Mathematics and Computation
Exam like questions, October 24, 2004

Exams consist of three questions, but here you have four exam like questions.
I define

0
1

H(x)ix<0{

Exercise 1. (Too small for an exam question) Prove one of the following:
[Mac lemma L04.0.4A: x € B — if(x, u, if(x, v, w)) = if(x, u, w)]
[Mac antilemma L04.0.4B: x € B — if(x, u,if(x, v, w)) = if(x, u, w)]

Exercise 2. Prove one of the following:
[Mac lemma L04.0.5A: x € D — H(x) € N]
[Mac antilemma L04.0.5B: x € D — H(x) € N]

Exercise 3. Prove one of the following:
[Mac lemma L04.0.6A: x € B = xAx
[Mac antilemma L04.0.6B: x € B - x A x

x|
x|

Exercise 4. (Too large for an exam question) Prove one of the following:
[Mac lemma L04.0.7A: Y' M. Ax.case(x, T,f'x) = Ax.case(x, T, L)]
[Mac antilemma L04.0.7B: Y’ Af.\x.case(x, T,f’x) = Ax.case(x, T, L)]

The following rules may be used:
[Mac rule Casel: case(x,case(x,u,v),w) = case(x,u,w) |
[Mac rule Case2: case(x,u,case(x,v,w)) = case(x,u,w) |

Mathematics and Computation
Possible solutions to exam like questions, October 24, 2004

A proof of
[Mac lemma L04.0.4A : x € B — if(x, u, if(x, v, w) = if(x, u,w))]
could be as follows:

[Mac proof of L04.0.4A:

LO1: Block> Begin ;
L02: Hypothesis > xeT ;
L03: ITpL2p if(x, u,if(x,v,w)) = u ;
Lo4: ITpL2p> if(x,u,w) = u ;
L05: Commutativity > L4 > u = if(x,u,w) ;
L06 : Transitivity > L3> L5 D> if(x, u,if(x, v, w)) = if(x, u, w) ;
LO7 : Block > End ;
LO8 : Block > Begin ;
LO9 : Hypothesis > xeF ;
L10: IfF>L9> if(x,v,w) =w ;
L11: Replacer> L10D> if(x, u,if(x, v, w)) = if(x, u, w) ;
L12: Block> End ;
L13: Casesp> L6>L11> x€B — if(x, u,if(x, v,w)) = if(x,u,w)]

Line 6 could also have argumentation [Reverse’ > L4 > L3 | in which case Line
5 can be omitted.

[L04.0.4A T rule L04.0.4A

Mathematics and Computation
Possible solutions to exam like questions, October 24, 2004

A proof of
[Mac lemma L04.0.5A : xe D — H(x) € N
could be as follows:

[Mac proof of L04.0.5A:

LO1: Block > Begin ;
L02: Hypothesis > (x<0)eT :
L03: IfT>L2p> if(x<0,0,1) =0 ;
LO4 : TypeNumerallnN > 0eN ;
LO5: Reverse’'> L3> L4D> if(x<0,0,1) e N ;
LO6 : Block > End ;
LO7: Block > Begin ;
LO8 : Hypothesis > (x<0)eF ;
LO9: IfF>L8> if(x<0,0,1)=1 ;
L10: TypeNumerallnN > 1eN ;
L11: Reverse’>L9p> L10> if(x<0,0,1) e N ;
L12: Block > End ;
L13: Casesp> L5> L11> (x<0)eB—if(x<0,0,1)eN ;
L14 : Hypothesis > x€D ;
L15: TypeNumerallnD > 0eD ;
L16: TypeD<D>L14>L15> (x<0)eB ;
L17: L13>L16D> if(x < 0,0,1) e N ;
L18: Definition > H(x) =if(x < 0,0,1) ;
L19: Reverse’>L181>L17> H(x)eN]

[H(x) | was used by Oliver Heaviside for investigations of electronic circuits.

