Rightarrow P(\gamma) < c \sigma\).

Lemma 13.7.3.
(a) \(\leq_c B\beta\)
(b) \(\text{ccf}(\alpha) \leq \text{cf}(\alpha) \leq_c \text{cf}(\alpha)\)
(c) \(\text{ccf}(\alpha) < \alpha\) or \(\alpha = 0\) or \(\alpha\) is inaccessible.
(d) \(\text{ccf}(\alpha) < \alpha\) if \(\sigma\) is the first inaccessible and \(0 < \alpha < \sigma\).

Proof of 13.7.3
(a) By induction in \(\alpha\)
(b) By (a), \(\text{cf}(\alpha) \leq_c B\text{cf}(\alpha)\). Hence, \(\text{ccf}(\alpha) \leq \text{cf}(\alpha)\) by the definition of \(\text{ccf}(\alpha)\).
(c) Assume \(\text{ccf}(\alpha) \neq \alpha\) and \(\alpha \neq 0\). We now prove that \(\alpha\) is inaccessible. We have \(\alpha = \text{cf}(\alpha) = \text{ccf}(\alpha)\) from (b). From \(\text{ccf}(1) = 0, \text{ccf}(\omega) = 2\), and \(\text{ccf}(\gamma) = 1\) for \(1 < \gamma < \omega\) we have \(\alpha > \omega\). Since \(\text{cf}(\alpha) = \alpha > \omega\) it remains to prove \(\gamma < \alpha \Rightarrow P(\gamma) < c \alpha\). Assume \(\gamma < \alpha\). Since \(\alpha = \text{cf}(\alpha)\) is a limit ordinal we have \(\gamma' < \alpha\). From \(\gamma' < \alpha = \text{ccf}(\alpha)\) and the definition of \(\text{ccf}(\alpha)\) we have \(\text{cf}(\alpha) \leq_c B\gamma'\). Thus \(P(\gamma) \leq_c P(B\gamma) = c B\gamma' < c \text{cf}(\alpha)\) = \(\alpha\).
(d) Follows trivially from (c).

13.8. Growth lemma

We now define \(b_\alpha\) such that \(\text{Dom}[sb_\alpha]\) and \(\text{self}[sb_\alpha]\) are growing in \(\alpha\) and such that \(\forall \gamma \in \sigma \exists \beta \in \sigma: \gamma \leq_c \text{self}[sb_\beta]\).

For defining \(b_\alpha\) we will use two auxiliary maps \(e_\alpha\) and \(d_\alpha\) defined in Definition 13.8.2 and three auxiliary functions \(f_\alpha\), \(g_\alpha\), and \(h_\alpha\) defined as follows:

Definition 13.8.1.
(a) Choose \(f_\alpha: \text{cf}(\alpha) \to \alpha\) such that \(f_\alpha\) is unlimited in \(\alpha\) (this is possible by the definition of \(\text{cf}(\alpha)\)).
(b) Choose \(g_\alpha: \text{self}[sb_{\text{cf}(\alpha)}] \to \text{cf}(\alpha)\) such that \(g_\alpha\) is surjective if cardinality permits and non-surjective otherwise.
(c) Choose \(h_\alpha: \text{Dom}[sb_\alpha]^{< \delta} \to \text{Dom}[sb_\alpha]\) such that \(h_\alpha y / sb_\alpha = y\) when \(y \in \text{self}[sb_\alpha]\). We define \(h_\alpha\) only if \(\text{Dom}[sb_\alpha] \neq \emptyset\). From Fact 13.6.2(c) recall \(\text{self}[sb_\alpha] \subseteq \text{Dom}[sb_\alpha]^{< \delta}\). Recall that \(\text{self}[sb_\alpha] = \{x / sb_\alpha | x \in \text{Dom}[sb_\alpha]\}\) by definition so that the choice of \(h_\alpha\) is possible.

Definition 13.8.2.
(a) \(b_0 \equiv T \)
(b) \(b_\alpha' \equiv T : b_\alpha \)
(c) \(b_\delta \equiv c_{\delta}:d_{\delta}(\delta) \) for limit ordinals \(\delta \)
(d) Let \(c_\alpha \) be the unique element of \(F \) for which
\[
c_\alpha x \equiv \begin{cases}
 f_{\alpha}(g_\alpha(x/s_{\alpha}(\alpha))) & \text{if } x/s_{\alpha}(\alpha) \in \text{self}[s_{\alpha}(\alpha)] \\
 \bot & \text{otherwise}
\end{cases}
\]
(e) If \(\text{Dom}[s_{\alpha}] \neq \emptyset \) let \(d_\alpha \) be the unique element of \(F \) for which
\[
d_\alpha x \equiv \begin{cases}
 h_\alpha(x/s_\alpha) & \text{if } x/s_\alpha \in \text{Dom}[s_{\alpha}]^\delta \\
 \bot & \text{otherwise}
\end{cases}
\]

Lemma 13.8.3. For (b)-(f) assume \(\text{Dom}[s_{\alpha}] \neq \emptyset \)

(a) \(c_\alpha x = c_\alpha(x/s_{\alpha}(\alpha)) \)
(b) \(\{d_\alpha x \mid x \in \text{Dom}[s_{\alpha}]\} = \text{self}[s_{\alpha}] \)
(c) \(d_\alpha \in \text{Dom}[s_{\alpha}]^\alpha \to \text{Dom}[s_{\alpha}] \)
(d) \(\psi d_\alpha \equiv T \)
(e) \(\{d_\alpha x \mid x \in \Phi \} = \text{self}[s_{\alpha}] \)
(f) \(\{d_\alpha x \mid x \in \hat{\psi}\} = \text{self}[s_{\alpha}] \)

Proof of 13.8.3

(a) From Fact 13.3.2 we have \(f/g = (f/g)/g \). The lemma follows from \(x/s_{\alpha}(\alpha) = (x/s_{\alpha}(\alpha))/s_{\alpha}(\alpha) \) and the definition of \(c_\alpha \).
(b) Assume \(\text{Dom}[s_{\alpha}] \neq \emptyset \). Assume \(x \in \text{Dom}[s_{\alpha}] \). We have \(\text{Dom}[s_{\alpha}] \subseteq \Phi \) by UBT so \(x/s_\alpha \in \text{self}[s_{\alpha}] \subseteq \text{Dom}[s_{\alpha}]^\delta \) by Fact 13.6.2(a). The definition of \(d_\alpha \) gives \(d_\alpha x = h_\alpha(x/s_\alpha) \). The definition of \(h_\alpha \) gives \(h_\alpha y = y \) if \(y \in \text{self}[s_{\alpha}] \), so \(h_\alpha(x/s_\alpha)/s_\alpha = x/s_\alpha \). Thus, \(d_\alpha x/s_\alpha = h_\alpha(x/s_\alpha)/s_\alpha = x/s_\alpha \). Hence, \(\{d_\alpha x \mid x \in \text{Dom}[s_{\alpha}]\} = \{x/s_\alpha \mid x \in \text{Dom}[s_{\alpha}]\} = \text{self}[s_{\alpha}] \).
(c) Assume \(\text{Dom}[s_{\alpha}] \neq \emptyset \). If \(x \in \text{Dom}[s_{\alpha}]^\delta \), then \(x/s_\alpha \in \text{Dom}[s_{\alpha}]^\delta \) by Lemma 11.7.1(a). Thus, \(d_\alpha x = h_\alpha(x/s_\alpha) \in \text{Dom}[s_{\alpha}] \) by the definitions of \(d_\alpha \) and \(h_\alpha \).
(d) Assume \(\text{Dom}[s_{\alpha}] \neq \emptyset \). Now \(s_{\alpha} \neq \bot \). \(d_\alpha \in \text{Dom}[s_{\alpha}]^\alpha \to \text{Dom}[s_{\alpha}] \subseteq \text{Dom}[\text{self}(T):b_\alpha] \) follows from \(s_{\alpha} \neq \bot \), (c), and Lemma 13.5.2(c), proving \(\psi d_\alpha \equiv T \).
(e) Proof of \(\supseteq \): Follows from (b) and \(\Phi \supseteq \text{Dom}[s_{\alpha}] \). Proof of \(\subseteq \): Assume \(z \in \{d_\alpha x \mid x \in \Phi\} \). Choose \(x \in \Phi \) such that \(z = d_\alpha x/s_\alpha \). Like in the proof of (b) we have \(x/s_\alpha \in \text{Dom}[s_{\alpha}]^\delta \) and \(d_\alpha x = h_\alpha(x/s_\alpha) \). The definition of \(h_\alpha \) and \(x/s_\alpha \in \text{Dom}[s_{\alpha}]^\delta \) gives \(h_\alpha(x/s_\alpha) \in \text{Dom}[s_{\alpha}] \). Thus, \(z = d_\alpha x/s_\alpha = h_\alpha(x/s_\alpha)/s_\alpha \in \text{self}[s_{\alpha}] \).
(f) From \(\psi = \hat{\psi} \) we have \(\text{Dom}[s_{\alpha}] \subseteq \hat{\psi} \). The lemma follows from (b), (e), and \(\text{Dom}[s_{\alpha}] \subseteq \hat{\psi} \subseteq \Phi \).

