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1 Introduction

This report is turned in for credit for the course “Logic” at DIKU summer 2005.
In brief, the assignment is to prove the commutativity of addition within peano
arithmetic using the Logiweb system developed by Klaus Grue. Logiweb will
be introduced shortly. That is, in this report we shall carry out a proof of the
proposition that for all natural numbers the following holds:

t + r = r + t, (1)

and we shall use Klaus Grue’s Logiweb system to check our proof. Cf. [1].
However, we use [ẋ ] and [ẏ ] as our variables.

During the course we have been introduced to mathematical logic using the
textbook Introduction to Mathematical Logic by Elliot Mendelson, cf. [4]. In
order to get the full of this report we thus assume an elementary knowledge of
logic as it is introduced in this book. However, we do give short introductions to
some basic topics—Logiweb as well as logic—making this report selfcontained—
at least to a graduate student of computer science at DIKU.

The report has been written from June 23rd to July 3rd. Due to this short
period of time the proof is carried out as simply as possible discarding any fancy
solutions even before they have been fully conceived of. The commutativity of
addition is part of Proposition 3.2 in [4], p. 156, which is proved immediately
afterwards on pp. 157f. We follow this proof backchaining from the actual
proof of (1) through other results of the proposition and any necessary lemmas
and theorems contained in the book. Besides Mendelson’s propositions we only
make use of two tautologies and one lemma in the final proof.

We hope our intentions have been reached and that this report carries just
a little of the fun it has been working with Logiweb. As Klaus always invites
the Logiweb user to we do also: “Have fun”.

2 The Logiweb System

In this section we give a short introduction to the Logiweb system, a web-based
system for distribution of mathematical definitions, lemmas, and proofs writing
web-pages. Cf. [1]. For further details and elaboration on the myriad of intrica-
cies and topics concerning the system we refer to Klaus Grue’s introduction to
Logiweb, namely the check page. Alternatively, we recommend the peano page
introducing peano arithmetic, which well displays the system “at work”. In
order to obtain a thorough knowledge of the system one is advised to follow the
course “Logic” or to read the base page (cf. [2]), but probably the best choice
would be to undertake the exercise of writing a page proving some proposition
of choice from [4] using Logiweb. After such an exercise any work in Logiweb
and the hardship of doing it will most likely depend on the level of mathematics
one is working with.
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2.1 References

As hinted at above, Logiweb is a system in which users worldwide can distribute
their own mathematical work and reuse the work of others. Mathematics in
Logiweb is published by submitting a Logiweb page to the Logiweb system,
that is, to a Logiweb server. Abstractly speaking, in a Logiweb page one can
define a mathematical theory or system1 and a language of this system within
which one can then define, state, and prove mathematical lemmas, theorems,
propositions, etc. A theory must be defined in one page. The proofs within a
theory will be proof checked upon submission to the Logiweb system (actually
they will be proof checked when compiling the page locally) and one then knows
if the contents of a page are correct within the theory. A page can refer to
other Logiweb pages in which a needed theory, results, functionalities etc. are
defined. Thus, Logiweb works much like the world wide web where pages refer
to each other using hyperlinks. The mesh of Logiweb servers translate Logiweb
references to http urls making sure a page can find its references and that
together they form a directed acyclic graph from top (the base) to bottom (a
Logiweb page).

Essentially, the Logiweb reference of a page is a global hash key computed
on the basis of the contents of the specific page. This ensures that each page
has a unique key, that is, reference. The reference of this page in the special
kana2 format is:

nani
susu sina sasa neta saku tinu sana kete susa niki
sisi suna tuka kana tasa nike tuni tetu kiki sune
keti kuta ketu kesi kena sasu sika nasa natu

Kana is a format developed for Logiweb making it possible to speak or pro-
nounce a reference. This is done because Logiweb has been developed with the
possibility of using a microphone as input tool in mind.

Also, one can refer to this page using the well-known http url:

http://www.diku.dk/~grue/logiweb/20050502/home/mrmr/peano-commutativity/latest/vector/

page.lgw

The two last ways to refer to a page is using the reference expressed in
so-called mixed endian hexadecimal—which the kana reference is based on—or
using a decimal reference. Cf. [1] and the Reference section in the source or pyk
code in a Logiweb page. The reference section—known as the BIBLIOGRAPHY—of
a Logiweb page will be introduced shortly.

1We shall use theory and system interchangeably, as is the case with Logiweb system and
Logiweb.

2For details on kana we refer to http://yoa.dk/logiweb/doc/misc/kana.html.
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2.2 The Base Page

Now, in the previous section we mentioned the base of the mesh of Logiweb
pages. This is a certain part of Logiweb, which implements the basic and nec-
essary functionalities of the mathematical part of the Logiweb system. That
is, the base page—as it is denoted—defines the proof checker and most of what
makes the mathematics of Logiweb possible. Actually, there can be more than
one base page, but the one Klaus Grue has written will probably be the base
page to begin with. But one is free to write a base page making up a different
(or a similar) system. A base page is a page without references to other pages
and thus forms the base of a mathematical system within Logiweb. For more
on this we refer to the base page, Section 1.4 in particular.

We now know the necessary basics of the Logiweb system. Next, we take a
closer look at the structure of a Logiweb page.

3 A Logiweb Page

In this section we briefly describe the most important details of a Logiweb page.
That is, we introduce the Logiweb page, the language used in Logiweb, and the
predefined structure all pages must be written according to. This introduction
is adequate for getting started with Logiweb, but is in no manner satisfactory
to the serious user of the Logiweb system.

3.1 “Main Menu”

In the Logiweb system each instance of a page has a so-called main menu, e.g.,
the main menu of this page is at:

http://www.diku.dk/~grue/logiweb/20050502/home/mrmr/peano-commutativity/latest/

From the main menu one can browse and find numerous kinds of information
about the page. The most important of which to begin with is the page in pdf
format and (for Logiweb beginners) the source code.

A Logiweb page is written in a mixture of LATEX and the language pyk
developed by Klaus Grue. pyk is the language in which the mathematics of a
Logiweb page is written. The best way to get a feeling for this mixture is to
read the source code of a Logiweb page. This is found under Source → Actual
Source from the Logiweb main menu of a Logiweb page, e.g., the check page.

One can also read the pyk text of a page, which is found under Body → Pyk,
also at the main menu. It is also under Body that one finds the TEX and pdf
files of the page.3

3The TEX files are not available through a browser due to safety precautions.
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3.2 The Pyk Language

As mentioned in the previous section, the pyk language has been developed for
easy pronounciation or in general for “spoken mathematics”, cf. the base page,
Section 1.1. Thus, a mathematical expression we are well-acquaintated with,
such as:

(x + y)2 = x2 + 2xy + y2

may correspond to the following pyk expression:

parenthesis var x plus var y end parenthesis square equals var x
square plus two times var x times var y plus var y square4

Thus, eventually one will be able to “tell” one’s mathematics to a computer
and it will generate a file written in pyk, which will then be the source for
precisely one Logiweb page. This is also the reason why pyk “is” case sensitive,
that is, the pyk code cannot be in capital letters.

We thus see that pyk is much like any other programming language. How-
ever, in pyk one writes everything out in words instead of using symbols, e.g.,
“parenthesis” and “end parenthesis” instead of “(” and “)”. In pdf format
the textual representations will be replaced by their symbolic representations
defined by the author of a Logiweb page. We shall return to this aspect of
Logiweb in Section 4.2.

3.3 The Structure of a Logiweb Page

A Logiweb page has to be written according to certain standards. Thus, a
specific structural sketch for a Logiweb page has to be used, which defines the
specific and necessary parts of a Logiweb source file, that is, a pyk file. A pyk
file has exactly one of each of these parts or sections, which will be described
below. We note that the section names must be in capital letters. Like the TEX
code and normal text written this is not part of pyk and does not need to be in
lowercase letters.

PAGE A Logiweb page has a name which is given in the PAGE section of the pyk
file. For instance, in the source code for this page one will find the PAGE
section at the very top where it is seen that this page is named “peano
commutativity”. This also appears in Appendix A of this page where the
acutal definition takes place.

BIBLIOGRAPHY The references of a Logiweb page are given in the BIBLIOGRAPHY
section of the pyk file. A page can refer to every possible Logiweb page,
also if one of these pages refers to once referenced pages. The Logi-
web server will make sure no cyclic references occur. We note that the
BIBLIOGRAPHY section of a Logiweb page is not the bibliography seen in
Appendix ??, which is the normal list of referenced books, articles etc.

