Mathematics and Computation Exam like questions, October 24, 2004

Exams consist of three questions, but here you have four exam like questions. I define

$$\left[H(\mathsf{x}) \doteq \mathsf{x} < 0 \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right] \right]$$

Exercise 1. (Too small for an exam question) Prove one of the following:

[Mac lemma L04.0.4A:
$$x \in \mathbf{B} \to \mathrm{if}(x,u,\mathrm{if}(x,v,w)) \equiv \mathrm{if}(x,u,w)$$
]
[Mac antilemma L04.0.4B: $x \in \mathbf{B} \to \mathrm{if}(x,u,\mathrm{if}(x,v,w)) \equiv \mathrm{if}(x,u,w)$]

Exercise 2. Prove one of the following:

```
[Mac lemma L04.0.5A: x \in D \rightarrow H(x) \in N]
[Mac antilemma L04.0.5B: x \in D \rightarrow H(x) \in N]
```

Exercise 3. Prove one of the following:

```
[Mac lemma L04.0.6A: x \in B \rightarrow x \land x \equiv x]
[Mac antilemma L04.0.6B: x \in B \rightarrow x \land x \equiv x]
```

Exercise 4. (Too large for an exam question) Prove one of the following:

```
[Mac lemma L04.0.7A: Y'\lambdaf.\lambdax.case(x, T, f'x) \equiv \lambdax.case(x, T, \perp)] [Mac antilemma L04.0.7B: Y'\lambdaf.\lambdax.case(x, T, f'x) \equiv \lambdax.case(x, T, \perp)]
```

The following rules may be used:

A proof of

```
[ Mac lemma L04.0.4A : x \in B \rightarrow if(x, u, if(x, v, w) \equiv if(x, u, w)) ]
```

could be as follows:

```
[ Mac proof of L04.0.4A:
```

```
L01: Block \triangleright
                                                             Begin
L02: Hypothesis \triangleright
                                                                x \in \mathbf{T}
L03: IfT \triangleright L2 \triangleright
                                                                \mathrm{if}(x,u,\mathrm{if}(x,v,w)) \equiv u
L04: IfT \triangleright L2 \triangleright
                                                                \mathrm{if}(x,u,w) \equiv u
L05: Commutativity \triangleright L4 \triangleright
                                                                u \equiv if(x, u, w)
L06: Transitivity \triangleright L3 \triangleright L5 \triangleright
                                                                if(x, u, if(x, v, w)) \equiv if(x, u, w)
L07: Block ⊳
                                                            End
L08: Block ⊳
                                                            Begin
L09: Hypothesis ⊳
                                                                x \in \mathbf{F}
L10: IfF \triangleright L9 \triangleright
                                                                if(x, v, w) \equiv w
L11: Replace \triangleright L10 \triangleright
                                                                if(x, u, if(x, v, w)) \equiv if(x, u, w)
L12: Block \triangleright
                                                            x \in \mathbf{B} \to \mathrm{if}(x, u, \mathrm{if}(x, v, w)) \equiv \mathrm{if}(x, u, w)
L13: Cases \triangleright L6 \triangleright L11 \triangleright
```

Line 6 could also have argumentation [Reverse' \triangleright L4 \triangleright L3] in which case Line 5 can be omitted.

A proof of

[Mac lemma L04.0.5A : $x \in D \rightarrow H(x) \in N$]

