{ Logiweb, a system for electronic distribution of mathematics Copyright (C) 2004 Klaus Grue This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 USA Contact: Klaus Grue, DIKU, Universitetsparken 1, DK2100 Copenhagen, Denmark, grue@diku.dk, http://yoa.dk/, http://www.diku.dk/~grue/ Logiweb is a system for distribution of mathematical definitions, lemmas, and proofs. For more on Logiweb, consult http://yoa.dk/. } PAGE logik rapport BIBLIOGRAPHY base: "http://www.diku.dk/~grue/logiweb/20050502/home/grue/base/GRD-2005-06-22-UTC-06-58-05-413682/vector/page.lgw", peano: "http://www.diku.dk/~grue/logiweb/20050502/home/grue/peano/GRD-2005-06-22-UTC-07-23-31-271829/vector/page.lgw" PREASSOCIATIVE base: bracket * end bracket, test lemma, test lemma two, lemma prime a two star, lemma prime a one star, lemma double hyp, corollary one point ten a, corollary one point ten b, lemma one point eight, lemma prime l three two b, lemma prime l three two c, lemma prime l three two d, lemma prime l three two f, lemma prime l three two f base, lemma prime l three two f hyp, lemma prime l three two g, lemma prime l three two g base, lemma prime l three two g hyp, lemma prime l three two h, lemma prime l three two h base, lemma prime l three two h hyp, lemma prime l three two h swap, tautology one PREASSOCIATIVE peano: system s PREASSOCIATIVE base: * sub * end sub PREASSOCIATIVE base: unicode start of text * end unicode text PREASSOCIATIVE base: * bit nil PREASSOCIATIVE base: * apply * PREASSOCIATIVE base: * raw head PREASSOCIATIVE peano: * peano succ PREASSOCIATIVE base: * times * PREASSOCIATIVE peano: * peano times * PREASSOCIATIVE base: * plus * PREASSOCIATIVE peano: * peano plus * PREASSOCIATIVE base: * term plus * end plus POSTASSOCIATIVE base: * raw pair * POSTASSOCIATIVE base: * comma * PREASSOCIATIVE base: * boolean equal * PREASSOCIATIVE peano: * peano is * PREASSOCIATIVE base: not * PREASSOCIATIVE peano: peano not * PREASSOCIATIVE base: * and * PREASSOCIATIVE base: * or * PREASSOCIATIVE peano: peano all * indeed * POSTASSOCIATIVE base: * macro imply * PREASSOCIATIVE peano: * peano imply * POSTASSOCIATIVE base: * guard * PREASSOCIATIVE base: * select * else * end select PREASSOCIATIVE base: lambda * dot * PREASSOCIATIVE base: * init PREASSOCIATIVE base: * at * POSTASSOCIATIVE base: * infer * PREASSOCIATIVE base: all * indeed * POSTASSOCIATIVE base: * rule plus * POSTASSOCIATIVE base: * cut * PREASSOCIATIVE base: * proves * PREASSOCIATIVE base: locally define * as * end line * POSTASSOCIATIVE base: * then * PREASSOCIATIVE base: * tab * PREASSOCIATIVE base: * row * BODY "File page.tex \documentclass [fleqn]{article} \setlength {\overfullrule }{1mm} \input{lgwinclude} \usepackage{latexsym} \usepackage{parskip} \parindent=0pt % Ingen indrykkning \frenchspacing %\usepackage{verbatim} %\setlength{\parindent}{0em} %\setlength{\parskip}{1ex} % The font of each Logiweb construct is under tight control except that % strings are typeset in whatever font is in effect at the time of % typesetting. This is done to enhance the readability of strings in the % TeX source generated by Logiweb. The default font for typesetting % strings is \rm: \everymath{\rm} \usepackage{makeidx} \usepackage{page} \makeindex \newcommand{\intro}[1]{\emph{#1}} \newcommand{\indexintro}[1]{\index{#1}\intro{#1}} \newlength{\bracketwidth} \settowidth{\bracketwidth}{$[{}$} \newcommand{\back}{\protect\makebox[-1.0\bracketwidth]{}} \usepackage[dvipdfm=true]{hyperref} \hypersetup{pdfpagemode=none} \hypersetup{pdfstartpage=1} \hypersetup{pdfstartview=FitBH} \hypersetup{pdfpagescrop={120 130 490 730}} \hypersetup{pdftitle=Introduction to Logiweb} \hypersetup{colorlinks=true} \bibliographystyle{plain} % \tex{something} writes something to page.otx for later inclusion \newwrite\outex \newtoks\toktex \immediate\openout\outex=page.otx \newcommand{\tex}[1]{\toktex={\item #1}\immediate\write\outex{\the\toktex}} % \test{something} writes something to page.tst for later inclusion \newwrite\outest \immediate\openout\outest=page.tst \newcommand{\test}[1]{\toktex={\item #1}\immediate\write\outest{\the\toktex}} % Concerning \catcode`\@=11 : See the TeXbook, Appendix B (page 344). % \afterheading suppresses indentation once, c.f. latex.ltx. % \display{something} displays something as a displayed equation except % that linebreaking is possible and displaymath is not turned on by default. % The first paragraph after \display{something} is unindented. % Glue below formulas may be wrong. The definition of \display misses % something like \addvspace{\belowdisplayskip}. \catcode`\@=11 \def\afterheading{\@afterheading} \catcode`\@=12 \newcommand{\display}[1]{\begin{list}{}{\setlength{\leftmargin}{\mathindent}} \item #1\end{list} \afterheading} \newcommand{\statement}[1]{\begin{list}{}{\setlength{\leftmargin}{0mm}} \item #1\end{list} \afterheading} \begin {document} \title {Logic - Peano Arithmetic\\ $\quad$\\ {\large "[ math peano all peano t indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end math ]" } } \author {Kasper Frederiksen, tofu@diku.dk} \maketitle \tableofcontents "[ ragged right expansion ]" \clearpage \section{Introduction} This report proves proposition "[ math lemma prime l three two h end math ]" in \cite{mendelson}, page 156. That is: \display{"[ math in theory system prime s lemma lemma prime l three two h says peano all peano t indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end lemma end math ]"} The successful proof of this lemma can be seen in section \ref{res.lemma}. The entire text has been verified as mathematically correct by the LogiWeb system. The source code can be obtained from the online version of this text: \begin{center} \verb|http://www.diku.dk/hjemmesider/studerende/tofu/Logik/| \end{center} \subsection{About LogiWeb} The LogiWeb system is being developed by Klaus Grue (DIKU) and is fully defined on the LogiWeb {\bf base page} \footnote{This report uses the version of base page that has the time stamp {\scriptsize \bf GRD-2005-06-22-UTC-06-58-05-413682}} written by Klaus Grue: \begin{center} \verb|http://www.diku.dk/~grue/logiweb/20050502/home/grue/base/latest/| \end{center} From a users point of view LogiWeb consists of two parts, a compiler and a (web)server. The user will write his text using latex syntax and whenever he wishes to express mathematics this will be written amongst the ordinary text, but using \verb|pyk| syntax. When the source file is compiled two things happen. The pyk part of the file is translated into latex and given to the latex compiler along with the rest of the text, also the mathematics expressed by the pyk is checked for correctness. The LogiWeb system allows the user to reference mathematical constructs defined on other pages. The task of managing requests for these pages falls to the LogiWeb server. The LogiWeb server on DIKU has a graphical front-end in the form of a webserver, that can be accessed through the links given above. \subsection{About the proof system} All proofs in this text have been completed in the axiomatic arithmetic system called "[ math system prime s end math]". This system is a Peano Arithmetic system and is fully defined on the {\bf peano page} \footnote{This report uses the version of peano page that has the time stamp {\scriptsize \bf GRD-2005-06-22-UTC-07-23-31-271829 }} written by Klaus Grue: \begin{center} \verb|http://www.diku.dk/~grue/logiweb/20050502/home/grue/peano/| \end{center} It should be noted that the peano page redefines all the arithmetic and logical operators from base page in special ``peano versions''. These new operators are identical to their classical counterparts. To avoid any confusion figure (\ref{aaa}) gives an overview of the new operators. \begin{figure}[h] \centering \begin{tabular}{|ccc|} \hline $ False \Rightarrow True $ & $\to$ & "[ math false peano imply true end math ]" \\ $ \mathrm{ arbitrary variable }: A, B, C,... $ & $\to$ & "[ math meta a end math ]", "[ math meta b end math ]", "[ math meta c end math ]",$\ldots$\\ $ \mathrm{ specific terms }: a, b, c, ... $ & $\to$ & "[ math peano a end math ]", "[ math peano b end math ]", "[ math peano c end math ]",$\ldots$\\ $ \forall a: a + 0 = a $ & $\to$ & "[ math peano all peano a indeed parenthesis peano a peano plus peano zero peano is peano a end parenthesis end math ]" \\ $ \neg(1 \cdot 0 = 1) $ & $\to$ & "[ math peano not parenthesis peano one peano times peano zero peano is peano one end parenthesis end math]"\\ \hline \end{tabular} \caption{The new version of the operators} \label{aaa} \end{figure} Peano arithmetic is only defined on natural numbers, and the successor operation is written like this: "[ math peano zero peano succ peano is peano one end math ]". This peano page also defines the axioms and rules of the "[ math system prime s end math]" system. These are identical to those defined in \cite{mendelson}, chapters two and three. Below I repeat the theory as it is defined on the peano page. Since the pyk syntax is not always obvious I have included some comments. System "[ bracket system prime s end bracket ]" is defined thus: \display{"[ math theory system prime s end theory end math ]"} \display{"[ math in theory system prime s rule axiom prime a one says all meta a indeed all meta b indeed meta a peano imply meta b peano imply meta a end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime a two says all meta a indeed all meta b indeed all meta c indeed parenthesis meta a peano imply meta b peano imply meta c end parenthesis peano imply parenthesis meta a peano imply meta b end parenthesis peano imply meta a peano imply meta c end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime a three says all meta a indeed all meta b indeed parenthesis peano not meta b peano imply peano not meta a end parenthesis peano imply parenthesis peano not meta b peano imply meta a end parenthesis peano imply meta b end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime a four says all meta c indeed all meta a indeed all meta x indeed all meta b indeed peano sub quote meta a end quote is quote meta b end quote where quote meta x end quote is quote meta c end quote end sub endorse peano all meta x indeed meta b peano imply meta a end rule end math ]"} This axiom allows us to remove a universal kvantor and replace the quantified variable with a specific term, as long as this does not cause a variable clash. When using the axiom, you must state which term you wish to substitute into the place of the quantified variable. The axiom is used like this:\\ "[ math axiom prime a four at peano t end math ]" $\to$ "[ math peano all peano q indeed peano q peano is peano q peano imply peano t peano is peano t end math ]" \display{"[ math in theory system prime s rule axiom prime a five says all meta x indeed all meta a indeed all meta b indeed peano nonfree quote meta x end quote in quote meta a end quote end nonfree endorse peano all meta x indeed parenthesis meta a peano imply meta b end parenthesis peano imply meta a peano imply peano all meta x indeed meta b end rule end math ]"} This axiom is not used in this report. \display{"[ math in theory system prime s rule rule prime mp says all meta a indeed all meta b indeed meta a peano imply meta b infer meta a infer meta b end rule end math ]"} \display{"[ math in theory system prime s rule rule prime gen says all meta x indeed all meta a indeed meta a infer peano all meta x indeed meta a end rule end math ]"} This is the generalization rule, that allows us to add a universal kvantor in front of a proof line. \display{"[ math in theory system prime s rule axiom prime s one says all meta a indeed all meta b indeed all meta c indeed meta a peano is meta b peano imply meta a peano is meta c peano imply meta b peano is meta c end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s two says all meta a indeed all meta b indeed meta a peano is meta b peano imply meta a peano succ peano is meta b peano succ end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s three says all meta a indeed not peano zero peano is meta a peano succ end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s four says all meta a indeed all meta b indeed meta a peano succ peano is meta b peano succ peano imply meta a peano is meta b end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s five says all meta a indeed meta a peano plus peano zero peano is meta a end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s six says all meta a indeed all meta b indeed meta a peano plus meta b peano succ peano is parenthesis meta a peano plus meta b end parenthesis peano succ end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s seven says all meta a indeed meta a peano times peano zero peano is peano zero end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s eight says all meta a indeed all meta b indeed meta a peano times parenthesis meta b peano succ end parenthesis peano is parenthesis meta a peano times meta b end parenthesis peano plus meta a end rule end math ]"} \display{"[ math in theory system prime s rule axiom prime s nine says all meta a indeed all meta b indeed all meta c indeed all meta x indeed macro newline peano sub meta b is meta a where meta x is peano zero end sub endorse peano sub meta c is meta a where meta x is meta x peano succ end sub endorse macro newline meta b peano imply peano all meta x indeed parenthesis meta a peano imply meta c end parenthesis peano imply peano all meta x indeed meta a end rule end math ]"} This is the induction axiom. What it basically says is ``base case'' $\Rightarrow$ ``induction step'' $\Rightarrow$ ``conclusion''. \section{The Deduction Algorithm} Mendelson introduces the {\bf Deduction Theorem} for first-order theories in \cite{mendelson} page 74. The proof is stated in the form of an algorithm that will turn a proof of the the lemma "[ math system prime s infer parenthesis meta b infer meta c end parenthesis end math ]", in to a proof of the lemma "[ math system prime s infer meta b peano imply meta c end math ]". While it would be possible to implement this automatic proof converter in pyk, as a part of this text, Klaus has advised that we do not attempt this. We are going to follow this advise. Instead we run the algorithm by hand and type in the converted proofs. A god description of the deduction algorithm can be found at: \begin{center} \verb|http://www.diku.dk/undervisning/2005s/235/deduction.html| \end{center} \section{Supporting Lemmas\label{support}} Before we start proving the lemmas in section \ref{main.lemmas}. Let us first prove a number of lemmas that will