Lemma 13.8.4. For all \(\alpha \in \sigma \) we have:

(a) \(B_\alpha \subseteq \text{self}[s_{\alpha}] \)
(b) \(\forall \beta \in \alpha \forall \gamma \in \beta \exists \alpha_{\beta \gamma}: \text{Dom}[s_{\alpha}] \subseteq \text{Dom}[s_{\beta}] \)

Proof of 13.8.4 We prove the conjunction of (a) and (b) by transfinite induction up to \(\sigma \).
Base case. Suppose $\alpha = 0$. We now prove (a).

\[B_0 \]
\[= 1 \quad \text{Definition of } B \]
\[\leq_\epsilon \{T\} \quad \text{Trivial} \]
\[= \text{self}[sT] \quad 13.6.3(a) \]
\[= \text{self}[sb_0] \quad \text{Definition of } b \]
\[= \text{self}[sb_0] \quad \alpha = 0 \]

To prove (b) for $\alpha = 0$ we merely have to prove $\text{Dom}[sb_0] \subseteq \text{Dom}[sb_1]$. From 13.5.1(a) we have $sT = P$ which gives $sT \neq \bot$. Hence, by 13.5.2(b) we have $\text{Dom}[s(T::T)] = \text{Dom}[sT]^\circ \rightarrow \text{Dom}[sT]$. $T \in \text{Dom}[sT]$ by 13.5.1(b) combined with the definition of $X \rightarrow Y$ gives $T \in \text{Dom}[sT]^\circ \rightarrow \text{Dom}[sT]$ so $T \in \text{Dom}[s(T::T)]$ which proves $\{T\} \subseteq \text{Dom}[s(T::T)]$. Hence,

\[\text{Dom}[sb_0] \]
\[= \text{Dom}[sT] \quad \text{Definition of } b \]
\[= \{T\} \quad 13.5.1(b) \]
\[\subseteq \text{Dom}[s(T::T)] \quad \text{See above} \]
\[= \text{Dom}[s(T::b_0)] \quad \text{Definition of } b \]
\[= \text{Dom}[sb_1] \quad \text{Definition of } b \]

Induction step. Assume

(1) $B_{\alpha} \leq_\epsilon \text{self}[sb_{\alpha}]$

(2) $\forall \beta \in \alpha'/\forall \gamma \in \beta : \text{Dom}[sb_{\beta}] \subseteq \text{Dom}[sb_{\gamma}]$

To prove (2) in which α is replaced by α' it is sufficient to prove $\text{Dom}[sb_{\alpha'}] \subseteq \text{Dom}[sb_{\alpha'}]$. From (1) we have $\text{Dom}[sb_{\alpha}] \neq \emptyset$. Then, from (2) and 13.2.2(d) we have $sb_{\alpha} \preceq_M sb_{\alpha'}$. Hence,

\[sb_{\alpha'} \]
\[= s(T::b_0) \quad \text{Definition of } b \]
\[= Q(sb_{\alpha}) \quad 13.5.2(a) \]
\[\preceq_M Q(sb_{\alpha'}) \quad \text{Monotonicity} \]
\[= s(T::b_{\alpha'}) \quad 13.5.2(a) \]
\[= sb_{\alpha''} \quad \text{Definition of } b \]

From $sb_{\alpha'} \preceq_M sb_{\alpha''}$ and 13.2.2(d) we have $\text{Dom}[sb_{\alpha'}] \subseteq \text{Dom}[sb_{\alpha''}]$ as required.

We now prove

(3) $B_{\alpha'} \leq_\epsilon \text{self}[sb_{\alpha'}]$

From 13.6.3(a) we have $T \in \text{self}[sT]$. From 13.6.3(c) we have $B_1 = 2 \leq_\epsilon \text{self}[s(T::T)] = \text{self}[sb_1]$ so (3) holds for $\alpha = 0$. For $\alpha = 1$ we have $\text{Dom}[sb_1] \subseteq \text{Dom}[sb_2]$ from (2). Hence, we may prove (3) for $\alpha = 1$ as follows:

\[B_2 \]
\[= \omega \quad \text{Definition of } B \]
\[\leq_\epsilon s(T::b_1) / sb_1 \quad 13.6.3(d) \]
\[= sb_2 / sb_1 \quad \text{Definition of } b \]
\[\leq_\epsilon sb_2 / sb_2 \quad 13.3.3(a) \text{ and } \text{Dom}[sb_1] \subseteq \text{Dom}[sb_2] \]
\[= \text{self}[b_2] \quad \text{Definition of } \text{self} \]

Now assume $\alpha \geq 2$. From $2 \leq_\epsilon \text{self}[b_1]$, (2), and 13.3.3(b) we have $2 \leq_\epsilon \text{self}[b_{\alpha}]$
\[B_\alpha \]

\[\mathcal{P}(B_\alpha) \quad \text{Definition of } B \]

\[\leq \mathcal{P}(\text{self}[sb_\alpha]) \quad (1) \]

\[\leq \mathcal{P}(\text{self}[sb_\alpha]) / / sb_\alpha \quad 13.6.3(e) \]

\[= sb_{b_\alpha} / / sb_\alpha \quad \text{Definition of } b \]

\[\leq sb_{c_{\alpha}} / / sb_{c_{\alpha}} \quad 13.3.3(a) \text{ and (2)} \]

\[= \text{self}[sb_{c_{\alpha}}] \quad \text{Definition of self} \]

Limit case. Suppose \(\delta \in \sigma \) is a limit ordinal. For all \(\alpha \in \delta \) assume

\[B_\alpha \leq \alpha \text{ self}[sb_\alpha] \]

\[\forall \beta \in \alpha \forall \gamma \in \beta: \text{Dom}[sb_\gamma] \subseteq \text{Dom}[sb_\beta] \]

From 13.7.3(d) we have \(\text{ccf}(\delta) \in \delta \). Hence, by the definition of \(\text{ccf} \) and (4) we have \(\text{cf}(\delta) \leq \alpha \) \(\text{B}_{\text{ccf}(\delta)} \leq \alpha \text{ self}[sb_{\text{ccf}(\delta)}] \) so \(g_\delta: \text{self}[sb_{\text{ccf}(\delta)}] \rightarrow \text{cf}(\delta) \) is surjective according to 13.8.1(b).

From \(\text{ccf}(\delta) \in \delta \) and (4) we have \(\text{Dom}[sb_{\text{ccf}(\delta)}] \neq \emptyset \) so the conditions in 13.8.1(c), 13.8.2(e), and 13.8.3(b)-(f) are satisfied. We have

\[\forall z \in \Phi: s(c_{\delta}(d_{\text{ccf}(\delta)}z / \psi)) \neq \perp \]

\[\Leftrightarrow \forall z \in \Phi: s(c_{\delta}(d_{\text{ccf}(\delta)}z / \psi / sb_{\text{ccf}(\delta)})) \neq \perp \quad 13.8.3(a) \]

\[\Leftrightarrow \forall z \in \Phi: s(c_{\delta}(d_{\text{ccf}(\delta)}z / sb_{\text{ccf}(\delta)})) \neq \perp \quad 13.8.3(b) \text{ and 13.2.2(c)} \]

Hence, we have

\[\forall z \in \Phi: s(c_{\delta}(d_{\text{ccf}(\delta)}z / \psi)) \neq \perp \]

Furthermore,

\[\text{Dom}[sb_\beta] \]

\[= \text{Dom}[s(c_{\beta}:d_{\text{ccf}(\beta)})] \]

\[= \sum_{z' \in \emptyset} \text{Dom}[s(c_{\beta}(d_{\text{ccf}(\beta)}z' / \psi)))] \quad 13.5.3(d), 13.8.3(d), \text{ and (6)} \]

\[= \sum_{z' \in \emptyset} \text{Dom}[s(c_{\beta}(d_{\text{ccf}(\beta)}z' / \psi / sb_{\text{ccf}(\beta)}))] \quad 13.8.3(a) \]

\[= \sum_{z' \in \emptyset} \text{Dom}[s(c_{\beta}(d_{\text{ccf}(\beta)}z' / sb_{\text{ccf}(\beta)}))] \quad 13.8.3(b) \text{ and 13.2.2(c)} \]

\[= \sum_{y \in \{d_{\text{ccf}(\beta)}z' / sb_{\text{ccf}(\beta)}\in \emptyset\} \text{Dom}[s(c_{\text{ccf}(\beta)}y)] \quad \text{Trivial} \]

\[= \sum_{y \in \text{self}[sb_{\text{ccf}(\beta)}]} \text{Dom}[s(c_{\beta}y)] \quad 13.8.3(f) \]

\[= \sum_{y \in \text{self}[sb_{\text{ccf}(\beta)}]} \text{Dom}[sb_{f_{\beta}(y)}] \quad 13.8.2(d) \]

\[= \sum_{y \in \text{ccf}(\beta)} \text{Dom}[sb_{f_{\beta}(y)}] \quad 13.8.1(b) \]

\[= \sum_{y \in \text{ccf}(\beta)} \text{Dom}[sb_{\beta}] \quad 13.7.2(a) \text{ and (5)} \]

Hence, we have \(\forall \gamma \in \delta: \text{Dom}[sb_{\gamma}] \subseteq \text{Dom}[sb_\beta] \) and \(\forall \gamma \in \delta: sb_{\gamma} \preceq sb_{\beta} \). Like in the deduction step, the latter implies \(\forall \gamma \in \delta: sb_{\gamma} \preceq sb_{\beta} \) and \(\forall \gamma \in \delta: \text{Dom}[sb_{\gamma}] \subseteq \text{Dom}[sb_{\beta}] \). The latter implies \(\text{Dom}[sb_\beta] = \bigcup_{\gamma \in \delta} \text{Dom}[sb_{\gamma}] \subseteq \text{Dom}[sb_{\beta}] \). Hence, we have proved (2) in which \(\alpha \) is replaced by \(\delta \).

