Mathematics and Computation Exam 1, June 3, 1998

Exercise 1. Let [A] be shorthand for

$$[\langle\langle\langle x+y \mid x:=x+2\rangle \mid y:=x+3\rangle \mid x:=\langle x+x \mid x:=5\rangle\rangle].$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [A].

Exercise 2. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[x \in B \rightarrow y \in B \rightarrow x \land y \lor \neg y \Leftrightarrow x \lor \neg y]$.
- (b) $[x \in \mathbf{B} \to y \in \mathbf{B} \to x \land (y \lor \neg y) \equiv x]$.
- (c) $[if(x, if(y, T, F), if(y, F, F))] \equiv if(y, if(x, T, F), if(x, F, F))]$

Exercise 3. The algebraic system [S] has the following five rules:

Algebraically prove the following within [S]:

- (a) $[--(x-y) \equiv x-y]$.
- (b) $[--x \equiv x]$.
- (c) $[-(x \cdot x) \equiv (-x) \cdot x]$.

Exercise 4. I define

$$\label{eq:hamiltonian} \left[\begin{array}{l} h(\mathsf{x},\mathsf{y}) \doteq \mathsf{y} = 0 \left\{ \begin{array}{l} -\mathsf{x} \\ h(\mathsf{x},\mathsf{y}-1) + \mathsf{x} \end{array} \right] \!.$$

In addition to the rules in the text book, you may use the [Mac] rules [F], [G], [H], and [I] below in this exercise. You are not supposed to prove these rules.

[Mac rule F:
$$\mathbf{x} \in \mathbf{Z} \to \mathbf{y} \in \mathbf{N} \to h(\mathbf{x}, \mathbf{y}) \in \mathbf{Z}$$
]
[Mac rule G: $(\mathbf{y} = 0) \in \mathbf{T} \to -x = x \cdot (\mathbf{y} - 1)$]
[Mac rule H: $a \cdot (b - 1) + a \equiv a \cdot b$]
[Mac rule I: $a = b \vdash a + c = b + c$]

- (a) Prove $[\forall x \in \mathbf{Z} \forall y \in \mathbf{N} : h(x, y) = x \cdot (y 1)]$.
- (b) What is the value of $[\forall u \in \mathbb{N} \exists x \in \mathbb{N} \exists y \in \mathbb{N} : h(x,y) = u^2]$? Explain your answer.
- (c) What is the value of $\forall u \in \mathbb{Z} \exists x \in \mathbb{N}: h(x, x) \leq u$? Explain your answer.

Mathematics and Computation Exam 2, June 2, 1999

Exercise 1. Let [A] be shorthand for

$$\big[\left\langle \left\langle \left\langle x \wedge y \mid x := \neg x \right\rangle \mid y := x \vee y \right\rangle \mid x := \left\langle x \wedge x \mid x := F \right\rangle \right\rangle \big] \big].$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. The algebraic system [S] has the following six rules:

Above, \mathcal{A} , \mathcal{B} , and \mathcal{C} denote arbitrary terms whereas x og y denote arbitrary, distinct variables. Algebraically prove the following within [S]:

- (a) $[\langle x \wedge y \mid x := F \rangle \equiv F \wedge y]$.
- **(b)** $\lceil \langle u \wedge F \mid v := T \rangle \equiv u \wedge F \rceil$.
- (c) $\lceil \langle \langle x \vee y \mid x := y \rangle \mid y := u \wedge F \rangle \equiv \langle \langle x \vee y \mid y := u \wedge F \rangle \mid x := u \wedge F \rangle \rceil$.

Exercise 3. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[x \in \mathbf{B} \to y \in \mathbf{B} \to \neg(x \Rightarrow y) \Leftrightarrow \neg x \land y]$.
- (b) $[x \in \mathbf{B} \to y \in \mathbf{B} \to \neg(x \Rightarrow y) \Leftrightarrow x \land \neg y].$
- (c) $[x \in \mathbf{B} \to y \in \mathbf{B} \to x \Rightarrow x \land y \equiv y]$.

Exercise 4. I define

$$\left[h(\mathbf{x}) \doteq \mathbf{x} = 0 \right\{ \begin{array}{c} 1 \\ 3 \cdot h(\mathbf{x} - 1) \end{array} \right].$$

In addition to the rules in the text book, you may use the [Mac] rules [G] and [H] below in this exercise. You are not supposed to prove these rules.