help make the following proofs shorter. Pleas note that many of the lemmas in this section were included on a when-needed basis. If, in section \ref{main.lemmas}, you notice a situation where one of the following lemmas could have been used to shorten the proof, then that is an ``older'' proof from before the supporting lemma was included. \subsection{Corollary "[ math corollary one point ten a end math ]"} The lemma "[ intro corollary one point ten a index "C1.10a" pyk "corollary one point ten a" tex "C1.10a" end intro ]" is taken from \cite{mendelson} page 38. \display{"[ math in theory system prime s lemma corollary one point ten a says all meta b indeed all meta c indeed all meta d indeed parenthesis meta b peano imply meta c infer meta c peano imply meta d infer meta b peano imply meta d end parenthesis end lemma end math ]"} "[ math system prime s proof of corollary one point ten a reads arbitrary meta b end line arbitrary meta c end line arbitrary meta d end line line ell a premise meta b peano imply meta c end line line ell b premise meta c peano imply meta d end line line ell c because axiom prime a one indeed parenthesis meta c peano imply meta d end parenthesis peano imply parenthesis meta b peano imply parenthesis meta c peano imply meta d end parenthesis end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed meta b peano imply parenthesis meta c peano imply meta d end parenthesis end line line ell e because axiom prime a two indeed parenthesis meta b peano imply parenthesis meta c peano imply meta d end parenthesis end parenthesis peano imply parenthesis parenthesis meta b peano imply meta c end parenthesis peano imply parenthesis meta b peano imply meta d end parenthesis end parenthesis end line line ell f because rule prime mp modus ponens ell e modus ponens ell d indeed parenthesis meta b peano imply meta c end parenthesis peano imply parenthesis meta b peano imply meta d end parenthesis end line because rule prime mp modus ponens ell f modus ponens ell a indeed meta b peano imply meta d qed end math ]" \subsection{Corollary "[ math corollary one point ten b end math ]"} The lemma "[ intro corollary one point ten b index "C1.10(b)" pyk "corollary one point ten b" tex "C1.10(b)" end intro ]" is taken from \cite{mendelson} page 38. \display{"[ math in theory system prime s lemma corollary one point ten b says all meta b indeed all meta c indeed all meta d indeed parenthesis meta b peano imply parenthesis meta c peano imply meta d end parenthesis infer meta c infer meta b peano imply meta d end parenthesis end lemma end math ]"} "[ math system prime s proof of corollary one point ten b reads arbitrary meta b end line arbitrary meta c end line arbitrary meta d end line line ell a premise meta b peano imply parenthesis meta c peano imply meta d end parenthesis end line line ell b premise meta c end line line ell c because axiom prime a one indeed meta c peano imply parenthesis meta b peano imply meta c end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed meta b peano imply meta c end line line ell e because axiom prime a two indeed parenthesis meta b peano imply parenthesis meta c peano imply meta d end parenthesis end parenthesis peano imply parenthesis parenthesis meta b peano imply meta c end parenthesis peano imply parenthesis meta b peano imply meta d end parenthesis end parenthesis end line line ell f because rule prime mp modus ponens ell e modus ponens ell a indeed parenthesis meta b peano imply meta c end parenthesis peano imply parenthesis meta b peano imply meta d end parenthesis end line because rule prime mp modus ponens ell f modus ponens ell d indeed meta b peano imply meta d qed end math ]" \subsection{Lemma "[ math lemma prime a one star end math ]"} The lemma "[ intro lemma prime a one star index "{A1'}^*" pyk "lemma prime a one star" tex "{A1'}^*" end intro ]" is used during the deduction algorithm, when one wishes to add a hypothesis, "[ math meta h end math ]", to a line of a proof. This will shorten the proof by one line. \display{"[ math in theory system prime s lemma lemma prime a one star says all meta a indeed all meta h indeed parenthesis meta a infer meta h peano imply meta a end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime a one star reads arbitrary meta a end line arbitrary meta h end line line ell a premise meta a end line line ell b because axiom prime a one indeed meta a peano imply parenthesis meta h peano imply meta a end parenthesis end line because rule prime mp modus ponens ell b modus ponens ell a indeed meta h peano imply meta a qed end math ]" \subsection{Lemma "[ math lemma prime a two star end math ]"} Use of the axiom "[ math axiom prime a two end math ]" is often followed by a use of the modus ponens rule. If we instead use lemma "[ intro lemma prime a two star index "{A2'}^*" pyk "lemma prime a two star" tex "{A2'}^*" end intro ]" , then the modus ponens is not necessary. \display{"[ math in theory system prime s lemma lemma prime a two star says all meta h indeed all meta a indeed all meta b indeed parenthesis meta h peano imply parenthesis meta a peano imply meta b end parenthesis end parenthesis infer parenthesis parenthesis meta h peano imply meta a end parenthesis peano imply parenthesis meta h peano imply meta b end parenthesis end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime a two star reads arbitrary meta h end line arbitrary meta a end line arbitrary meta b end line line ell a premise meta h peano imply parenthesis meta a peano imply meta b end parenthesis end line line ell b because axiom prime a two indeed parenthesis meta h peano imply parenthesis meta a peano imply meta b end parenthesis end parenthesis peano imply parenthesis parenthesis meta h peano imply meta a end parenthesis peano imply parenthesis meta h peano imply meta b end parenthesis end parenthesis end line because rule prime mp modus ponens ell b modus ponens ell a indeed parenthesis meta h peano imply meta a end parenthesis peano imply parenthesis meta h peano imply meta b end parenthesis qed end math ]" \subsection{Lemma "[ math lemma double hyp end math ]"} The lemma "[ intro lemma double hyp index "Double Hypothesis" pyk "lemma double hyp" tex "Double Hypothesis" end intro ]" is used during the deduction algorithm, when one wishes to add a hypothesis, "[ math meta h end math ]", to a proof line of the form "[ math meta a peano imply meta b end math ]". This will shorten the proof by one line. \display{"[ math in theory system prime s lemma lemma double hyp says all meta a indeed all meta b indeed all meta h indeed parenthesis meta a peano imply meta b infer parenthesis parenthesis meta h peano imply meta a end parenthesis peano imply parenthesis meta h peano imply meta b end parenthesis end parenthesis end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma double hyp reads arbitrary meta a end line arbitrary meta b end line arbitrary meta h end line line ell a premise meta a peano imply meta b end line line ell b because lemma prime a one star modus ponens ell a indeed meta h peano imply parenthesis meta a peano imply meta b end parenthesis end line because lemma prime a two star modus ponens ell b indeed parenthesis meta h peano imply meta a end parenthesis peano imply parenthesis meta h peano imply meta b end