From \(\forall \gamma \in \delta: \text{Dom}[sb_{\gamma}] \subseteq \text{Dom}[sb_\beta] \), 13.3.3(b), and (4) we have \(\forall \gamma \in \delta: B_\gamma \leq \alpha \text{ self}[sb_\gamma] \leq \alpha \text{ self}[sb_\beta] \). Hence, \(B_\delta = \bigcup_{\gamma \in \delta} B_\gamma \leq \alpha \text{ self}[sb_{\beta}] \) which completes the proof.
13.9. Proof of the lower bound theorem

To prove the lower bound theorem (Theorem 11.1.3) it is sufficient to prove
\[\forall G \in O^\sigma(\hat{\psi}): G^\circ \rightarrow G \subseteq \hat{\psi} \]

To do so, assume \(G \in O^\sigma(\hat{\psi}) \). Choose \(\alpha \in \delta \) such that \(G \subseteq_c \text{self}[s_{b\alpha}] \). Let \(h: \text{self}[s_{b\alpha}] \rightarrow G \) be surjective. For all \(x \in G \) choose \(i_x \in \mathcal{M} \) such that \(x \in \text{Dom}[s_{i_x}] \). Let \(c \) be the unique element of \(F \) for which
\[cx \equiv \begin{cases} i_h(x/s_{b\alpha}) & \text{if } x/s_{b\alpha} \in \text{self}[s_{b\alpha}] \\ \bot & \text{otherwise} \end{cases} \]

By a proof similar to the limit case of 13.8.4 we have \(G \subseteq \text{Dom}[s(c::d_\alpha)] \). Hence, \(G^\circ \rightarrow G \subseteq \text{Dom}[s(T::c::d_\alpha)] \) by 13.5.2(c) so \(G^\circ \rightarrow G \subseteq \hat{\psi} \) as required.

A. Computational properties of canonical pre-models

We now proceed to compare the observational, computational behavior of programs with their semantics as defined by the canonical models.

Let \(\mathcal{M}_\kappa \) be the MT canonical \(\kappa \)-model. Modelling \(\varepsilon \) requires \(\kappa > \sigma \) for an inaccessible \(\sigma \), but modelling the other constructs just requires \(\kappa \geq \omega \). Now assume \(\kappa \geq \omega \). For all MT, MT\text{def}, and MT\text{0} programs \(d \) let \(\bar{d} \) denote the interpretation of \(d \) in \(\mathcal{M}_\kappa \).

A.1. Introduction of \(T_c \) and auxiliary concepts

Let \(\mathcal{C}_\omega = \mathcal{P}_{\text{coh}}(\mathcal{P}_\omega) \). Recall from Section 9.5 that if \(p \in \mathcal{P}_\omega \subseteq \mathcal{P} \) then \(\downarrow p \in \mathcal{M} \) is a prime map and if \(c \in \mathcal{C}_\omega \subseteq \mathcal{C} \) then \(\downarrow c \in \mathcal{M} \) is a compact map. For \(p \in \mathcal{P}_\omega \) and \(c \in \mathcal{C}_\omega \) we now proceed to define MT\text{def} programs \(T_p, T_c, \chi_p, \) and \(\chi_c \) which satisfy:

\[
\begin{align*}
T_p &= \downarrow p \\
T_c &= \downarrow c \\
\chi_p^x &= \begin{cases} T & \text{if } \downarrow p \preceq_M x \\ \bot & \text{otherwise} \end{cases} \\
\chi_c^x &= \begin{cases} T & \text{if } \downarrow c \preceq_M x \\ \bot & \text{otherwise} \end{cases}
\end{align*}
\]

To define the terms above, we also define a number of auxiliary concepts. For \(n \in \omega \) and for \(n \)-tuples \(\langle c_1, \ldots, c_n \rangle \) and \(\langle c'_1, \ldots, c'_n \rangle \) in \(\mathcal{C}_\omega^n \) we define
\[
\{ c_1, \ldots, c_n \} \subseteq \{ c'_1, \ldots, c'_n \} \iff c_1 \subseteq c'_1 \land \cdots \land c_n \subseteq c'_n
\]
and
\[
\downarrow \{ c_1, \ldots, c_n \} \equiv \langle \downarrow c_1, \ldots, \downarrow c_n \rangle
\]
For \(\langle m_1, \ldots, m_n \rangle \) and \(\langle m_1', \ldots, m_n' \rangle \) in \(M^n \) we define
\[
\langle m_1, \ldots, m_n \rangle \preceq_M \langle m_1', \ldots, m_n' \rangle \iff m_1 \preceq_M m_1' \land \cdots \land m_n \preceq_M m_n'
\]

For sets of \(n \)-tuples \(s, s' \in P^\omega(C^n_0) \) we define
\[
s \subseteq s' \iff \exists \bar{e} \in s \exists \bar{e}' \in s': \bar{e} \subseteq \bar{e}'
\]

For \(p, p' \in P_\omega, c, c' \in C_\omega, \bar{c}, \bar{c}' \in C^n_0, \) and \(s, s' \in P^\omega(C^n_0) \) for which \(p \not\subset p',\ c \not\subset c', \bar{c} \not\subset \bar{c}', \) and \(s \not\subset s' \) we are going to define \(\text{MT}_{\text{def}} \) programs \(\delta_{pp'}, \delta_{cc'}, \delta_{cc}, \) and \(\delta_{ss'} \) which satisfy:
\[
\begin{align*}
\delta_{pp'}x &= T & \text{if } \downarrow p \preceq_M x \\
\delta_{cc}x &= T & \text{if } \downarrow c \preceq_M x \\
\delta_{cc}x &= F & \text{if } \downarrow c \preceq_M x \\
\delta_{cc}x &= F & \text{if } \downarrow c \preceq_M x \\
\delta_{cc}x &= T & \text{if } \exists e \in s: \downarrow \bar{e} \preceq_M (x_1, \ldots, x_n) \\
\delta_{cc}x &= F & \text{if } \exists e \in s: \downarrow \bar{e} \preceq_M (x_1, \ldots, x_n) \\
\delta_{ss'}x &= T & \text{if } \exists e \in s': \downarrow \bar{e}' \preceq_M (x_1, \ldots, x_n) \\
\delta_{ss'}x &= F & \text{if } \exists e \in s': \downarrow \bar{e}' \preceq_M (x_1, \ldots, x_n)
\end{align*}
\]

Finally, for \(\bar{c} \in C^n_0, \) and \(s \in P^\omega(C^n_0) \) we are going to define \(\text{MT}_{\text{def}} \) programs \(\chi_{\bar{c}}, \) and \(\chi_s \) which satisfy:
\[
\begin{align*}
\chi_{\bar{c}}x_1 \cdots x_n &= \begin{cases} T \quad \text{if } \downarrow \bar{e} \preceq_M (x_1, \ldots, x_n) \\
F \quad \text{otherwise}
\end{cases} \\
\chi_s x_1 \cdots x_n &= \begin{cases} T \quad \text{if } \exists \bar{e} \in s: \downarrow \bar{e} \preceq_M (x_1, \ldots, x_n) \\
F \quad \text{otherwise}
\end{cases}
\end{align*}
\]

A.2. Parallel constructs

As a supplement to parallel or define parallel and:
\[
x \& y = \neg(\neg x \parallel \neg y)
\]