4This example has been taken from [2].
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ASSOCIATIVITY In the ASSOCIATIVITY section of the pyk file the constructs of
a Logiweb page and their associativity—either POST- or PRE- are the
options—are declared. The order of the constructs furthermore define
their priority. Constructs declared with comma separation after the same
associativity statement have the same priority. (In a sense the constructs
of a Logiweb page make up the available pyk code in a page and/or pages
referring to the page declaring and defining the constructs.) Thus, we get
that:

PREASSOCIATIVE * plus *, * minus *

indicates that, e.g., [x + y] is to have the same priority as [x − y], whereas:

PREASSOCIATIVE * times *
...
PREASSOCIATIVE * plus *

indicates that, e.g., [x · y] is to have higher priority than [x + y]. These
examples are from the base page. In order to use these constructs in
another page they should be entered in the associativity section of the
referring page with base written after the associativity assignment. When
using the names of constructs from a page in the associativity section
of another page one is to place the priority of new constructs in proper
hierarchical order. Thus, in the associativity section of the present page
we put names of, e.g., the lemmas to be proved together with the bracket
declaration, which gives those constructs the same priority:

PREASSOCIATIVE base: bracket * end bracket,
mendelson lemma one eight eight

It might be confusing that mendelson lemma one eight and other con-
structs declared and defined on a certain page does not have the name of
the page in front of the declaration in the associativity section, but one
gets used to this and quickly learn to distinguish.

The associativites can be found in the priority table of Appendix B.

BODY In the BODY section we enter the actual text and math of the page. Hence,
this is the section most readers get acquainted with, and they probably
do so in pdf format. It is also in this section that the actual pyk coding is
done.

We thus get the structure for a Logiweb page as is seen in Figure 1
The above only gives a bland taste of the richness of the very complex and

impressive system that Logiweb is. But as stated earlier we believe it should be
enough to get the reader started. To set up a system one is advised to read the
Pyk how-to at:
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PAGE name

.

.

.

BIBLIOGRAPHY
base: nani

. . .

.

.

.

PREASSOCIATIVITY

.

.

.

BODY

.

.

.

Figure 1: The structure of a Logiweb page.

http://diku.dk/undervisning/2005s/235/howto.html

Now we proceed to the actual mathematics of this page, namely peano arith-
metic. But before getting into details with this, we place the assignment in a
larger frame of reference.

4 Axiomatic Theories

In this section we give a basic introduction to the concepts with which we will be
working in the rest of the report. In may well be skipped by the (experienced)
logician.

For simple systems of logic we can decide the truth value of a statement
by mere use of truth tables. Rather quickly this turns out not to be enough
when expressing more complex systems of logic. Though it took our ancestors a
couple of millennia to give us the formalistic tools to express even the simplest of
logical statements, the basic elements of the so-called formal axiomatic theories
are quite simple. Cf. [4], pp. 34ff.

The branch of logic known as propositional calculus is simple to understand
and serves well when introducing the concept of axiomatic theories. The ab-
stract concept of propositions, i.e. the abstract denotation of sentences like
“Jones is a communist” and “Jones is an atheist”, and a few logical connec-
tives, e.g. ¬ and ⇒, can be combined with one of more rules of inference in
a proper way and thus form a calculus. The combined logical statements can
express many types of statements, the truth of which we can determine by use
of truth tables. We extend these concepts in the following manner. We define
a formal theory L when the following conditions are satisfied:5

1. In L a countable set of symbols are given, a finite sequence of which is
called an expression of L.

5We only state the most necessary concepts here, cf. [4], pp. 34f. for an elaborate expla-
nation.
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2. A subset of the set of expressions of L are called the set of well-formed
formulas of L or wfs for short when written in plural.

3. A set of the wfs are called the axioms of L. If it can effectively be decided
whether a wf is an axiom then L is said to be an axiomatic theory.6

4. A finite set of relations, R1, . . . , Rn, among the wfs make up the rules of
inference. We say that the wf B is a direct consequence of a given set
of wfs and that it is so by virtue of Ri, if for each Ri, there is a unique
positive integer j such that, for every set of j wfs and each B, one can
effectively decide whether the given j wfs are in the relation Ri to B.

A proof in L is a sequence B1, . . . ,Bk of wfs such that, for each i, either Bi

is an axiom of L or Bi is a direct consequence of some of the preceding wfs in
the sequence by virtue of one of the rules of inference of L.

A theorem of L is a wf B such that B is the last wf of some proof in L. Such
a proof is called a proof of B in L. If it can be machine checked whether a given
theorem is indeed a theorem of a given theory then we say that the theory is
decidable, otherwise it is said to be undecidable.

We say that C is a consequence of a set of wfs, Γ , if and only if there is a
finite sequence of wfs, B1, . . . ,Bk, such that C is Bk, and, for each i, either Bi is
an axiom or Bi is a direct consequence by some rule of inference of some of the
preceding wfs in the sequence, which is then called a proof or (deduction) of C
from Γ . The members of Γ are called the hypotheses or premisses of the proof.

We now have the prerequisites in order to define an actual theory.

4.1 The Axiomatic Theory L

The concept of a formal axiomatic theory L for the propositional calculus can
now be introduced:

1. The symbols of L are ¬, ⇒, (, ), and the letters Ai, for i ∈ N.

2. Well-formed formulas:

(a) All statement letters are wfs.

(b) if B and C are wfs, then so are (¬B) and (B ⇒ C).

3. If B, C, and D are wfs of L, then the following are axioms of L:

(A1) (B ⇒ (C ⇒ B))

(A2) ((B ⇒ (C ⇒ D)) ⇒ ((B ⇒ C) ⇒ (B ⇒ D)))

(A3) (((¬C) ⇒ (¬B)) ⇒ (((¬C) ⇒ B) ⇒ C))

4. One rule of inference of L, namely modus ponens, which says that C is a
direct consequence of B and B ⇒ C. This rule is abbreviated as MP.

6We thus have that theories defined in Logiweb must be axiomatic theories.
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This theory can, of course, be elaborated upon, but we shall not pursue the
details of this any further. Nor shall we make more distinctions in the logical
concepts with which this assignment is concerned. Instead we shall place it in
the Logiweb frame of reference.

4.2 An Axiomatic Logiweb Theory

The conceptual framework introduced in the previous subsection is the one we
shall work in when proving the law of commutativity of addition within peano
arithmetic. Since this proof must be carried out within the system of Logiweb
we here give a Logiweb example and prove a very basic lemma from [4], p. 36,
namely [M Lemma 1.8]7. (We shall adopt the convention of writing “M” in
front of a lemma, proposition etc. to denote “Mendelson”.)

Now, the appearence of “M Lemma 1.8” above is somewhat special. First,
the name of the lemma (actually, it is not a lemma until defined to be so—now
it is merely a construct in this page) appeared in brackets and with a footnote.
This is specific to Logiweb and from it we are introduced to some of the aspects
of Logiweb. Cf. the base page, Section 2.2.1.

If one reads the pyk file, one can find the declaration of [M Lemma 1.8] as
being part of this Logiweb page almost at the very top, namely in the asso-
ciativity section. And at this point in the text we introduce the construct to
Logiweb, that is, from now on one can refer to the construct by writing some
specific pyk code. One refers to this construct by writing what appears in the
footnote of the construct after the equality sign with “pyk” written above it;
this is an example of the pyk aspect of Logiweb. As is clear now, it simply
defines the pyk code.

Another aspect is the TEX aspect of Logiweb, which is simply how a construct
in Logiweb appears in writing, that is, in those formats one can build from a
normal TEX document, e.g., a pdf document. The TEX aspect is defined by the
user or author who within the limits of TEX single-handedly decides how the
construct should appear.

Having made the construct visible or available to Logiweb, we want to place
it in some specific framework within which we work, that is, in a theory or
system. We could denote this system L in accordance with what has been said
above and build our theory from the bottom. Instead we shall make use of the
work of Klaus Grue. Thus, we introduce [M Lemma 1.8] in [S ′], which is defined
on the peano page. We do this as follows:

[S ′ lemma M Lemma 1.8:∀B:B ⇒̇ B]

For now we merely mention in passing that the special symbol ⇒̇ with the
little dot appearing above the imply symbol tells us that this implication is
specific to the peano arithmetic defined in [S ′]. This system will be the one

7[M Lemma 1.8
pyk
= “mendelson lemma one eight”]
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within which we will be working, and we shall examine it more in the next
section.