could be as follows:

```
[ Mac proof of L04.0.5A:
  L01: Block ⊳
                                                      Begin
  L02: Hypothesis ⊳
                                                          (x < 0) \in T
  L03: IfT \triangleright L2 \triangleright
                                                         if(x < 0, 0, 1) \equiv 0
  L04: TypeNumeralInN \triangleright
                                                         0 \in \mathbf{N}
  L05 : Reverse' \triangleright L3 \triangleright L4 \triangleright
                                                         if(x < 0, 0, 1) \in \mathbf{N}
 L06: Block ⊳
                                                      End
  L07: Block ⊳
                                                      Begin
  L08: Hypothesis ⊳
                                                          (x < 0) \in \mathbf{F}
  L09: IfF \triangleright L8 \triangleright
                                                         if(x < 0, 0, 1) \equiv 1
  L10: TypeNumeralInN ⊳
                                                          1 \in \mathbf{N}
  L11 : Reverse' > L9 > L10 >
                                                         if(x < 0, 0, 1) \in \mathbf{N}
  L12: Block ⊳
                                                      \operatorname{End}
 L13: Cases \triangleright L5 \triangleright L11 \triangleright
                                                      (x < 0) \in \mathbf{B} \to if(x < 0, 0, 1) \in \mathbf{N}
  L14: Hypothesis \triangleright
                                                      x \in \mathbf{D}
  L15: TypeNumeralInD \triangleright
                                                      0 \in \mathbf{D}
 L16:
            \text{Type}\mathbf{D} < \mathbf{D} \rhd \mathsf{L}14 \rhd \mathsf{L}15 \rhd
                                                      (x < 0) \in \mathbf{B}
 L17:
            L13 ⊵ L16 ⊳
                                                      if(x < 0, 0, 1) \in \mathbf{N}
 L18: Definition ⊳
                                                      H(x) \equiv if(x < 0, 0, 1)
  L19: Reverse' > L18 > L17 >
                                                      H(x) \in \mathbf{N}
```

[H(x)] was used by Oliver Heaviside for investigations of electronic circuits.

A proof of

```
\lceil \mathbf{\ Mac\ antilemma\ L04.0.6B} \ : \ x \in \mathbf{B} \to x \land x \equiv x \, \rceil
```

could use a non-standard representation [$F \equiv \mathbb{N} \stackrel{.}{.} (\mathbb{N} \stackrel{.}{.} \mathbb{N})$] of falsehood. One may prove [$F \in \mathbf{B}$] using the type function [$\overline{\mathbf{B}}$] from page 336 in the text book and one may then combine [$F \in \mathbf{B}$] with the antilemma to get [$F \wedge F \equiv F$]. On the other hand, we have [$F \wedge F \equiv F$] (by Computation) so we get [$F \equiv F$]. Hence, by the definitions of [F] and [F] we get [$\mathbb{N} \stackrel{.}{.} \mathbb{N} \equiv \mathbb{N} \stackrel{.}{.} (\mathbb{N} \stackrel{.}{.} \mathbb{N})$]. Taking the Tail of both sides gives [$\mathbb{N} \equiv \mathbb{N} \stackrel{.}{.} \mathbb{N}$] which, by the definitions of [\mathbb{T}] and [\mathbb{F}] is the same as [$\mathbb{T} \equiv F$]. CounterTF then yields the contradiction. The proof may look thus:

[Mac proof of L04.0.6B:

```
L01: Local ⊳
                                                      F \equiv \mathsf{N} \mathrel{\dot{.}.} (\mathsf{N} :: \mathsf{N})
L02: Computation ⊳
                                                      \overline{\mathbf{B}}' F
L03: Block ⊳
                                                      Begin
                                                         \ell'F
L04: Algebra ⊳
                                                         \ell' N \wedge \ell' (N : N)
L05: Replace \triangleright Classical Pair \triangleright
L06: Replace \triangleright ClassicalPair \triangleright
                                                         \ell' N \wedge (\ell' N \wedge \ell' N)
L07: Replace \triangleright ClassicalNil \triangleright
                                                         T \wedge (T \wedge T)
L08: Computation ⊳
                                                         T
L09: Block ⊳
                                                      End
L10: IntroB \triangleright L8 \triangleright L2 \triangleright
                                                      F \in \mathbf{B}
                                                      F \in \mathbf{B} \to F \wedge F \equiv F
L11: Antilemma ⊳
                                                      F\wedge F\equiv F
L12: L11 \triangleright L10 \triangleright
L13: Block ⊳
                                                      Begin
L14: Algebra ⊳
                                                         Т
L15: Computation \triangleright
                                                         (F \wedge F) Tail
L16: Replace \triangleright L12 \triangleright
                                                         F Tail
L17: Computation ⊳
                                                         F
L18: Block ⊳
                                                      End
L19: CounterTF \triangleright L17 \triangleright
                                                      \perp
```