[Mac rule G:
$$a \in \mathbf{Z} \to a \ge 0 \to a \in \mathbf{N}$$
] [Mac rule H: $a \ge 0 \to b \ge 0 \to a \cdot b \ge 0$]

- (a) Prove $[x \in \mathbb{N} \to h(x) \in \mathbb{Z}]$.
- (b) Prove $[x \in \mathbb{N} \to h(x) \ge 0]$.
- (c) Prove $[x \in \mathbb{N} \to h(x) \in \mathbb{N}]$.

Mathematics and Computation Exam 3, January 21, 2000

Exercise 1. Let [A] be shorthand for

$$[\langle \langle \langle x :: y \mid x := x \ 'y \rangle \mid y := x :: x \rangle \mid x := \bot :: \mathsf{N} \rangle] .$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [A].

Exercise 2.

- (a) Write the representation of [1] using only [N] and [x.y].
- (b) Write the representation of [1000] using only [N] and [x \therefore y]. The algebraic system [S] has the following five rules:

(c) Prove [1 ' (\bot ... \bot) ' N \equiv 1000 ' (\bot ... \bot) ' N] algebraically within [S] .

Exercise 3. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[x \in \mathbf{B} \to \neg(x \land x) \Leftrightarrow \neg(x \lor x)]$.
- (b) $[x \in \mathbf{B} \to \neg \neg (x \land x) \equiv x]$.
- (c) $x \in \mathbf{B} \to y \in \mathbf{B} \to (\neg x) = y \Leftrightarrow \neg x = y$.

Exercise 4. I define

$$h(\mathbf{x}) \doteq \mathbf{x} = 0 \begin{cases} 0 \\ h(\mathbf{x} - 2) + 1 \end{cases}.$$

In addition to the rules in the text book, you may use the [Mac] rules [F] and [G] below in this exercise. You are not supposed to prove these rules.

[Mac rule F:
$$a = 0 \equiv 2 \cdot a = 0$$
]
[Mac rule G: $2 \cdot (a-1) \equiv 2 \cdot a - 2$]

- (a) Prove $[\mathbf{x} \in \mathbf{N} \to (\mathbf{x} = 0) \in \mathbf{F} \to h(2 \cdot \mathbf{x}) \equiv h(2 \cdot (\mathbf{x} 1)) + 1]$.
- **(b)** Prove $[x \in \mathbb{N} \to (x = 0) \in \mathbb{T} \to h(2 \cdot x) \equiv 0]$.
- (c) Prove $[x \in \mathbb{N} \to h(2 \cdot x) \in \mathbb{Z}]$.

Mathematics and Computation Exam 4, June 29, 2000

Exercise 1. Let [A] be shorthand for

$$[\langle \mathsf{x}'\mathsf{x} \mid \mathsf{x} := \lambda x. \lambda y. x'(y'y) \rangle].$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[a \in B \to b \in B \to c \in B \to a \land b \lor b \land c \lor c \land a \Leftrightarrow (c \lor b) \land (b \lor a) \land (a \lor c)]$.
- (b) $[a \in \mathbf{B} \to b \in \mathbf{B} \to if(a, b, \neg b) \Leftrightarrow if(b, a, \neg a)].$
- (c) [$a \in B \rightarrow b \in B \rightarrow c \in B \rightarrow d \in B \rightarrow e \in B \rightarrow f \in B \rightarrow a \land \neg b \land \neg c \land d \land \neg e \land f \Leftrightarrow a \land \neg b \land \neg c \land d \land \neg e$].

Exercise 3. Let $[\mathcal{B}]$ be shorthand for

- (a) Write the representation of $[\mathcal{B}]$ using only [N] and [x : y].
- (b) What does [\mathcal{B} Tail Head] represent?
- (c) Compute $[(\lambda x.x \text{ head} + x \text{ tail})'B]$.

$$\left[f(\mathsf{x},\mathsf{y}) \doteq \mathsf{x} = 0 \right\{ \begin{array}{l} 0 \\ \mathsf{y} + f(\mathsf{x} - 1,y) \end{array} \right].$$

- (a) Compute [f(4,3)].
- (b) Prove $[y \in \mathbf{Z} \to x \in \mathbf{N} \to f(x,y) \in \mathbf{Z}]$.
- (c) Prove $[\exists y \in \mathbb{Z}: f(4, y) = 12]$.