We have now defined the construct [M Lemma 1.8] to be a lemma in the
system [S ′]. Then we must prove it in order to use it later should we have the
need for that. This is done using axiomatic constructs from the peano page.
For now, we shall use these without further introduction, which we defer until
the next section:

S ′ proof of M Lemma 1.8:
L01: Arbitrary À B ;
L02: A2 ′ À (B ⇒̇ (B ⇒̇ B) ⇒̇ B) ⇒̇ ((B ⇒̇

(B ⇒̇ B)) ⇒̇ (B ⇒̇ B)) ;
L03: A1 ′ À B ⇒̇ ((B ⇒̇ B) ⇒̇ B) ;
L04: MP ′ ¤ L02 ¤ L03 À (B ⇒̇ (B ⇒̇ B)) ⇒̇ (B ⇒̇ B) ;
L05: A1 ′ À B ⇒̇ (B ⇒̇ B) ;
L06: MP ′ ¤ L04 ¤ L05 À B ⇒̇ B 2

We have now seen an example of a proof of a lemma belonging to a certain
theory in Logiweb. In the next section we will take a closer look at the axiomatic
theory [S ′] in which we will be working.

5 Peano Arithmetic

As stated above, the assignment of this report is to prove the law of commuta-
tivity of addition within the natural numbers. More precisely, we shall prove it
within the system of peano arithmetic as it is stated in Chapter 3 of [4]. Peano
arithmetic is based upon five postulates:

(P1) 0 is a natural number.

(P2) If x is a natural number, then there is another natural number denoted
by x′; this is denoted the successor of x.)

(P3) 0 6= x′ for every natural number x.

(P4) If x′ = y′, then x = y.

(P5) If Q is a property that may or may not hold for any given natural number,
and if:

(I) 0 has the property Q, and

(II) whenever a natural number x has the property Q, then x′ has the
property Q,

then all natural numbers have the property Q. This is the mathematical
principle of induction.
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Klaus Grue has implemented peano arithmetic making most of the needed
constructs to solve the assignment available to us. Cf. peano, Section 1.5. The
result of his work is among other things the theory within which we will be
working, namely the aforementioned theory [S ′]. This theory is much like the
axiomatic theory we met in Section 4.1, p. 10. Only, this theory has more
axioms, a number of theorems we can use, and one more rule of inference. We
repeat the full system in the following for easy reference.

5.1 Peano Arithmetic in Logiweb

Peano arithmetic in Logiweb consists of the axioms, theorems, and rules of
inference that are reproduced in the following subsections; they are introduced
and defined in [3]. The appearance of the constructs is somewhat special. As
mentioned above, some symbols are furnished with a little dot. This special TEX
aspect need not confuse us. It only shows that we are working within peano
arithmetic as defined in the peano page. Also, the equality symbol of peano
arithmetic is furnished with a small p, which serves the same purpose as the
dot.

5.1.1 [S ′] Axioms

In peano arithmetic—or in [Theory S ′] or merely [S ′] as we shall refer to it
from now on—the following five axioms or rules are available. We assume that
the special symbols used are known to the reader.

[S ′ rule A1 ′: ∀A:∀B:A ⇒̇ B ⇒̇ A]

[S ′ rule A2 ′: ∀A:∀B: ∀C: (A ⇒̇ B ⇒̇ C) ⇒̇ (A ⇒̇ B) ⇒̇ A ⇒̇ C]
[S ′ rule A3 ′: ∀A:∀B: (¬̇B ⇒̇ ¬̇A) ⇒̇ (¬̇B ⇒̇ A) ⇒̇ B]

[S ′ rule A4 ′: ∀C:∀A: ∀X : ∀B: dAe≡〈dBe|dXe := dCe〉 `̀ ∀̇X :B ⇒̇ A]

[S ′ rule A5 ′: ∀X :∀A:∀B:
˙nonfree(dXe, dAe) `̀ ∀̇X : (A ⇒̇ B) ⇒̇ A ⇒̇ ∀̇X :B]

These definitions are copied from the peano page, Section 1.5.

5.1.2 [S ′] Rules of Inference

Besides the five axioms [S ′] has two rules of inference. The first is the well-
known modus ponens, which all computer scientists are well-acquainted with.
The second says that a well-formed formula has as a consequence that it is sound
or valid for all variables, xi.

[S ′ rule MP ′: ∀A: ∀B:A ⇒̇ B ` A ` B]

[S ′ rule Gen ′: ∀X : ∀A:A ` ∀̇X :A]

These definitions are copied from the peano page, Section 1.5.
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5.1.3 [S ′] Theorems

Finally, within [S ′] we are allowed to use the following theorems. We shall not
prove these:

[S ′ rule S1 ′:∀A: ∀B: ∀C:A p
= B ⇒̇ A p

= C ⇒̇ B p
= C]

[S ′ rule S2 ′:∀A: ∀B:A p
= B ⇒̇ A ′ p

= B ′]

[S ′ rule S3 ′:∀A: ¬0̇
p
= A ′]

[S ′ rule S4 ′:∀A: ∀B:A ′ p
= B ′ ⇒̇ A p

= B]

[S ′ rule S5 ′:∀A:A +̇ 0̇
p
= A]

[S ′ rule S6 ′:∀A: ∀B:A +̇B ′ p
= (A +̇B) ′]

[S ′ rule S7 ′:∀A:A ·̇ 0̇ p
= 0̇]

[S ′ rule S8 ′:∀A: ∀B:A ·̇(B ′) p
= (A ·̇B) +̇A]

[S ′ rule S9 ′:∀A: ∀B: ∀C: ∀X :
B≡〈A|X := 0̇〉 `̀ C≡〈A|X := X ′〉 `̀
B ⇒̇ ∀̇X : (A ⇒̇ C) ⇒̇ ∀̇X :A]

These definitions are copied from the peano page, Section 1.5.

We now have the necessary means to solve our assignment, which we will do
in the following sections.

6 Proof of Commutativity of Addition

As mentioned in the introduction we shall prove the law of commutativity of
addition in as simple a way as possible. We thus follow Mendelson in his proof,
cf. [4], pp. 156ff. Hence, we will prove this law by proving Proposition 3.2(a)-
(h), except Proposition 3.2(e). As we close in on our final goal we will be needing
two tautologies and in our last proof a lemma, which we will state and prove
as we go along. We do this in the following subsections. We explain what goes
on as we go along. In each proof we first introduce the proposition in Logiweb,
then we state the proposition, and finally we prove it.

6.1 M Proposition 3.2(a)

The first proposition states that a wf is equal to itself. Since peano arithmetic is
theory with equality this is a basic and expected proposition—and quite logical!
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[M Proposition 3.2(a)]8

[S ′ lemma M Proposition 3.2(a): ∀T : T p
= T ]

S ′ proof of M Proposition 3.2(a):
L01: Arbitrary À T ;
L02: S5 ′ À T +̇ 0̇

p
= T ;

L03: S1 ′ À (T +̇ 0̇
p
= T ) ⇒̇ (T +̇ 0̇

p
= T ⇒̇

T p
= T ) ;

L04: MP ′ ¤ L03 ¤ L02 À T +̇ 0̇
p
= T ⇒̇ T p

= T ;
L05: MP ′ ¤ L04 ¤ L02 À T p

= T 2

[Proposition 3.2(a)] is used in the proof of [Proposition 3.2(b)]. But before
we can proceed to this we must prove a tautology also.

6.2 M Tautology A

In [4], p. 157 in the proof of [Proposition 3.2(b)] we see that a tautology is used.
We shall state and prove this tautology for use in our next and later proofs.

[M Tautology A]9

[S ′ lemma M Tautology A: ∀A: ∀B:∀C:A ⇒̇ (B ⇒̇ C) ` B ⇒̇ (A ⇒̇ C)]

S ′ proof of M Tautology A:
L01: Arbitrary À A ;
L02: Arbitrary À B ;
L03: Arbitrary À C ;
L04: Premise À A ⇒̇ (B ⇒̇ C) ;
L05: A2 ′ À (A ⇒̇ (B ⇒̇ C)) ⇒̇ ((A ⇒̇ B) ⇒̇

(A ⇒̇ C)) ;
L06: MP ′ ¤ L05 ¤ L04 À (A ⇒̇ B) ⇒̇ (A ⇒̇ C) ;
L07: A1 ′ À ((A ⇒̇ B) ⇒̇ (A ⇒̇ C)) ⇒̇

((B ⇒̇ (A ⇒̇ B) ⇒̇ (A ⇒̇ C))) ;
L08: MP ′ ¤ L07 ¤ L06 À B ⇒̇ (A ⇒̇ B) ⇒̇ (A ⇒̇ C) ;
L09: A2 ′ À (B ⇒̇ (A ⇒̇ B) ⇒̇ (A ⇒̇ C)) ⇒̇

(B ⇒̇ (A ⇒̇ B)) ⇒̇ (B ⇒̇ (A ⇒̇
C)) ;

L10: MP ′ ¤ L09 ¤ L08 À (B ⇒̇ (A ⇒̇ B)) ⇒̇ (B ⇒̇ (A ⇒̇
C)) ;

L11: A1 ′ À B ⇒̇ (A ⇒̇ B) ;
L12: MP ′ ¤ L10 ¤ L11 À B ⇒̇ (A ⇒̇ C) 2

8[M Proposition 3.2(a)
pyk
= “mendelson proposition three two a”]

9[M Tautology A
pyk
= “mendelson tautology a”]
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We note that [M Proposition 3.2(b)] could also be proved by means of Corol-
lary 1.10(b), cf. [4], p. 38. Mendelson proves this by the use of Proposition 1.9
also known as the Deduction Theorem, cf. [4], p. 37. We avoid the use of this,
though, it would have been prettier to follow Mendelson completely.