parenthesis qed end math ]" \subsection{Lemma "[ math lemma one point eight end math ]"} Lemma "[ intro lemma one point eight index "L1.8" pyk "lemma one point eight" tex "L1.8" end intro ]" from \cite{mendelson} page 36, is used to introduce the premise at the start of the deduction algorithm. \display{ "[ math in theory system prime s lemma lemma one point eight says all meta b indeed parenthesis meta b peano imply meta b end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma one point eight reads arbitrary meta b end line line ell a because axiom prime a two indeed parenthesis meta b peano imply parenthesis parenthesis meta b peano imply meta b end parenthesis peano imply meta b end parenthesis end parenthesis peano imply parenthesis parenthesis meta b peano imply parenthesis meta b peano imply meta b end parenthesis end parenthesis peano imply parenthesis meta b peano imply meta b end parenthesis end parenthesis end line line ell b because axiom prime a one indeed meta b peano imply parenthesis parenthesis meta b peano imply meta b end parenthesis peano imply meta b end parenthesis end line line ell c because rule prime mp modus ponens ell a modus ponens ell b indeed parenthesis meta b peano imply parenthesis meta b peano imply meta b end parenthesis end parenthesis peano imply parenthesis meta b peano imply meta b end parenthesis end line line ell d because axiom prime a one indeed meta b peano imply parenthesis meta b peano imply meta b end parenthesis end line because rule prime mp modus ponens ell c modus ponens ell d indeed meta b peano imply meta b qed end math ]" \subsection{Lemma "[ math tautology one end math ]"} The lemma that I call "[ intro tautology one index "Tautology 1" pyk "tautology one" tex "Tautology 1" end intro ]" is an all-round useful lemma. \display{"[ math in theory system prime s lemma tautology one says all meta a indeed all meta b indeed all meta c indeed parenthesis parenthesis meta a peano imply parenthesis meta b peano imply meta c end parenthesis end parenthesis infer parenthesis meta b peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end parenthesis end lemma end math ]"} "[ math system prime s proof of tautology one reads arbitrary meta a end line arbitrary meta b end line arbitrary meta c end line line ell a premise meta a peano imply parenthesis meta b peano imply meta c end parenthesis end line line ell b because axiom prime a two indeed parenthesis meta a peano imply parenthesis meta b peano imply meta c end parenthesis end parenthesis peano imply parenthesis parenthesis meta a peano imply meta b end parenthesis peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end line line ell c because rule prime mp modus ponens ell b modus ponens ell a indeed parenthesis meta a peano imply meta b end parenthesis peano imply parenthesis meta a peano imply meta c end parenthesis end line line ell d because axiom prime a one indeed parenthesis parenthesis meta a peano imply meta b end parenthesis peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis peano imply parenthesis meta b peano imply parenthesis parenthesis meta a peano imply meta b end parenthesis peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end parenthesis end line line ell e because rule prime mp modus ponens ell d modus ponens ell c indeed meta b peano imply parenthesis parenthesis meta a peano imply meta b end parenthesis peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end line line ell f because axiom prime a two indeed parenthesis meta b peano imply parenthesis parenthesis meta a peano imply meta b end parenthesis peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end parenthesis peano imply parenthesis parenthesis meta b peano imply parenthesis meta a peano imply meta b end parenthesis end parenthesis peano imply parenthesis meta b peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end parenthesis end line line ell g because rule prime mp modus ponens ell f modus ponens ell e indeed parenthesis meta b peano imply parenthesis meta a peano imply meta b end parenthesis end parenthesis peano imply parenthesis meta b peano imply parenthesis meta a peano imply meta c end parenthesis end parenthesis end line line ell h because axiom prime a one indeed meta b peano imply parenthesis meta a peano imply meta b end parenthesis end line because rule prime mp modus ponens ell g modus ponens ell h indeed meta b peano imply parenthesis meta a peano imply meta c end parenthesis qed end math ]" \section{The Main Proofs \label{main.lemmas}} The purpose of this report is the proof of "[ math lemma prime l three two h end math ]" in section \ref{res.lemma}. In order to get that far we must first prove a number of the lemmas that precede it in \cite{mendelson}. Of these lemma "[ math lemma prime l three two a end math ]" has been proved by Klaus on the peano page and lemma L3.2(e)' is not needed. Taking into account the support lemmas proved in section \ref{support}, this leaves parts (b), (c), (d), (f), (g) and of course (h), still to be proven. Of these lemmas (f), (g) and (h) are proved using induction, which means that we will need the Deduction Algorithm. All of these lemmas are proved in \cite{mendelson}, so the task of this report has been to rewrite Mendelson's proofs in explicit form and use the deduction algorithm where necessary. \subsection{Lemma "[ math lemma prime l three two b end math ]"} "[ intro lemma prime l three two b index "L3.2(b)'" pyk "lemma prime l three two b" tex "L3.2(b)'" end intro ]" \display{"[ math in theory system prime s lemma lemma prime l three two b says all meta t indeed all meta r indeed meta t peano is meta r peano imply meta r peano is meta t end lemma end math ]"} "[ math system prime s proof of lemma prime l three two b reads arbitrary meta t end line arbitrary meta r end line line ell a because axiom prime s one indeed meta t peano is meta r peano imply parenthesis meta t peano is meta t peano imply meta r peano is meta t end parenthesis end line line ell b because lemma prime l three two a indeed meta t peano is meta t end line because corollary one point ten b modus ponens ell a modus ponens ell b indeed meta t peano is meta r peano imply meta r peano is meta t qed end math ]" \subsection{Lemma "[ math lemma prime l three two c end math ]"} "[ intro lemma prime l three two c index "L3.2(c)'" pyk "lemma prime l three two c" tex "L3.2(c)'" end intro ]" \display{"[ math in theory system prime s lemma lemma prime l three two c says all meta t indeed all meta r indeed all meta s indeed meta t peano is meta r peano imply parenthesis meta r peano is meta s peano imply meta t peano is meta s end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two c reads arbitrary meta t end line arbitrary meta r end line arbitrary meta s end line line ell a because axiom prime s one indeed meta r peano is meta t peano imply parenthesis meta r peano is meta s peano imply meta t peano is meta s end parenthesis end line line ell b because lemma prime l three two b indeed meta t peano is meta r peano imply meta r peano is meta t end line because corollary one point ten a modus ponens ell b modus ponens ell a indeed meta t peano is meta r peano imply parenthesis meta r peano is meta s peano imply meta t peano is meta s end parenthesis qed end math ]" \subsection{Lemma "[ math lemma prime l three two d end math ]"} "[ intro lemma prime l three two d index "L3.2(d)'" pyk "lemma prime l three two d" tex "L3.2(d)'" end intro ]" \display{"[ math in theory system prime s lemma lemma prime l three two d says all meta t indeed all meta r indeed all meta s indeed meta r peano is meta t peano imply parenthesis meta s peano is meta t peano imply meta r peano is meta s end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two d reads arbitrary meta t end line arbitrary meta r end line arbitrary meta s end line line ell a because lemma prime l three two c indeed meta r peano is meta t peano imply parenthesis meta t peano is meta s peano imply meta r peano is meta s end parenthesis end line line ell b because tautology one modus ponens ell a indeed meta t peano is meta s peano imply parenthesis meta r peano is meta t peano imply meta r peano is meta s end parenthesis end line line ell c because lemma prime l three two b indeed meta s peano is meta t peano imply meta t peano is meta s end line line ell d because corollary one point ten a modus ponens ell c modus ponens ell b indeed meta s peano is meta t peano imply parenthesis meta r peano is meta t peano imply meta r peano is meta s end parenthesis end line because tautology one modus ponens ell d indeed meta r peano is meta t peano imply parenthesis meta s peano is meta t peano imply meta r peano is meta s end parenthesis qed end math ]" \subsection{Lemma "[ math lemma prime l three two f end math ]"} To prove "[ intro lemma prime l three two f index "L3.2(f)'" pyk "lemma prime l three two f" tex "L3.2(f)'" end intro ]" using induction, we will need to prove the base case "[ intro lemma prime l three two f base index "{L3.2(f)'}_{BASE}" pyk "lemma prime l three two f base" tex "{L3.2(f)'}_{BASE}" end intro ]" (section \ref{f.base}) and the induction step "[ intro lemma prime l three two f hyp index "{L3.2(f)'}_{HYP}" pyk "lemma prime l three two f hyp" tex "{L3.2(f)'}_{HYP}" end intro ]" (section \ref{f.hyp}). \display{"[ math in theory system prime s lemma lemma prime l three two f says peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two f reads line ell a because lemma prime l three two f base indeed peano zero peano is peano zero peano plus peano zero end line line ell b because lemma prime l three two f hyp indeed peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end line line ell c because axiom prime s nine indeed parenthesis peano zero peano is peano zero peano plus peano zero end parenthesis peano imply parenthesis parenthesis peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end parenthesis peano imply parenthesis peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t end parenthesis end parenthesis end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell a indeed parenthesis peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end parenthesis peano imply parenthesis peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t end parenthesis end parenthesis end line because rule prime mp modus ponens ell d modus ponens ell b indeed peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t end parenthesis qed end math ]" \subsubsection{The base case of "[ math lemma prime l three two f end math ]"\label{f.base}} \display{"[ math in theory system prime s lemma lemma prime l three two f base says peano zero peano is peano zero peano plus peano zero end lemma end math ]"} "[ math system prime s proof of lemma prime l three two f base reads line ell a because axiom prime s five indeed peano zero peano plus peano zero peano is peano zero end line line ell b because lemma prime l three two b indeed peano zero peano plus peano zero peano is peano zero peano imply peano zero peano is peano zero peano plus peano zero end line because rule prime mp modus ponens ell b modus ponens ell a indeed peano zero peano is peano zero peano plus peano zero qed end math ]" \subsubsection{The induction step of "[ math lemma prime l three two f end math ]"\label{f.hyp}} \display{"[ math in theory system prime s lemma lemma prime l three two f hyp says peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two f hyp reads line ell a because lemma one point eight indeed peano t peano is peano zero peano plus peano t peano imply peano t peano is peano zero peano plus peano t end line line ell b because axiom prime s six indeed peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end line line ell c because axiom prime a one indeed parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano is peano zero peano plus peano t peano imply parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed peano t peano is peano zero peano plus peano t peano imply parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis end line line ell e because axiom prime s two indeed peano t peano is parenthesis peano zero peano plus peano t end parenthesis peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end line line ell f because axiom prime a one indeed parenthesis peano t peano is parenthesis peano zero peano plus peano t end parenthesis peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano is peano zero peano plus peano t peano imply parenthesis peano t peano is parenthesis peano zero peano plus peano t end parenthesis peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis end parenthesis end line line ell g because rule prime mp modus ponens ell f modus ponens ell e indeed peano t peano is peano zero peano plus peano t peano imply parenthesis peano t peano is parenthesis peano zero peano plus peano t end parenthesis peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis end line line ell h because lemma prime a two star modus ponens ell g indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano is peano zero peano plus peano t end parenthesis peano imply parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis end line line ell i because rule prime mp modus ponens ell h modus ponens ell a indeed peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end line line ell j because lemma prime l three two d indeed peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ peano imply parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end line line ell k because hypothesize modus ponens ell j indeed peano t peano is peano zero peano plus peano t peano imply parenthesis peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ peano imply parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end parenthesis end line line ell l because lemma prime a two star modus ponens ell k indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano is peano zero peano plus peano t peano imply parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end parenthesis end line line ell m because rule prime mp modus ponens ell l modus ponens ell i indeed peano t peano is peano zero peano plus peano t peano imply parenthesis peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end line line ell n because lemma prime a two star modus ponens ell m indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano zero peano plus peano t peano succ peano is parenthesis peano zero peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis end line line ell o because rule prime mp modus ponens ell n modus ponens ell d