Let \(\epsilon \) be a choice function over \(P_\omega \cup C_\omega \cup C^n_0 \cup P^\omega(C^n_0) \). For finite subsets \(Z \) of \(P_\omega, C_\omega, C^n_0, \) or \(P^\omega(C^n_0) \) and for \(\text{MT}_{\text{def}} \) programs \(a_z, \ z \in Z, \) define the \(\text{MT}_{\text{def}} \) programs \(\sum_{z \in Z} a_z \) and \(\prod_{z \in Z} a_z \) thus:
\[
\begin{align*}
\sum_{z \in Z} a_z &= \begin{cases} F & \text{if } Z = \emptyset \\
 a_Z \parallel \sum_{z \in Z \setminus \{z\}} a_z & \text{otherwise}
\end{cases} \\
\prod_{z \in Z} a_z &= \begin{cases} T \quad & \text{if } Z = \emptyset \\
 a_z \& \prod_{z \in Z \setminus \{z\}} a_z & \text{otherwise}
\end{cases}
\end{align*}
\]

62
A.3. Definition of T_p and T_c

For $p, p' \in P_\omega$, $c, c' \in C_\omega$, $n \in \omega$, $\bar{c}, \bar{c}' \in C_\omega^n$, and $s, s' \in \mathcal{P}^{\omega}(C_\omega^n)$ we define the following MT_{def} programs by induction in the set rank of $p, p', c, c', \bar{c}, \bar{c}', s, s'$:

\[
\begin{align*}
T_i &= T \\
T_f &= \lambda x. \bot_{\text{Curry}} \\
T_{(c,p)} &= \lambda x. \text{if } [\chi_{c} x, T_p, \bot_{\text{Curry}}] \\
\chi_i &= \lambda x. \text{if } [x, T, \bot_{\text{Curry}}] \\
\chi_f &= \lambda x. \text{if } [x, \bot_{\text{Curry}}, T] \\
\chi_{(c,p)} &= \lambda x. \chi_{c}(x \mathcal{T}_c) \\
\chi_c &= \lambda x. \text{if } [\prod_{p \in C} x \mathcal{T}_p, T, \bot_{\text{Curry}}] \\
\chi_{(c_1, \ldots, c_n)} &= \lambda x_1 \cdots x_n. \chi_{c_1} x_1 \& \cdots \& \chi_{c_n} x_n \\
\delta_{t_p} &= \lambda x. \text{if } [x, T, F] \quad \text{if } p \neq t \\
\delta_{p_t} &= \lambda x. \text{if } [x, F, T] \quad \text{if } p \neq t \\
\delta_{c,c'} &= \lambda x. \prod_{p \in C} \sum_{p' \in C} \delta_{p,p'} x \quad \text{if } c \not\subseteq c' \\
\delta_{s,s'} &= \lambda x_1 \cdots x_n. \sum_{s \in C} \prod_{x \in s} \delta_{c,c'} x_1 \cdots x_n \quad \text{if } s \not\subseteq s'
\end{align*}
\]

Above, the definitions of $\delta_{(c,p)(c',p')}$, $\delta_{c,c'}$, and \mathcal{T}_c are missing. For $\langle c, p \rangle \not\subseteq \langle c', p' \rangle$ define

\[
\delta_{(c,p)(c',p')} = \lambda x. \delta_{p,p'}(x \mathcal{T}_{c,c'})
\]

In the definition above note that $\langle c, p \rangle \not\subseteq \langle c', p' \rangle$ implies $c \subset c'$ and $p \not\subseteq p'$. From $c \subset c'$ we have $c \cup c' \in C$ and the set rank of $c \cup c'$ is the larger of the set ranks of c and c'. Thus, the set rank of $c \cup c'$ is smaller than one of the set ranks of $\langle c, p \rangle$ and $\langle c', p' \rangle$ which makes it legal to use $\mathcal{T}_{c \cup c'}$ in the recursive definition.

For $(c_1, \ldots, c_n) \not\subseteq \langle c_1', \ldots, c_n' \rangle$ define

\[
\delta_{(c_1, \ldots, c_n)(c_1', \ldots, c_n')} = \lambda x_1 \cdots x_n. \delta_{c_i,c_i'} x_i
\]

where $i \in \{1, \ldots, n\}$ is the smallest index for which $c_i \not\subset c_i'$.

To define \mathcal{T}_c, recall the definition of (\bar{c}, p) from Section 9.4 and define

\[
\begin{align*}
\text{def}(n, c) &= \{ \bar{c} \in C_\omega^n | \exists p \in P_\omega : (\bar{c}, p) \in c \} \\
\text{true}(n, c) &= \{ \bar{c} \in C_\omega^n | (\bar{c}, t) \in c \} \\
\text{false}(n, c) &= \text{def}(n, c) \setminus \text{true}(n, c)
\end{align*}
\]

Now let ℓ be the smallest natural number for which $\text{def}(\ell, c)$ is empty and then define the monstrous MT_{def} program \mathcal{T}_c thus:

\[
\begin{align*}
\mathcal{T}_c &= \begin{cases} \\
\text{if } \delta_{\text{true}(0,c)} \text{false}(0,c) : \chi_{\text{true}(0,c)} : \chi_{\text{false}(0,c)} ! \lambda x_1. \\
\text{if } \delta_{\text{true}(1,c)} \text{false}(1,c) x_1 : \chi_{\text{true}(1,c)} x_1 : \chi_{\text{false}(1,c)} x_1 ! \lambda x_2. \\
\text{if } \delta_{\text{true}(2,c)} \text{false}(2,c) x_1 x_2 : \chi_{\text{true}(2,c)} x_1 x_2 : \chi_{\text{false}(2,c)} x_1 x_2 ! \lambda x_3. \\
\vdots \\
\text{if } [\delta_{\text{true}(\ell,c)} \text{false}(\ell,c)x_1 \cdots x_\ell : \chi_{\text{true}(\ell,c)} x_1 \cdots x_\ell, \bot_{\text{Curry}}] & \cdots \] \end{cases}
\end{align*}
\]

In the definition above, $\delta_{\text{true}(\ell,c)} \text{false}(\ell,c)x_1 \cdots x_\ell = \delta_{p,p} x_1 \cdots x_\ell = F$.

63
Theorem A.3.1. Let \(p, p' \in \mathcal{P}_\omega \), \(c, c' \in \mathcal{C}_\omega \), \(\bar{c}, \bar{c}' \in \mathcal{C}_n \), and \(s, s' \in \mathcal{P}_\omega(\mathcal{C}_n) \) satisfy \(p \not\leq p' \), \(c \not\leq c' \), \(\bar{c} \not\leq \bar{c}' \), and \(s \not\leq s' \). Under these conditions, \(T_p, T_c, \chi_p, \chi_c, \chi_s, \delta_{pp'}, \delta_{cc'}, \delta_{ss'} \) have the properties stated in Section A.1.

Proof. By induction in \(\alpha \) we have that the theorem holds for all \(p, p', c, c', \bar{c}, \bar{c}' \), \(s, s' \) of set rank less than \(2^{\omega} \).

Corollary A.3.2. For \(p \in \mathcal{P}_\omega \) and \(c \in \mathcal{C}_\omega \) the MT\(_{\text{def}}\) programs \(T_p \) and \(T_c \) satisfy \(T_p = \downarrow p \) and \(T_c = \downarrow c \).

Now recall the combinators \(C_1, \ldots, C_8 \), defined in Section 3.4 where \(C_1 \) and \(C_2 \) are the usual \(S \) and \(K \) combinators, respectively. We shall refer to terms built up from these combinators and functional application as MT combinator programs. We refer to \(C_5 \)- and \(C_6 \)-free MT combinator programs, where \(C_5 \) and \(C_6 \) are the combinators corresponding to \(\bot \) and \(Yf \), respectively.

For all \(c \in \mathcal{C}_\omega \) let \(T'_c \) denote the result of applying abstraction elimination using \(S \) and \(K \) to \(T_c \). Thus, the MT\(_{\text{def}}\) combinator program \(T'_c \) satisfies \(T'_c = T_c \), so we have:

Corollary A.3.3. For \(p \in \mathcal{P}_\omega \) and \(c \in \mathcal{C}_\omega \) the MT\(_{\text{def}}\) combinator programs \(T'_p \) and \(T'_c \) satisfy \(T'_p = \downarrow p \) and \(T'_c = \downarrow c \).

Corollaries A.3.2 and A.3.3 of course also hold for MT. They do not hold for MT\(_0\) because parallel or is missing in MT\(_0\).

A.4. Semantic and syntactic existence

As promised in Section 3.9:

Lemma A.4.1. \(\mathcal{M}_\omega \models E_{\text{semantic}} = E_{\text{syntactic}} \)

Proof of A.4.1 Both \(E_{\text{semantic}} \) and \(E_{\text{syntactic}} \) are characteristic functions. They satisfy

\[
\begin{align*}
E_{\text{semantic}} p &= T \quad \text{iff} \quad px = T \text{ for some map } x \\
E_{\text{syntactic}} p &= T \quad \text{iff} \quad px = T \text{ for some program } x
\end{align*}
\]

Thus we need to prove

\[
px = T \text{ for some map } x \quad \text{iff} \quad px = T \text{ for some program } x
\]

The direction \(\Leftarrow \) is trivial. To see \(\Rightarrow \) note that if \(px = T \) for some map \(x \) then \(py = T \) for some \(y \in \mathcal{C}_\omega \) so \(pT_y = T \).