6.3 M Proposition 3.2(b)

We now proceed to proving [M Proposition 3.2(b)] where we will make use of
[M Tautology A].

[M Proposition 3.2(b)]10

[S ′ lemma M Proposition 3.2(b):∀T : ∀R: T p
= R ⇒̇ R p

= T ]

S ′ proof of M Proposition 3.2(b):
L01: Arbitrary À T ;
L02: Arbitrary À R ;
L03: S1 ′ À T p

= R ⇒̇ (T p
= T ⇒̇ R p

= T ) ;
L04: M Tautology A ¤ L03 À T p

= T ⇒̇ (T p
= R ⇒̇ R p

= T ) ;
L05: M Proposition 3.2(a) À T p

= T ;
L06: MP ′ ¤ L04 ¤ L05 À T p

= R ⇒̇ R p
= T 2

Thus having proved [M Proposition 3.2(b)] we proceed to [Proposition 3.2(c)]
in the proof of which the former is used. But before we do this we need yet
another tautology.

6.4 M Tautology B

In [4], p. 157 in the proof of M Proposition 3.2(c) we see that a tautology is
used. We shall state and prove this tautology for use in our next and later proofs.

[M Tautology B]11

[S ′ lemma M Tautology B:∀D:∀E : ∀F :D ⇒̇ E ` E ⇒̇ F ` D ⇒̇ F ]

S ′ proof of M Tautology B:
L01: Arbitrary À D ;
L02: Arbitrary À E ;
L03: Arbitrary À F ;
L04: Premise À D ⇒̇ E ;
L05: Premise À E ⇒̇ F ;
L06: A1 ′ À (E ⇒̇ F) ⇒̇ (D ⇒̇ (E ⇒̇ F)) ;

10[M Proposition 3.2(b)
pyk
= “mendelson proposition three two b”]

11[M Tautology B
pyk
= “mendelson tautology b”]
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L07: MP ′ ¤ L06 ¤ L05 À D ⇒̇ (E ⇒̇ F) ;
L08: A2 ′ À (D ⇒̇ (E ⇒̇ F)) ⇒̇ ((D ⇒̇

E) ⇒̇ (D ⇒̇ F)) ;
L09: MP ′ ¤ L08 ¤ L07 À (D ⇒̇ E) ⇒̇ (D ⇒̇ F) ;
L10: MP ′ ¤ L09 ¤ L04 À D ⇒̇ F 2

We can now prove [M Proposition 3.2(c)].

6.5 M Proposition 3.2(c)

As noted above we will make use of [M Tautology B] in our proof of [Proposition
3.2(c)], which concerns transitivity.

[M Proposition 3.2(c)]12

[S ′ lemma M Proposition 3.2(c): ∀T :∀R:∀S: T p
= R ⇒̇ (R p

= S ⇒̇ T p
= S)]

S ′ proof of M Proposition 3.2(c):
L01: Arbitrary À T ;
L02: Arbitrary À R ;
L03: Arbitrary À S ;
L04: S1 ′ À R p

= T ⇒̇ (R p
= S ⇒̇ T p

= S) ;
L05: M Proposition 3.2(b) À T p

= R ⇒̇ R p
= T ;

L06: M Tautology B ¤ L05 ¤ L04 À T p
= R ⇒̇ (R p

= S ⇒̇ T p
= S) 2

Thus having proved [M Proposition 3.2(c)] we now proceed with [Proposition
3.2(d)].

6.6 M Proposition 3.2(d)

In order to prove [M Proposition 3.2(d)] following the proof in [4], p. 157, we
will be using two tautologies. A closer examination of the proofs reveals that the
two tautologies are an instance of [M Tautology A] and one of [M Tautology B].
Furthermore, we will be needing [M Proposition 3.2(b)] in our proof as well.
Hence, we can commence with the proof right away.

[M Proposition 3.2(d)]13

[S ′ lemma M Proposition 3.2(d):∀R:∀T : ∀S:R p
= T ⇒̇ (S p

= T ⇒̇ R p
= S)]

S ′ proof of M Proposition 3.2(d):
L01: Arbitrary À R ;
L02: Arbitrary À T ;

12[M Proposition 3.2(c)
pyk
= “mendelson proposition three two c”]

13[M Proposition 3.2(d)
pyk
= “mendelson proposition three two d”]
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L03: Arbitrary À S ;
L04: M Proposition 3.2(c) À R p

= T ⇒̇ (T p
= S ⇒̇ R p

= S) ;
L05: M Tautology A ¤ L04 À T p

= S ⇒̇ (R p
= T ⇒̇ R p

= S) ;
L06: M Proposition 3.2(b) À S p

= T ⇒̇ T p
= S ;

L07: M Tautology B ¤ L06 ¤ L05 À S p
= T ⇒̇ (R p

= T ⇒̇ R p
= S) ;

L08: M Tautology A ¤ L07 À R p
= T ⇒̇ (S p

= T ⇒̇ R p
= S) 2

Thus having proved [M Proposition 3.2(d)] we now proceed with [Proposition
3.2(f)] in the proof of which we use the result just obtained.

6.7 M Proposition 3.2(f)

The proof of [M Proposition 3.2(f)] is split up into two parts as is seen from
[4], pp. 157f. Furthermore, we now make use of regular variables and not
metavariables as was the case in the previous proofs. That is, we now show our
theorem to be true not for all terms but for all variables. This does not make a
difference, though.

6.7.1 M Proposition 3.2(f) (i)

After having introduced the proposition and placed it in the theory in which
we are working, we first show the identity of [0̇]. This is the base case of a
well-known proof by induction. After have proved the base case, we shall thus
proceed and prove the induction step by the use of our two tautologies. Finally,
we prove [M Proposition 3.2(f)] by the use of our two intermediary results. This
structure is used in the proofs of the rest of the theorems including the final,
namely, [Proposition 3.2(h)] stating the commutative law of addition.

[M Proposition 3.2(f) (i)]14

[S ′ lemma M Proposition 3.2(f) (i): 0̇
p
= 0̇ +̇ 0̇]

S ′ proof of M Proposition 3.2(f) (i):
L01: S5 ′ À 0̇ +̇ 0̇

p
= 0̇ ;

L02: M Proposition 3.2(b) À 0̇ +̇ 0̇
p
= 0̇ ⇒̇ 0̇

p
= 0̇ +̇ 0̇ ;

L03: MP ′ ¤ L02 ¤ L01 À 0̇
p
= 0̇ +̇ 0̇ 2

We have now showed the base case in an induction. The next step is to
continue the induction.

6.7.2 M Proposition 3.2(f) (ii)

In Mendelson’s proof of [M Proposition 3.2(f) (ii)] we note that the Deduction
Theorem is used, cf. [4], p. 158. We shall not use this theorem in our proof but

14[M Proposition 3.2(f) (i)
pyk
= “mendelson proposition three two f i”]
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instead use the previously proved tautologies.

[M Proposition 3.2(f) (ii)]15

[S ′ lemma M Proposition 3.2(f) (ii): ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ ′

p
= 0̇ +̇ ẋ ′)]

S ′ proof of M Proposition 3.2(f) (ii):
L01: S6 ′ À 0̇ +̇ ẋ ′

p
= (0̇ +̇ ẋ ) ′ ;

L02: S2 ′ À ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ ′

p
= (0̇ +̇ ẋ ) ′ ;

L03: M Proposition 3.2(d) À ẋ ′
p
= (0̇ +̇ ẋ ) ′ ⇒̇ (0̇ +̇ ẋ ′

p
=

(0̇ +̇ ẋ ) ′ ⇒̇ ẋ ′
p
= 0̇ +̇ ẋ ′) ;

L04: M Tautology B ¤ L02 ¤ L03 À ẋ
p
= 0̇ +̇ ẋ ⇒̇ (0̇ +̇ ẋ ′

p
=

(0̇ +̇ ẋ ) ′ ⇒̇ ẋ ′
p
= 0̇ +̇ ẋ ′) ;

L05: M Tautology A ¤ L04 À 0̇ +̇ ẋ ′
p
= (0̇ +̇ ẋ ) ′ ⇒̇ (ẋ

p
=

0̇ +̇ ẋ ⇒̇ ẋ ′
p
= 0̇ +̇ ẋ ′) ;

L06: MP ′ ¤ L05 ¤ L01 À ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ ′

p
= 0̇ +̇ ẋ ′ ;

L07: Gen ′ ¤ L06 À ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ ′

p
= 0̇ +̇ ẋ ′) 2

We now have the necessary foundation to prove [M Proposition 3.2(f)].