Mathematics and Computation Exam 5, January 19, 2001

Exercise 1. Let [\mathcal{A}] be shorthand for

$$[(\lambda x.\langle x'x \mid x:=\lambda y.x'(y'y)\rangle)'(\lambda x.\lambda y.y+1)'3].$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. I define

$$\begin{array}{lcl} \left[\begin{array}{lcl} g(\mathsf{x},\mathsf{y}) & \doteq & \mathrm{if}(\mathsf{x} \leq 0, \langle \, \rangle, \mathsf{x} :: g(\mathsf{x} - \mathsf{y}, \mathsf{y})) & \\ \left[\begin{array}{lcl} h(\mathsf{x},\mathsf{y}) & \doteq & \mathsf{x} :: h(\mathsf{x} - \mathsf{y}, \mathsf{y}) \end{array} \right] \end{array}$$

- (a) Compute [g(5,2)].
- (b) Compute $[g(5, \emptyset.5F)]$.
- (c) Prove $[h(x,y) \text{ tail head } \equiv x-y]$.

Exercise 3. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[if(x, F, y) \Leftrightarrow if(y, F, x)]$.
- (b) $[x \in \mathbf{B} \to y \in \mathbf{B} \to x \land y \lor x \land \neg y \lor \neg x \land y \Leftrightarrow x \lor y].$
- (c) $[x \in \mathbf{B} \to y \in \mathbf{B} \to (x \Leftrightarrow (y \Leftrightarrow (x \Leftrightarrow y))) \Leftrightarrow (x \Leftrightarrow (\neg y \Leftrightarrow (\neg x \Leftrightarrow y)))]$.

$$\label{eq:final_state} \left[\ f(\mathbf{x},\mathbf{y}) \doteq \mathbf{x} = 0 \left\{ \begin{array}{l} y \\ f(\mathbf{x}-1,-y) \end{array} \right] \!.$$

- (a) Compute [f(2000, 2001)].
- (b) Prove $[\mathbf{x} \in \mathbf{N} \to \forall y \in \mathbf{Z}: f(\mathbf{x}, \mathbf{y}) \in \mathbf{Z}]$.
- (c) Prove $\exists x \in \mathbb{N}: f(x,4) = -4 \ \exists$.

Mathematics and Computation Exam 6, June 18, 2001

Exercise 1. Let [A] be shorthand for

$$[\langle x'x'F \mid x := \lambda x.\lambda y.\lambda z.case(y, z'x'x, x'z'(y'T))\rangle].$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[x \in B \rightarrow y \in B \rightarrow z \in B \rightarrow (x \land y \Rightarrow z) \Rightarrow (x \Rightarrow z)]$.
- (b) $[x \in \mathbf{B} \to y \in \mathbf{B} \to z \in \mathbf{B} \to (x \Rightarrow y) \land (y \Rightarrow z) \Rightarrow (x \Rightarrow z)].$
- (c) $[x \in \mathbf{Z} \to x = 0 \lor \neg x = 0]$. Hint: Prove $[y \in \mathbf{B} \to y \lor \neg y]$ first.

Exercise 3. I define that a term [f] is a "counterexample" to $[\mathcal{A} \preceq \mathcal{B}]$ if $[f'\mathcal{A} \equiv \mathsf{T}]$ and $[f'\mathcal{B} \equiv \bot]$. As an example, $[\lambda x.x]$ is a counterexample to $[\mathsf{T} \preceq \bot]$.

- (a) Prove $[\langle 2, 3 \rangle \leq \langle 2, 3, 4 \rangle]$ or give a counterexample.
- (b) Prove $[\langle 2, \perp \rangle \leq \langle 2, 3 \rangle]$ or give a counterexample.
- (c) Draw a diagram of [\preceq] applied to [\bot], [\bot :: \bot], [$\langle\bot\rangle$], [2:: \bot], and [$\langle 2\rangle$].

Exercise 4. I define

$$f(\mathbf{x}) \doteq \mathbf{x} = 0 \begin{cases} 4 \\ 15 - 2 \cdot f(\mathbf{x} - 1) \end{cases}.$$

Prove or disprove the following:

- (a) $[\forall x \in \mathbb{N}: f(x) \in \mathbb{Z}]$.
- **(b)** $\forall x \in \mathbb{N}: f(x) \in \mathbb{D}$.
- (c) $[\forall x \in \mathbb{N}: f(x) \ge 0]$.