Corollary A.4.2. \(\mathcal{M}_\omega \models Ea = E_{\text{semantic}} a = E_{\text{syntactic}} a \).
A.5. Computational adequacy

Recall the notions of N_t, N_f, and N_\perp from Section 3.6.

Definition A.5.1. M is computationally adequate for a set T of MT_0, MT_{def}, or MT programs if

\[
\begin{align*}
 a \in N_t & \iff M \models a = \top \\
 a \in N_f & \iff M \models a = \lambda x. ax \\
 a \in N_\perp & \iff M \models a = \perp
\end{align*}
\]

for all a in T, where N_t, N_f, and N_\perp are defined using the reduction rules of MT_0, MT_{def}, and MT, respectively.

As we shall see in a moment, M is computationally adequate for MT_0 programs, for E-free MT_{def} programs, and for E-free MT programs.

Any term a satisfies one of $a \in N_t$, $a \in N_f$, and $a \in N_\perp$, and one of $M \models a = \top$, $M \models a = \lambda x. ax$, and $M \models a = \perp$ (c.f. Section 8.2), so each of the three statements of Definition A.5.1 follows from the two other ones.

Each statement has a trivial direction:

\[
\begin{align*}
 a \in N_t & \Rightarrow M \models a = \top \\
 a \in N_f & \Rightarrow M \models a = \lambda x. ax \\
 a \in N_\perp & \Rightarrow M \models a = \perp
\end{align*}
\]

Furthermore, if

\[
a \in N_\perp \Rightarrow M \models a = \perp
\]

then

\[
\begin{align*}
 a \in N_t & \Leftarrow M \models a = \top \\
 a \in N_f & \Leftarrow M \models a = \lambda x. ax
\end{align*}
\]

follows trivially. The notion of computational adequacy of a model, as well as the notion of full abstraction, were introduced by Plotkin in [13] (for a paradigmatic simply typed lambda calculus called PCF). The definition of computational adequacy given above is equivalent to the one in [13] which merely requires $a \in N_\perp \Rightarrow M \models a = \perp$. However, MT is an untyped lambda-calculus, which, for the problems treated in this appendix, considerably increases the technicality of the proofs.

Recall that M_κ denotes the canonical κ-model. Theorem B.0.2 of [3] states:

Theorem A.5.2. M_κ is computationally adequate for MT_0 programs.

Likewise, we have:

Theorem A.5.3. M_κ is computationally adequate for E-free MT_{def} programs.
The proof of Theorem A.5.3 is the same as the proof in [3] of Theorem A.5.2 above with the following modifications: First, one has to include parallel or the relevant places. Second, the proof of Lemma B.0.4 of [3], which is by structural induction, has one more case, namely one for parallel or.

Finally, we have:

Theorem A.5.4. \(\mathcal{M}_\kappa \) is computationally adequate for \(E \)-free MT programs.

Proof of A.5.4 The theorem follows trivially from

\[
(\mathcal{M}_\kappa \models a \neq \bot) \Rightarrow a \in \mathcal{N}_t \cup \mathcal{N}_f
\]

which we prove in the following. Let \(\bot \) be the term

\[
(\lambda x.xx)(\lambda x.xx)
\]

Thus, \(\bot \) is \(\bot \)-Curry (c.f. Section 3.2). For terms \(f \) let \(\tilde{Y}\{f\} \) be the term

\[
(\lambda x.f(xx))(\lambda x.f(xx))
\]

where \(x \) is chosen such that \(x \) is not free in \(f \). Since \(\mathcal{M}_\kappa \) is canonical we have \(\mathcal{M}_\kappa \models \bot = \bot \) and \(\mathcal{M}_\kappa \models Yf = \tilde{Y}\{f\} \).

For all terms \(b \) of MT we define the \(\bot \)-less transform \([b] \) of \(b \) to be the term which results when replacing all occurrences of \(\bot \) and \(Yf \) in \(b \) by \(\bot \) and \(\tilde{Y}\{f\} \), respectively. In \(\mathcal{M}_\kappa \) we have \([\bot] = \bot = \bot \) and \([Yf] = \tilde{Y}\{[f]\} = Y[f] \). This allows to prove \(\mathcal{M}_\kappa \models [a] = a \) for all terms \(a \) by structural induction.

For all \(E \)-free MT programs \(b \), \([b] \) is an \(E \)-free MT def program. Define \(b \overset{1}{\rightarrow} c \) as in Section 3.3 and 3.4. We have:

\[
\begin{align*}
\bot & \overset{1}{\rightarrow} \bot \quad \text{in MT} \\
Yf & \overset{1}{\rightarrow} f(Yf) \quad \text{in MT} \\
\bot & \overset{1}{\rightarrow} \bot \quad \text{in MT-def} \\
\tilde{Y}\{f\} & \overset{1}{\rightarrow} f(\tilde{Y}\{f\}) \quad \text{in MT-def} \\
[\bot] & \overset{1}{\rightarrow} [\bot] \quad \text{in MT-def} \\
[Yf] & \overset{1}{\rightarrow} [f(Yf)] \quad \text{in MT-def}
\end{align*}
\]

In general, if \(b \overset{1}{\rightarrow} c \) in MT then \([b] \overset{1}{\rightarrow} [c] \) in MT-def by structural induction in \(b \) and \(c \).

Let \(a \) be an MT program and assume \(\mathcal{M}_\kappa \models a \neq \bot \). Now \(\mathcal{M}_\kappa \models [a] \neq \bot \).

Recall that for each \(a \), \(a \overset{1}{\rightarrow} b \) holds for at most one \(b \) (up to naming of bound variables). Let \(a_1, a_2, \ldots \) be the unique longest finite or infinite sequence such that \(a \overset{1}{\rightarrow} a_1 \overset{1}{\rightarrow} a_2 \overset{1}{\rightarrow} \cdots \) in MT. By Theorem A.5.3, the sequence \([a] \overset{1}{\rightarrow} [a_1] \overset{1}{\rightarrow} [a_2] \overset{1}{\rightarrow} \cdots \) is finite and ends with a term in root normal form (i.e. is \(T \) or an abstraction). Hence, \(a \overset{1}{\rightarrow} a_1 \overset{1}{\rightarrow} a_2 \overset{1}{\rightarrow} \cdots \) has the same property, so \(a \in \mathcal{N}_t \cup \mathcal{N}_f \).

For programs that may contain \(E \) we have:

66
Theorem A.5.5. \mathcal{M}_{ω} is computationally adequate for MT_{def} programs and for MT programs.

Proof of A.5.5 The proof is similar to that of A.5.4. Define $a \overset{3}{\Rightarrow} d \iff \exists b, c : a \overset{1}{\Rightarrow} b \land b \overset{1}{\Rightarrow} c \land c \overset{1}{\Rightarrow} d$ and let $a \overset{!}{\Rightarrow} b$ be the transitive closure of $a \overset{1}{\Rightarrow} b$.

Recall the definition of $E_{\text{syntactic}}$ from Section 3.9. The definition is recursive and thus implicitly uses Y. Now define

$$E \equiv \tilde{Y}(\lambda f, a. aC_1 \parallel \cdots \parallel aC_7 \parallel a(\lambda x. f x) \parallel f(\lambda y. f(\lambda y. a(xy))))$$

We have $E_{\text{syntactic}} = \tilde{E}$ and

$$\tilde{E}a \overset{3}{\Rightarrow} aC_1 \parallel \cdots \parallel aC_7 \parallel a(\lambda x. \tilde{E}x) \parallel \tilde{E}(\lambda y. \tilde{E}(\lambda y. a(xy)))$$

For all terms b of MT we define the E-less transform $[b]$ to be the term which results when replacing all occurrences of Ea by $\tilde{E}a$. In \mathcal{M}_{ω}, we have $[Ea] = \tilde{E}[a] = E_{\text{syntactic}}[a] = E[a]$. This allows to prove $\mathcal{M}_{\omega} \models [a] = a$ by structural induction.

If $b \overset{1}{\Rightarrow} c$ in MT then $[b] \overset{1}{\Rightarrow} [c]$ or $[b] \overset{3}{\Rightarrow} [c]$ in MT and, in any case, $[b] \overset{!}{\Rightarrow} [c]$.

The theorem follows from $\mathcal{M}_{\omega} \models [a] \neq [b] \Rightarrow a \in \mathcal{N}_f \cup N_f$ which we now prove. Assume $\mathcal{M}_{\omega} \models [a] \neq [b]$. Let $a \overset{1}{\Rightarrow} a_1 \overset{1}{\Rightarrow} a_2 \overset{1}{\Rightarrow} \cdots$ be the unique reduction sequence for a. Now $[a] \overset{!}{\Rightarrow} [a_1] \overset{!}{\Rightarrow} [a_2] \overset{!}{\Rightarrow} \cdots$ is finite by A.5.4, so $a \in \mathcal{N}_f \cup N_f$.