6.7.3 M Proposition 3.2(f)

As is seen from [4], p. 158, induction is used in the proof of [M Proposition 3.2(f)].
Due to our ambition of keeping things as simple as possible, we have not imple-
mented an induction theorem. Hence, the proof will deviate from the one given
by Mendelson.

[M Proposition 3.2(f)]16

[S ′ lemma M Proposition 3.2(f): ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ )]

S ′ proof of M Proposition 3.2(f):
L01: S9 ′ À (0̇

p
= 0̇ +̇ 0̇) ⇒̇ ∀̇ẋ : (ẋ

p
= 0̇ +̇ ẋ ⇒̇

ẋ ′
p
= 0̇ +̇ ẋ ′) ⇒̇ ∀̇ẋ : (ẋ

p
= 0̇ +̇ ẋ ) ;

L02: M Proposition 3.2(f) (i) À 0̇
p
= 0̇ +̇ 0̇ ;

L03: MP ′ ¤ L01 ¤ L02 À ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ ′

p
=

0̇ +̇ ẋ ′) ⇒̇ ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ) ;

L04: M Proposition 3.2(f) (ii) À ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ ′

p
= 0̇ +̇ ẋ ′) ;

L05: MP ′ ¤ L03 ¤ L04 À ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ) 2

15[M Proposition 3.2(f) (ii)
pyk
= “mendelson proposition three two f ii”]

16[M Proposition 3.2(f)
pyk
= “mendelson proposition three two f”]
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We now proceed to proving [M Proposition 3.2(g)], which is used in our final
proof.

6.8 M Proposition 3.2(g)

The proof of [M Proposition 3.2(g)] is similar to our previous proof. In this
case, too, we need a base case and an induction step.

6.8.1 M Proposition 3.2(g) (i)

After having introduced the proposition and placed it in the theory in which we
are working, we first show the base case.

[M Proposition 3.2(g) (i)]17

[S ′ lemma M Proposition 3.2(g) (i): ∀̇ẋ : (ẋ ′ +̇ 0̇
p
= (ẋ +̇ 0̇) ′)]

S ′ proof of M Proposition 3.2(g) (i):
L01: S5 ′ À ẋ ′ +̇ 0̇

p
= ẋ ′ ;

L02: S5 ′ À ẋ +̇ 0̇
p
= ẋ ;

L03: S2 ′ À ẋ +̇ 0̇
p
= ẋ ⇒̇ (ẋ +̇ 0̇) ′

p
= ẋ ′ ;

L04: MP ′ ¤ L03 ¤ L02 À (ẋ +̇ 0̇) ′
p
= ẋ ′ ;

L05: M Proposition 3.2(d) À ẋ ′ +̇ 0̇
p
= ẋ ′ ⇒̇ (ẋ +̇ 0̇) ′

p
= ẋ ′ ⇒̇

ẋ ′ +̇ 0̇
p
= (ẋ +̇ 0̇) ′ ;

L06: MP ′ ¤ L05 ¤ L01 À (ẋ +̇ 0̇) ′
p
= ẋ ′ ⇒̇ ẋ ′ +̇ 0̇

p
=

(ẋ +̇ 0̇) ′ ;
L07: MP ′ ¤ L06 ¤ L04 À ẋ ′ +̇ 0̇

p
= (ẋ +̇ 0̇) ′ ;

L08: Gen ′ ¤ L07 À ∀̇ẋ : (ẋ ′ +̇ 0̇
p
= (ẋ +̇ 0̇) ′) 2

6.8.2 M Proposition 3.2(g) (ii)

We now proceed with the induction step.
[M Proposition 3.2(g) (ii)]18

[S ′ lemma M Proposition 3.2(g) (ii): ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′

p
= (ẋ +̇ ẏ ′) ′)]

S ′ proof of M Proposition 3.2(g) (ii):
L01: S6 ′ À ẋ ′ +̇ ẏ ′

p
= (ẋ ′ +̇ ẏ) ′ ;

L02: S2 ′ À ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇ (ẋ ′ +̇ ẏ) ′

p
=

(ẋ +̇ ẏ) ′′ ;

17[M Proposition 3.2(g) (i)
pyk
= “mendelson proposition three two g i”]

18[M Proposition 3.2(g) (ii)
pyk
= “mendelson proposition three two g ii”]
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L03: M Proposition 3.2(c) À ẋ ′ +̇ ẏ ′
p
= (ẋ ′ +̇ ẏ) ′ ⇒̇

(ẋ ′ +̇ ẏ) ′
p
= (ẋ +̇ ẏ) ′′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ) ′′ ;

L04: M Tautology A ¤ L03 À (ẋ ′ +̇ ẏ) ′
p
= (ẋ +̇ ẏ) ′′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ ′ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′

p
=

(ẋ +̇ ẏ) ′′ ;
L05: M Tautology B ¤ L02 ¤ L04 À ẋ ′ +̇ ẏ

p
= (ẋ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′

p
=

(ẋ ′ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ) ′′ ;

L06: M Tautology A ¤ L05 À ẋ ′ +̇ ẏ ′
p
= (ẋ ′ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ

p
=

(ẋ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ) ′′ ;

L07: MP ′ ¤ L06 ¤ L01 À ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′

p
=

(ẋ +̇ ẏ) ′′ ;
L08: S6 ′ À ẋ +̇ ẏ ′

p
= (ẋ +̇ ẏ) ′ ;

L09: S2 ′ À ẋ +̇ ẏ ′
p
= (ẋ +̇ ẏ) ′ ⇒̇ (ẋ +̇ ẏ ′) ′

p
=

(ẋ +̇ ẏ) ′′ ;
L10: M Proposition 3.2(d) À ẋ ′ +̇ ẏ ′

p
= (ẋ +̇ ẏ) ′′ ⇒̇

(ẋ +̇ ẏ ′) ′
p
= (ẋ +̇ ẏ) ′′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ ′) ′ ;

L11: M Tautology B ¤ L07 ¤ L10 À ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇ (ẋ +̇ ẏ ′) ′

p
=

(ẋ +̇ ẏ) ′′ ⇒̇ ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ ′) ′ ;

L12: M Tautology A ¤ L11 À (ẋ +̇ ẏ ′) ′
p
= (ẋ +̇ ẏ) ′′ ⇒̇

ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′

p
=

(ẋ +̇ ẏ ′) ′ ;
L13: MP ′ ¤ L09 ¤ L08 À (ẋ +̇ ẏ ′) ′

p
= (ẋ +̇ ẏ) ′′ ;

L14: MP ′ ¤ L12 ¤ L13 À ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇ ẋ ′ +̇ ẏ ′

p
=

(ẋ +̇ ẏ ′) ′ ;
L15: Gen ′ ¤ L14 À ∀̇ẏ : (ẋ ′ +̇ ẏ

p
= (ẋ +̇ ẏ) ′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ ′) ′) 2

6.8.3 M Proposition 3.2(g)

We now have the necessary means to prove [M Proposition 3.2(g)].

[M Proposition 3.2(g)]19

[S ′ lemma M Proposition 3.2(g): ∀̇ẏ : ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′]

S ′ proof of M Proposition 3.2(g):

19[M Proposition 3.2(g)
pyk
= “mendelson proposition three two g”]

20



L01: S9 ′ À ∀̇ẋ : (ẋ ′ +̇ 0̇
p
= (ẋ +̇ 0̇) ′) ⇒̇

∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ ′) ′) ⇒̇

∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′) ;

L02: M Proposition 3.2(g) (i) À ∀̇ẋ : (ẋ ′ +̇ 0̇
p
= (ẋ +̇ 0̇) ′) ;

L03: MP ′ ¤ L01 ¤ L02 À ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ ′) ′) ⇒̇

∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′) ;

L04: M Proposition 3.2(g) (ii) À ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′ ⇒̇

ẋ ′ +̇ ẏ ′
p
= (ẋ +̇ ẏ ′) ′) ;

L05: MP ′ ¤ L03 ¤ L04 À ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′) 2

We have thus proved [M Proposition 3.2(g)].

6.9 M Proposition 3.2(h)

We now have the necessary means to show our objective, namely [M Proposition
3.2(h)]. As was the case for [M Proposition 3.2(f)] and [M Proposition 3.2(g)],
this proposition will also be shown by induction, that is, with a base case and
an inductive step but without an induction theorem, cf. refsection:3.2f.