indeed peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end line because rule prime gen modus ponens ell o indeed peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano succ peano is peano zero peano plus peano t peano succ end parenthesis qed end math ]" \subsection{Lemma "[ math lemma prime l three two g end math ]"} To prove "[ intro lemma prime l three two g index "L3.2(g)'" pyk "lemma prime l three two g" tex "L3.2(g)'" end intro ]" using induction, we will need to prove the base case "[ intro lemma prime l three two g base index "{L3.2(g)'}_{BASE}" pyk "lemma prime l three two g" tex "{L3.2(g)'}_{BASE}" end intro ]"(section \ref{g.base}) and the induction step "[ intro lemma prime l three two g hyp index "{L3.2(g)'}_{HYP}" pyk "lemma prime l three two g hyp" tex "{L3.2(g)'}_{HYP}" end intro ]"(section \ref{g.hyp}). \display{"[ math in theory system prime s lemma lemma prime l three two g says peano all peano t indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two g reads line ell a because lemma prime l three two g base indeed peano all peano t indeed parenthesis peano t peano succ peano plus peano zero peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end parenthesis end line line ell b because lemma prime l three two g hyp indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end line line ell c because axiom prime s nine indeed peano all peano t indeed parenthesis peano t peano succ peano plus peano zero peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end parenthesis peano imply parenthesis peano all peano r indeed parenthesis parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end parenthesis peano imply parenthesis peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end parenthesis end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell a indeed peano all peano r indeed parenthesis parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end parenthesis peano imply parenthesis peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end parenthesis end line line ell e because rule prime mp modus ponens ell d modus ponens ell b indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line because rule prime gen modus ponens ell e indeed peano all peano t indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis qed end math ]" \subsubsection{Base case of "[ math lemma prime l three two g end math ]"\label{g.base}} \display{"[ math in theory system prime s lemma lemma prime l three two g base says peano all peano t indeed parenthesis peano t peano succ peano plus peano zero peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two g base reads line ell a because axiom prime s five indeed peano t peano succ peano plus peano zero peano is peano t peano succ end line line ell b because axiom prime s five indeed peano t peano plus peano zero peano is peano t end line line ell c because axiom prime s two indeed peano t peano plus peano zero peano is peano t peano imply parenthesis peano t peano plus peano zero end parenthesis peano succ peano is peano t peano succ end line line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed parenthesis peano t peano plus peano zero end parenthesis peano succ peano is peano t peano succ end line line ell e because lemma prime l three two d indeed parenthesis peano t peano succ peano plus peano zero end parenthesis peano is peano t peano succ peano imply parenthesis parenthesis peano t peano plus peano zero end parenthesis peano succ peano is peano t peano succ peano imply parenthesis peano t peano succ peano plus peano zero end parenthesis peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end parenthesis end line line ell f because rule prime mp modus ponens ell e modus ponens ell a indeed parenthesis peano t peano plus peano zero end parenthesis peano succ peano is peano t peano succ peano imply parenthesis peano t peano succ peano plus peano zero end parenthesis peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end line line ell g because rule prime mp modus ponens ell f modus ponens ell d indeed peano t peano succ peano plus peano zero peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end line because rule prime gen modus ponens ell g indeed peano all peano t indeed parenthesis peano t peano succ peano plus peano zero peano is parenthesis peano t peano plus peano zero end parenthesis peano succ end parenthesis qed end math ]" \subsubsection{Induction step of "[ math lemma prime l three two g end math ]"\label{g.hyp}} \display{"[ math in theory system prime s lemma lemma prime l three two g hyp says peano all peano r indeed parenthesis parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two g hyp reads locally define meta h as peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell a because lemma one point eight indeed meta h peano imply meta h end line line ell b because axiom prime s six indeed peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano succ peano plus peano r end parenthesis peano succ end line line ell c because lemma prime a one star modus ponens ell b indeed meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano succ peano plus peano r end parenthesis peano succ end line line ell d because axiom prime s two indeed peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ peano imply parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end line line ell e because lemma prime a one star modus ponens ell d indeed meta h peano imply parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ peano imply parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell f because lemma prime a two star modus ponens ell e indeed parenthesis meta h peano imply peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell g because rule prime mp modus ponens ell f modus ponens ell a indeed meta h peano imply parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end line line ell h because lemma prime l three two c indeed peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano imply parenthesis parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell i because lemma prime a one star modus ponens ell h indeed meta h peano imply parenthesis peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano imply parenthesis parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end parenthesis end line line ell j because lemma prime a two star modus ponens ell i indeed parenthesis meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano succ peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply parenthesis parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end parenthesis end line line ell k because rule prime mp modus ponens ell j modus ponens ell c indeed meta h peano imply parenthesis parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell l because lemma prime a two star modus ponens ell k indeed parenthesis meta h peano imply parenthesis peano t peano succ peano plus peano r end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell m because rule prime mp modus ponens ell l modus ponens ell g indeed meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end line line ell n because axiom prime s six indeed peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell o because lemma prime a one star modus ponens ell n indeed meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell p because axiom prime s two indeed peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ peano imply parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end line line ell q because lemma prime a one star modus ponens ell p indeed meta h peano imply parenthesis peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ peano imply parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell r because lemma prime a two star indeed parenthesis meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis end line line ell s because rule prime mp modus ponens ell r modus ponens ell o indeed meta h peano imply parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end line line ell t because lemma prime l three two d indeed peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply parenthesis parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end line line ell u because lemma prime a one star modus ponens ell t indeed meta h peano imply parenthesis peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply parenthesis parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end parenthesis end line line ell v because lemma prime a two star modus ponens ell u indeed parenthesis meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply parenthesis parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end parenthesis end line line ell w because rule prime mp modus ponens ell v modus ponens ell m indeed meta h peano imply parenthesis parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end line line ell x because lemma prime a two star modus ponens ell w indeed parenthesis meta h peano imply parenthesis peano t peano plus peano r peano succ end parenthesis peano succ peano is parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end line line ell y because rule prime mp modus ponens ell x modus ponens ell s indeed meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end line { line ell z because rule prime gen modus ponens ell y indeed peano all peano t indeed parenthesis meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis end line } because rule prime gen modus ponens ell y { ell z } indeed peano all peano r indeed { peano all peano t indeed } parenthesis meta h peano imply peano t peano succ peano plus peano r peano succ peano is parenthesis peano t peano plus peano r peano succ end parenthesis peano succ end parenthesis qed end math ]" \subsection{Lemma "[ math lemma prime l three two h end math ]"\label{res.lemma}} To prove "[ intro lemma prime l three two h index "L3.2(h)'" pyk "lemma prime l three two h" tex "L3.2(h)'" end intro ]" using induction, we will need to prove the base case "[ intro lemma prime l three two h base index "{L3.2(h)'}_{BASE}" pyk "lemma prime l three two h base" tex "{L3.2(h)'}_{BASE}" end intro ]"(section \ref{h.base}) and the induction step "[ intro lemma prime l three two h hyp index "{L3.2(h)'}_{HYP}" pyk "lemma prime l three two h hyp" tex "{L3.2(h)'}_{HYP}" end intro ]"(section \ref{h.hyp}). \display{"[ math in theory system prime s lemma lemma prime l three two h says peano all peano t indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two h reads line ell a because lemma prime l three two h base indeed peano all peano t indeed parenthesis peano t peano plus peano zero peano is peano zero peano plus peano t end parenthesis end line line ell b because lemma prime l three two h hyp indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end line line ell c because axiom prime s nine indeed peano all peano t indeed parenthesis peano t peano plus peano zero peano is peano zero peano plus peano t end parenthesis peano imply parenthesis parenthesis peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end parenthesis peano imply peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell a indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis peano imply peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end line line ell e because rule prime mp modus ponens ell d modus ponens ell b indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end line because rule prime gen modus ponens ell e indeed peano all peano t indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis qed end math ]" \subsubsection{Base case of "[ math lemma prime l three two h end math ]"\label{h.base}} \display{"[ math in theory system prime s lemma lemma prime l three two h base says peano all peano t indeed parenthesis peano t peano plus peano zero peano is peano zero peano plus peano t end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two h base reads line ell a because axiom prime s five indeed peano t peano plus peano zero peano is peano t end line line ell b because lemma prime l three two f indeed peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t end parenthesis end line line ell c because axiom prime a four at peano t indeed parenthesis peano all peano t indeed parenthesis peano t peano is peano zero peano plus peano t end parenthesis end parenthesis peano imply parenthesis peano t peano is peano zero peano plus peano t end parenthesis end line line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed peano t peano is peano zero peano plus peano t end line line ell e because lemma prime l three two c indeed peano t peano plus peano zero peano is peano t peano imply parenthesis peano t peano is peano zero peano plus peano t peano imply peano t peano plus peano zero peano is peano zero peano plus peano t end parenthesis end line line ell f because rule prime mp modus ponens ell e modus ponens ell a indeed peano t peano is peano zero peano plus peano t peano imply peano t peano plus peano zero peano is peano zero peano plus peano t end line line ell g because rule prime mp modus ponens ell f modus ponens ell d indeed peano t peano plus peano zero peano is peano zero peano plus peano t end line because rule prime gen modus ponens ell g indeed peano all peano t indeed parenthesis peano t peano plus peano zero peano is peano zero peano plus peano t end parenthesis qed end math ]" \subsubsection{Induction step of "[ math lemma prime l three two h end math ]"\label{h.hyp}} For proving the induction step, we will need the lemma "[ intro lemma prime l three two h swap index "L3.2h_{SWAP}" pyk "lemma prime l three two h hyp" tex "L3.2h_{SWAP}" end intro ]". \display{"[ math in theory system prime s lemma lemma prime l three two h swap says peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ infer peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ end lemma end math ]"} "[ math system prime s proof of lemma prime l three two h swap reads line ell a premise peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell b because rule prime gen modus ponens ell a indeed peano all peano t indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line line ell c because axiom prime a four at peano q indeed peano all peano t indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply peano q peano succ peano plus peano r peano is parenthesis peano q peano plus peano r end parenthesis peano succ end line line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed peano q peano succ peano plus peano r peano is parenthesis peano q peano plus peano r end parenthesis peano succ end line line ell e because rule prime gen modus