Mathematics and Computation Exam 7, January 28, 2002

Exercise 1. Let [\mathcal{A}] be shorthand for

```
[((\lambda x. x'x)'(\lambda x. \lambda y. y'(x'x))'(\lambda x. T :: x)) \text{ head }].
```

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. Prove or disprove the following. For each use of [Tautology] draw the corresponding truth table.

- (a) [Mac lemma $2a: x \in B \rightarrow y \in B \rightarrow x \land y \lor x \Leftrightarrow x$].
- (b) [Mac lemma $2b: \forall x \in B: x \vee \neg x]$.
- (c) [Mac lemma $2c: \forall x \in B: \neg x$].

(Replace "lemma" by "antilemma" where appropriate).

Exercise 3. Let [S] be an algebraic system with constructs [1], [2], [4], [x+y], $[x\cdot y]$, $[x\cdot y]$, and [g(x)], and contradiction $[1 \equiv 2]$. Associativity and priority of [x+y], $[x\cdot y]$, and $[x^y]$ are like in the text book. The system [S] has the following algebraic rules:

Prove the following:

- (a) [S lemma $3a: y^2 \equiv y \cdot y$].
- (b) $[S lemma 3b: y^4 \equiv y \cdot y \cdot y \cdot y].$
- (c) [S lemma $3c: x + y \equiv y + x$].

Exercise 4. I define

[
$$f(\mathbf{n}) \doteq \mathbf{n} :: if(\mathbf{n} = 0, \langle \rangle, f(\mathbf{n} - 1))$$
].

Furthermore, I extend the [Mac] system thus:

Mac rule NReflexive: $x \in \mathbb{N} \to x = x$

- (a) Compute [f(4)].
- (b) Prove Mac lemma 4b: $\forall n \in \mathbb{N}$: $f(n) \in \mathbb{N}^*$.
- (c) Prove Mac lemma $4c: \forall x \in \mathbb{N}: \exists y \in \mathbb{N}: f(y) \text{ head} = x$.

Hint for 4c: Prove $[\exists y \in \mathbb{N}: x = f(y)]$ head [] inside a block which starts with the hypothesis $[x \in \mathbb{N}]$. Then use [] Gen [] to prove the lemma.

Mathematics and Computation Exam 8, May 28, 2002

Exercise 1. Let [\mathcal{A}] be shorthand for [1F#2F#3F#4F#5F#6F] where [x # y] is defined thus:

[construct
$$x \# y$$
] [$x \# y \# z \stackrel{\smile}{\rightarrow} x \# (y \# z)$] [$x \# y \# z \stackrel{\circ}{\rightarrow} x \cdot y + z$] [$x \# y \stackrel{\coloneqq}{=} x \cdot y$]

- (a) Draw a parse tree for [A].
- (b) Draw a syntax tree for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. The algebraic system [S] has the following axioms:

 $\begin{array}{lll} \operatorname{ComP}: & \mathsf{x} + \mathsf{y} \equiv \mathsf{y} + \mathsf{x} & \operatorname{ComT}: & \mathsf{x} \cdot \mathsf{y} \equiv \mathsf{y} \cdot \mathsf{x} \\ \operatorname{AssocP}: & (\mathsf{x} + \mathsf{y}) + \mathsf{z} \equiv \mathsf{x} + (\mathsf{y} + \mathsf{z}) & \operatorname{AssocT}: & (\mathsf{x} \cdot \mathsf{y}) \cdot \mathsf{z} \equiv \mathsf{x} \cdot (\mathsf{y} \cdot \mathsf{z}) \\ \operatorname{Dist}: & \mathsf{x} \cdot (\mathsf{y} + \mathsf{z}) \equiv \mathsf{x} \cdot \mathsf{y} + \mathsf{x} \cdot \mathsf{z} & \operatorname{Minus}: & \mathsf{x} - \mathsf{y} \equiv \mathsf{x} + (-1) \cdot \mathsf{y} \\ \operatorname{SelfP}: & \mathsf{x} + \mathsf{x} \equiv 2 \cdot \mathsf{x} & \operatorname{SelfT}: & \mathsf{x} \cdot \mathsf{x} \equiv \mathsf{x}^2 \\ \operatorname{Fail}: & (\mathsf{x} + \mathsf{y})^2 \equiv \mathsf{x}^2 + \mathsf{y}^2 \end{array}$

The associativity and priority of the operators are as usual.