6.9.1 M Proposition 3.2(h)(i)

The proof of [M Proposition 3.2(h)] makes use of the @ operator, which is de-
fined on the base page, Section 6.3.9. It works as a quantifier eliminator, that
is, a sort of reverse of generalization. First, we prove the base case.

[M Proposition 3.2(h)(i)]20

[S ′ lemma M Proposition 3.2(h)(i): ∀̇ẋ : (ẋ +̇ 0̇
p
= 0̇ +̇ ẋ )]

S ′ proof of M Proposition 3.2(h)(i):
L01: S5 ′ À ẋ +̇ 0̇

p
= ẋ ;

L02: M Proposition 3.2(f) À ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ) ;

L03: A4 ′@ ẋ À ∀̇ẋ : (ẋ
p
= 0̇ +̇ ẋ ) ⇒̇ ẋ

p
= 0̇ +̇ ẋ ;

L04: MP ′ ¤ L03 ¤ L02 À ẋ
p
= 0̇ +̇ ẋ ;

L05: M Proposition 3.2(c) À ẋ +̇ 0̇
p
= ẋ ⇒̇ (ẋ

p
= 0̇ +̇ ẋ ⇒̇

ẋ +̇ 0̇
p
= 0̇ +̇ ẋ ) ;

L06: MP ′ ¤ L05 ¤ L01 À ẋ
p
= 0̇ +̇ ẋ ⇒̇ ẋ +̇ 0̇

p
= 0̇ +̇ ẋ ;

L07: MP ′ ¤ L06 ¤ L04 À ẋ +̇ 0̇
p
= 0̇ +̇ ẋ ;

L08: Gen ′ ¤ L07 À ∀̇ẋ : (ẋ +̇ 0̇
p
= 0̇ +̇ ẋ ) 2

20[M Proposition 3.2(h)(i)
pyk
= “mendelson proposition three two h i”]
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Thus, we have proved the base case and now proceed to the induction step.
But before we can prove this we need a lemma, which must be proved first.

6.9.2 M Proposition 3.2(h)(g)(ii)

In the proof of [M Proposition 3.2(h)(ii)] line 2 we see that [M Proposition 3.2(g)]
is used. Cf. [4], p. 158. In comparison to the proof given here the x and
y variables are swapped. We thus need a lemma allowing this version of the
proposition. This is because we have used constants in stating and proving the
proposition. The lemma we need is as follows:

[M Proposition 3.2(h)(g)(ii)]
21

[S ′ lemma M Proposition 3.2(h)(g)(ii): ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′) ` ẏ ′ +̇ ẋ

p
= (ẏ +̇ ẋ ) ′]

S ′ proof of M Proposition 3.2(h)(g)(ii):
L01: Premise À ∀̇ẏ : (ẋ ′ +̇ ẏ

p
= (ẋ +̇ ẏ) ′) ;

L02: A4 ′@ ż À ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′) ⇒̇

ẋ ′ +̇ ż
p
= (ẋ +̇ ż ) ′ ;

L03: MP ′ ¤ L02 ¤ L01 À ẋ ′ +̇ ż
p
= (ẋ +̇ ż ) ′ ;

L04: Gen ′ ¤ L03 À ∀̇ẋ : (ẋ ′ +̇ ż
p
= (ẋ +̇ ż ) ′) ;

L05: A4 ′@ ẏ À ∀̇ẋ : (ẋ ′ +̇ ż
p
= (ẋ +̇ ż ) ′) ⇒̇

(ẏ ′ +̇ ż
p
= (ẏ +̇ ż ) ′) ;

L06: MP ′ ¤ L05 ¤ L04 À ẏ ′ +̇ ż
p
= (ẏ +̇ ż ) ′ ;

L07: Gen ′ ¤ L06 À ∀̇ż : (ẏ ′ +̇ ż
p
= (ẏ +̇ ż ) ′) ;

L08: A4 ′@ ẋ À ∀̇ż : (ẏ ′ +̇ ż
p
= (ẏ +̇ ż ) ′) ⇒̇

ẏ ′ +̇ ẋ
p
= (ẏ +̇ ẋ ) ′ ;

L09: MP ′ ¤ L08 ¤ L07 À ẏ ′ +̇ ẋ
p
= (ẏ +̇ ẋ ) ′ 2

We now have the necessary means to prove the induction step of [M Propo-
sition 3.2(h)(ii)].

6.9.3 M Proposition 3.2(h)(ii)

We then prove the induction step.

[M Proposition 3.2(h)(ii)]22

[S ′ lemma M Proposition 3.2(h)(ii): ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
= ẏ ′ +̇ ẋ )]

21[M Proposition 3.2(h)(g)(ii)
pyk
= “mendelson proposition three two h g ii”]

22[M Proposition 3.2(h)(ii)
pyk
= “mendelson proposition three two h ii”]
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S ′ proof of M Proposition 3.2(h)(ii):
L01: S6 ′ À ẋ +̇ ẏ ′

p
= (ẋ +̇ ẏ) ′ ;

L02: M Proposition 3.2(g) À ∀̇ẏ : (ẋ ′ +̇ ẏ
p
= (ẋ +̇ ẏ) ′) ;

L03: M Proposition 3.2(h)(g)(ii) ¤

L02 À ẏ ′ +̇ ẋ
p
= (ẏ +̇ ẋ ) ′ ;

L04: S2 ′ À ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ (ẋ +̇ ẏ) ′

p
=

(ẏ +̇ ẋ ) ′ ;
L05: M Proposition 3.2(c) À ẋ +̇ ẏ ′

p
= (ẋ +̇ ẏ) ′ ⇒̇ (ẋ +̇ ẏ) ′

p
=

(ẏ +̇ ẋ ) ′ ⇒̇ ẋ +̇ ẏ ′
p
= (ẏ +̇ ẋ ) ′ ;

L06: M Tautology A ¤ L05 À (ẋ +̇ ẏ) ′
p
= (ẏ +̇ ẋ ) ′ ⇒̇ ẋ +̇ ẏ ′

p
=

(ẋ +̇ ẏ) ′ ⇒̇ ẋ +̇ ẏ ′
p
= (ẏ +̇ ẋ ) ′ ;

L07: M Tautology B ¤ L04 ¤ L06 À ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

(ẋ +̇ ẏ) ′ ⇒̇ ẋ +̇ ẏ ′
p
= (ẏ +̇ ẋ ) ′ ;

L08: M Tautology A ¤ L07 À ẋ +̇ ẏ ′
p
= (ẋ +̇ ẏ) ′ ⇒̇ ẋ +̇ ẏ

p
=

ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′
p
= (ẏ +̇ ẋ ) ′ ;

L09: MP ′ ¤ L08 ¤ L01 À ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

(ẏ +̇ ẋ ) ′ ;
L10: M Proposition 3.2(d) À ẋ +̇ ẏ ′

p
= (ẏ +̇ ẋ ) ′ ⇒̇ ẏ ′ +̇ ẋ

p
=

(ẏ +̇ ẋ ) ′ ⇒̇ ẋ +̇ ẏ ′
p
= ẏ ′ +̇ ẋ ;

L11: M Tautology B ¤ L09 ¤ L10 À ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẏ ′ +̇ ẋ

p
=

(ẏ +̇ ẋ ) ′ ⇒̇ ẋ +̇ ẏ ′
p
= ẏ ′ +̇ ẋ ;

L12: M Tautology A ¤ L11 À ẏ ′ +̇ ẋ
p
= (ẏ +̇ ẋ ) ′ ⇒̇ ẋ +̇ ẏ

p
=

ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′
p
= ẏ ′ +̇ ẋ ;

L13: MP ′ ¤ L12 ¤ L03 À ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

ẏ ′ +̇ ẋ ;
L14: Gen ′ ¤ L13 À ∀̇ẏ : (ẋ +̇ ẏ

p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

ẏ ′ +̇ ẋ ) 2

We have thus proved the inductive step and can proceed to our final objec-
tive.

6.9.4 M Proposition 3.2(h)

And finally, we can now prove the objective of this report, namely, the commu-
tative law of addition.