A proof of

```
[ Mac lemma L04.0.7A : Y'\lambdaf.\lambdax.case(x, T, f'x) \equiv \lambdax.case(x, T, \perp) ]
```

could be constructed as follows: First, define [A] to be shorthand for [Y' $\lambda f.\lambda x.case(x,T,f'x)$] (Line 1 below). Then compute [A] using Lemma L8.18.2 (Line 2–6 below). After Line 6 we know that [A $\equiv \lambda x.case(x,T,A'x)$] which makes it easy to prove [$\lambda x.case(x,T,\bot) \leq A$] (Line 7–10 below).

This proves half of the Lemma L04.0.7A: InfoAntiSymmetry says that if $[\lambda x.case(x,T,\bot) \preceq A]$ and $[A \preceq \lambda x.case(x,T,\bot)]$ then the lemma holds (Line 18 below).

Hence, to prove the lemma, we have to prove $[A \leq \lambda x.\operatorname{case}(x, T, \bot)]$ (Line 17 below). In other words, we have to prove that [A] is less that a term that contains $[\bot]$. One of the very few rules that allows that is MinimalY on page 427 in the text book. That rule looks promissing since [A] contains the fixed point operator [Y].

Applying MinimalY backwards to Line 17 gives

```
[\lambda f.\lambda x. case(x, T, f'x)' \lambda x. case(x, T, \bot) \equiv \lambda x. case(x, T, \bot)]
```

which turns out to be easy to prove (Line 11–16 below). Line 15 uses Case2 which was provided together with the exercise.

Mac proof of L04.0.7A:

```
L01 : Local \triangleright
                                                    A \equiv Y' \lambda f \cdot \lambda x \cdot case(x, T, f'x)
L02: Block ⊳
                                                    Begin
L03: Algebra ⊳
                                                        A
L04: Replace \triangleright L8.18.2 \triangleright
                                                        (\lambda f.\lambda x.case(x, T, f'x))'A
L05:
         Replace⊳ApplyLambda ⊳
                                                       \lambda x.case(x, T, A'x)
L06: Block ⊳
                                                    End
L07: InfoBottom ⊳
                                                    \perp \prec A' \times
L08:
         Monotonicity' \triangleright L7 \triangleright
                                                    case(x, T, \bot) \preceq case(x, T, A'x)
L09: InfoLambda \triangleright L8 \triangleright
                                                    \lambda x.\operatorname{case}(x, T, \bot) \leq \lambda x.\operatorname{case}(x, T, A'x)
L10: Reverse' \triangleright L5 \triangleright L9 \triangleright
                                                    \lambda x.case(x, T, \bot) \preceq A
L11: Block ⊳
                                                    Begin
L12: Algebra ⊳
                                                        \lambda f.\lambda x.case(x,T,f'x)'\lambda x.case(x,T,\bot)
L13: Replace⊳ApplyLambda⊳
                                                        \lambda x.case(x, T, (\lambda x.case(x, T, \bot))'x)
L14:
         Replace⊳ApplyLambda ⊳
                                                       \lambda x. case(x, T, case(x, T, \bot))
L15:
         Replace \triangleright Case 2 \triangleright
                                                        \lambda x.case(x,T,\perp)
L16:
         Block⊳
L17: MinimalY \triangleright L15 \triangleright
                                                    A \leq \lambda x.case(x, T, \bot)
L18: InfoAntiSymmetry ⊳
                                                                                                             1
                                                    A \equiv \lambda x.case(x, T, \bot)
          L17 ⊳ L10 ⊳
```