- (a) Prove $[x (y + z) \equiv x y z]$.
- **(b)** Prove $[(x+y)^2 \equiv x^2 + 2 \cdot x \cdot y + y^2]$.
- (c) Prove [$0 \equiv 2$]. The proof may use [Computation] and numerals. (The last question essentially says: Disprove [Fail]).

Exercise 3. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- $\textbf{(a)} \quad \big[\ x \in \mathbf{B} \rightarrow y \in \mathbf{B} \rightarrow \neg (x \Rightarrow y) \lor \neg (y \Rightarrow x) \Leftrightarrow (x \Leftrightarrow \neg y) \ \big].$
- (b) $[x \in \mathbf{B} \to x \text{ Tail }]$.
- (c) $[x \in \mathbb{N} \to y \in \mathbb{N} \to (x = 0 \Rightarrow y = 0) \lor (y = 0 \Rightarrow x = 0)]$.

$$\label{eq:force_force} \left[\ f(\mathsf{x},\mathsf{g}) \doteq \mathsf{x} = 0 \left\{ \begin{array}{l} 0 \\ \mathsf{g'} \, f(\mathsf{x}-1,\mathsf{g}) \end{array} \right].$$

- (a) Compute [$f(117, \lambda y.y+1)$].
- (b) Prove $[\forall z \in N : g'z \in N \rightarrow x \in N \rightarrow f(x,g) \in N]$.
- (c) Prove $[f(g, 2) \neq 1]$ or give a counterexample.

Mathematics and Computation Exam 9, January 20, 2003

Exercise 1. Let [\mathcal{A}] be shorthand for

$$[\langle\langle f'(x'x) \mid x := \lambda f. \lambda x. f'x \rangle \mid f := \lambda f. f' \lambda x. 117\rangle].$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[x \in \mathbf{B} \to (x \Rightarrow x) \Rightarrow x]$.
- (b) $[x \in \mathbf{B} \to y \in \mathbf{B} \to (x \Leftrightarrow y) \Rightarrow (x \Rightarrow y)].$
- (c) $[x \in \mathbf{B} \to y \in \mathbf{B} \to z \in \mathbf{B} \to (x \Rightarrow y) \land (y \Rightarrow z) \land (z \Rightarrow x) \Leftrightarrow (z \Rightarrow y) \land (y \Rightarrow x) \land (x \Rightarrow z)].$

Exercise 3. I define

$$f \doteq \lambda x. \lambda y. if(y = 0, T, x'y)$$

What are the values of the following?

- (a) $[Y' \lambda x.5]$.
- (b) [Y'f'0].
- (c) [Y'f'1]'.

$$\[f(\mathsf{x},\mathsf{y}) \doteq \mathsf{x} = 0 \left\{ \begin{array}{l} \mathsf{y} \\ f(\mathsf{x}-1,\mathsf{y}-2) \end{array} \right\}.$$

- (a) Compute [f(100, 1000)].
- (b) Apply [Induction] backwards to $[x \in \mathbb{N} \to \forall y \in \mathbb{Z}: f(x, y) \in \mathbb{Z}]$.
- (c) Prove $[x \in \mathbb{N} \to \forall y \in \mathbb{Z}: f(x,y) \in \mathbb{Z}]$.

Mathematics and Computation Exam 10, June 13, 2003

Exercise 1. Let [A] be shorthand for

$$\langle \mathsf{x}'\mathsf{x} \mid \mathsf{x} := \lambda \mathsf{x}.\mathsf{N} \ \therefore \mathsf{x}'\mathsf{x} \rangle \left\{ \begin{array}{c} 2\\ 3 \end{array} \right.$$

- (a) Draw a syntax tree for [A].
- (b) Draw a binding diagram for [A].
- (c) Compute [\mathcal{A}].