[M Proposition 3.2(h)]23

[S ′ lemma M Proposition 3.2(h): ∀̇ẋ : ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ )]

S ′ proof of M Proposition 3.2(h):

23[M Proposition 3.2(h)
pyk
= “mendelson proposition three two h”]
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L01: S9 ′ À ∀̇ẋ : (ẋ +̇ 0̇
p
= 0̇ +̇ ẋ ) ⇒̇

((∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

ẏ ′ +̇ ẋ )) ⇒̇ ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ )) ;

L02: M Proposition 3.2(h)(i) À ∀̇ẋ : (ẋ +̇ 0̇
p
= 0̇ +̇ ẋ ) ;

L03: MP ′ ¤ L01 ¤ L02 À ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

ẏ ′ +̇ ẋ ) ⇒̇ ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ ) ;

L04: M Proposition 3.2(h)(ii) À ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ ⇒̇ ẋ +̇ ẏ ′

p
=

ẏ ′ +̇ ẋ ) ;
L05: MP ′ ¤ L03 ¤ L04 À ∀̇ẏ : (ẋ +̇ ẏ

p
= ẏ +̇ ẋ ) ;

L06: Gen ′ ¤ L05 À ∀̇ẋ : ∀̇ẏ : (ẋ +̇ ẏ
p
= ẏ +̇ ẋ ) 2

We have thus proved M Proposition 3.2(h), that is, 1 stating the commuta-
tive law of addition. We have done this using variables x and y, but this does
not make a difference. Cf. 6.7.3.

7 Conclusion

In this report we have stated and proved a number of propositions from [4], p.
156. More precisely we have proved Proposition 3.2(a)-(h), except Proposition
3.2(e). The proofs have been carried out with the ambition of keeping things as
simple as possible. We have succeded in doing so, proving all propositions by
the help of the theorems given in [Theory S ′] defined on the peano page, two
tautologies, and one lemma needed in the proof of our final theorem. The final
theorem stated our original assignment, namely the commutativity of addition.
We can thus conclude that we have solved the assignment properly.

Furthermore, for the inexperienced user and logician we have intended to
give a short introduction to the Logiweb system, axiomatic theories, and peano
arithmetic. The introduction should make the report self-contained, though we
have given references to relevant literature where needed.
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A The Name of the Page

This defines the name of the page:

[peano commutativity
pyk
= “peano commutativity”]

B Priority Table

Priority table
Preassociative
[peano commutativity], [base], [bracket ∗ end bracket],
[big bracket ∗ end bracket], [math ∗ end math], [flush left [∗]], [x], [y], [z],
[[∗ ./ ∗]], [[∗ ∗→ ∗]], [pyk], [tex], [name], [prio], [∗], [T], [if(∗, ∗, ∗)], [[∗ ∗⇒ ∗]], [val],
[claim], [⊥], [f(∗)], [(∗)I], [F], [0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [0], [1], [2], [3], [4],
[5], [6], [7], [8], [9], [a], [b], [c], [d], [e], [f], [g], [h], [i], [j], [k], [l], [m], [n], [o], [p], [q], [r],
[s], [t], [u], [v], [w], [(∗)M], [If(∗, ∗, ∗)], [array{∗} ∗ end array], [l], [c], [r], [empty],
[〈∗ | ∗ := ∗〉], [M(∗)], [Ũ(∗)], [U(∗)], [UM(∗)], [apply(∗, ∗)], [apply1(∗, ∗)],
[identifier(∗)], [identifier1(∗, ∗)], [array-plus(∗, ∗)], [array-remove(∗, ∗, ∗)], [array-
put(∗, ∗, ∗, ∗)], [array-add(∗, ∗, ∗, ∗, ∗)], [bit(∗, ∗)], [bit1(∗, ∗)], [rack], ["vector"],
["bibliography"], ["dictionary"], ["body"], ["codex"], ["expansion"], ["code"],
["cache"], ["diagnose"], ["pyk"], ["tex"], ["texname"], ["value"], ["message"],
["macro"], ["definition"], ["unpack"], ["claim"], ["priority"], ["lambda"],
["apply"], ["true"], ["if"], ["quote"], ["proclaim"], ["define"], ["introduce"],
["hide"], ["pre"], ["post"], [E(∗, ∗, ∗)], [E2(∗, ∗, ∗, ∗, ∗)], [E3(∗, ∗, ∗, ∗)],
[E4(∗, ∗, ∗, ∗)], [lookup(∗, ∗, ∗)], [abstract(∗, ∗, ∗, ∗)], [d∗e], [M(∗, ∗, ∗)],
[M2(∗, ∗, ∗, ∗)], [M∗(∗, ∗, ∗)], [macro], [s0], [zip(∗, ∗)], [assoc1(∗, ∗, ∗)], [(∗)p],

[self], [[∗ =̈ ∗]], [[∗ =̇ ∗]], [[∗ =́ ∗]], [[∗ pyk
= ∗]], [[∗ tex

= ∗]], [[∗ name
= ∗]],

[Priority table[∗]], [M̃1], [M̃2(∗)], [M̃3(∗)], [M̃4(∗, ∗, ∗, ∗)], [M̃(∗, ∗, ∗)],
[Q̃(∗, ∗, ∗)], [Q̃2(∗, ∗, ∗)], [Q̃3(∗, ∗, ∗, ∗)], [Q̃∗(∗, ∗, ∗)], [(∗)], [aspect(∗, ∗)],
[aspect(∗, ∗, ∗)], [〈∗〉], [tuple1(∗)], [tuple2(∗)], [let2(∗, ∗)], [let1(∗, ∗)],
[[∗ claim

= ∗]], [checker], [check(∗, ∗)], [check2(∗, ∗, ∗)], [check3(∗, ∗, ∗)],
[check∗(∗, ∗)], [check∗2(∗, ∗, ∗)], [[∗]·], [[∗]−], [[∗]◦], [msg], [[∗ msg

= ∗]], [<stmt>],

[stmt], [[∗ stmt
= ∗]], [HeadNil ′], [HeadPair ′], [Transitivity ′], [⊥⊥], [Contra ′], [T ′

E],
[L1], [∗], [A], [B], [C], [D], [E ], [F ], [G], [H], [I], [J ], [K], [L], [M], [N ], [O], [P], [Q],
[R], [S], [T ], [U ], [V], [W], [X ], [Y], [Z], [〈∗ | ∗ := ∗〉], [〈∗∗ | ∗ := ∗〉], [∅], [Remainder],
[(∗)v], [intro(∗, ∗, ∗, ∗)], [intro(∗, ∗, ∗)], [error(∗, ∗)], [error2(∗, ∗)], [proof(∗, ∗, ∗)],
[proof2(∗, ∗)], [S(∗, ∗)], [SI(∗, ∗)], [S¤(∗, ∗)], [S¤

1 (∗, ∗, ∗)], [SE(∗, ∗)], [SE
1 (∗, ∗, ∗)],

[S+(∗, ∗)], [S+
1 (∗, ∗, ∗)], [S−(∗, ∗)], [S−

1 (∗, ∗, ∗)], [S∗(∗, ∗)], [S∗1 (∗, ∗, ∗)],
[S∗2 (∗, ∗, ∗, ∗)], [S@(∗, ∗)], [S@

1 (∗, ∗, ∗)], [S`(∗, ∗)], [S`1 (∗, ∗, ∗, ∗)], [S `̀ (∗, ∗)],
[S`̀1 (∗, ∗, ∗, ∗)], [S i.e.(∗, ∗)], [S i.e.

1 (∗, ∗, ∗, ∗)], [S i.e.
2 (∗, ∗, ∗, ∗, ∗)], [S∀(∗, ∗)],

[S∀1 (∗, ∗, ∗, ∗)], [S ;(∗, ∗)], [S ;
1(∗, ∗, ∗)], [S ;

2(∗, ∗, ∗, ∗)], [T (∗)], [claims(∗, ∗, ∗)],
[claims2(∗, ∗, ∗)], [<proof>], [proof], [[Lemma ∗: ∗]], [[Proof of ∗: ∗]],
[[∗ lemma ∗: ∗]], [[∗ antilemma ∗: ∗]], [[∗ rule ∗: ∗]], [[∗ antirule ∗: ∗]],
[verifier], [V1(∗)], [V2(∗, ∗)], [V3(∗, ∗, ∗, ∗)], [V4(∗, ∗)], [V5(∗, ∗, ∗, ∗)], [V6(∗, ∗, ∗, ∗)],
[V7(∗, ∗, ∗, ∗)], [Cut(∗, ∗)], [Head⊕(∗)], [Tail⊕(∗)], [rule1(∗, ∗)], [rule(∗, ∗)],
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[Rule tactic], [Plus(∗, ∗)], [[Theory ∗]], [theory2(∗, ∗)], [theory3(∗, ∗)],
[theory4(∗, ∗, ∗)], [HeadNil ′′], [HeadPair ′′], [Transitivity ′′], [Contra ′′], [HeadNil],
[HeadPair], [Transitivity], [Contra], [TE], [ragged right],
[ragged right expansion ], [parm(∗, ∗, ∗)], [parm∗(∗, ∗, ∗)], [inst(∗, ∗)],
[inst∗(∗, ∗)], [occur(∗, ∗, ∗)], [occur∗(∗, ∗, ∗)], [unify(∗ = ∗, ∗)], [unify∗(∗ = ∗, ∗)],
[unify2(∗ = ∗, ∗)], [La], [Lb], [Lc], [Ld], [Le], [Lf ], [Lg], [Lh], [Li], [Lj], [Lk], [Ll], [Lm],
[Ln], [Lo], [Lp], [Lq], [Lr], [Ls], [Lt], [Lu], [Lv], [Lw], [Lx], [Ly], [Lz], [LA], [LB], [LC],
[LD], [LE], [LF], [LG], [LH], [LI], [LJ], [LK], [LL], [LM], [LN], [LO], [LP], [LQ], [LR],
[LS], [LT], [LU], [LV], [LW], [LX], [LY], [LZ], [L?], [Reflexivity], [Reflexivity1],