[L04.0.5A T rule L04.0.5A

Mathematics and Computation
Possible solutions to exam like questions, October 24, 2004

A proof of
[Mac antilemma L04.0.6B : x € B - x Ax =x]

could use a non-standard representation [F# = N .. (N .. N) | of falsehood. One
may prove[F € B] using the type function| B | from page 336 in the text book
and one may then combine [F' € B |" with the antilemma to get [FAF = F].
On the other hand, we have[FAF = F] (by Computation) so we get[F = F' .
Hence, by the definitions of [F] and[F] we get [N .. N =N .. (N.. N) .
Taking the Tail of both sides gives [N = N .. N] which, by the definitions of
[T] and[F T isthesame as[T = F . CounterTF then yields the contradiction.

The proof may look thus:

[Mac proof of L04.0.6B:

LO01: Local> F=N.(N::N)
L02: Computation > B'F

LO3 : Block > Begin

L04: Algebrar L'F

LO5: Replace I> ClassicalPair > L'NAL'(N..N)
LO6 : Replace I> ClassicalPair > L'NA'NALN)
LO7 : Replace I> ClassicalNil > TA(TAT)

LO8 : Computation > T

LO9 : Block > End

L10: IntroBp>L8>L2D> FeB

L11: Antilemma > FeB—>FAF=F
L12: L11>L1IOD FANF=F

L13: Block> Begin

L14: Algebrar T

L15: Computation > (F A F) Tail

L16: Replace> L12 > F Tail

L17: Computation > F

L18: Block > End

L19: CounterTF > L17 > 1

[L04.0.6B " rule L04.0.6B

Mathematics and Computation
Possible solutions to exam like questions, October 24, 2004

A proof of
[Mac lemma L04.0.7A : Y' M. Ax.case(x, T,f’x) = Ax.case(x, T, L)]

could be constructed as follows: First, define [A] to be shorthand for [Y’
M. Ax.case(x, T,f'x) | (Line 1 below). Then compute[A] using Lemma 1.8.18.2
(Line 2-6 below). After Line 6 we know that [A = Ax.case(x, T, A'x) | which
makes it easy to prove [Ax.case(x, T, L) < A] (Line 7-10 below).

This proves half of the Lemma L04.0.7A: InfoAntiSymmetry says that if
[Ax.case(x, T, 1) < A] and[A < Ax.case(x, T, L) | then the lemma holds (Line
18 below).

Hence, to prove the lemma, we have to prove [A < Ax.case(x, T, L)] (Line
17 below). In other words, we have to prove that [A] is less that a term that
contains [L T. One of the very few rules that allows that is MinimalY on page
427 in the text book. That rule looks promissing since [A | contains the fixed
point operator [Y].

Applying MinimalY backwards to Line 17 gives

[Af.Ax.case(x, T,f'x)’ Ax.case(x, T, L) = Ax.case(x, T, L) |

which turns out to be easy to prove (Line 11-16 below). Line 15 uses Case2
which was provided together with the exercise.

[Mac proof of 1.04.0.7A:

L01: Local > A=Y' M Ax.case(x, T,f'x) ;
L02: Block > Begin ;
L03: Algebrar> A ;
L04 : Replace>18.18.2> (Mf.Ax.case(x, T,f'x))" A ;
L05: Replacer>ApplyLambda > Ax.case(x, T, A x) ;
L06 : Block > End ;
L07: InfoBottom > 1 <A'x ;
L08 : Monotonicity’ > L7 > case(x, T, L) < case(x, T, A’ x) ;
L09: InfoLambda > L8 > Ax.case(x, T, L) < Ax.case(x, T,A'x) ;
L10: Reverse’>L5>L9D> Ax.case(x, T,L) < A ;
L11: Block > Begin ;
L12: Algebra> M. Ax.case(x,T,f'x)' Ax.case(x,T,L) ;

L13: Replacer>ApplyLambda > Ax.case(x, T, (Ax.case(x, T, L))" x) ;
L14: Replace>ApplyLambda > Ax.case(x, T,case(x, T, 1)) ;

L15: Replace > Case2 > Ax.case(x, T, 1) ;
L16: Block > End ;
L17: MinimalY > L15 > A < Ax.case(x, T, L) ;
L18: InfoAntiSymmetry >

L17 > L10 > A = Ax.case(x, T, L)]

[L04.0.7A T rule L04.0.7A