ponens ell d indeed peano all peano r indeed parenthesis peano q peano succ peano plus peano r peano is parenthesis peano q peano plus peano r end parenthesis peano succ end parenthesis end line line ell f because axiom prime a four at peano t indeed peano all peano r indeed parenthesis peano q peano succ peano plus peano r peano is parenthesis peano q peano plus peano r end parenthesis peano succ end parenthesis peano imply peano q peano succ peano plus peano t peano is parenthesis peano q peano plus peano t end parenthesis peano succ end line line ell g because rule prime mp modus ponens ell f modus ponens ell e indeed peano q peano succ peano plus peano t peano is parenthesis peano q peano plus peano t end parenthesis peano succ end line line ell h because rule prime gen modus ponens ell g indeed peano all peano q indeed parenthesis peano q peano succ peano plus peano t peano is parenthesis peano q peano plus peano t end parenthesis peano succ end parenthesis end line line ell i because axiom prime a four at peano r indeed peano all peano q indeed parenthesis peano q peano succ peano plus peano t peano is parenthesis peano q peano plus peano t end parenthesis peano succ end parenthesis peano imply peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ end line because rule prime mp modus ponens ell i modus ponens ell h indeed peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ qed end math ]"\\ $\quad$\\ Now we are ready to prove the induction step. $\quad$\\ \display{"[ math in theory system prime s lemma lemma prime l three two h hyp says peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end lemma end math ]"} "[ math system prime s proof of lemma prime l three two h hyp reads locally define meta h as peano t peano plus peano r peano is peano r peano plus peano t end line line ell a because lemma one point eight indeed meta h peano imply meta h end line line ell b because axiom prime s six indeed peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell c because lemma prime a one star modus ponens ell b indeed meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell d because axiom prime s two indeed peano t peano plus peano r peano is peano r peano plus peano t peano imply parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end line line ell e because lemma double hyp modus ponens ell d indeed parenthesis meta h peano imply peano t peano plus peano r peano is peano r peano plus peano t end parenthesis peano imply parenthesis meta h peano imply parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis end parenthesis end line line ell e because rule prime mp modus ponens ell e modus ponens ell a indeed meta h peano imply parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis end line line ell f because lemma prime l three two c indeed peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ peano imply parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis end line line ell g because lemma double hyp modus ponens ell f indeed parenthesis meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis end parenthesis end line line ell h because rule prime mp modus ponens ell g modus ponens ell c indeed meta h peano imply parenthesis parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis end line line ell i because lemma prime a two star modus ponens ell h indeed parenthesis meta h peano imply parenthesis peano t peano plus peano r end parenthesis peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis end line line ell j because rule prime mp modus ponens ell i modus ponens ell e indeed meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end line line ell k because lemma prime l three two d indeed peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply parenthesis peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end line line ell l because lemma double hyp modus ponens ell k indeed parenthesis meta h peano imply peano t peano plus peano r peano succ peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply parenthesis peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end parenthesis end line line ell m because rule prime mp modus ponens ell l modus ponens ell j indeed meta h peano imply parenthesis peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end line line ell n because lemma prime l three two g indeed peano all peano t indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line line ell o because axiom prime a four at peano t indeed peano all peano t indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line line ell o because axiom prime a four at peano t indeed peano all peano t indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line line ell p because rule prime mp modus ponens ell o modus ponens ell n indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line line ell q because axiom prime a four at peano r indeed peano all peano r indeed parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis peano imply parenthesis peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end parenthesis end line line ell r because rule prime mp modus ponens ell q modus ponens ell p indeed peano t peano succ peano plus peano r peano is parenthesis peano t peano plus peano r end parenthesis peano succ end line line ell big r because lemma prime l three two h swap modus ponens ell r indeed peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ end line line ell s because lemma prime a one star modus ponens ell big r indeed meta h peano imply peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ end line line ell t because lemma prime a two star modus ponens ell m indeed parenthesis meta h peano imply peano r peano succ peano plus peano t peano is parenthesis peano r peano plus peano t end parenthesis peano succ end parenthesis peano imply parenthesis meta h peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis end line line ell u because rule prime mp modus ponens ell t modus ponens ell s indeed meta h peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end line because rule prime gen modus ponens ell u indeed peano all peano r indeed parenthesis meta h peano imply peano t peano plus peano r peano succ peano is peano r peano succ peano plus peano t end parenthesis qed end math ]" \section{Conclusion} We have now successfully proved the lemma: \begin{center} "[ math in theory system prime s lemma lemma prime l three two h says peano all peano t indeed peano all peano r indeed parenthesis peano t peano plus peano r peano is peano r peano plus peano t end parenthesis end lemma end math ]" \end{center} In retrospect some of the proofs could have been made shorter/simpler, but this does not alter the fact that the LogiWeb system has verified that this text is correct. \clearpage \appendix \section{The name of the page} This defines the name of the page: \display{"[ math pyk define logik rapport as "logik rapport" end define end math ]"} \section{The Bibliography} \begin{thebibliography}{99} \bibitem[Mendelson, 2001]{mendelson} E. Mendelson,\\ Introduction to Mathematical Logic, fourth edition.\\ Chapman and Hall 2001. \end{thebibliography} \end{document} End of file File page.sty % thebibliography environment from % /usr/share/texmf/tex/latex/base/book.cls % with \chapter removed End of file latex page latex page latex page"