[Commutativity], [Commutativity1], [<tactic>], [tactic], [[∗ tactic
= ∗]], [P(∗, ∗, ∗)],

[P∗(∗, ∗, ∗)], [p0], [conclude1(∗, ∗)], [conclude2(∗, ∗, ∗)], [conclude3(∗, ∗, ∗, ∗)],
[conclude4(∗, ∗)], [peano], [0̇], [1̇], [2̇], [ȧ], [ḃ], [ċ], [ḋ ], [ė], [ḟ ], [ġ ], [ḣ], [i̇ ], [j̇ ], [k̇ ], [l̇ ],
[ṁ], [ṅ], [ȯ], [ṗ], [q̇ ], [ṙ ], [ṡ], [ṫ ], [u̇], [v̇ ], [ẇ ], [ẋ ], [ẏ ], [ż ], [ ˙nonfree(∗, ∗)],
[ ˙nonfree

∗
(∗, ∗)], [ ˙free〈∗|∗ := ∗〉], [ ˙free∗〈∗|∗ := ∗〉], [∗≡〈∗|∗ := ∗〉], [∗≡〈∗∗|∗ := ∗〉],

[S], [A1], [A2], [A3], [A4], [A5], [S1], [S2], [S3], [S4], [S5], [S6], [S7], [S8], [S9], [MP],
[Gen], [L3.2(a)], [S ′], [A1 ′], [A2 ′], [A3 ′], [A4 ′], [A5 ′], [S1 ′], [S2 ′], [S3 ′], [S4 ′], [S5 ′],
[S6 ′], [S7 ′], [S8 ′], [S9 ′], [MP ′], [Gen ′], [L3.2(a) ′], [M1.7], [MP ′h], [Hypothesize],
[Gen ′h], [M3.2(a)], [M3.2(a)h], [M3.2(b)h], [M3.1(S1 ′)h], [M3.2(c)h], [M3.1(S2 ′)h],
[M3.1(S5 ′)h], [M3.1(S6 ′)h], [M3.2(f)], [M Lemma 1.8], [M Proposition 3.2(a)],
[M Proposition 3.2(b)], [M Proposition 3.2(c)], [M Proposition 3.2(d)],
[M Proposition 3.2(f) (i)], [M Proposition 3.2(f) (ii)], [M Proposition 3.2(f)],
[M Proposition 3.2(g) (i)], [M Proposition 3.2(g) (ii)], [M Proposition 3.2(g)],
[M Proposition 3.2(h)(i)], [M Proposition 3.2(h)(g)(ii)],
[M Proposition 3.2(h)(ii)], [M Proposition 3.2(h)], [M Tautology A],
[M Tautology B];
Preassociative
[∗ {∗}], [∗ ′], [∗[ ∗ ]], [∗[∗→∗]], [∗[∗⇒∗]], [∗̇];
Preassociative
[“ ∗ ”], [], [(∗)t], [string(∗) + ∗], [string(∗) ++ ∗], [
∗], [ ∗], [!∗], ["∗], [#∗], [$∗], [%∗], [&∗], [’∗], [(∗], [)∗], [∗∗], [+∗], [, ∗], [-∗], [.∗], [/∗],
[0∗], [1∗], [2∗], [3∗], [4∗], [5∗], [6∗], [7∗], [8∗], [9∗], [:∗], [; ∗], [<∗], [=∗], [>∗], [?∗], [@∗],
[A∗], [B∗], [C∗], [D∗], [E∗], [F∗], [G∗], [H∗], [I∗], [J∗], [K∗], [L∗], [M∗], [N∗], [O∗],
[P∗], [Q∗], [R∗], [S∗], [T∗], [U∗], [V∗], [W∗], [X∗], [Y∗], [Z∗], [[∗], [\∗], []∗], [^∗], [ ∗],
[‘∗], [a∗], [b∗], [c∗], [d∗], [e∗], [f∗], [g∗], [h∗], [i∗], [j∗], [k∗], [l∗], [m∗], [n∗], [o∗], [p∗],
[q∗], [r∗], [s∗], [t∗], [u∗], [v∗], [w∗], [x∗], [y∗], [z∗], [{∗], [|∗], [}∗], [˜∗],
[Preassociative ∗; ∗], [Postassociative ∗; ∗], [[∗], ∗], [priority ∗ end],
[newline ∗], [macro newline ∗];
Preassociative
[∗0], [∗1], [0b], [∗-color(∗)], [∗-color∗(∗)];
Preassociative
[∗ ’ ∗], [∗ ‘ ∗];
Preassociative
[∗H], [∗T], [∗U], [∗h], [∗t], [∗s], [∗c], [∗d], [∗a], [∗C], [∗M], [∗B], [∗r], [∗i], [∗d], [∗R], [∗0],
[∗1], [∗2], [∗3], [∗4], [∗5], [∗6], [∗7], [∗8], [∗9], [∗E], [∗V ], [∗C ], [∗C∗ ], [∗ ′];
Preassociative
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[∗ · ∗], [∗ ·0 ∗], [∗ ·̇ ∗];
Preassociative
[∗+ ∗], [∗+0 ∗], [∗+1 ∗], [∗− ∗], [∗−0 ∗], [∗−1 ∗], [∗ +̇ ∗];
Preassociative
[∗ ∪ {∗}], [∗ ∪ ∗], [∗\{∗}];
Postassociative
[∗ .̇ . ∗], [∗ .̇ . ∗], [∗ : : ∗], [∗ +2∗ ∗], [∗ : : ∗], [∗ +2∗ ∗];
Postassociative
[∗, ∗];
Preassociative
[∗ B≈ ∗], [∗ D≈ ∗], [∗ C≈ ∗], [∗ P≈ ∗], [∗ ≈ ∗], [∗ = ∗], [∗ +→ ∗], [∗ t

= ∗], [∗ t∗
= ∗], [∗ r

= ∗],
[∗ ∈t ∗], [∗ ⊆T ∗], [∗ T

= ∗], [∗ s
= ∗], [∗ free in ∗], [∗ free in∗ ∗], [∗ free for ∗ in ∗],

[∗ free for∗ ∗ in ∗], [∗ ∈c ∗], [∗ < ∗], [∗ < ′ ∗], [∗ ≤ ′ ∗], [∗ p
= ∗], [∗P ];

Preassociative
[¬∗], [¬̇ ∗];
Preassociative
[∗∧ ∗], [∗ ∧̈ ∗], [∗ ∧̃ ∗], [∗∧c ∗], [∗ ∧̇ ∗];
Preassociative
[∗∨ ∗], [∗ ‖ ∗], [∗ ∨̈ ∗], [∗ ∨̇ ∗];
Preassociative
[∀̇∗: ∗], [∃̇∗: ∗];
Postassociative
[∗ ⇒̈ ∗], [∗ ⇒̇ ∗], [∗ ⇔̇ ∗];
Postassociative
[∗ : ∗], [∗!∗];
Preassociative

[∗
{ ∗
∗ ];

Preassociative
[λ ∗ .∗], [Λ∗], [if ∗ then ∗ else ∗], [let ∗ = ∗ in ∗], [let ∗ =̈ ∗ in ∗];
Preassociative
[∗I], [∗¤], [∗V], [∗+], [∗−], [∗∗];
Preassociative
[∗@ ∗], [∗¤ ∗], [∗ ¤¤ ∗], [∗ À ∗];
Postassociative
[∗ ` ∗], [∗ `̀ ∗], [∗ i.e. ∗];
Preassociative
[∀∗: ∗];
Postassociative
[∗ ⊕ ∗];
Postassociative
[∗; ∗];
Preassociative
[∗ proves ∗];
Preassociative

27



[∗ proof of ∗ : ∗], [Line ∗ : ∗ À ∗; ∗], [Last line ∗ À ∗2],
[Line ∗ : Premise À ∗; ∗], [Line ∗ : Side-condition À ∗; ∗], [Arbitrary À ∗; ∗],
[Local À ∗ = ∗; ∗];
Postassociative
[∗ then ∗], [∗[ ∗ ]∗];
Preassociative
[∗&∗];
Preassociative
[∗\\∗];End table
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