Exercise 2. The algebraic system [S] has the constructs [K], [x'y], and $[x \circ y]$, the contradiction [K'K \equiv K], and the following axioms, priority rules, and associativity rules:

$$\begin{bmatrix} S \text{ rule } K : & K'x'y & \equiv & x \\ S \text{ rule } C : & (f \circ g)'x & \equiv & f'(g'x) \\ & & x'y & \stackrel{>}{>} & x \circ y \\ & & & x'y'z & \stackrel{\rightarrow}{\to} & (x'y)'z \\ & & & & x \circ y \circ z & \stackrel{\rightarrow}{\to} & (x \circ y) \circ z \end{bmatrix}$$

Parentheses [$(x) \stackrel{..}{=} x$] are as usual. Prove the following:

- (a) $[S lemma 2a : (K \circ K \circ K)' u'v'w'x \equiv u].$
- (b) [S lemma 2b : $((K \circ K) \circ K)' u' v' w' x \equiv (K \circ (K \circ K))' u' v' w' x$].
- (c) $[S lemma 2c : ((K \circ K \circ K) \circ (K \circ K))'u'v'w'x'y'z \equiv ((K \circ K) \circ (K \circ K \circ K))'u'v'w'x'y'z].$

(Hint: You can reduce the size of the proofs by inventing your own auxiliary lemmas).

Exercise 3. Which of the following hold? Prove those that hold. Give counterexamples to those that fail. For each use of [Tautology] draw the corresponding truth table.

- (a) $[x \in \mathbf{B} \to y \in \mathbf{B} \to x \le y \Rightarrow x < y]$.
- (b) $[x \in \mathbf{B} \to y \in \mathbf{B} \to x < y \Rightarrow x \le y]$.
- (c) $[x \in \mathbf{Z} \to if(x \in \mathbf{N}, 1, 2) \in \mathbf{N}]$.

$$\[f(\mathsf{x},\mathsf{y}) \doteq \mathsf{x} = 0 \left\{ \begin{array}{l} \mathsf{y} \\ f(\mathsf{x}-1,\mathsf{x}) \end{array} \right].$$

- (a) Compute [f(100, 200)].
- (b) Prove $\forall x \in \mathbb{N} : \forall y \in \mathbb{N} : f(x, y) \in \mathbb{N}$.
- (c) Prove $\exists x \in \mathbb{N}: f(x, x) = x \end{bmatrix}$.

Mathematics and Computation Exam 11, January 21, 2004

```
Exercise 1. Let \mathcal{A} be shorthand for (\lambda x.\lambda y.x'(x'y))'(\lambda x.\lambda y.x'y)'(\lambda x.x + 1.4F)'10F
```

- (a) Draw a syntax tree of A.
- (b) Draw a binding diagram for A.
- (c) Compute A.

```
\begin{array}{lll} A: a \equiv \{*\} & v_{**} \colon s(*,*,\mathsf{x},\mathsf{y}) \equiv \mathsf{x} & v_{\circ\circ} \colon s(\circ\mathsf{u},\circ\mathsf{v},\mathsf{x},\mathsf{y}) \equiv s(\mathsf{u},\mathsf{v},\mathsf{x},\mathsf{y}) \\ B: b \equiv \{\circ*\} & v_{*\circ} \colon s(*,\circ\mathsf{v},\mathsf{x},\mathsf{y}) \equiv \mathsf{y} & S\colon \langle \{\mathsf{x}\} \mid \{\mathsf{y}\} := \mathsf{z}\rangle \equiv s(\mathsf{x},\mathsf{y},\mathsf{z},\{\mathsf{x}\}) \\ C: c \equiv \{\circ\circ*\} & v_{\circ*} \colon s(\circ\mathsf{u},*,\mathsf{x},\mathsf{y}) \equiv \mathsf{y} & P\colon \langle \mathsf{u}+\mathsf{v} \mid \mathsf{x} := \mathsf{y}\rangle \equiv \langle \mathsf{u} \mid \mathsf{x} := \mathsf{y}\rangle + \langle \mathsf{v} \mid \mathsf{x} := \mathsf{y}\rangle \\ \text{Prove the following:} \end{array}
```

- (a) [V lemma 2a: $\langle a \mid b := c \rangle \equiv a$].
- **(b)** $\begin{bmatrix} V \text{ lemma } 2b: \langle b \mid b := c \rangle \equiv c \end{bmatrix}$.
- (c) V lemma 2c: $\langle a+b \mid b := c \rangle \equiv a+c$].

Exercise 3. I define $[a \doteq Y' \lambda x. \lambda y. x' T]$.

- (a) Prove [Mac lemma 3a: $a \leq \lambda x.\bot$].
- (b) Prove [Mac lemma 3b: $\lambda x . \bot \leq a$].
- (c) Prove [Mac lemma 3c: $a \equiv \lambda x.\bot$].