The case $\kappa > \omega$ is open:

Open Question A.5.6. Is \mathcal{M}_κ computationally adequate for MT_{def} programs and for MT programs for $\kappa > \omega$?

A.6. Soundness

Recall from Section 3.6 that $a =_\kappa b$ is shorthand for $\mathcal{M}_\kappa \models a = b$.

Theorem A.6.1 (Soundness of \mathcal{M}_κ and \mathcal{M}_{ω}).

(a) $a =_\kappa b \Rightarrow a =_{\text{obs}} b$ for E-free MT programs a and b.
(b) $a =_{\omega} b \Rightarrow a =_{\text{obs}} b$ for all MT programs a and b.
(c) $a =_\kappa b \Rightarrow a =_{\text{obs}} b$ for E-free MT_{def} programs a and b.
(d) $a =_{\omega} b \Rightarrow a =_{\text{obs}} b$ for all MT_{def} programs a and b.
(e) $a =_\kappa b \Rightarrow a =_{\text{obs}} b$ for all MT_{0} programs a and b.

Note that observational equality $a =_{\text{obs}} b$ of MT, MT_{def}, and MT_{0} is true if $ca \sim cb$ for all MT, MT_{def}, and MT_{0} programs c, respectively, so the notions of observational equality are slightly different. Also note that MT_{0} does not have E in its syntax, so all MT_{0} programs are born E-free.

Proof of A.6.1 Soundness follows trivially from computational adequacy. We only prove (a). Assume $a =_\kappa b$. Assume c is an MT program. We have $ca =_\kappa cb$ so $ca =_\kappa T \iff cb =_\kappa T$ and, by Theorem A.5.4, $ca \in \mathcal{N}_f \iff cb \in \mathcal{N}_f$. Likewise, $ca \in \mathcal{N}_f \iff cb \in \mathcal{N}_f$ and $ca \in \mathcal{N}_f \perp \iff cb \in \mathcal{N}_f \perp$. Thus, $ca \sim cb$ for all MT programs c which, by definition of $=_{\text{obs}}$, gives $a =_{\text{obs}} b$.

Above, we use computational adequacy to prove soundness, and Open Question A.5.6 may be restated thus:
Open Question A.6.2.

(a) \(a =_\kappa b \Rightarrow a =_{\text{obs}} b \) for MT programs \(a \) and \(b \) and \(\kappa > \omega ? \)

(b) \(a =_\kappa b \Rightarrow a =_{\text{obs}} b \) for MT_{def} programs \(a \) and \(b \) and \(\kappa > \omega ? \)

A.7. Full abstraction

Definition A.7.1. A model \(\mathcal{M} \) is fully abstract for MT/MT_{def}/MT_0 if \(a =_{\text{obs}} b \) \(\iff \mathcal{M} \models a = b \) for all MT/MT_{def}/MT_0 programs \(a \) and \(b \).

We now state and prove that \(\mathcal{M}_\omega \) is fully abstract for MT:

Theorem A.7.2 (Full Abstraction of \(\mathcal{M}_\omega \)). \(a =_{\text{obs}} b \iff a =_{\text{MT}} b \) for MT programs \(a \) and \(b \).

Proof. \((\Leftarrow) \) follows from Theorem A.6.1. \((\Rightarrow) \) Assume \(a =_{\text{obs}} b \). Assume \(p \in \mathcal{P}_\omega \). From \(a =_{\text{obs}} b \) we have \(\mathcal{T}_{\{p\}, t} a \in \mathcal{N}_t \iff \mathcal{T}_{\{p\}, t} b \in \mathcal{N}_t \). Hence, by Theorem A.5.4, \(\mathcal{T}_{\{p\}, t} a =_{\omega} T \iff \mathcal{T}_{\{p\}, t} b =_{\omega} T \). Thus, by Corollary A.3.2, \((\downarrow\downarrow\{p\}, t)\downarrow a = T \iff (\downarrow\downarrow\{p\}, t)\downarrow b = T \) so \(p \in a \iff p \in b \) for all \(p \in \mathcal{P}_\omega \). Hence, \(a = b \) and \(a =_{\omega} b \). \(\square \)

Theorem A.7.2 also holds for MT_{def}, i.e. \(\mathcal{M}_\omega \) is also fully abstract for MT_{def}.

MT_0 lacks parallel or and Theorem A.7.2 does not hold for MT_0, i.e. \(\mathcal{M}_\omega \) is not fully abstract for MT_0. As a counterexample, take

\[
\begin{align*}
a &= \lambda x. \text{if}[x \top \perp \lambda x \top \top \top \text{FF}, \top, \perp] \\
b &= \lambda x. \perp.
\end{align*}
\]

The map \(a \) above is a parallel or tester, i.e. \(ax = T \) if \(xuv \) is the parallel or of \(u \) and \(v \). We have \(a =_{\text{obs}} b \) in MT_0.

A.8. Negative results

We now prove that \(\mathcal{M}_\kappa \) is not fully abstract for MT for \(\kappa > \omega \), \(\kappa \) regular:

Theorem A.8.1. If \(\kappa > \omega \), \(\kappa \) regular, then there exist MT programs \(a \) and \(b \) for which \(a =_{\text{obs}} b \) and \(a \neq_\kappa b \).

Proof. Take \(a = \text{E}_{\text{semantic}} = \lambda x. \text{Ex} \). Take \(b = \text{E}_{\text{syntactic}} \) so that \(b = \lambda x. (x\mathcal{C}_1 \| \ldots \| x\mathcal{C}_k \| b\lambda a. b\lambda v. x(\mathcal{u}v)) \), c.f. Section 3.4 and 3.9.

We first prove \(a =_{\text{obs}} b \). According to Theorem A.7.2 is enough to prove \(a =_{\omega} b \). Furthermore, \(a \) and \(b \) are both characteristic maps, so it is enough to prove \(ap =_{\omega} T \iff bp =_{\omega} T \) for all \(p \in \mathcal{M}_\omega \). Now \(ap =_{\omega} T \) iff \(px =_{\omega} T \) for some \(x \in M_\omega \) and \(bp =_{\omega} T \) iff \(px =_{\omega} T \) for some MT program \(x \). If \(px =_{\omega} T \) for some \(x \in M_\omega \) then \(pc =_{\omega} T \) for some compact \(c \in M_\omega \) so \(p\mathcal{T}_c =_{\omega} T \) proving \(bp =_{\omega} T \). Hence, \(ap =_{\omega} T \Rightarrow bp =_{\omega} T \). If \(bp =_{\omega} T \) then \(px =_{\omega} T \) for some MT program \(x \) so \(px =_{\omega} T \) for some \(x \in M_\omega \) proving \(ap =_{\omega} T \). Hence, \(bp =_{\omega} T \Rightarrow ap =_{\omega} T \) which ends the proof of \(a =_{\omega} b \).

We then prove \(a \neq_\kappa b \). Let \(t_0 \equiv t \) and \(t_{n+1} \equiv \langle \emptyset, t_n \rangle \) for \(n \in \mathbb{N} \). We have \(t_i \supset t_i \iff i = j \). Now let \(q \in \mathbb{N} \rightarrow \mathbb{N} \) be non-computable. Let \(Q \equiv \{ \langle \{t_i\}, t_{g(i)} \mid i \in \mathbb{N} \}, q = \downarrow Q \), and \(p = \downarrow(Q, t) \). We have \(p, q \in \mathcal{M}_\kappa \) and \(pq =_\kappa T \)
so \(ap = \kappa T \). Furthermore, \(px = \kappa T \) for no program \(x \) since \(g \) is non-computable, so \(bp \neq \kappa T \) proving \(a \neq \kappa b \). \(\square \)

Theorem A.8.1 is not too surprising since \(E \) quantifies over \(M_\kappa \) whereas the computable approximation \(b \) in the proof essentially quantifies over \(\{ \downarrow p \mid p \in P_\omega \} \). We may however strengthen the theorem above as follows:

Theorem A.8.2. If \(\kappa > \omega \), \(\kappa \) regular, then there exist \(E \)-free MT programs \(a \) and \(b \) for which \(a = \text{obs} b \) and \(a \neq \kappa b \).

The proof of Theorem A.8.2 spans the rest of this section.

Let \(I_0 = \downarrow \{ h \{ p \} \mid p \in P_! \} \), i.e. let \(I_0 \) be the smallest element of \(M_\kappa \) for which \(I_0(\downarrow p) = \downarrow p \) for all \(p \in P_! \). \(I_0 \) is compact but \(I_0 \notin C_! \). As we shall see in a moment, there exists an MT-term \(b \) which denotes \(I_0 \).

To prove the lemma, we take \(a = x:x \) and we take \(b \) to be a term which denotes \(I_0 \). Now \(a = \text{obs} b \) is true and \(a = \kappa b \) is false.

The rest of the proof is a definition of a \(b \) which denotes \(I_0 \). The definition is long and technical.