Exercise 4. I define
$$[f(x,y) \doteq if(x = 0, y = 0, f(x - 1, y - 1))]$$
.

- (a) Prove [Mac lemma $4a: x \in \mathbb{N} \to f(x,x)$].
- (b) Prove [Mac lemma 4b: $x \in \mathbb{N} \to (x = 0) \in \mathbb{F} \to \forall y \in \mathbb{Z}$: $f(x-1,y) \in \mathbb{B} \to \forall y \in \mathbb{Z}$: $f(x,y) \in \mathbb{B}$].
- (c) Prove Mac lemma $4c: x \in \mathbb{N} \to \forall y \in \mathbb{Z}: f(x, y) \in \mathbb{B}$.

Mathematics and Computation Exam 12, June 14, 2004

Exercise 1. Draw the parse trees of the three expressions below. If the expression is a term then draw the syntax tree and compute the value.

- (a) $1, 2, 3 < 3 < \langle 3 \rangle$ head tail $\Rightarrow T$.
- **(b)** $((1, 2 \le 3) < (3) \text{ head}) \Rightarrow T.$
- (c) $1'2 \Rightarrow T$.

Exercise 2. The algebraic system [S] has the constructs $[x \cdot y]$, [x + y], [-x], $[\langle x, y \rangle]$, $[\langle x, y \rangle]$, $[\langle x, y \rangle]$, and [1]. The only associativity rule is $[x \cdot y \cdot z \xrightarrow{\sim} (x \cdot y) \cdot z]$, and the only priority rule is $[x \cdot y \xrightarrow{\sim} x + y]$. The axioms are:

```
[S rule CommT: x \cdot y \equiv y \cdot x]
                                                        [S rule MinusT: -(x \cdot y) \equiv x \cdot (-y)]
[S rule CommP: x+y \equiv y+x]
                                                        [S rule ColT:
                                                                                        \langle x, y \rangle \cdot \langle z; w \rangle \equiv x \cdot z + y \cdot w
[S rule ZeroT:
                               \mathbf{x} \cdot \mathbf{0} \equiv 0
                                                        [S rule RowT:
                                                                                       x \cdot \langle y, z \rangle \equiv \langle x \cdot y, x \cdot z \rangle]
[S rule OneT:
                               x \cdot 1 \equiv x
                                                         [S rule RowP:
                                                                                        \langle x, y \rangle + \langle z, w \rangle \equiv \langle x + z, y + w \rangle
[S rule ZeroP:
                                                         [S rule Cancel:
                               x + 0 \equiv x
                                                                                        (-x) + x \equiv 0
                                                        [S rule Nullary:
                                                                                       nullary \equiv \langle \langle 0, 1 \rangle; \langle -1, 0 \rangle \rangle
```

Prove the following:

(a) S lemma Orthogonal: $\langle a, b \rangle \cdot \text{nullary} \cdot \langle a; b \rangle \equiv 0$.

Question 2a above constitutes 25% of the exam.

All other questions constitute about 8%.

Exercise 3. Prove the following or give counterexamples. Draw a truth table for each use of Tautology.

- (a) [Mac lemma $3a: x \in B \rightarrow y \in B \rightarrow x + y = x \cdot y$].
- (b) [Mac lemma $3b: x \in \mathbf{B} \to y \in \mathbf{B} \to z \in \mathbf{B} \to x + (y + z) = (x + y) + z$].
- (c) Mac lemma $3c: x \in D \rightarrow y \in D \rightarrow z \in D \rightarrow x + (y + z) = (x + y) + z$.

Exercise 4. I define $[f(x) \doteq g(x,0)]$ and $[g(x,y) \doteq if(x=0,y,g(x-1,x+y))]$.

- (a) Prove Mac lemma $4a: x \in \mathbb{N} \to \forall y \in \mathbb{N}: g(x, y) \in \mathbb{N}$.
- (b) Prove Mac lemma 4b: $y \in \mathbb{N} \to x \in \mathbb{N} \to g(x, y) \in \mathbb{N}$].
- (c) Prove [Mac lemma $4c: x \in \mathbb{N} \to f(x) \in \mathbb{N}$].

Hint. Lemma 4b and 4c have comparatively short proofs. When solving 4b one may assume lemma 4a and when solving 4c one may assume lemma 4a and 4b.