Sections A.1–A.3 define \(T_p \) in ZFC. We now reflect that definition in MT.

Recall \((x::y)T = x \) and \((x::y)F = y \). Let \((x_1, \ldots, x_n) \) be shorthand for \(x_1::\cdots::x_n::T \). We shall refer to \((x_1, \ldots, x_n) \) as a list and use lists to represent finite sets. We now port the constructs of Section A.2 from ZFC to MT:

\[
\begin{align*}
\sum_{x \in y} A & \equiv \sum' y(\lambda x.A) \\
\prod_{x \in y} A & \equiv \prod' y(\lambda x.A) \\
\sum y a & \equiv \text{id}[y, F, a(yT) \parallel \sum'(yF)a] \\
\prod y a & \equiv \text{id}[y, T, a(yT) \& \prod'(yF)a]
\end{align*}
\]

Above, \(\sum (\prod) \) expresses existential (universal) quantification. We also need a strict version of universal quantification:

\[
\begin{align*}
\bigwedge_{x \in y} A & \equiv \bigwedge' y(\lambda x.A) \\
\bigwedge y a & \equiv \text{id}[y, T, a(yT) \& \bigwedge'(yF)a]
\end{align*}
\]

We now proceed to port the definitions of \(P_\omega \) and \(C_\omega \) from ZFC to MT. We represent the elements \(P_\omega \) thus:

\[
\begin{align*}
t & \equiv T \\
f & \equiv T::T \\
\langle c, p \rangle & \equiv T::c::p
\end{align*}
\]

Recall that \(x::y \) is right associative so that \(T::c::p \) is shorthand for \(T::(c::p) \). We have \((c, p)FT = c \) and \((c, p)FF = p \).

Elements of \(C_\omega \) are finite sets of elements of \(P_\omega \), so we represent them by lists. As an example, \(\langle \langle t, t \rangle, \langle (f), f \rangle \rangle \) represents the element of \(C_\omega \) whose downward closure is the interpretation of \(\lambda x. \text{if}[x, T, \lambda y. \bot] \).

69
A list like \((t, f)\) does not represent an element of \(C_\omega\) since \(t\) and \(f\) are incoherent. We now define the coherence relations \(\subset_0 (\subset_1)\) on \(P_\omega (C_\omega)\):

\[
p \subset_0 q \equiv \text{if}[p, \text{if}[q, T, F], \text{if}[q, F], \\
\quad \text{if}[pF, T, \text{if}[qF, T, \\
\quad \quad \quad \quad \quad \quad \quad pFT \subset_1 qFT \Rightarrow pFF \subset_0 qFF]]
\]

\[
c \subset_1 d \equiv \bigwedge_{p\in c} \bigwedge_{q\in d} p \subset_0 q
\]

The definitions above allow to define characteristic maps \(\chi_{P, _c, \omega}\), and \(\chi_{C, _c, \omega}\), which test for membership of \(P_\omega, C_\omega,\) and \(C_\leq _\omega\), respectively:

\[
\chi_{P, p} \equiv \text{if}[pF, T, \chi_{C, (pFT)}^\wedge \chi_{P, p}^\wedge (pFF)]
\]

\[
\chi_{C, c} \equiv c \subset_1 c \wedge \bigwedge_{p\in c} \chi_{P, p}
\]

\[
\chi_{C, _c, \omega} \equiv \text{if}[c, T, \chi_{C, (cT)} \wedge \chi_{C, _c, \omega}]
\]

We now port the definitions in Section A.3 from ZFC to MT. The definitions of \(T_t, T_f,\) and \(T_{(c,p)}\) in Section A.3 define \(T_p\) for all \(p \in P_\omega\). Below, \(T_0p\) is the MT translation of the ZFC construct \(T_p\):

\[
T_0p \equiv \text{if}[p, T, \\
\quad \text{if}[pF, \lambda x. \perp_{\text{Curry}}, \\
\quad \quad \lambda x. \text{if}[\chi_1(pFT)x, T_0(pFF), \perp_{\text{Curry}}]]
\]

The definitions of \(\chi_p, \chi_c, \chi_e,\) and \(\chi_s\) of Section A.3 translate into the following:

\[
\chi_{0p} \equiv \text{if}[p, \text{if}[x, T, \perp_{\text{Curry}}], \\
\quad \text{if}[pF, \text{if}[x, \perp_{\text{Curry}}, T], \\
\quad \chi_0(pFF)(x T_1(pFT))]
\]

\[
\chi_{1ex} \equiv \bigwedge_{p\in \chi} \chi_{0p}x
\]

\[
\chi_{2\bar{c}e\bar{c}} \equiv \text{if}[\bar{e}, T, eT(\bar{e}T) & \chi_{2}(\bar{e}F)(\bar{e}F)]
\]

\[
\chi_{3s\bar{c}e\bar{c}} \equiv \sum_{c\in s} \chi_{2\bar{c}e}\bar{c}
\]

The union of two sets represented by lists is a classical:

\[
c \cup d \equiv \text{if}[c, d, cT::(eF \cup d)]
\]

The discriminator constructs \(\delta_{pp'}, \delta_{cc'}, \delta_{cc'}\), and \(\delta_{ss'}\) of Section A.3 translate into the following:

\[
\delta_{0pp'} \equiv \text{if}[p, \text{if}[x, T, F], \\
\quad \text{if}[pF, \text{if}[x, F, T], \\
\quad \delta_0(pFF)(p'(FF))(x(T_1(pFT \cup p'FT)))]
\]

\[
\delta_{1cc'} \equiv \prod_{p\in c} \sum_{c' \in \delta_0p} \delta_0p'x
\]

\[
\delta_{2\bar{c}e\bar{c}} \equiv \text{if}[\bar{e}T \subset_1 \bar{c}T, \delta_{2}(\bar{c}F)(\bar{c}eF), \delta_{1}(\bar{e}T)(\bar{e}cT)(\bar{c}T)]
\]

\[
\delta_{3s\bar{c}e\bar{c}} \equiv \sum_{c\in s} \delta_{2\bar{c}e\bar{c}}
\]

The empty set and the singleton set is straightforward:

\[
\emptyset \equiv T
\]
\[
\{x\} \equiv x::T
\]
We now define \(T \) \(\downarrow \) such that
\[bxy \]
As an example, if \(bxy \) is an element of \(\text{def}(n, c) \) then \((p_n, \ldots, p_1) \) is an element of \(\text{def} \). Note the list reversal.

Note that the parameter \(\bar{c} \) of \(\text{def} \) accumulates a list in reverse order. Use of such accumulating parameters is a standard trick in functional programming.

We now proceed:
\[
\begin{align*}
\text{true} & : c, \emptyset, \text{true} (c T) T \cup \text{true} (c F) \\
\text{true} & : c, \emptyset, \text{true} (c T) T \cup \text{true} (c F) (p F T: c) \\
\text{false} & : c, \emptyset, \text{false} (c T) T \cup \text{false} (c F) \\
\text{false} & : c, \emptyset, \text{false} (c T) T \cup \text{false} (c F) (p F T: c)
\end{align*}
\]

We now define \(T_1 \) which corresponds to \(T \) in Section A.3. We do so using an accumulating parameter \(\bar{x} \) which accumulates \((x_n, \ldots, x_1)\) where \(x_1, \ldots, x_n \) are the bound variables in the definition of \(T \) in Section A.3. The definition reads:
\[
\begin{align*}
T_1 & \equiv \text{def} (c) c T \\
T_1 & \equiv \text{def} (c) c x
\end{align*}
\]

This completes the port of Sections A.1–A.3 from ZFC to MT. We now define constructs with the following properties:
\[
\begin{align*}
\text{apply} & : (y_1, \ldots, y_1) \mapsto p = (c_1, \ldots, (c_n, p) \cdots) \\
\text{list reversal} & : \bar{c} \mapsto p = \text{def} (c, p, c F \mapsto (\text{true} T: c)) \\
\text{parameter} \bar{c} \equiv \text{true} \bar{c} \mapsto p \equiv \text{def} (c, p, c F \mapsto (\text{true} T: c))
\end{align*}
\]

Finally, we may define a term \(\bar{b} \) which denotes \(\bar{l} \) where \(\bar{l} \) is the smallest element of \(\mathcal{M}_b \) for which \(\bar{l} (\downarrow p) = \downarrow p \) for all \(p \in \mathbb{P}_\omega \). The definition uses an accumulating parameter \(\bar{y} \):
\[
\begin{align*}
\text{apply} & : (y_1, \ldots, y_1) \mapsto p = (c_1, \ldots, (c_n, p) \cdots) \\
\text{list reversal} & : \bar{c} \mapsto p = \text{def} (c, p, c F \mapsto (\text{true} T: c))
\end{align*}
\]

As an example, if \(bxy_1 \cdots y_n \notin \{T, \bot\} \) and \(xy_1 \cdots x_n = T \) then
\[
\begin{align*}
bxy_1 \cdots y_n & = b\bar{x} T y_1 \cdots y_n \\
& = b\bar{x} y_1 \cdots y_1 \\
& = b\bar{x} (y_n, \ldots, y_n) \\
& = E\bar{c} : \mathcal{C}_{c} \equiv \bar{x} \bar{c} x (c \mapsto t) x \bar{c} y y_1 \cdots y_n
\end{align*}
\]

Thus, in the situation above, \(bxy_1 \cdots y_n \) returns \(T \) if there exists a \(\bar{c} \in \mathcal{C}_{c} \) such that \(\downarrow (c \mapsto t) \leq_M x \) and \(\downarrow \leq_M (y_1, \ldots, y_n) \).
B. Summary of MT

B.1. Syntax

\[V ::= x \mid y \mid z \mid \cdots \]

\[T ::= V \mid \lambda V.T \mid T.T \mid \text{if}[T, T, T] \mid \bot \mid Y \mid \top \{| T | E_T | e_T \} \]

\[W ::= T = T \]

B.2. Definitions

\(A, B, C, \ldots \) denote (possibly open) terms. \(a, b, \ldots, z, \theta \) denote variables.

Elementary definitions

\[\bot \equiv (\lambda x.x)(\lambda x.xx) \quad \text{(Only in MT\textsubscript{def})} \]

\[Y \equiv \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)) \quad \text{(Only in MT\textsubscript{def})} \]

\[\lambda xy.A \equiv \lambda x.\lambda y.A \]

\[F \equiv \lambda x. T \]

\[1 \equiv \lambda xy.xy \]

\[x \downarrow y \equiv \text{if}[x, \text{if}[y, T, \bot], \text{if}[y, \bot, \lambda z.(xz) \downarrow (yz)]] \]

\[x \triangleq y \equiv x = x \downarrow y \]

\[\approx x \equiv \text{if}[x, T, F] \]

\[x \circ y \equiv \lambda z.x(yz) \]

\[x \rightarrow y \equiv \text{if}[x, y, F] = \text{if}[x, T, F] \]

\[!x \equiv \text{if}[x, T, T] \]

\[\equiv x \equiv \text{if}[x, F, T] \]

Quantification

\[\exists p \equiv \exists(p(x)) \]

\[\forall x.A \equiv \exists \lambda x.A \]

\[\forall x.A \equiv \exists \lambda x.\exists A \]

\[\exists x.A \equiv \exists \lambda x.A \]

\[\forall p \equiv \forall \exists p \mid px \]

\[\text{Ex}.A \equiv \exists \lambda x. A \]

The definition of \(\psi \)

\[\psi \equiv \text{Lis} \]

\[s \equiv YS \]

\[S \equiv \lambda f.\tilde{S}f(\uparrow f) \]

\[\tilde{S} \equiv \lambda f\theta a.\text{if}[a, P, \text{if}[aT, Q(f(aF)), Rf\theta(aT)(aF)] \]

\[P \equiv \lambda y.\text{if}[y, T, \bot] \]

\[Q \equiv \lambda v. Dv ! \lambda y.\tilde{\nu}z. v(y(z / v)) \]

\[R \equiv \lambda f\theta bc. \theta e ! R_1 f\theta bc ! R_0 f\theta bc \]

\[R_1 \equiv \lambda f\theta bc. \tilde{\nu}z. D(f(b(\uparrow e / \theta))) \]

\[R_0 \equiv \lambda f\theta bcy. Ez. (\theta e ! f(b(\uparrow e / \theta)))y \]

\[\square \equiv \lambda f. \text{Ex}. fxy \]

\[x ! y \equiv \text{if}[x, y, \bot] \]

\[D \equiv \lambda x.\text{if}[x, T, T] \]

\[f / g \equiv \text{if}[f, T, \lambda x.gx] (fx / g) \]
B.3. Axioms and inference rules

Elementary axioms and inference rules

Trans \(A = B, A = C \vdash B = C \)

Sub \(B = C \vdash AB = AC \)

Gen \(A = B \vdash \lambda x. A = \lambda x. B \)

A1 \(TB = T \)

A2 \(\beta \) \((\lambda x. A)B = C \) if \(C \models (A \mid x := B) \)

A3 \(\bot B = \bot \)

I1 if \([T; B; C] = B \)

I2 if \([\lambda x. A; B; C] = C \)

I3 if \([\bot; B; C] = \bot \)

QND \(A T = BT; A(1C) = B(1C); A\bot = B\bot \vdash AC = BC \)

P1 \(T \parallel B = T \)

P2 \(A \parallel T = T \)

P3 \(\lambda x. A \parallel \lambda y. B = \lambda z. T \)

Y \(Y A = A(Y A) \quad \text{(Not needed in } MT_{det}) \)

Monotonicity and minimality

Mono \(B \leq C \vdash AB \leq AC \)

Min \(AB \leq B \vdash YA \leq B \)

Extensionality

Ext if \(x \) and \(y \) are not free in \(A \) and \(B \) then

\[\approx (Ax) = \approx (Bx); Ax = AC; Bxy = BC \vdash Ax = Bx \]

Axioms on \(E \)

ET \(ET = T \)

EB \(E\bot = \bot \)

EX \(Ex = E(\chi x) \)

EC \(E(x \circ y) \rightarrow Ex \)

Quantification axioms

Elim \((\forall x: px) \land \psi y \rightarrow py \)

Ackermann \(\exists x: px = \exists x: (\psi x \land px) \)

StrictE \(\psi(\exists x: px) = \exists x: !(px) \)

StrictA \((\forall x: px) = \forall x: !(px) \)
C. Index

Greek letters
\(\varepsilon \), 10, 14
\(\varepsilon x : A \), 20
\(\theta \), 47
\(\lambda (h) \), 31, 32, 39
\(\lambda x A \), 10
\(\Phi \), 34, 43
\(\phi \), 43
\(\chi \), 19, 34
\(\psi \), 10, 22
\(\psi \), 14, 35
\(\omega \), 17, 29

Arrows
\([D \to_c D']\), 30
\(f : G \to H \) (ZFC function type), 29
\(A \downarrow B \), 11
\(G \to H \) (set of maps), 34, 44
\(x \to y \) (implication), 19
\(\downarrow x \), 29, 37, 38
\(x \downarrow y \), 16
\(\uparrow x \), 29

Equal signs/Equivalences
\(G =_c H \), 44
\(\langle A \mid x := B \rangle \), 10
\(A \equiv B \), 16
\(a =_{\text{obs}} b \), 13
\(a =_{\text{obs}} b \), 13
\(a \sim b \), 13
\(x \equiv y \), 17
\(A = B \), 10

Order relations
\(G <_c H \), 44
\(G \leq_c H \), 44
\(\leq_D \), 36

\(\preceq_M \), 30
\(x \preceq y \), 16

Double dot constructs
\(\exists p \), 20
\(\exists x : A \), 20
\(\forall p \), 20
\(\forall x : A \), 20
\(\preceq x \), 20
\(x \equiv y \), 20
\(x \Rightarrow y \), 20
\(x \not\in y \), 20

Superscript set constructs
\(G^1 \), 44
\(G^c \), 34, 44
\(G^b \), 44
\(G^\omega \), 29

Other nulry constructs
0, 17
\(\bot \), 10, 32, 39
\(\bot_{\text{Curry}} \), 10
\(\langle \rangle \), 29
1, 16
\(\sqcup \), 21

Other unary constructs
\(\chi x \), 20
\(x' \), 17
\(\approx x \), 16, 18

Other binary constructs
\(x \circ y \), 19
\(x \supseteq_D y \), 36
\(x \land y \), 16
\(x \not\in y \), 21

74
\(P, 22 \)
\(\mathcal{P}, 29 \)
\(\mathcal{P}^c, 29 \)
\(\mathcal{P}^{\text{col}}, 37 \)

p.o., 29

partially ordered set, 29

premodel, see model, pre-

prime, 30

program, MT, 13

\(Q, 22 \)

quasimodel, see model, quasi-

\(R, 22 \)

r, 40

\(R_0, 22 \)

\(R_1, 22 \)

rank, 38

reflexive object, 31

regular cardinal, 57

\(\text{rk}(p), 38 \)

root equivalence, 13

root normal term, 11

\(S, 22 \)

\(\bar{S}, 22 \)

s, 22

\(\kappa \)-Scott domain, 25, 29

\(\kappa \)-Scott semantics, 25, 29

\(\text{self}[g], 55 \)

semantic extensionality, 14

\(\kappa \)-small, 29

\(\sigma \)-small, 34

standard model, see model, standard

\(T, 10, 32, 39 \)

Tarski's fixed point operator, 31

ture normal term, 11

\(\sqsubseteq, 21 \)

UBT, 35, 43

Upper Bound Theorem, 35, 43

wellfounded map, 14

wellfounded w.r.t. a set \(G \) of maps, 17

Y, 10

\(Y_{\text{Curry}}, 10 \)

ZFC, 4

ZFC+SI, 7, 27

76

